
1

Vulnerability Assessment in Autonomic Networks
and Services: A Survey

Martı́n Barrère, Rémi Badonnel and Olivier Festor
INRIA Nancy Grand Est - LORIA, France
Email: {barrere, badonnel, festor}@inria.fr

Abstract—Autonomic networks and services are exposed to a
large variety of security risks. The vulnerability management
process plays a crucial role for ensuring their safe configurations
and preventing security attacks. We focus in this survey on
the assessment of vulnerabilities in autonomic environments.
In particular, we analyze current methods and techniques con-
tributing to the discovery, the description and the detection of
these vulnerabilities. We also point out important challenges that
should be faced in order to fully integrate this process into the
autonomic management plane.

Index Terms—Vulnerability assessment, autonomic computing,
computer security, vulnerability management.

I. INTRODUCTION

THE growing development of networks and the multiplica-
tion of the services offered over them have dramatically in-

creased the complexity of network management. The paradigm
of autonomic computing has been introduced for addressing
this complexity through the design of networks and services
which are responsible of their own management [1], [2].
While high-level objectives are provided by network adminis-
trators, management operations are delegated to the networks
themselves thus alleviating the administrative burden required
for maintaining large-scale expanding networks as well as
dozens of heterogeneous services [3], [4]. Such approach aims
at providing strong foundations for developing scalable and
flexible infrastructures able to support a demanding and chang-
ing technological reality.

In that context, autonomic networks involve a set of func-
tional areas called self-* properties that organize their self-
governing nature. Four main areas classify the mechanisms
used for regulating their behavior, namely, self-configuration
providing means for automatically configuring components
and services, self-optimization covering techniques for moni-
toring and adapting parameters in order to achieve an optimal
operation according to the laws that govern the system, self-
healing for automatically detecting, diagnosing and repairing
localized software and hardware problems, and self-protection
methods supporting activities for identifying and defending the
system against potential threats [5]. Autonomic entities work
under closed control loops that govern their behavior. A closed
loop controls the dynamic behavior of the system by consum-
ing not only external inputs from the environment but also its
own output by means of a feedback mechanism. The sequence
of phases determining the behavior of a specific autonomic

entity includes monitoring its current state, analyzing the
available information, planning future actions, and executing
generated plans compliant to specified high-level goals [6].
Self-* properties are intended to autonomously solve high-
level requirements, however, their implementation is complex
and poses hard challenges. Along with administration tasks
done by humans, changes performed by autonomic entities
may inadvertently generate vulnerable states when following
high-level objectives. Even though these changes can oper-
ationally improve the environment, insecure configurations
may be produced increasing the exposure to security threats.
Thus, enabling autonomic networks and systems to manage
vulnerabilities and maintain safe configurations constitutes a
major challenge.

In computer security, a vulnerability can be understood as
a flaw or weakness in system security procedures, design,
implementation, or internal controls that could be exercised
(accidentally triggered or intentionally exploited) and result
in a security breach or a violation of the system’s security
policy [7], [8]. Under this perspective, vulnerability manage-
ment is a cross-cutting concern strongly related but not limited
to self-configuration and self-protection activities of autonomic
networks. This process is depicted in Fig. 1 where a control
loop enables the assessment and remediation of potential
vulnerable states generated by both administrators tasks and
self-management activities, thus securing the environment. The
aim of this survey is to investigate methods and techniques
contributing to vulnerability management in such autonomic

Fig. 1: Positioning of vulnerability management with respect
to self-management activities

2

Fig. 2: Vulnerability assessment - D3 classification

environments, specially focused on the vulnerability assess-
ment process. We decompose vulnerability assessment activi-
ties by considering what we call a D3 (D cube) classification
as illustrated in Fig. 2, D3 standing for Discovery, Description
and Detection.

The D3 classification provides a basis, divided into three
axes, for organizing the foundations of vulnerability assess-
ment which is the heart of this survey and that in turn
constitutes the first step for the vulnerability management
process to be embedded into autonomic environments. Au-
tonomic entities must be provided with knowledge about
current vulnerabilities, either with mechanisms for discovering
threats by themselves or with machine-readable specifications
about security alerts. Regardless of the mechanism chosen,
vulnerability discovery techniques (axis 1) must be analyzed
in order to unveil unknown vulnerabilities, and to explore
and understand the constantly evolving threatening environ-
ment. Taking advantage of these mechanisms, new knowledge
becomes available for increasing the vulnerability awareness
of self-governed environments. Such consciousness must be
formally specified in order to be understood by comput-
ing devices, thus standard languages and protocols must be
provided for describing and exchanging security advisories
(axis 2). Such security knowledge increases the capability
of autonomic networks and systems for detecting vulnerabil-
ities in the surrounding environment (axis 3) and provides
a strong support for taking decisions when performing self-
management activities.

The remainder of this survey is structured as follows.
Section II introduces fundamentals of vulnerability manage-
ment and presents its positioning with respect to change man-
agement and risk assessment, connecting these concepts with
autonomic networks and systems requirements. Section III
presents the approaches used for vulnerabilities discovery.
Section IV discusses current mechanisms and protocols for
describing vulnerabilities, analyzing computer systems and
exchanging security related content. Section V presents tech-

niques for assessing device vulnerabilities as well as network
vulnerabilities, and the correlation with security threats and
attack graphs. Section VI identifies major challenges and
proposes directions for further work. Section VII closes this
survey presenting the obtained conclusions.

II. VULNERABILITY MANAGEMENT

Managing large-scale networks is a complex task and by
nature, humans make errors when configuring them. In addi-
tion, changes performed by autonomic entities may increase
their own security exposure. Because of this, vulnerable con-
figurations are likely within such environments and they may
potentially lead to a wide spectrum of negative and unwanted
issues such as instability, unavailability, confidentiality prob-
lems, and many more. Usually, the risk level of a system is
based on three main combined factors, namely, the potentiality
of a threat in conjunction with the exposure of that system to
such threat and the impact that a successful attack related to
this threat may have in that system [9]. The exposure of a
system in turn is directly related to the vulnerabilities present
in such system, thus managing vulnerabilities that might be
exercised by a given threat constitutes a critical activity for
quantifying the system exposure and hence the risk level of
autonomic networks and systems. This survey is targeted on
vulnerability assessment, an essential part of the vulnerability
management process. However, it is important to have a
clear image of the domain where vulnerability assessment
activities take place before entering into deeper details. This
section is intended to explain the general process of dealing
with vulnerabilities in order to understand the interconnection
between the involved management activities as well as to
identify direct and orthogonal works done in the field that
may potentially contribute to such process.

Vulnerability management is usually defined as the prac-
tice of (I) identifying, (II) classifying, (III) remediating and
mitigating vulnerabilities [10]. Historically, the process of
managing vulnerabilities has been exercised for long time in
different fields. Military for instance considers a vulnerability
as the inability to withstand an adverse circumstance produced
by a hostile environment. Therefore, security procedures are
defined to state how to proceed in these situations, thus
constituting part of a vulnerability management program [11].
In information technology, vulnerabilities have existed from
the beginning. As an example, in 1903 the Marconi wireless
telegraph was reported to contain a flaw that allowed an
attacker to intercept any message sent by the device thus
leading to unauthorized information disclosure [12]. In 1962,
the Multics CTSS operating system running on IBM 7094
was reported to have a flaw allowing an unauthorized user to
disclose the password of every user on the system. Reports
of identified vulnerabilities have continued coming up since
the 60’s until our days. With the incursion of computing
systems into human activities, the diversification of programs
and services have set up more and more vulnerabilities
compromising the security of such systems. These undesired
effects made it clear the need of developing security programs
able to deal with such security issues. In 1972, a computer

3

Fig. 3: Stages towards autonomic computing [15]

security technology planning study was created by the U.S.
Air Force Systems Command (AFSC). The objective of such
program was to specify directives for securing the use and
development of computing systems [7]. Since those days,
managing vulnerabilities became an essential activity for any
organization involving the use of computers or telecommunica-
tions equipment. Nowadays, several technologies that will be
later detailed in this survey are widely used for supporting this
process such as the Common Vulnerabilities and Exposures
system (CVE) [13] for enumerating known vulnerabilities or
the Security Content Automation Protocol (SCAP) [14] for
automating vulnerability management activities.

In order to integrate vulnerability management mechanisms
into autonomic environments, it is important to consider what
levels of automation can be achieved. As proposed in [15],
the evolutionary path to autonomic computing is represented
by five levels as illustrated in Fig. 3. The first level depicts
the basic approach where network elements are independently
managed by system administrators. The management of net-
work elements by collecting information from disparate sys-
tems into one consolidated view constitutes the managed level.
At the predictive level, new technologies are incorporated
for correlating information, predicting optimal configurations
and providing advices to system administrators. The ability to
automatically take actions based on the available information
constitutes the adaptive level. Finally, the autonomic level is
achieved when the system is governed by business policies
and objectives. These objectives define the purpose of the
autonomic system that will be inherently pursuit by its logical
implementation and supported by its internal know-how as
well as its ability to sense the environment. It is important
to highlight that a wide range of software and systems could
embody autonomic solutions to some extent if they can be
adapted to interact with the environment by means of sensors
and effectors and to work guided by rules and policies intended
to achieve a specific purpose.

Under this perspective, the establishment of a secure pro-
cess for dealing with vulnerabilities requires the specification
of a policy defining the desired system state and a well-
known secure initial state to identify vulnerabilities and policy
compliance [16]. The main activities performed during the
lifecycle of the vulnerability management process can be
mapped to the same activity line present in autonomic compo-
nents. Fig. 4 describes the general lifecycle of an autonomic
component where the main activities done for dealing with
vulnerabilities have been mapped to the task loop performed
during the autonomic manager lifecycle. The resource man-
ager interface provides means for monitoring and controlling
the managed element (hardware, software, others). While its
sensor enables the autonomic manager to obtain data from
the resource, the effector allows it to perform operations on
the resource. The autonomic manager is composed of a cycle
of four activities and also exposes a manageability interface,
in the same way the managed element does. This interface
allows other autonomic managers to use its services and pro-
vides composition capabilities on a distributed infrastructure.
Based on the specified directives, the autonomic manager will
continuously monitor the managed element and will perform
an analysis of the perceived state. As shown in Fig. 4, vulner-
ability identification activities take place in this monitoring
phase where tasks for assessing and analyzing vulnerable
states are performed (I) taking advantage of the available
security knowledge. When a security problem is found, it is
classified (II) and changes for correcting the situation must
be performed. Therefore, vulnerability counter-measures are
planned based on several factors such as importance, risks and
impact. Finally, a change plan is generated and remediation
tasks are executed (III) in order to maintain safe configurations
and to be compliant with the current policy.

As we mentioned before, computer systems management is
becoming more and more complex over time. Conventional
approaches are not scalable, thus leading to new management
problems. Autonomic systems release administrators from
low-level details. The self-management approach works on a
high-level, goal-oriented basis. This scenario allows to specify
how things work while functional details are solved by the
underlying autonomic system. However, when vulnerability
management related tasks are performed, several changes
are introduced in the working environment as well. Thus,
it is important to count on mechanisms and techniques for
assessing and evaluating the impact and the effectiveness of
these changes.

Change management already constitutes a challenging activ-
ity when performed by human administrators, the automation
of such process is even more complex. As a simple example,
we can imagine a system that has installed a specific software
X with version 1.0 providing services A and B. This version
has a vulnerability that if exploited would allow an attacker
to perform an unauthorized access to the system. In light of
this, it is decided to upgrade the software X to its version 1.1
where the referred vulnerability has been eradicated. However,
it turns out that the new version does not provide service
B any more but it is still required by software Y. Different
actions could be taken in order to face this problem, e.g.,

4

Fig. 4: Mapping of the vulnerability management activity into the autonomic lifecycle [6]

removing software Y if it is not required, providing service
B with other not vulnerable piece of software if possible,
keeping X in its vulnerable version 1.0, and so on. The point
is that this decision is based on factors that define the nature
of the system, laws that rule the behavior and purpose of
the system. While some entities will prioritize functionality
over security, others might follow the other way around.
But most importantly, no matter what the chosen action is,
performed changes should be effective as to the objective they
were designed for and consistent with the rules that govern
the system. The latter is not always easy to achieve thus
mechanisms for solving conflicts and techniques for reducing
the impact of these changes must be taken into account as
well. A few works really address vulnerability management in
autonomic networks and systems. Orthogonal works have been
proposed in the area of change management. They contribute
to ensure the correctness of configuration operations and their
positive impact over services but they do not consider security
aspects with respect to vulnerable configurations. Therefore,
vulnerability management activities and change management
techniques become interconnected; network changes must be
evaluated in order to ensure safe modifications and at the
same time, vulnerable states must be remediated by performing
controlled changes in the environment. Within this section, we
point out related work about change management on networks
and systems considering vulnerability treatments, and we also
cover different approaches contributing to the risk assessment
activity.

A large variety of techniques have been proposed to eval-
uate the impact of changes in networks and systems. These
contributions provide strong foundations for their automa-
tion. Information Technology Service Management (ITSM) is
a fundamental work field for institutions and corporations;
intended to expose mechanisms for dealing with changes
within an organization, trying to minimize the impact and,
at the same time, maximize the utility provided by them [17].
Within the vulnerability management scenario, vulnerability
mitigation and remediation involve changes on the underlying
infrastructure, thus requiring impact analysis. It is well known

that IT processes evolve over time. Several reasons support
this evolution; one of them is the existence of optimization
points. An improved process may decrease its complexity
and therefore becoming more understandable and less error
prone, leaving smaller space for security problems. The work
proposed in [18] for instance introduces a model for relat-
ing IT management complexity metrics to key business-level
performance metrics like time and labor cost. The approach
allows to determine if a given process transformation is likely
to improve business performance (e.g. in terms of time) based
on process associated complexity metrics. Some approaches
consider future changes already at system design, thus changes
are more manageable when they are required. Design rationale
is one of these approaches, which involves an explicit docu-
mentation of the reasons behind the decisions taken, providing
a better view of system dynamics. An approach based on
design rationale has been proposed in [19] where the method is
used to represent the causal relationships between architecture
design elements and decisions. Based on Bayesian belief
networks, the model is capable of capturing the probabilistic
causal relationships between design elements and decisions,
and analyzing design change impact.

Assessing change associated risks also provides a key
support for change management. When a change is needed on
an IT infrastructure, assessing techniques are commonly used
to evaluate or estimate the projected change associated risks
in order to take decisions about its effective implementation.
Sometimes, these decisions are not one hundred percent clear,
therefore, measurable mechanisms are required in order to
perform appropriate cost-benefit analysis. The work presented
in [20] describes a method for evaluating the risk exposure
associated with a change. Based on the obtained risk exposure
metric, the authors present an automatic mechanism for assign-
ing priorities to changes and therefore, allowing to organize
and take business-level decisions about required changes. Pre-
vious experience is normally used when facing new problems,
trying to find adaptability points and reuse successful actions
taken in the past. A solution for automating the risk assessment
process using past experience has been proposed in [21]

5

Fig. 5: Automated vulnerability assessment classification

where historical data –from previous sequences of changes–
is combined in order to analyze the impact of changes over
the affected elements. The impact severity on these elements
is a crucial piece of information for the organization when
taking changes decisions. The work presented in [22] proposes
a model for analyzing the business impact of operational
risks resulting from change related service downtimes of
uncertain duration, considering the existing interdependence
between services. Analysis results are used later for scheduling
changes with the lowest expected impact on the business.
Sometimes, some fundamental business services are so im-
portant –this is, with a high negative business impact if the
change fails– that organizations often opt finding different and
more secure approaches to implement the required change.
From an autonomic point of view, automated techniques to
assess change associated risks like those presented here, are
extremely important in order to achieve these goals.

It is also important to prevent states which are vulnerable
from a security perspective and not only from an operational
viewpoint. Increasing systems vulnerability awareness is an
important challenge within autonomous behavior as it provides
means for better understanding the surrounding environment.
As the autonomic nervous system, autonomic systems and
networks must be able to perform diagnosis on the environ-
ment they are working on. Because systems high-level state
is typically changing, these capabilities provide the basis for
adaptation. Awareness of risks and vulnerabilities is one of
them and provides the first step towards more secure systems.
A methodology for minimizing the dissemination of vulnera-
bilities on hybrid networks has been proposed in [23]. Within
such multi-agent system, the main task of each software agent
is to detect vulnerabilities and exposures. Each agent can
exchange security notifications with other agents in order to
warn them about possible threats or network attacks. Com-
binations of powerful techniques, as we will further present,
provide a strong basis for vulnerability detection. Nevertheless,
in practice, it is almost impossible to be aware of each security
and exploitable hole for each system. Vulnerability detection
provides large amounts of information that allow systems

to be aware of threats, but autonomic systems need to see
the big picture, not only as a snapshot but also considering
past experience, in order to identify risk factors and perform
progressive adaptation to achieve secure states. The work
presented in [24] and [25] proposes a security metric-based
framework that identifies and quantifies objectively security
risk factors, including existing vulnerabilities, historical trend
of vulnerabilities of remotely accessible services, prediction of
potential vulnerabilities for any general network service and
their estimated severity and finally propagation of an attack
within the network.

As stated before, the main target of this survey is to deeply
explore existing mechanisms and techniques that contribute to
the vulnerability assessment process. This activity increases
the vulnerability awareness of autonomic environments that
along with the remediation activity completes the vulnerability
management process loop. In order to cover the automation of
the vulnerability assessment process, we propose the classifi-
cation depicted in Fig. 5 where we divide the activity into three
main areas following the D3 approach. First, we will present
current approaches for discovering unknown vulnerabilities
connecting their applicability over autonomic environments.
Then, we will detail description languages capable of rep-
resenting security advisories about known vulnerabilities. Fi-
nally, we will describe techniques that take advantage of such
knowledge for performing security analysis from both, agent
and network perspectives, in a centralized or a distributed
manner.

III. DISCOVERING VULNERABILITIES

In the previous section we reviewed some important as-
pects of vulnerability management in autonomic networks and
discussed approaches to face related infrastructure changes.
In order to perform these security improvement changes, the
ability to unveil threats present on the environment becomes an
essential requirement. Because the whole set of potential vul-
nerabilities on each system is typically unknown, techniques
for learning and discovering vulnerabilities must be developed.
Under this perspective, it is also important to consider how

6

such security information actually becomes available for pro-
tecting autonomic networks and systems. Indeed, there is a
bigger ecosystem that not only involves vulnerabilities and
security defects but also people and their motivations [26].
New vulnerability information usually follows complex paths
before users get benefited of it [27]. This security ecosystem
is frequently governed by economical laws where buyers and
sellers of new security findings establish complex vulnerability
markets. It is not the target of this survey to cover how
vulnerability information is traded in both white and black
markets, however it is important to keep in mind that computer
security is not only about technologies but also about people’s
behavior and motivations. In this section we will focus on
mechanisms and means for discovering unknown vulnerabil-
ities. This topic has been barely addressed within the field
of autonomic networks, therefore the objective is to explore
different approaches that can be potentially integrated into self-
governed systems. Usually, almost every solution designed
for standard systems can be embedded to some extent into
autonomic closed loops. The ease of such integration depends
on the nature of these approaches, however, we can normally
think or design autonomic elements with sensors capable
of consuming the required input that will feed the existing
solution and adapting the performed actions to be wrapped
by autonomic effectors. While automating the operation of
these solutions might be in some cases quite straightforward,
making them self-adaptive to the surrounding environment as
well as to work under a policy-based perspective (autonomous)
constitutes an open and highly challenging problem. In light
of this, a subset of prominent perspectives has been selected
to provide an overview of available strategies for unveiling
security issues. Our research includes some of the most studied
fields including testing methods, network forensics techniques
and case-based reasoning.

A. Exploiting testing methods

Exploiting testing methods provides a powerful approach
to unknown vulnerability detection. Software applications are
commonly designed with a set of specific goals in mind in
order to provide effective solutions to the stated requirements.
While developers pursue efficient functional constructions,
testers perform tasks for identifying correctness, completeness,
quality and security of developed computer software. Several
approaches under the tester point of view are used when
software tests are designed [28]. White-box testing allows
testers to have access to internal structures, algorithms and the
code itself of the software being tested, e.g. static analysis,
code review. Black-box testing on the other hand does not
provide information about the internal implementation and the
software is seen as an input-output black box, e.g. dynamic
analysis, performance tests. Grey-box testing combines the
previous approaches by considering knowledge about the soft-
ware internals but executes the tests at a black-box level, e.g.
internal database testing. Under a self-governing perspective,
autonomic elements could be analyzed using these techniques
in order to identify abnormal behavior. This first step would
provide useful information to the underlying government

mechanism about unsafe components. Even though traditional
testing techniques unveil an important amount of software
problems, it is unfortunately common for testers to focus on
functionality correctness and to omit strong security tests. At
the time of software construction and testing, normal input
tests are frequently more numerous than anomalous input tests.
Because of this, several unknown vulnerabilities remain hidden
behind untested input data. Fuzzing techniques are intended to
find these kind of software bugs.

The fuzzing approach complements traditional testing to
discover combinations of code and data by exploiting the
power of randomness, protocol knowledge, and attack heuris-
tics. Instead of using normal input data, fuzzing methods
generate unexpected or malformed inputs for feeding the
target software. Software behavior is then assessed in order
to identify potential vulnerability hotspots. A wide view of
current fuzzing techniques is presented in [29] where different
approaches are explored, highlighting fuzzing contributions
to vulnerability detection. Since application’s input space is
in most cases impossible to enumerate, fuzzing techniques
use two main approaches: data generation and data mutation
(randomly modifying well-formed inputs). However, tradi-
tional fuzzing tools present some randomness related draw-
backs when working with applications that perform various
types of integrity checks (e.g. checksum). Checksum mecha-
nisms reject an important part of the generated input set at
initial execution stages, decreasing the fuzzer effectiveness
and code coverage. The work presented in [30] identifies
the stated problems and presents an approach to overcome
early malformed input rejection due to checksum failures.
Other approaches have been proposed as well for avoiding
input related issues. A fuzzing-based methodology called
configuration fuzzing has been presented in [31] where the
configuration of the running application is randomly modified
at certain execution points in order to check for vulnerabilities
that only arise in certain conditions. The proposed approach
is performed within the running environment over a copy
of the original application, enabling the detection of missed
vulnerabilities before the application release. Considering the
fact that autonomic systems are ruled by high-level policies,
the same mechanism could be used for specifying properties
and the expected behavior of a piece of software. This would
allow testing solutions to be embedded into self-governing
entities in order to analyze their operation by checking the
current state against the defined policies. As a first step
this process could inform administrators about abnormal or
unexpected behavior. However, it also could be taken one step
further by automatically generating reports about the current
system configuration for future use and looking for available
solutions, configuration changes and patches.

B. Using network forensics

Techniques based on network forensics can also be used for
discovering unknown vulnerabilities. Using network forensics
confers useful methods that can highly contribute to this
activity. Network forensics is typically known as the process
of archiving all network traffic and analyzing subsets as

7

Fig. 6: Forensic investigation process [33]

necessary [32]. This activity generally involves traffic recon-
struction to assess network activity, providing useful infor-
mation for further network-related events analysis. Network
forensics belongs to a wider computing field called digital
forensics. Digital forensics is defined as the use of scientifi-
cally derived and proven methods towards the preservation,
collection, validation, identification, analysis, interpretation,
documentation and presentation of digital evidence derived
from digital sources for the purpose of facilitating or furthering
the reconstruction of events found to be criminal, or helping
to anticipate unauthorized actions shown to be disruptive to
planned operations [33]. Fig. 6 describes the stages involved
within a forensic investigation.

Digital forensics benefits go beyond criminal prosecution.
Several applications arise from the forensic discipline includ-
ing powerful techniques usable in the vulnerability manage-
ment area. Numerous contributions to computer security have
been born within this field and they are widely used over
different scenarios [32], [34]. Even though they are mostly
targeted on traditional networked environments and not self-
governing systems, these works provide a strong basis for
being integrated into autonomic networks. Digital forensics
provides a deep understanding of discovering mechanisms
about the anatomy of an attack, how to gather pieces of
evidence and put them together in order to determine how
an attack took place on the system, when it was committed,
who are the perpetrators and where they come from. Because
of this, its robust technical background on data collection
and analysis establishes a solid framework for performing
computer system investigations, thus providing support to vul-
nerability management activities. The work presented in [34]
provides an overview of digital forensics methodologies, com-
puter and network vulnerabilities and security measures, and
forensics tracking mechanisms to detect and deter intruders.

Forensic tools are extremely important on forensic scenar-
ios. Effectiveness, efficiency, reproducibility, evidence consis-
tency and integrity, traceability, security, are some of several
factors that have to be considered when designing a forensic
tool. Depending on the type of environment where the tool will
be used, the previous features are required for a successful
activity execution. Fundamental concepts related to network
forensics and important features that a network forensic anal-
ysis tool (NFAT) should implement are presented in [32],
namely, NFAT place and purpose, data capture, traffic analysis,

and NFAT interaction and discovery services it should provide.
Such concepts also support decentralized approaches where
various forensic tools can collaborate in order to analyze the
whole network. Evidence collection is an essential stage
within a digital forensic investigation. Results of this stage
feed the analysis stage. Because of this, evidence collection
on computing systems is a highly active study field. The work
proposed in [35] presents a graph-based approach towards
network forensics analysis. The key construction of such
approach is the evidence graph model that facilitates evidence
presentation and automated reasoning. Based on the evidence
graph, a hierarchical reasoning framework is proposed that
consists of two levels. Local reasoning aims at inferring the
functional states of network entities from local observations,
while global reasoning aims at identifying important entities
from the graph structure and extract groups of densely cor-
related participants in the attack scenario. Such approaches
may highly contribute to the integration and positioning of
forensic actuators within autonomic environments aiming at
identifying, analyzing and providing reports about suspicious
or abnormal behavior, and therefore highly contributing to the
first dimension of the D3 approach.

C. Taking advantage of experience

Past experience in dealing with vulnerabilities strength-
ens the ability to face new security problems. Under this
perspective, performing case-based reasoning also provide
interesting and useful outlooks for detecting unknown vulner-
abilities. Case-based reasoning (CBR) is a problem solving
methodology which exploits past experience. Past experience
is maintained in the form of problem-solution pairs, also called
cases. On the arrival of new problems, solutions of similar
past problems are used after appropriate adaptation. The work
presented on [36] applies the CBR approach for enabling self-
configuration capabilities in autonomic systems. The authors
propose a model for restricting the case-base size, providing
efficiency with no accuracy loss. This approach can be applied
on unknown situations, where some kind of nearness concept
may be used in order to classify how similar the new problem
is to the problems already known. Using different algorithms,
solutions for known similar problems can be modified to
achieve the solution of the new problem. Indeed, an approach
for dealing with fault management issues using CBR has
been proposed in [37]. The authors outline a distributed
case-based reasoning system over a self-organizing platform
capable of assisting operators in finding solutions for faults.
Such approaches can provide strong support for developing
autonomic solutions based on previous experience. In addition,
such previous experience can be thought as part of the know-
how that autonomic systems use to operate themselves in
order to achieve their purpose. Moreover, considering self-
configuration as a response for covering and repairing vulnera-
ble configurations, case-based reasoning strategies can provide
expertise and feed a database of known vulnerabilities, which
is the heart of the next sections.

System improvements usually provide new or better tech-
nological capabilities, however, they also carry new space for

8

security concerns as well. Discovering unknown vulnerability
constitutes an important security feature of self-governing
systems. A wide spectrum of methods and techniques may be
used for achieving this point. This section has covered some
of the most important and promising areas involving several
approaches for evaluating networks and systems looking for
software flaws and configuration misuse, from fuzzing meth-
ods (proactive) to forensics techniques (reactive). Even though
there exist autonomic approaches for unveiling vulnerable
configurations, our research work indicates that most of the
prominent contributions are not oriented to self-governed en-
vironments. Taking advantage of such approaches remains as
a challenging activity. Autonomic environments should incor-
porate these capabilities in order to become adaptive with the
changing environment being able to unveil potential unknown
security threats. In addition, we consider that no matter what
technique is used for discovering vulnerabilities, describing
vulnerabilities in a standardized and machine-readable manner
is essential for integrating such approaches into the autonomic
management plane. This topic constitutes the central point of
the next section.

IV. DESCRIBING VULNERABILITIES

By the time a vulnerability is discovered, a time span
will occur before system administrators are noticed about its
existence. Another time will pass before a corrective solution
exists and yet another will pass until all systems are patched.
Attacker’s activity usually takes place during this period of
time, that can last from a few hours to several months or
years. Because of this, it is important to develop a robust
background as well as mechanisms and techniques in order
to establish consistent and uniform means for describing
vulnerabilities, analyzing and detecting them, and exchanging
related information. The Common Vulnerabilities and Expo-
sures or CVE system [13] has been introduced by the MITRE
Corporation [38] as an effort for standardizing the enumera-
tion of known information security vulnerabilities. The CVE
dictionary, widely used today, allows the community to be
aware of current existing threats and exposures by providing
unique identifiers to each known security alert as well as
descriptions written in natural language. This is extremely
useful for increasing the security awareness of autonomic
systems. However, the CVE standard only provides means for
informing about their existence but not for their assessment.
Describing the anatomy of known vulnerabilities and the
techniques developed with such purpose are fundamental as
they provide essential means for dealing with vulnerability
management. This knowledge can highly increase the know-
how of self-governing systems providing strong support for
developing and integrating autonomic security solutions.

During the last years, several approaches on vulnerability
analysis have been taken. Vulnerability signatures have been
widely used by intrusion prevention systems (IPS) and intru-
sion detection systems (IDS). They are intended to describe
the characteristics of the input that lead the execution of a
specific program to a vulnerable point and the state that such
program must hold for the vulnerability to be exploited [39].

Vulnerability signatures are mostly used for analyzing traffic
looking for specific patterns and detecting potential attacks.
The work proposed in [39] contributes to the second dimen-
sion of the D3 approach by automatically generating high
coverage vulnerability-based signatures. However, there are
no fully developed up-to-date standards available for their
representation and the generation as well as their coverage
still remains an open problem. In addition to this issue, IDS
also lack of fully mature standards for exchanging alerts. The
Intrusion Detection Message Exchange Format (IDMEF) is
a data model to represent information exported by intrusion
detection systems proposed by the Internet Engineering Task
Force (IETF) but its status is currently experimental [40].
Much of the work done in vulnerability analysis has defined
the assessment infrastructure using its own vulnerability spec-
ification language arising compatibility and interoperability
problems. Languages such as VulnXML [41] and the Ap-
plication Vulnerability Description Language (ADVL) [42]
have been developed as an attempt to mitigate these problems
and to promote the exchange of security information among
applications and security entities. However, these languages
are only focused on web applications covering a subset of the
existing vulnerabilities in current computer systems.

In order to cope with the problems described previously, the
Open Vulnerability and Assessment Language (OVAL) [43]
supported by MITRE Corporation standardizes how to assess
and report upon the machine state of computer systems. OVAL
is an XML-based language thus it inherits all XML features
like platform independence, interoperability, transportability
and readability. The OVAL specification is supported by XML
schemas which serve as both the framework and vocabulary
for the language. These schemas specify what content is valid
within an OVAL document and what is not. OVAL is organized
in three main XML Schemas, namely, (i) the OVAL Definition
Schema that expresses a specific machine state; (ii) the OVAL
Characteristics Schema that stores configuration information
gathered from a system; and (iii) the OVAL Results Schema
that presents the output from a comparison of an OVAL
Definition against an OVAL System Characteristics instance.
Valid XML instances typically represent specific machine
states such as vulnerable states, configuration settings and
patch states. Usually, a vulnerability is considered as a logical
combination of conditions that if observed on a target system,
the security problem described by such vulnerability is present
on that system. The OVAL language follows the same idea by
considering a vulnerability description as an OVAL definition.
An OVAL definition specifies a criteria that logically combines
a set of OVAL tests. Each OVAL test in turn represents the
process by which a specific condition or property is assessed
on the target system. Each OVAL test examines an OVAL
object looking for a specific OVAL state. Components found
in the system matching the OVAL object description are called
OVAL items. These items are compared against the specified
OVAL state in order to build the OVAL test result. The overall
result for the criteria specified in the OVAL definition will be
built using the results of each referenced OVAL test.

We now put forward an illustrative OVAL example of a
vulnerability description for the Cisco Internetwork Operating

9

1 . <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 . <o v a l d e f i n i t i o n s x s i : s c h e m a L o c a t i o n =” h t t p : / / ova l . mitre . org / XMLSchema / oval−

d e f i n i t i o n s−5 oval−d e f i n i t i o n s−schema . xsd h t t p : / / ova l . mitre . org / XMLSchema
/ oval−d e f i n i t i o n s−5#i o s i o s−d e f i n i t i o n s−schema . xsd h t t p : / / ova l . mitre . org /
XMLSchema / oval−common−5 oval−common−schema . xsd ” xmlns=” h t t p : / / ova l . mitre .
org / XMLSchema / oval−d e f i n i t i o n s−5” x m l n s : x s i =” h t t p : / /www. w3 . org / 2 0 0 1 /
XMLSchema−i n s t a n c e ” x m l n s : o v a l =” h t t p : / / ova l . mitre . org / XMLSchema / oval−
common−5” x m l n s : o v a l−d e f =” h t t p : / / ova l . mitre . org / XMLSchema / oval−
d e f i n i t i o n s−5”>

3 . <g e n e r a t o r>
4 . <o v a l : p r o d u c t n a m e>The OVAL R e p o s i t o r y</ o v a l : p r o d u c t n a m e>
5 . <o v a l : s c h e m a v e r s i o n>5 . 7</ o v a l : s c h e m a v e r s i o n>
6 . <o v a l : t i m e s t a m p>2010−06−18T15 :02 :46 .614−04 : 0 0</ o v a l : t i m e s t a m p>
7 . </ g e n e r a t o r>
8 . <d e f i n i t i o n s>
9 . <d e f i n i t i o n i d =” o v a l : o r g . mitre . o v a l : d e f : 6 0 8 6 ” v e r s i o n =”2” c l a s s =”

v u l n e r a b i l i t y ”>
1 0 . <m e t a d a t a>
1 1 . <t i t l e>Cisco IOS SIP D e n i a l o f S e r v i c e V u l n e r a b i l i t y</ t i t l e>
1 2 . <a f f e c t e d f a m i l y =” i o s ”>
1 3 . <p l a t f o r m>Cisco IOS</ p l a t f o r m>
1 4 . </ a f f e c t e d>
1 5 . <r e f e r e n c e s o u r c e =”CVE” r e f i d =”CVE−2008−3800” r e f u r l =” h t t p : / / cve .

mitre . org / cg i−bin / cvename . c g i ?name=CVE−2008−3800” />
1 6 . <d e s c r i p t i o n> V u l n e r a b l e SIP i m p l e m e n t a t i o n . . . </ d e s c r i p t i o n>
1 7 . <o v a l r e p o s i t o r y>
1 8 . <d a t e s> </ d a t e s>
1 9 . <s t a t u s> </ s t a t u s>
2 0 . </ o v a l r e p o s i t o r y>
2 1 . </ m e t a d a t a>

2 2 . <c r i t e r i a o p e r a t o r =”AND”>
2 3 . <c r i t e r i o n comment=”IOS v u l n e r a b l e v e r s i o n s ” t e s t r e f =” o v a l : o r g . mitre

. o v a l : t s t : 9 0 2 5 ” />
2 4 . <c r i t e r i o n comment=”SIP Test us ing runnning c o n f i g . r e s u l t c o n t a i n s :

5060 ” t e s t r e f =” o v a l : o r g . mitre . o v a l : t s t : 2 4 2 1 1 ” />
2 5 . </ c r i t e r i a>
2 6 . </ d e f i n i t i o n>
2 7 . </ d e f i n i t i o n s>

Listing 1: Cisco IOS vulnerability example (part 1)

System (IOS) [44] in order to overview the OVAL main
building blocks. It is based on a real vulnerability specification
but it was simplified to show how a basic OVAL definition
looks like. An OVAL definition is typically written in one
XML file but here we divide it in two parts just for didactic
purposes. The first part illustrated in Listing 1 contains the
OVAL definition that represents our vulnerability description.
A definition is the key structure in OVAL. It is analogous to the
logical sentence or proposition: if a computer’s state matches
the configuration parameters laid out in the criteria, then that
computer exhibits the state described. Within this example, the
vulnerability definition with id oval:org.mitre.oval:def:6086
(lines 9-26) states that the referred vulnerability is present
on the system if both following conditions hold: (i) the IOS
version belongs to a set of affected IOS versions (line 23),
and (ii) VoIP is configured (line 24). The second part of our
example illustrated in Listing 2 defines the rest of required
components referred on the first part, namely, OVAL tests
(lines 28-37), OVAL objects (lines 38-43) and OVAL states
(lines 44-52). An OVAL Test is used by one or more definitions
to compare an object(s) against a defined state. An OVAL
Object describes a unique set of items to look for on a
system. This unique set of items can then be used by an
OVAL Test and compared against an OVAL State. An OVAL
State is a collection of one or more characteristics pertaining
to a specific object type. The OVAL State is used by an
OVAL Test to determine if a unique set of items identified
on a system meet certain characteristics. The first condition is
analyzed by the first test with id oval:org.mitre.oval:tst:9025
(lines 29-32). This version test refers to one OVAL object
(line 39) and one OVAL state (lines 45-47). It will be
true if and only if the specified object match the specified
state. The pattern match expression allows to specify a fam-

2 8 . <t e s t s>
2 9 . <v e r s i o n 5 5 t e s t i d =” o v a l : o r g . mitre . o v a l : t s t : 9 0 2 5 ” v e r s i o n =”1” comment=”

IOS v u l n e r a b l e v e r s i o n s ” c h e c k e x i s t e n c e =” a t l e a s t o n e e x i s t s ” check =” at
l e a s t one” xmlns=” h t t p : / / ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ”>

3 0 . <o b j e c t o b j e c t r e f =” o v a l : o r g . mitre . o v a l : o b j : 6 8 0 4 ” />
3 1 . <s t a t e s t a t e r e f =” o v a l : o r g . mitre . o v a l : s t e : 4 4 3 2 ” />
3 2 . </ v e r s i o n 5 5 t e s t>
3 3 . <l i n e t e s t i d =” o v a l : o r g . mitre . o v a l : t s t : 2 4 2 1 1 ” v e r s i o n =”1” comment=”SIP

Test us ing ip s o c k e t . c o n f i g c o n t a i n s : 5060 . may g e n e r a t e few f a l s e
p o s i t i v e ” c h e c k e x i s t e n c e =” a t l e a s t o n e e x i s t s ” check =” at l e a s t one” xmlns
=” h t t p : / / ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ”>

3 4 . <o b j e c t o b j e c t r e f =” o v a l : o r g . mitre . o v a l : o b j : 6 3 8 5 ” />
3 5 . <s t a t e s t a t e r e f =” o v a l : o r g . mitre . o v a l : s t e : 6 9 4 6 ” />
3 6 . </ l i n e t e s t>
3 7 . </ t e s t s>

3 8 . <o b j e c t s>
3 9 . <v e r s i o n 5 5 o b j e c t i d =” o v a l : o r g . mitre . o v a l : o b j : 6 8 0 4 ” v e r s i o n =”1” xmlns=”

h t t p : / / ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ” />
4 0 . <l i n e o b j e c t i d =” o v a l : o r g . mitre . o v a l : o b j : 6 3 8 5 ” v e r s i o n =”1” xmlns=” h t t p : / /

ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ”>
4 1 . <show subcommand>show runn ing−c o n f i g</ show subcommand>
4 2 . </ l i n e o b j e c t>
4 3 . </ o b j e c t s>

4 4 . <s t a t e s>
4 5 . <v e r s i o n 5 5 s t a t e i d =” o v a l : o r g . mitre . o v a l : s t e : 4 4 3 2 ” v e r s i o n =”1” xmlns=”

h t t p : / / ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ”>
4 6 . <v e r s i o n s t r i n g o p e r a t i o n =” p a t t e r n match”>12\.3\(\d+\w∗\)XF(\d .∗|$)</

v e r s i o n s t r i n g>
4 7 . </ v e r s i o n 5 5 s t a t e>
4 8 . <l i n e s t a t e i d =” o v a l : o r g . mitre . o v a l : s t e : 6 9 4 6 ” v e r s i o n =”1” xmlns=” h t t p : / /

ova l . mitre . org / XMLSchema / oval−d e f i n i t i o n s−5#i o s ”>
4 9 . <show subcommand>show runn ing−c o n f i g</ show subcommand>
5 0 . <c o n f i g l i n e o p e r a t i o n =” p a t t e r n match”>\s +5060($|\ s +)</ c o n f i g l i n e>
5 1 . </ l i n e s t a t e>
5 2 . </ s t a t e s>

5 3 . </ o v a l d e f i n i t i o n s>

Listing 2: Cisco IOS vulnerability example (part 2)

ily of IOS versions using a regular expression (line 46).
The second condition is analyzed by the second test with
id oval:org.mitre.oval:tst:24211 (lines 33-36). This line test
refers to one OVAL object (lines 40-42) and one OVAL state
(lines 48-51). It will be true if and only if the sub-command
show running-config results contains the port number 5060
(line 50).

The OVAL language currently constitutes a de facto stan-
dard for describing vulnerabilities as well as good practices.
Autonomic environments should take advantage of this ca-
pability in order to augment their vulnerability awareness
as shown in [45], [46], later explained in Section V-A. In
deed, several related languages have evolved around the OVAL
language. The National Institute of Standards and Technology
(NIST) [7] has supported the development of the Security
Content Automation Protocol (SCAP) [14]. The SCAP pro-
tocol is a suite of specifications that standardize the format
and nomenclature by which security software communicate
information about publicly known software flaws and secu-
rity configurations annotated with common identifiers and
embedded in XML. SCAP also utilizes software flaw and
security configuration standard reference data, also known as
SCAP content. This reference data is provided by the National
Vulnerability Database (NVD) [47], which is managed by
NIST and supported by the Department of Homeland Security
(DHS) [48]. Other public vulnerability databases exist as well
such as the Open Source Vulnerability Database (OSVDB)
[12], though the vulnerability descriptions provided by them
are usually understandable by humans and not by machines,
thus difficulting an automated consumption of this security
knowledge. SCAP can be used for several purposes, including
automating vulnerability checking, technical control compli-
ance activities, and security measurement. The integration of

10

SCAP into self-governing environments constitutes a major
challenge, however its automation-targeted nature can highly
benefit future autonomics development. The SCAP protocol
includes the OVAL language and complements it with enumer-
ation languages such as the Common Platform Enumeration
(CPE), a nomenclature and dictionary of hardware, operating
systems, and applications [49]; the Common Configuration
Enumeration (CCE), a nomenclature and dictionary of secu-
rity software configurations [50]; and CVE for enumerating
security-related software flaws. SCAP also considers the eX-
tensible Configuration Checklist Description Format (XCCDF)
for authoring security benchmarks and reporting checklist
evaluation results [51], and the Common Vulnerability Scor-
ing System (CVSS) for measuring and scoring the relative
severity of software flaw vulnerabilities [52]. The specifica-
tions involved in the SCAP protocol, particularly OVAL and
XCCDF, not only allows us to specify vulnerabilities, but also
to bring a system into compliance through the remediation
of identified vulnerabilities or misconfigurations. XCCDF is
intended to serve as a replacement for the security hardening
and analysis documentation written in prose. In other words,
XCCDF provides means for describing specific machine states
and performing certain actions when these states are present
on the system. These features perfectly fit requirements for
expressing which actions autonomic systems should take when
vulnerable states are detected. CVSS on the other hand,
provides a framework for quantifying the impact of vulnera-
bilities. The normalized score computed for each vulnerability
based on several types of metrics provides a strong support
for risk assessment techniques and enables the prioritization
of actions to take when change management mechanisms
are performed. Such metrics can be very useful within the
decision-making process required to be implemented by self-
governing systems.

These specifications highly contribute to security automa-
tion and to the vulnerability management activity, this survey
being focused on the assessment of vulnerabilities in auto-
nomic environments. Other works have been done as well
such as the one proposed in [53] where an ontology-based
approach for dealing with vulnerability management activi-
ties called OVM is presented. However, its connection with
autonomic technologies is not addressed, nor the scalability
or actual impact on real networks. Moreover, OVM only
considers the vulnerability management activities from a high-
level perspective, focusing on the process rather than fine-
grained concepts that allow vulnerabilities to be described.
Languages such as OVAL are crucial for representing security
knowledge that in turn involves technical details. The OVAL
language has been further detailed as a means for performing
the assessment activity. Standardization efforts are essential for
exchanging this knowledge and it requires a strong support of
the community. Autonomic networks and systems should be
able to manage these security advisories and capitalize the
knowledge provided by vulnerability descriptions repositories
in order to increase their vulnerability awareness. Moreover,
autonomic elements should be able to provide appropriate
sensing and actuation mechanisms as depicted in Fig. 4 in
order to be autonomously assessed and eventually corrected.

In this section we have investigated different mechanisms for
describing vulnerabilities and exchanging related information
that provide a strong support for achieving this goal.

V. DETECTING VULNERABILITIES

Once a vulnerability is known and described, mechanisms
used for detecting it constitute a central concern on autonomic
networks and systems. Self-governed environments should be
able to incorporate and take advantage of security advisories
provided by different sources when vulnerability assessment
activities are performed. In this section we will discuss dif-
ferent methods and systems for assessing both device and
network vulnerabilities contributing to the third dimension of
the D3 approach , and we will present several approaches
for correlating security information and analyzing potential
attacks and security policies violations.

A. Analyzing device vulnerabilities

The assessment of local vulnerabilities on a device re-
quires the investigation of specific states and conditions that
may allow an attacker to compromise the system. While
black-box techniques, such as network scanning discussed in
subsection V-B, can provide useful security information with-
out requiring specific tools in the device under analysis, grey-
box techniques can highly enhance the obtained information
by accessing the device itself and inspecting its internal state
and particular configurations. Assessing vulnerabilities using
the OVAL language can be understood as a grey-box approach
since it not only allows to specify vulnerability descriptions
but also standardizes the three main steps of the assessment
process, namely, representing configuration information of
systems for testing; analyzing the system for the presence
of the specified machine state (vulnerability, configuration,
patch state, etc.); and reporting the results of the assessment.
Fig. 7 describes the main steps of the OVAL process [43]. At
step 1, security advisories are published and encoded as OVAL
definitions at step 2. These definitions are then interpreted at
step 3 to gather all the required information in order to perform

Fig. 7: OVAL-based vulnerability assessment [43]

11

the analysis at step 4. Once the OVAL analysis is done, a report
is generated at step 5 identifying if the specific machine states
described at step 2 are present or not on the target system. The
integration of such process into the management plane of self-
governing environments is feasible as demonstrated in [45]
and later explained, providing a strong basis for autonomously
assessing the exposure of autonomic elements. It is important
to notice that OVAL is a specification language and it allows
to describe content; real analysis is performed by OVAL
interpreters. However, interpreter’s activity is guided by the
underlying OVAL language structure, thus we can think of
OVAL as a language for specifying, analyzing and reporting
vulnerabilities. Moreover, because OVAL allows to describe
specific machine states, semantics can be used in several ways,
i.e., states that can not hold (vulnerabilities), states that should
hold (best practices).

Several OVAL-based systems have been developed since
the OVAL language was released. The work proposed in [54]
presents the design and implementation of a vulnerability
assessment tool based on the OVAL language to detect
weak points in Linux System. The proposed approach has
more readability, reliability, scalability and simplicity than
traditional tools. Although this work was published in 2004,
it clearly highlights OVAL’s potentiality. Others up-to-date
OVAL-based tools exist as well. Ovaldi [55] is a free OVAL
interpreter maintained by MITRE intended to provide a refer-
ence implementation for evaluating OVAL definitions. Current
releases of the interpreter cover a wide, but not complete,
part of OVAL’s specification. This incomplete coverage arises
difficulties to extrapolate its usage within other fields such as
forensic scenarios. Although Ovaldi is a robust tool, its main
development language (C) is platform-dependent, thus increas-
ing maintenance efforts for each OVAL supported platform.
Moreover, its internal design and continuous official releases
make it quite difficult to use as a base start point for cus-
tomized or extended OVAL-based tools. The work proposed
in [56] presents XOvaldi, a live forensic, multi-platform and
extensible OVAL-based system for digital evidence collection.
XOvaldi has been purely written in Java [57] and its plugin-
based architecture as well as its automatic model adaptation
provide easy means for naturally evolving with dynamic foren-
sics scenarios. In deed, an OVAL-based distributed framework
for performing self-assessment activities using an extension
to XOvaldi for the Android platform [58] has been proposed
in [46]. This work presents a lightweight framework that uses
a repository of OVAL definitions for Android as its knowl-
edge source. When new security advisories become available,
mobile devices are automatically fed with such knowledge
in order to analyze their own exposure. In addition, changes
affecting Android components trigger efficient reassessment
activities by only evaluating known vulnerabilities that involve
those affected components.

The effort invested in the development of OVAL-based as-
sessment systems provides a strong background for automating
the detection of known vulnerabilities. These systems can be
then combined and integrated into autonomic environments in
order to enhance their ability for detecting security threats.
Indeed, a novel approach for increasing the vulnerability

awareness of self-governed environments has been proposed
in [45]. It addresses the integration and assessment of vulner-
ability descriptions into the management plane of autonomic
networks and systems by taking advantage of the security
knowledge provided by OVAL repositories and the Cfengine
system. Cfengine is an autonomic maintenance system that
provides support for automating the management of large-scale
environments based on high-level policies [59], [60]. In this
work, an OVAL to Cfengine translation tool called Ovalyzer
is presented, which is capable of automatically producing
Cfengine policy rules that represent OVAL security advisories,
thus enabling autonomous agents to assess themselves their
own exposure.

Autonomic networks must be capable of adapting accord-
ing to specific policies or security issues. Because of this,
analyzing network vulnerabilities positions strong challenges
that autonomic entities should be able to solve. Network
vulnerability analysis, also known as vulnerability scanning,
involves activities to determine vulnerabilities and security
holes exploitable within the target network. In order to perform
this analysis, data collection and examination has to be done
over members of the network and correlation techniques must
be applied to analyze the target network as a whole.

B. Analyzing network vulnerabilities

The ability of identifying host-based and distributed vulner-
abilities constitutes the first step for the vulnerability manage-
ment process to be completely embedded into the management
plane of autonomic networks and systems. Network scanning
constitutes one of the most used techniques for discovering
devices in a network. This process allows to identify active
hosts either for security assessment or for performing different
kinds of attacks. The enumeration of a network provides useful
information such as users, groups and running services on
each network member. Port scanners are usually used within
this process for analyzing each device in order to detect
which ports are open and which services are listening on
them. Probes against these ports and the behavior presented
by the target device may allow port scanners to infer useful
information about the software running on each port such as
the type of application and its version.

The kind of response emitted by the device under analysis
indicates whether the port is in use, and if so, it can be further
explored for detecting weaknesses. Fingerprinting for instance,
is a technique used for interpreting the responses of an oper-
ating system by sending to it different combinations of data
and analyzing its responses against a fingerprint database [61].
Fingerprints are usually generated by the application of a hash
function over a specific piece of data where the obtained hash
value uniquely identifies the input data. Behavior patterns for
well and bad-formed messages are correlated with the ob-
served responses in order to obtain a match of known systems
and applications, and related vulnerabilities. Currently, several
network scanners exist for assessing vulnerabilities on a target
network such as Nessus [62], OpenVAS [63] or SAINT [64].
Some of them use the functionalities provided by powerful
port scanners such as Nmap [65]. However, these tools do

12

not provide standard means for describing and exchanging
the vulnerabilities they are able to assess. Languages such
as OVAL are highly required. In addition, none of them have
currently shown trends or means for being embedded into self-
governed environments.

Regardless of the mechanisms used for individually assess-
ing devices, grey-box techniques such as agent-based vulner-
ability assessment or black box techniques such as network
scanning, it is essential to develop approaches capable of
analyzing the network and its relations as a whole. Steps taken
by an intruder usually respond to some favorable conditions
present on the system. By modeling these capabilities and
actions to take, inference can be performed. Reasoning engines
are widely used in this field to achieve automated approaches.
As an example, the work presented in [66] and enhanced
in [67], [68] introduces a logic-based network security ana-
lyzer called MulVAL. MulVAL is a framework and reason-
ing system that conducts multi-host, multi-stage vulnerability
analysis on a network. Its purpose is to model the interaction
of software bugs with system and network configurations.
MulVAL uses Datalog as its modeling language, thus the
information in the vulnerability database provided by the bug-
reporting community, the configuration information of each
machine and the network, and other relevant information are
all encoded as Datalog facts. The proposed framework uses
the OVAL language to analyze each host on the network.
The reasoning engine consists of a collection of Datalog rules
that captures the operating system behavior and the interac-
tion of various components in the network. After gathering
all required information from the environment, the analysis
performed by MulVAL has two main parts. First, all possible
multi-steps accesses and inferred privileges on each user are
computed. Then, results are compared against the stated global
policy. If the analysis results show a user with some kind of
privilege that is not present on the global policy, a security
breach has been found. Due to autonomic networks are by
nature governed by policies, such approach and the method-
ology used are particularly appropriated to be embedded into
policy-driven environments such as autonomic networks and
systems.

Even though the ability of evaluating devices by looking for
vulnerable states as OVAL does highly increases the overall
security of networked self-governing environments, there exist
scenarios where securing a network by individually assessing
its member devices is not enough. While each network device
may present a secure state, a combination of them may
cause a distributed vulnerable state across the network. The
work presented in [69] proposes a mathematical approach for
formally defining the concept of a distributed vulnerability as
well as a framework for assessing distributed vulnerabilities in
autonomic networks. The authors present DOVAL, an OVAL-
based language capable of expressing distributed vulnerable
scenarios and propose a computable infrastructure for assess-
ing such security advisories over a consolidated view of the
network in order to detect vulnerable states that may simul-
taneously involve two or more devices. Fig. 8 illustrates the
assessment process performed over autonomic networks using
the DOVAL language. At step 1 security advisories describing

distributed vulnerabilities are encoded as DOVAL definitions.
These definitions are translated to Cfengine policy rules at
step 2 and consumed by a Cfengine server. A minimized
loop-free topology of the underlying network is generated at
step 3. At step 4 the required information about hosts and
the network are gathered and aggregated at the root of the
generated spanning tree. DOVAL definitions are assessed
over the gathered data at step 5 and a DOVAL report is
generated in order to inform the assessment results identifying
potential threats on the network under analysis. This work
has been extended in [70] where a collaborative remediation
framework for distributed vulnerabilities is presented. The
proposed approach depicts an XCCDF-based language as
well as a distributed framework for performing collaborative
vulnerability treatments in autonomics environments.

C. Correlating vulnerabilities with threats and attack graphs

The mechanisms used for detecting vulnerabilities in auto-
nomic networks provide an extremely useful overview of the
potential security problems that might be exploited on a target
network. However, this information can be yet enhanced by
correlating security threats found in the assessment phase as
shown in Fig. 4 and analyzing how the activity of an attacker
could take advantage of them. Attack modeling languages
such as ACML [71] allows to express the capability gained
by an attacker at each step of the intrusion process. This
approach allows to link network events and detect multi-
steps attacks. This can be very useful in the context of
autonomic environments as it could support the analysis of
scenarios where an autonomic element has been compromised.
In that context, not only such element but also those con-
nected to it and the relationships between them, e.g. service
provisioning requirements, should be analyzed as well. Such
investigation could provide an insightful security overview and
the possibilities that an attacker might have taking advantage
of vulnerable autonomic elements in the network. Previous
work done in [72] considers the idea of a requires-provide
model where each gained privilege by an attacker opens new
intrusion capabilities. This concept is extremely important

Fig. 8: Distributed vulnerability assessment with DOVAL [69]

13

when analyzing attack sequences and provides robust foun-
dations for attack graphs approaches. A deep review on attack
graphs is presented in [73] where several contributions on this
topic are analyzed. The authors make clear the achievements
and limitations of attack graphs by discussing fundamental
construction concepts as well as their use in network security
approaches. The work performed in [74] describes a graph-
based network vulnerability analysis approach, revisiting the
idea of attack graphs themselves and providing a compact and
scalable graph representation. Although the authors show that
it is possible to produce attack trees using their representation,
they argue that more useful information can be produced,
for larger networks, while bypassing the attack tree step.
The proposed approach relies on an explicit assumption of
monotonicity, which, in essence, states that the precondition
of a given exploit is never invalidated by the successful appli-
cation of another exploit. This means that the attacker never
needs to backtrack. The assumption reduces the complexity of
the analysis problem from exponential to polynomial, thereby
bringing even very large networks within reach of analysis.
Considering the growing management complexity that the
autonomic paradigm aims at dealing with, such assumption
still holds and the ability to understand the interconnections
between autonomic elements in a scalable manner provides a
promising background for assessing security weaknesses as a
whole. Nevertheless, these approaches should be also extended
to capture the nature of autonomics. As explained before,
autonomic elements interact with the environment by means
of sensors and effectors. This perspective differs a bit from the
traditional one where active services are usually waiting for
clients on known ports. Therefore, this issue should also be
considered within approaches aiming at analyzing autonomic
entities and their interconnections as well.

It is important to notice the difference between vulnera-
bilities and attack graphs. While a vulnerability represents
a potential security problem that could be exploited by an
attacker in order to compromise the system, an attack graph
describes the actual activity and steps performed by an attacker
in order to achieve a desired goal. In other words, a vulnera-
bility is focused on the system by identifying unsecure states
and an attack graph is focused on the behavior of the attacker
that takes advantage of these security weaknesses. Recently,
the Common Attack Pattern Enumeration and Classification
(CAPEC) language [75] has been proposed by MITRE for
describing attack patterns. CAPEC involves a collection of
common methods for exploiting software systems, including
network attack patterns. The CAPEC schema also enables the
use of the Cyber Observable eXpression (CybOX) language
[76] as a means for describing cyber observables that exist for
various steps and portions of the attack pattern. Such cyber
observables refer to events or stateful measures that can be ob-
served in the operational domain. Other standardization efforts
that use CybOX exist as well such as the Malware Attribute
Enumeration and Characterization language (MAEC) [77] for
characterizing the behavior of malware and the Common Event
Expression (CEE) [78] for unifying the representation and
classification of events found in the lifecycle of systems and
networks. Currently, MITRE is also considering automated

mechanisms for converting MAEC and CybOX content into
OVAL checks in order to detect malware artifacts and other
host-based cyber observables. These initiatives are still in an
early stage though they are quite promising as their contribu-
tions might harden the security of autonomic environments.

Network attacks are complex and several approaches from
disparate computing fields such as artificial intelligence have
been proposed as well. For instance, an expert system has been
described in [79] where the system is based on a decision tree
that uses predetermined invariant relationships between redun-
dant digital objects to detect semantic incongruities. By search-
ing for violations of known data relationships, an attacker’s
unauthorized change may be automatically identified providing
useful information for deeper analysis. Self-governing envi-
ronments may benefit of this approach by specifying such
relationships in the form of policies that can be then controlled
by the underlying autonomic government mechanisms. In
order to detect how an attack can be performed on a system,
an automated diagnosis model can be built such as the one
presented in [80]. This model takes as input the victim con-
figuration scenario, information about existent vulnerabilities,
and privileges gained by an attacker; and generates possible
attack sequences allowing to identify assumptions about the
attacker’s behavior. A successful attack sequence simulation
indicates a feasible means of accomplishing the unauthorized
access. Such approach can be used as both proactive and re-
active forensic mechanisms for securing vulnerable autonomic
elements. The work proposed in [81] addresses the network
vulnerability problem with test cases, which amount to attack
scenarios, generated by a model checker. Model checking is
a technique for automatically verifying correctness properties
of finite-state systems where a given system model can be
automatically tested to evaluate whether such model meets a
given specification. The authors encode the vulnerabilities in
a state machine description suitable for a model checker and
then assert that an attacker cannot acquire a given privilege on
a given host. The model checker either offers assurance that
the assertion is true on the actual network or provides a counter
example detailing each step of a successful attack. Even
though this work does not ensure scalability features which
is a critical factor in autonomics, it is worth exploiting such
paradigm when the behavior and properties of the underlying
self-governed environment can be formally specified.

While some authors focus on attacks anatomy, other authors
also propose metrics for quantifying attack potentiality which
depends on several factors. The work presented in [82] pro-
poses a framework for measuring the vulnerability of individ-
ual hosts based on current and historical operational data for
vulnerabilities and attacks. Most approaches have examined
software flaws only, not other vulnerabilities such as software
misconfigurations and software feature misuse. The framework
uses a highly automatable metrics-based approach, producing
rapid and consistent measurements for quantitative risk as-
sessment and for attack and vulnerability modeling. Metrics
are particularly important within autonomic environments as
they can be used for autonomously parametrizing the behavior
of the entire system. Such measurements can be successfully
integrated in the closed loop that depicts the lifecycle of self-

14

Fig. 9: Scientific maturity of vulnerability management activities with respect to autonomic networks

governed elements in order to feed and control their behavior.
An equally interesting method is presented in [83] where a
policy security metric is calculated based on a number of
factors like vulnerabilities present in the system, vulnerability
history of the services and their exposure to the network, and
traffic patterns. The proposed approach combines computed
scores into one unified score called Policy Security Score.
This score can be later used to judge how good a policy is,
as well as compare policies and assess policy changes. Such
approach provides support not only for assessing the dynamics
of individual policy-based self-governed systems but also for
evaluating the overall behavior of autonomic environments in
which vulnerabilities play a critical role.

Assessing vulnerabilities constitutes a crucial activity that
enables autonomic networks and systems to identify threats
that potentially may compromise their security. This ability is
in turn complemented by approaches capable of correlating
exploitable network weaknesses in order to identify potential
successful attacks. The integration of such mechanisms within
the management plane of autonomic environments provides a
powerful basis for assessing their own exposure. In this section
we have presented methods for detecting device and network
vulnerabilities, and we have discussed different approaches for
correlating security information and inferring potential attacks.

VI. FUTURE RESEARCH CHALLENGES

During the realization of our investigation, we have detected
several challenges that must be addressed in order to be
able to really integrate the autonomic computing approach
into daily computer systems and networks. In that context,
Fig. 9 summarizes the scientific maturity of the vulnerability
management process with respect to autonomic environments
highlighting properties and issues that should be further inves-
tigated. As depicted in the first column, traditional methods
for discovering unknown vulnerabilities count with a strong
foundation, though decentralized as well as automated ap-
proaches require further investigation. Autonomic methods
for addressing this capability have been barely or even at
all discussed. Autonomic computing should incorporate these
capabilities in order to unveil potential existing threats. As to

describing known vulnerabilities, shown in the second column,
several scientific contributions have been done, mostly from a
device perspective. However, automatic generation as well as
autonomic mechanisms for describing security problems are
still in an early stage thus requiring research efforts in order
to harden the foundations and maturity of such activity. Auto-
nomic environments should capitalize such security knowledge
in order to analyze themselves and assess their own exposure.
A variety of methods have been proposed for detecting vulner-
abilities in non-autonomic environments as shown in the third
column of Fig. 9. However, decentralized mechanisms exist in
a minor degree, and automated and autonomic approaches have
been weakly discussed. Once security problems are detected,
they need to be classified according to their impact and risk,
and remediated through the application of appropriate treat-
ments. Vulnerability classification and treatment mechanisms,
fourth and fifth columns of Fig. 9 respectively, have only been
partially addressed in the past for non-autonomic environments
and mostly from a centralized perspective. Automated and
autonomic approaches for dealing with these activities remain
an open problem.

In light of this, we have observed several lacks mostly
located on the automation and autonomicity properties of
Fig. 9 that should be further investigated. We highlight here
three transversal research axes that are important to leverage
the maturity and robustness of these properties:

• Integration of vulnerability models into the management
plane of networks and services. This integration requires
automated means for exchanging vulnerability descrip-
tions in a standardized manner as well as detecting them.
Vulnerability detection can be performed by dynamically
translating vulnerability descriptions into configuration
policy rules interpretable by autonomic configuration
systems. In addition, such perspective can be enriched
with automated vulnerability discovery mechanisms. This
feature can enable the alignment of network components
to desired and secure states. However, mechanisms for
dealing with rules conflicts and policy consistency must
be in place as well.

• Investigation of collaborative methods and techniques

15

for performing vulnerability management activities in a
decentralized manner, with multiple vulnerability descrip-
tion datasources. Autonomic elements need automated
mechanisms for healing security holes. Control mecha-
nisms and algorithms for classifying vulnerabilities and
executing vulnerability treatments (apriori or aposteriori
configuration operations) in an optimal manner must
be analyzed. The SCAP protocol and particularly, the
XCCDF language, can be extremely useful to achieve
this point.

• Formalized approaches for supporting the two previous
themes are highly required. Robust data collection mecha-
nisms, mature system assessment techniques and efficient
environment discovery methods constitute cornerstones
within the integration of the vulnerability management
process in self-governed environments. Autonomic net-
works and systems can take advantage of disparate com-
puting fields such as digital forensics for threat discovery,
machine learning for adaptation, or statistical models for
prediction. Methods for managing and planning changes
as well as techniques for assessing their impact are essen-
tial within the vulnerability management process. Reason-
ing systems capable of capitalizing security knowledge
can provide new horizons for dealing with dynamic
environments, not only from an operational viewpoint but
from a security perspective too.

VII. CONCLUSIONS

The continuous growth of networks as well as the di-
versification of their services have considerably increased
the complexity of their management. In order to face this
problem, the autonomic computing paradigm aims at defining
a strong basis for automated systems capable of managing
themselves in an autonomous manner considering properties
such as self-configuration, self-protection, self-optimization
and self-healing. However, when administration tasks and self-
management activities are performed, changes may lead to
vulnerable states increasing the exposure of the environment
to security threats, thus it is essential to count on change
management mechanisms and risk assessment techniques. In
this scenario, vulnerability management activities are crucial
for ensuring the safety of such systems and hence, their
functionalities and stability. In this survey we have explored
in depth different vulnerability assessment challenges that are
critical for completely integrating the vulnerability manage-
ment process into such autonomic environments.

As systems and technologies evolve, new space for vulner-
abilities comes into scene. Autonomic networks and systems
must be able to perform auto-analysis and detect poten-
tial security problems that may be exploited by malicious
entities, thus the vulnerability assessment activity consti-
tutes a major challenge. In this survey we have proposed
a novel perspective called the D3 approach that classifies
the vulnerability assessment activity into three well defined
dimensions: Discovery, Description and Detection. The D3

approach provides a framework where different problems and
potential solutions concerning the integration of vulnerability

assessment activities into the management plane of autonomic
environments can be analyzed in an organized manner. In that
context, background and key concepts as well as different
leading methods and current techniques have been discussed
along this work. We have identified potential applications
over diverse contributions that may provide a strong basis
for achieving this critical goal within self-governing systems.
In addition, we also have pointed out several areas such as
vulnerability integration models, collaborative vulnerability
management approaches and policy-based reasoning systems
where the development of novel approaches and solutions are
required to provide autonomic environments with the ability
of assessing their own exposure.

As happens in the real world, autonomic elements co-
exist within dynamic environments, interacting with others
autonomic and non-autonomic elements. Nevertheless, there
are also continuous threats that may compromise autonomic
elements safety. If an autonomic element is compromised, its
functions and abilities become untrustworthy and eventually
disabled; thus autonomic elements that use services of the
former become compromised as well. This inevitably leads to
distrust and failure of the autonomic environment. Autonomic
systems must be able to manage their own state and perform
required activities to achieve secure configurations. Autonomic
elements unable to support this capability will age with time,
becoming more vulnerable, insecure and useless. It is the
belief of the authors that automation is possible only if
autonomic networks and systems fully integrate vulnerability
management mechanisms for ensuring safe configurations.

ACKNOWLEDGEMENTS

This work was partially supported by the EU FP7 Univerself
Project, FI-WARE PPP and the Flamingo Project.

REFERENCES

[1] J. Kephart and D. Chess, “The Vision of Autonomic Computing,”
Computer, vol. 36, pp. 41–50, Jan. 2003.

[2] S. Dobson, F. Zambonelli, S. Denazis, A. Fernández, D. Gaı̈ti, E. Ge-
lenbe, F. Massacci, P. Nixon, F. Saffre, and N. Schmidt, “A Survey of
Autonomic Communications,” ACM Transactions on Autonomous and
Adaptive Systems, vol. 1, pp. 223–259, Dec. 2006.

[3] N. Samaan and A. Karmouch, “Towards Autonomic Network Manage-
ment: an Analysis of Current and Future Research Directions,” IEEE
Communications Surveys & Tutorials, vol. 11, pp. 22–36, July 2009.

[4] M. C. Huebscher and J. A. McCann, “A Survey of Autonomic
Computing–Degrees, Models, and Applications,” ACM Comput. Surv.,
vol. 40, pp. 7:1–7:28, August 2008.

[5] Z. Movahedi, M. Ayari, R. Langar, and G. Pujolle, “A Survey of
Autonomic Network Architectures and Evaluation Criteria,” IEEE Com-
munications Surveys & Tutorials, vol. PP, pp. 1–27, May 2011.

[6] IBM, “An Architectural Blueprint for Autonomic Computing,” IBM
White Paper, 2006.

[7] “NIST, National Institute of Standards and Technology.” http://www.
nist.gov/. Last visited on January, 2013.

[8] V. Igure and R. Williams, “Taxonomies of Attacks and Vulnerabilities
in Computer Systems,” IEEE Communications Surveys & Tutorials,
vol. 10, pp. 6–19, Jan. 2008.

[9] O. Dabbebi, R. Badonnel, and O. Festor, “Dynamic Exposure Control
in P2PSIP Networks,” in NOMS, pp. 261–268, 2012.

[10] P. Foreman, Vulnerability Management. Information Security, CRC
Press, 2009.

[11] R. E. Ball, The Fundamentals of Aircraft Combat Survivability Analysis
and Design, 2nd Edition. AIAA Education Series, 2003.

[12] “OSVDB, The Open Source Vulnerability Database.” http://osvdb.org/.
Last visited on January, 2013.

16

[13] “CVE, Common Vulnerabilities and Exposures.” http://cve.mitre.org/.
Last visited on January, 2013.

[14] J. Banghart and C. Johnson, “The Technical Specification for the Se-
curity Content Automation Protocol (SCAP). Nist Special Publication.”
http://scap.nist.gov/revision/, 2011. Last visited on January, 2013.

[15] “IBM Autonomic Computing Deployment Model.” http://www-03.ibm.
com/press/us/en/pressrelease/464.wss.

[16] A. Williams and M. Nicolett, “Improve IT Security with Vulnerability
Management.” http://www.gartner.com/id=480703, 2005. Last visited on
January, 2013.

[17] “ITSM - IT Service Management.” http://www.itsm.info/. Last visited
on January, 2013.

[18] Y. Diao, A. Keller, S. Parekh, and V. V. Marinov, “Predicting Labor
Cost through IT Management Complexity Metrics,” In Proceedings of
the 10th IFIP/IEEE International Symposium on Integrated Network
Management (IM’07), pp. 274–283, May 2007.

[19] A. Tang, A. Nicholson, Y. Jin, and J. Han, “Using Bayesian Belief
Networks for Change Impact Analysis in Architecture Design,” Journal
of Systems and Software, vol. 80, pp. 127–148, Jan. 2007.

[20] J. Sauve, R. Santos, R. Reboucas, A. Moura, and C. Bartolini, “Change
Priority Determination in IT Service Management Based on Risk Expo-
sure,” IEEE Transactions on Network and Service Management, vol. 5,
pp. 178–187, Sept. 2008.

[21] J. A. Wickboldt, L. A. Bianchin, and R. C. Lunardi, “Improving IT
Change Management Processes with Automated Risk Assessment,”
In Proceedings of the IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM’09), pp. 71–84, 2009.

[22] T. Setzer, K. Bhattacharya, and H. Ludwig, “Decision Support for
Service Transition Management - Enforce Change Scheduling by Per-
forming Change Risk and Business Impact Analysis,” In Proceedings of
the IEEE Network Operations and Management Symposium (NOMS’08),
pp. 200–207, Apr. 2008.

[23] R. Costa Cardoso and M. M. Freire, “Towards Autonomic Mini-
mization of Security Vulnerabilities Exploitation in Hybrid Network
Environments,” In Proceedings of the Joint International Conference
on Autonomic and Autonomous Systems and International Conference
on Networking and Services (ICAS-ISNS’05), 2005.

[24] M. S. Ahmed, E. Al-Shaer, M. M. Taibah, M. Abedin, and L. Khan, “To-
wards Autonomic Risk-aware Security Configuration,” Proceedings of
the IEEE Network Operations and Management Symposium (NOMS’08),
pp. 722–725, Apr. 2008.

[25] M. S. Ahmed, E. Al-Shaer, and L. Khan, “A Novel Quantitative
Approach For Measuring Network Security,” in Proceedings of the
27th IEEE Conference on Computer Communications (INFOCOM’08),
pp. 1957 –1965, April 2008.

[26] R. Bohme, “Vulnerability Markets. What is the Economic Value of a
Zero-Day Exploit?,” in Proceedings of the 22nd Chaos Communication
Congress, December 2005.

[27] S. Frei, D. Schatzmann, B. Plattner, and B. Trammel, “Modelling the
Security Ecosystem - The Dynamics of (In)Security,” in Proceedings
of the Workshop on the Economics of Information Security (WEIS’09),
June 2009.

[28] R. Patton, Software Testing (2nd Edition). Sams, 2005.
[29] J. Demott, “The Evolving Art of Fuzzing. Software Testing.” http:

//vdalabs.com/tools/The Evolving Art of Fuzzing.pdf, 2006. Last vis-
ited on January, 2013.

[30] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A Checksum-Aware
Directed Fuzzing Tool for Automatic Software Vulnerability Detection,”
in Proceedings of the IEEE Symposium on Security and Privacy (SP’10),
pp. 497 –512, May 2010.

[31] H. Dai, C. Murphy, and G. Kaiser, “Configuration Fuzzing for Software
Vulnerability Detection,” 2010 International Conference on Availability,
Reliability and Security, pp. 525–530, Feb. 2010.

[32] V. Corey, C. Peterman, S. Shearin, M. Greenberg, and J. Van Bokkelen,
“Network Forensics Analysis,” Internet Computing, IEEE, vol. 6, pp. 60
– 66, Nov 2002.

[33] “A Road Map for Digital Forensic Research,” in Report From the First
Digital Forensic Research Workshop (DFRWS), (New York, NY, USA),
August 2001.

[34] H. Achi, A. Hellany, and M. Nagrial, “Network Security Approach
for Digital Forensics Analysis,” In Proceedings of the International
Conference on Computer Engineering and Systems (CCES’08), pp. 263–
267, Nov. 2008.

[35] W. Wang and T. E. Daniels, “A Graph-based Approach Toward Network
Forensics Analysis,” ACM Transactions on Information and System
Security (TISSEC), vol. 12, no. 1, 2008.

[36] M. J. Khan, M. M. Awais, and S. Shamail, “Enabling Self-Configuration
in Autonomic Systems Using Case-Based Reasoning with Improved
Efficiency,” In Proceedings of the 4th International Conference on
Autonomic and Autonomous Systems (ICAS’08), pp. 112–117, Mar.
2008.

[37] H. M. Tran and J. Schönwälder, “Distributed Case-Based Reasoning for
Fault Management,” in Proceedings of the 1st international conference
on Autonomous Infrastructure, Management and Security: Inter-Domain
Management (AIMS’07), (Berlin, Heidelberg), pp. 200–203, Springer-
Verlag, 2007.

[38] “MITRE Corporation.” http://www.mitre.org/. Last visited on January,
2013.

[39] J. Caballero, Z. Liang, P. Poosankam, and D. Song, “Towards Generat-
ing High Coverage Vulnerability-Based Signatures with Protocol-Level
Constraint-Guided Exploration,” in Proceedings of the 12th International
Symposium on Recent Advances in Intrusion Detection (RAID’09),
pp. 161–181, Springer-Verlag, 2009.

[40] “RFC 4765.” http://www.ietf.org/rfc/rfc4765.txt. Last visited on January,
2013.

[41] “Vulnerability Naming Schemas and Description Languages: CVE, Bug-
traq, AVDL and VulnXML. The SANS Institute.” http://www.sans.org/.
Last visited on January, 2013.

[42] “AVDL.” http://www.oasis-open.org/. Last visited on January, 2013.
[43] “The OVAL Language.” http://oval.mitre.org/. Last visited on January,

2013.
[44] “Cisco IOS.” http://www.cisco.com/. Last visited on January, 2013.
[45] M. Barrère, R. Badonnel, and O. Festor, “Supporting Vulnerability

Awareness in Autonomic Networks and Systems with OVAL,” In
Proceedings of the 7th IEEE International Conference on Network and
Service Management (CNSM’11), Oct. 2011.

[46] M. Barrère, G. Hurel, R. Badonnel, and O. Festor, “Increasing Android
Security using a Lightweight OVAL-based Vulnerability Assessment
Framework,” In Proceedings of the 5th IEEE Symposium on Config-
uration Analytics and Automation (SafeConfig’12), Oct. 2012.

[47] “NVD, National Vulnerability Database.” http://nvd.nist.gov/. Last
visited on January, 2013.

[48] “DHS, Department of Homeland Security.” http://www.dhs.gov/. Last
visited on January, 2013.

[49] “CPE, Common Platform Enumeration.” http://cpe.mitre.org/. Last
visited on January, 2013.

[50] “CCE, Common Configuration Enumeration.” http://cce.mitre.org/. Last
visited on January, 2013.

[51] N. Ziring and S. D. Quinn, “Specification for the Extensible Configura-
tion Checklist Description Format (XCCDF). NIST (National Institute
of Standards and Technology).” http://scap.nist.gov/specifications/xccdf/.
Last visited on January, 2013.

[52] “CVSS, Common Vulnerability Scoring System.” http://www.first.org/
cvss/. Last visited on January, 2013.

[53] J. A. Wang and M. Guo, “OVM: An Ontology for Vulnerability
Management,” in Proceedings of the 5th Annual Workshop on Cyber
Security and Information Intelligence Research: Cyber Security and
Information Intelligence Challenges and Strategies (CSIIRW’09), (New
York, NY, USA), pp. 34:1–34:4, ACM, 2009.

[54] Y. Kwon, H. J. Lee, and G. Lee, “A Vulnerability Assessment Tool
Based on OVAL in Linux System,” Network and Parallel Computing,
pp. 653–660, 2004.

[55] “Ovaldi, the OVAL Interpreter reference implementation.” http://oval.
mitre.org/language/interpreter.html. Last visited on January, 2013.

[56] M. Barrère, G. Betarte, and M. Rodrı́guez, “Towards Machine-assisted
Formal Procedures for the Collection of Digital Evidence,” in Proceed-
ings of the 9th Annual International Conference on Privacy, Security
and Trust (PST’11), pp. 32 –35, July 2011.

[57] “Java technology.” http://www.oracle.com/technetwork/java/. Last vis-
ited on January, 2013.

[58] “Android.” http://www.android.com/. Last visited on January, 2013.
[59] “Cfengine.” http://www.cfengine.com/. Last visited on January, 2013.
[60] M. Burgess and Æ. Frisch, A System Engineer’s Guide to Host Con-

figuration and Maintenance Using Cfengine, vol. 16 of Short Topics in
System Administration. USENIX Association, 2007.

[61] G. F. Lyon, Nmap Network Scanning: The Official Nmap Project Guide
to Network Discovery and Security Scanning. USA: Insecure, 2009.

[62] “Nessus.” http://www.tenable.com/products/nessus. Last visited on Jan-
uary, 2013.

[63] “OpenVAS.” http://www.openvas.org/. Last visited on January, 2013.
[64] “Saint.” http://www.saintcorporation.com/. Last visited on January,

2013.
[65] “Nmap.” http://nmap.org/. Last visited on January, 2013.

17

[66] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A Logic-based
Network Security Analyzer,” on USENIX Security, 2005.

[67] X. Ou, W. F. Boyer, and M. A. McQueen, “A Scalable Approach to
Attack Graph Generation,” in Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS’06), pp. 336–345,
ACM Press, 2006.

[68] D. Saha, “Extending Logical Attack Graphs for Efficient Vulnerability
Analysis,” in Proceedings of the 15th ACM Conference on Computer and
Communications Security (CCS’08), (New York, NY, USA), pp. 63–74,
ACM, 2008.

[69] M. Barrère, R. Badonnel, and O. Festor, “Towards the Assessment of
Distributed Vulnerabilities in Autonomic Networks and Systems,” In
Proceedings of the IEEE/IFIP Network Operations and Management
Symposium (NOMS’12), Apr. 2012.

[70] M. Barrère, R. Badonnel, and O. Festor, “Collaborative Remediation of
Configuration Vulnerabilities in Autonomic Networks and Systems,” In
Proceedings of the 8th IEEE International Conference on Network and
Service Management (CNSM’12), Oct. 2012.

[71] N. K. Pandey, S. K. Gupta, S. Leekha, and J. Zhou, “ACML: Capability
Based Attack Modeling Language,” In Proceedings of the 4th Interna-
tional Conference on Information Assurance and Security, pp. 147–154,
Sept. 2008.

[72] S. J. Templeton and K. Levitt, “A Requires/Provides Model for Com-
puter Attacks,” In Proceedings of the Workshop on New Security
Paradigms (NSPW’00), pp. 31–38, 2000.

[73] R. Lippmann, K. Ingols, and L. Laboratory, An Annotated Review of Past
Papers on Attack Graphs. Project report IA, Massachusetts Institute of
Technology, Lincoln Laboratory, 2005.

[74] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, Graph-based
Network Vulnerability Analysis,” In Proceedings of the 9th ACM Con-
ference on Computer and Communications Security (CCS’02), p. 217,
2002.

[75] “CAPEC, Common Attack Pattern Enumeration and Classification.”
http://capec.mitre.org/. Last visited on January, 2013.

[76] “CybOX, Cyber Observable eXpression.” http://cybox.mitre.org/. Last
visited on January, 2013.

[77] “MAEC, Malware Attribute Enumeration and Characterization.” http:
//maec.mitre.org/. Last visited on January, 2013.

[78] “CEE, Common Event Expression.” http://cee.mitre.org/. Last visited
on January, 2013.

[79] T. Stallard and K. Levitt, “Automated Analysis for Digital Forensic Sci-
ence: Semantic Integrity Checking,” In Proceedings of the 19th Annual
Computer Security Applications Conference (ACSAC’03), pp. 160–167,
2003.

[80] C. Elsaesser and M. C. Tanner, “Automated Diagnosis for Computer
Forensics,” tech. rep., The Mitre Corporation, 2001.

[81] R. W. Ritchey and P. Ammann, “Using Model Checking to Analyze
Network Vulnerabilities,” In Proceedings of the IEEE Symposium on
Security and Privacy (SP’00), pp. 156–165, 2000.

[82] K. Scarfone and T. Grance, “A Framework for Measuring the Vulnera-
bility of Hosts,” In Proceedings of the 1st International Conference on
Information Technology (ICIT’08), pp. 1–4, May 2008.

[83] M. Abedin, S. Nessa, E. Al-Shaer, and L. Khan, “Vulnerability Analysis
for Evaluating Quality of Protection of Security Policies,” In Proceed-
ings of the 2nd ACM Workshop on Quality of Protection (QoP’06), 2006.

Martı́n Barrère is a Ph.D. Candidate at the Uni-
versity of Lorraine working in the MADYNES Re-
search Team at INRIA, France. He has received
his computer engineering degree in 2010 by the
University of the Republic of Uruguay. His cur-
rent research topic is vulnerability management in
autonomic networks and systems, which includes
network security, autonomic computing, logic and
formal languages, and configuration management.
He is also interested in digital forensics, particularly
on evidence collection methods and techniques.

Rémi Badonnel is an Associate Professor at TELE-
COM Nancy and a research staff member of the
MADYNES Research Team at INRIA. Previously
he worked on change management methods and
algorithms at IBM T.J. Watson in USA and on au-
tonomous systems at the University College of Oslo
in Norway. His research interests include network
and service management, dynamic and autonomic
environments, security and defence techniques.

Prof. Olivier Festor is the Director of TELECOM
Nancy and head of the MADYNES Research Team
at INRIA. His research interests are in the design of
algorithms and solutions for automated management
of large-scale networks and services. Chair of the
IFIP TC6 WG6.6 and Co-Chair of the IRTF NMRG,
he serves in several TPCs as well as in the editorial
boards of the major international conferences and
journals in Network and Service Management.

