
Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

ISSN 2007-9737

All Uses and Statement Coverage:
A Controlled Experiment

Diego Vallespir1, Silvana Moreno1, Carmen Bogado1, Juliana Herbert2

1Universidad de la República, School of Engineering, Montevideo,
Uruguay

2Herbert Consulting, Porto Alegre,
Brazil

{dvallesp, smoreno}@fing.edu.uy, cmbogado@gmail.com, juliana@herbertconsulting.com

Abstract. This article presents a controlled experiment
that compares the behavior of the testing techniques
Statement Coverage and All Uses. The design of this
experiment is typical for a factor with two alternatives. A
total of 14 subjects carry out tests on a single program.
The results indicate that there is enough statistical ev-
idence to state that the cost of executing All Uses is
higher than that of executing Statement Coverage – a
result that we expected to find. However, no statistical
differences were found as regards the effectiveness of
the techniques.

Keywords. Empirical software engineering, testing tech-
niques, test effectiveness, test cost.

1 Introduction

Software unit testing is strongly established in in-
dustry. However, the effectiveness and cost of
each different unit testing technique is not known
with certainty. This makes the decision of which
technique to use hardly trivial.

Many years of empirical research have gone by
and yet final results have not been achieved. In
A look at 25 years of data the authors examine
in depth different experiments of software testing
reaching the same conclusion [12].

A series of formal experiments are currently be-
ing carried out at the Computer Science Institute
of the School of Engineering of the Universidad de
la República in Uruguay in order to gather more
precise data in this direction. Four experiments
have finished at present and this article describes

one of them. The results of other experiments of
this series are included in [15, 16, 17].

Defect-detection techniques are the mostly used
means to achieve quality in software. Therefore,
we need to understand the relations between costs
and benefits regarding those techniques, espe-
cially when aiming to compare them. The exper-
iment hereby described compares the unit testing
techniques All Uses (AU) and Statement Coverage
(SC) with aims to know its cost and its effective-
ness. The cost is defined as the time it takes
to develop the test cases in order to comply with
the coverage demanded by the technique. Ef-
fectiveness is defined as the number of defects
encountered when executing the technique divided
by the number of total defects of the program being
tested.

A group of undergraduate students of Computer
Science of the Universidad de la República in
Uruguay develop test cases using SC and AU to
execute a program written in Java. These students
record the defects found as well as the time em-
ployed in the development of the test cases. We
analyzed the effectiveness and the cost of each
subject and we suggested hypothesis tests to find
out whether among the techniques used there are
differences of effectiveness and/or cost.

The rest of the article is organized in the follow-
ing way: section 2 describes the techniques that
were used in the experiment. Section 3 presents
the related work. The experiment set up is pre-
sented in section 4. The results of the experiment



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert564

ISSN 2007-9737

are presented in section 5 and the discussion in
section 6. The most important threats to validity
are presented in section 7. The conclusions and
future work are presented in section 8.

2 Background: Statement Coverage
and All Uses

Two testing techniques, both white-box, are em-
ployed. SC that is based on control flow and AU
that is based on data flow.

In order to satisfy the prescription of SC tech-
nique each statement of the source code must be
executed at least once when running the tests.
Since this technique is widely known, we do not
go deeper into it in this article.

The AU technique expresses the coverage of
testing in terms of the definition-use associations of
the program. A definition of a variable occurs when
a value is stored in the variable (x := 7 ). A use
of a variable occurs when it is read (or uses) the
value of that variable. This can be either a p-use
or a c-use. A p-use is the use of a variable in a
bifurcation of the code (if (x==7)). A c-use is when
the use is not in a bifurcation. For example, in (y :=
7 + x) there is a c-use of x (there is also a definition
of y ).

The control flow graph is a representation
through a graph of the different execution paths
that can be taken by a program. The nodes of the
graph represent the statements (or code blocks)
and the edges the bifurcations (if, for, while, etc.).
We will use ij to refer to a particular node in the
graph.

Then, an execution path of the program can be
represented as a sequence of nodes. For example,
i1, i4, i7 represent an execution path where node
i1 is executed first, then node i4 and finally node i7.

A definition of a variable x in a node id achieves
a use of the same variable in a node iu, if there is
a definition clear path from id to iu in the control
flow graph and the path is executable. A path i1,
i2,. . . ,in is a definition clear path for a variable x
if the variable x is not defined in the intermediate
nodes of the path (i2,. . . ,in−1).

AU requires that at least one definition clear path
be executed from each definition (of every variable)
to each achievable use (of the same variable).

The classical definitions of the techniques based
on data flow and particularly AU are presented in
an article by Rapss and Weyuker [14].

In Object Oriented languages the basic testing
unit is the class. It is necessary to test its methods
in an individual and in a collective way, so as to test
the interactions generated through the sequence
of calls originated by the invocation of a particular
method. AU can be applied both for the tests of
individual method belonging to a class and for the
methods that interact with other methods of the
same class or of other classes.

The tests of a class in AU can be carried out in
two levels: Intra-method (Intra) and Inter-method
(Inter). In Intra, only the method under test is con-
sidered for the code coverage. Therefore, in this
case, the methods that interact with the method
under test are not considered at the moment of
developing the test cases. On the other hand, in
Inter, the methods that interact with the method
under test are considered for the code coverage
too.

Two types of definition-use pairs to be tested are
identified in relation to the levels presented previ-
ously. The Intra-method Pairs are those which
take place in individual methods and test the data
flow limited to such methods. Both definition and
use belong to the method under test.

The Inter-method Pairs occur when there is in-
teraction between methods. They are pairs where
the definition belongs to a method and the cor-
responding use is located in another method that
belongs to the chain of invocations.

In most of the literature that presents techniques
based on data flow, the examples that are given
contain simple variables such as integers and
Booleans. However, criteria that normally are not
treated should be defined at the moment of apply-
ing these techniques in arrays or even more difficult
in objects.

Establishing these criteria is essential in order
to know under which conditions the technique is
applied. Different conditions can produce different
results in the effectiveness and cost of AU since
in fact, they are different techniques with the same



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 565

ISSN 2007-9737

name. Many of these conditions refer to how the
Inter-method Pairs should be considered. This
experiment establishes the conditions for the ap-
plication of the AU technique based on what is
proposed in [5, 6, 7].

3 Related Work

Several formal experiments were carried out in
order to find out the effectiveness and/or cost of
different unit testing techniques. Some experi-
ments that use techniques based on data flow are
presented in this section.

In 2011, Kakarla, Momotaz and Namin presents
a meta-analytical approach to quantify and com-
pare mutation and data flow testing techniques
based on findings reported in research articles
[9]. Previous investigations of Mathur and Wong
[11], Offutt [13] and Frankl [4] were selected and
mutation and data flow testing techniques are com-
pared. Selected papers programs was developed
in C with 40, 18 and 39 LOCS respectively. The
Data flow techniques used were All-Uses, pairs DU
and All-Uses respectively. The study assesses the
effectiveness and efficiency of techniques. The ef-
ficiency refers to the number of test cases required
to achieve an adequate test suite with respect to
mutation or data-flow coverage criteria, whereas
effectiveness refers to the proportion of the faults
that was revealed using each testing technique.
The results show that mutation is at least two times
more effective than data-flow testing. The data-
flow testing outperforms, by three times, mutation
testing in terms of efficiency

In 2006, Andrews and others carry out an exper-
iment to compare the techniques: Block, C-Use,
P-Use and Decision [1]. The program used was
developed in C with 5905 NLCS and the defects
were injected through mutants generation. The test
suites were generated randomly for various cover-
age criteria and levels, with the aim of obtaining a
spread of test suites that span all coverage levels
in a balanced manner. The cost was measured
as the number of test cases necessary to achieve
the coverage, and the effectiveness was measured
as the number of defects detected. The results
indicate that the level of less expensive coverage
is Block, C-Use, Decision and P-Use, in that order.

Regarding the effectiveness, C-Use and P-Use are
better in detecting defects in relation to Decision
and Block.

In 1990 Weyuker presents an experiment in or-
der to find out the cost of the testing techniques
based on data flow [18]. The cost is measured as
the number of test cases developed when applying
the technique. The following testing techniques are
studied: All c-uses, All p-uses, All Uses and All
Paths Definition-Use. The results show that the
number of necessary test cases to satisfy those
criteria is much lower than the level of the worse
case calculated theoretically on a previous work
also by Weyuker [19].

Frank and Weiss present an empirical study in
which they compare the effectiveness of the All
Uses and Decision Coverage techniques [3]. Nine
programs are used and random test cases are
developed for each of them. No human testers
take part in this experiment. Sets of test cases,
that meet one or the other criterion, are taken
and whether each of these groups detects at least
one defect is evaluated. The results show, with
99% confidence, that the All Uses criterion is more
effective in 5 out of the 9 programs. In the other 4
programs it is impossible to differentiate.

In 1994, Hutchins and others published an ex-
periment the goal of which is to compare the ef-
fectiveness of a variant of the technique All Paths
Definition-Use and a variant of the Decision Cov-
erage technique [8]. The experiment has similar
characteristics to that of Frank and Weiss. How-
ever, in this experiment both test cases automati-
cally generated at random and human testers are
used. The results show that there is no statistical
evidence indicating that one technique is more ef-
fective than the other.

Li and others carry out an experiment to com-
pare four unit testing techniques: Mutants, All
Uses, Edge-pair Coverage and Prime Path Cov-
erage [10]. They try to find out the effectiveness
(measured as the number of defects detected on
the seeded defects) and the cost (measured as
the number of test cases it is necessary to develop
in order to meet each testing criterion) The cases
were developed by hand with the help of tools to
know the coverage and another one to generate
mutants. The result is that the Mutant technique



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert566

ISSN 2007-9737

finds more defects while the other three are similar.
Surprisingly (according to the authors) the Mutant
technique was the one that required the least test
cases.

One of the points that we consider weak in these
experiments is that they measure the cost as the
number of test cases it is necessary to develop
in order to satisfy a certain testing criterion. We
believe that the time employed in developing these
cases is a more interesting measure for the cost.

4 Experiment Setup

The design of the experiment and its execution are
presented in this section.

4.1 Goals, Hypotheses and Metrics

The aim of our experiment is to evaluate and
compare the SC and AU techniques concerning
their effectiveness and cost. To document our
goals, hypothesis and variables we use the GQM
approach [2].

Analyze Statement Coverage and All Uses
techniques
for the purpose of their evaluation
with respect to their effectiveness and cost
from the viewpoint of the researcher
in the context of a course thought and done
especially for this experiment in the School of
Engineering, Universidad de la República of
Uruguay.

Since the generic objective is clearly divided in
two (effectiveness and cost) we propose different
objectives for each of these options. The viewpoint
and the context do not change as regards the
general objective.

Goal 1:
Analyze Statement Coverage and All Uses
techniques
for the purpose of their evaluation
with respect to their effectiveness. . .

Goal 2:
Analyze Statement Coverage and All Uses

techniques
for the purpose of their evaluation
with respect to their cost. . .

The model to evaluate the effectiveness of each
individual is defined as the number of defects found
by that individual divided by the number of total
defects of the program under test. This model is
show in Fig. 1

The model to evaluate the cost of executing a
technique is defined as the time in minutes it takes
to design and codify the test cases using the tech-
nique.

The questions, metrics and hypotheses
associated with each goal are the following:

Goal 1:
Q1. Which is the average effectiveness of the
individuals when executing a technique?
H1. The individuals that apply All Uses have
a better performance than those who apply
Statement Coverage as regards the average
effectiveness.
M1.1. Number of defects found by each subject.
M1.2. Total number of defects in the program
under test.

Goal 2:
Q1. Which is the average cost obtained by
individuals when executing a technique?
H1. The individuals that apply All Uses obtain
a higher cost than those who apply Statement
Coverage as regards the average of the cost.
M2. Total time of design and codification of test
cases by each subject.

The experimental unit of the experiment is a
program written in Java language. Its main feature
is payroll accounting. The program is presented in
subsection 4.5.

The factor is the testing technique. The al-
ternatives of this factor are the techniques to be
evaluated: SC and AU.

The response variables considered in this ex-
periment are the effectiveness and the cost of the
techniques.



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 567

ISSN 2007-9737

Effectiveness of the individual =
Number of defects found

Total number of defects of the program
(1)

Fig. 1. Effectiveness of each individual definition

The hypotheses for this experiment are also the
traditional in this kind of experiment. The null hy-
pothesis of effectiveness, hypothesis that we want
to reject, states that the medians of effectiveness of
the techniques are the same. The null hypothesis
of cost states that the medians of cost of the tech-
niques is the same. The alternative corresponding
hypothesis simply indicates the medians are differ-
ent.

4.2 Subjects

The subjects of the experiment are graduate stu-
dents of Computer Science of the Universidad de
la República of Uruguay. All of them are advanced
students since they are coursing fourth or fifth
year. They have passed the course “Programming
Workshop” in which Java language is learned and
they have completed at least another three courses
in Programming and a course in Object Oriented
Programming. All of them have completed a Soft-
ware Engineering course in which, among other
things, different testing techniques are studied. We
consider, therefore, that the group that participates
in the experiment is homogeneous due to the fact
that they are at the same level in their studies and
that they have been provided with the same training
as part of the experiment.

The students participate in the experiment in
order to get credits for their studies and this is their
motivation. The formal framework is a course in the
degree of Computer Science designed especially
for the experiment. Attendance to the training is
mandatory as well as the execution of the test-
ing technique following the material provided by
the researchers. They know that completing the
course successfully depends on following the script
provided to apply the technique correctly and not
on the number of defects found.

The students are not aware that they are taking
part in an experiment; they believe they are taking

a course with an important component of labora-
tory practice.

It is the students who enroll in the course. This
course is not mandatory for the degree they are
taking, consequently their participation is voluntary.

4.3 Experimental Materials

The experiment material consists of the Class Dia-
gram of the program under test, the program user
documentation, the program’s Javadoc, an elec-
tronic spreadsheet to record defects and times, a
script to conduct the testing activity and the source
code of the program. The script and the program
are presented in independent sections.

The java classes of the program must be tested
following the bottom-up approach during the exper-
iment. The Class Diagram serves this purpose and
it is given to the subjects with a list that specifies
the order in which each class has to be tested.

While the test is being conducted the subjects
record the defects they find in the program as well
as the design and JUnit codification time of the test
cases. These data is recorded in the spreadsheet
for recording defects and time that was created for
this purpose.

The spreadsheet contains two sheets, the first
is presented in Fig. 2. The name of the subject,
the name of the program under test, the testing
technique being applied, the starting and finishing
date, and the design and codification times of the
test cases of each Java class are recorded here.

In the second sheet, a new row is entered for
every defect that is found. The number of the
code line where the defect is and its description
is recorded for each defect found, as well as the
name of the class that contains it. Finally, it is
specified whether the defect was found during the
design (design and codification of cases) or during
the execution of the test cases.



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert568

ISSN 2007-9737

Fig. 2. Defects and times recording spreadsheet - Sheet 1

4.4 Testing Script

The subjects use a script to conduct the tests
during the experiment. This script is presented
and explained to the subjects during the training
provided as part of the experiment.

The script is the process that must be followed
by the subjects. It is made up of three phases:
Preparation, Design and Execution. The complete
script can be found in Appendix A.

During the Preparation phase the subject must
carry out an initial check-up that guarantees that
the tests can be conducted. He must check that
he has the source files to test, a file with the class
diagram of the program under test, the Javadoc of
the classes and the spreadsheet to record defects
and times that he will use during the tests.

During the Design phase the subject develops
the test cases following the prescriptions of the
testing technique previously assigned. The subject
must design the test cases following a bottom-up
approach. After having designed the test cases,
the subject codifies them in JUnit. In this phase,
the time it took to design and codify the test cases
is recorded in the spreadsheet.

The execution of the test cases is conducted dur-
ing the Execution phase. The cases must also be
executed using a bottom-up approach. The phase
ends when there are no test cases that produce
a failure. While there are test cases that produce
failures the subject must:

— Choose one of the cases that produce a fail-
ure.

— Find the defect in the program that produces
the failure.

— Record the required data in the spreadsheet
for each defect found.

— Request the correction of the defect to the
research team.

— Run the test case again to confirm that the
correction has been made properly by the re-
search team.

4.5 The Program

The program used in this experiment was built
especially for an experiment conducted in 2008
[15]. This program was developed by a fourth-year
student of Computer Science. The student devel-
oped the program using a specification written by
the research team. This specification describes a
program to calculate the salaries for educational
staff and non-educational employees in a fictitious
university.

The functionalities of the program are basic as
regards the calculation of salaries. It allows record-
ing employees and their positions. It offers the
functionality of reallocating positions, but an em-
ployee cannot hold more than one position (be it
educational or non-educational). It makes it possi-
ble to raise salaries in different ways. It also has



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 569

ISSN 2007-9737

a functionality of making statements in which the
calculations of all the employees of the system are
made generating their corresponding salary slips.
It also provides the possibility of creating the salary
slip for an employee in particular.

The student must develop the program in Java
language taking the specification as a starting
point, making sure only that the program could
be compiled. That is to say, the student was not
allowed to conduct any testing on the developed
program. He was also asked not to conduct any
type of static review. Therefore the delivered pro-
gram only had corrections to the defects detected
during the compilation.

Therefore, the program contains real defects that
were not seeded in the code by the researchers.
Besides, since the developer is not allowed to con-
duct any type of verification, the program is tested
for the first time during the experiment, situation
which we wanted to simulate.

The student that builds the program develops
its documentation using Javadoc. He hands in
installation and configuration manuals and a user
manual that covers all the functionalities of the
program.

The program has a size of 1820 LOCs (without
comments) distributed into 14 classes. It is made
up of 5 DataTypes, a class that implements the
persistence of the data, 5 classes that contain the
logic, 2 interfaces and a main class that imple-
ments the interface with the user.

The program has a small database (that use the
HSQLDB database manager) to support its func-
tionalities. This database is made up by 8 tables.
The subjects are given a script for the creation of
the tables and load of the basic data.

The defects of the program are not totally known
since they are not seeded defects, but they cor-
respond to those that appear during the devel-
opment. During the 2008 experiment and during
the experiment presented in this article, several
subjects conducted tests on the program with dif-
ferent techniques. We consider that the number of
defects that result from the union of the detected
defects in both experiments is a good estimate
of the total defects of the program. This number
is 187.

4.6 Experiment Design

The design of an experiment corresponds to the
design of a factor (testing technique) with two alter-
natives (SC and AU). The subjects that participated
in the execution of the experiment are a subgroup
of the subjects that participated in the training; 4
from the first training and 10 from the second. Out
of these 14 subjects, 8 apply AU and 6 apply SC.

The subjects in the training could choose freely
to participate in the experiment in order to get
more academic credits. The final design is not
balanced due to the fact that each subject carried
out the practice only with one technique during the
training.

All the subjects use only one technique (the
allotted one: CS or AU) on an only program (the
Accounting program).

4.7 Training

The subjects who enroll in the course must go
through the training that aims at ensuring that they
have the necessary knowledge and practice to use
the SC and AU techniques correctly. The training
is made up of three parts: JUnit Learning session,
Techniques Learning session and Execution ses-
sion. Fig. 3 presents the different activities in each
session.

The aim of the JUnit Learning session is for each
subject to learn how to use the JUnit tool that they
will be using to codify the test cases. Each subject
is given a simple program specification and they
are asked to implement that specification in Java
and to develop a JUnit class to test its functionality.
The idea is that the subject should study JUnit
individually since this tool is not explained during
the training.

This session is done at home by the students
and takes a week. Once it finishes, the students
hand in the Java class and the JUnit class with
the codified test cases. These are reviewed by the
researchers in order to verify that the student has
acquired the necessary knowledge with JUnit.

Once the JUnit Learning session is finished the
Techniques Learning takes place. This session has
the aim of allowing the subjects to learn the SC
and AU techniques. A theoretical/practical course
of 9 hours is conducted during a day. A theoretical



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert570

ISSN 2007-9737

Fig. 3. Training of the subjects

class to explain the testing techniques to be used
is given in the first half of the day. The verification
script to be followed when conducting the tests and
the spreadsheet to register times and defects are
also explained. During the second half of the day
practical exercises to be solved in groups or indi-
vidually are done. These exercises are an intense
practice of the techniques of the experiment.

The Execution session is also conducted during
a whole day, seven days apart from the training
session. In this session the subjects individually
apply the technique allotted to each one, develop-
ing the necessary test cases and executing them.
This training session is considered also as an ex-
periment in itself [16].

In order to complete the work they follow the
script provided in the Techniques Learning session,
registering the time and the defects as indicated in
the same. The students who are unable to finish
their task during the day have a week to finish
it. At the end of the session the subjects hand
in the JUnit classes developed, the spreadsheet
with the registers of time and defects and the notes
they have made in order to be able to apply the

technique (control flow graphs, identified paths,
etc.) Once all the deliveries have been done, the
research team reviews them and they are given
back individually to each student.

The execution session serves to achieve sev-
eral objectives. The subjects familiarize with the
verification script they must follow, with the tech-
niques and with the spreadsheet to use to keep the
records. While the work is reviewed, it is possible
to make adjustments and correct the mistakes that
the subjects could be making while applying the
technique.

4.8 Operation

The complete training takes place twice with two
different groups of subjects. The first training and
the second were carried out some weeks apart
from one another.

10 subjects participated in the first training. 5
used AU technique and the other 5 applied SC.
11 subjects participated in the second training. 6
used AU and 5 used SC. The choice of subjects
for the different techniques is at random. Each



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 571

ISSN 2007-9737

complete training (the three sessions) took about
three weeks.

The experiment with the Accounting program is
conducted in 8 one-week sessions. Each session
is allotted a certain number of Java classes to be
tested by the subjects. The choice of classes to be
tested each week is made based on the bottom-up
approach and their complexity, and was made by
the research team.

The execution of the experiment by the subjects
is done at their home. At the beginning of each
week the classes to be tested are sent to them via
e-mail.

During the week the subjects report the defects
found to the researchers requesting their correc-
tion. The research team sends the corresponding
correction for each defect. The subjects are not
allowed to make the corrections by themselves.
The purpose of this is that the subjects have the
same correction for the same defects.

It is important to point out that we have no knowl-
edge of other experiments conducted in which the
defects are corrected. The correction of defects
during the experiment simulates better the testing
activity in the industry.

Each weekly delivery made by a subject is val-
idated by the research team. The aim is to make
sure that the spreadsheet is complete. It is also
controlled that the test cases handed in codified in
JUnit do not fail, which means that all the defects
that produce failure have been corrected.

A form that records the defects of each Java
class of the program is completed using the defects
found by the different subjects. It is made taking the
defects form of the 2008 experiment as a starting
point. This form is used to keep all the defects
found by all the subjects per class of the program.

5 Results

The results are presented in two parts. The first
sub-section considers goal 1: effectiveness of the
techniques. The second considers goal 2: cost of
the techniques.

Table 1 presents the subjects that used each one
of the techniques, the Effectiveness (%) and the
Cost (hours).

Table 1. Effectiveness (%) and Cost (hours)

Tech. Subj. Effect. (%) Cost (hs.)
SC S1 42% 54.6
SC S2 15% 30.9
SC S3 5% 41.3
SC S4 6% 41.1
SC S5 15% 35.8
SC S6 7% 35.1
AU S7 35% 53.5
AU S8 3.7% 31.3
AU S9 5% 45.1
AU S10 15% 54.6
AU S11 5% 29.5
AU S12 23% 68.7
AU S13 21% 105.2
AU S14 4% 92.0

5.1 Effectiveness

In this section we present the descriptive statistics
and the hypothesis test for the effectiveness of the
techniques.

Descriptive Statistics
Fig. 4 presents a box and whisker chart of the

effectiveness both of the SC technique and the AU
technique. The medians of both techniques are
similar, for SC it is 11% and for AU it is 10%. The
distribution of both techniques is a bit different.

Fig. 4. Box and Whisker of the Effectiveness



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert572

ISSN 2007-9737

Table 2 presents the number of subjects that
used each one of the techniques, the median and
the interquartile range calculator.

Table 2. Median and Interquartile Range Calculator

No. of Subjects Median IRQ
SC 6 11% 9%
AU 8 10% 17.5%

Hypothesis Testing
The hypothesis test done to compare the effec-

tiveness of the techniques is presented below. The
quantity of observations we have (6 and 8) are
too few to make parametric tests. Therefore, the
Mann-Whitney test is applied, since it is suitable
for our experiment design. The null hypothesis that
indicates that the medians of effectiveness of both
techniques are the same is proposed, together with
the corresponding alternative hypothesis:
H0 :Mdn ESC =Mdn EAU

H1 :Mdn ESC <> Mdn EAU

The test of Mann-Whitney indicates that it is not
possible to reject the null hypothesis. Therefore,
we do not find there is a statistical difference be-
tween the effectiveness of both techniques.

5.2 Cost

In this section we present the descriptive statistics
and the hypothesis test for the cost of the
techniques.

Descriptive Statistics
Fig. 5 presents a box and a whisker chart of the

SC and the AU cost. The median of SC is 38.5
hours and that of AU is 54.1 hours. The distribution
of both techniques is very different. Although the
minimum values are similar, the percentiles from
25% to 75% are totally different.

Table 3 presents the number of subjects that
used each one of the techniques, the median and
the interquartile range calculator of the cost (in
hours).
Hypothesis Testing

The Mann Whitney test is used again. The null
hypothesis in this case is that the median of the
cost of the techniques is the same:

Fig. 5. Box and Whisker of the Cost

Table 3. Median and Interquartile Range Calculator of
the Cost in Hours

No. of Subjects Median IRQ
SC 6 38.5 6.18
AU 8 54.1 42.12

H0 :Mdn CSC =Mdn CAU

H1 :Mdn CSA <> Mdn CAU

The calculated p value is lower than the α cho-
sen level (0.1), therefore we conclude that there is
statistical evidence that indicates that AU is more
expensive than SC.

6 Discussion

In this experiment we expected to find that the
effectiveness of the AU technique is higher than
that of SC. However, this could not be proved sta-
tistically.

We found that both techniques had a very low
effectiveness, the median of SC being 11% and
that of AU 10%. This effectiveness might be be-
cause the students did not know how to apply the
techniques well. This can become more negative
for the more complex technique, in this case AU.
We are currently carrying out a study to know,
taking the test cases developed by the subjects
as a starting point, how far the subjects satisfy
the prescription of the technique they use. This



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 573

ISSN 2007-9737

study can help discuss the low effectiveness of
both techniques in our experiment.

On the other hand, as far as the cost analysis
is concerned, we found what we expected to find.
The AU technique is more expensive that the SC
technique. As we consider the design and codi-
fication time of the test cases as the cost of the
technique, we can conclude that the AU technique
is more complex to apply than SC.

The AU technique presents a greater variability
in the cost than the SC technique. It could be
thought from a practical point of view that the costs
of applying SC are kept more under control than
the costs of applying AU.

However, this does not have to be so. Our ongo-
ing study that studies the compliance with the pre-
scription of the technique by the subjects indicates
that those who apply SC normally comply with it
while those who apply AU have a great variability.
This could explain the variability of costs; those
who apply AU correctly could be those subjects
who have a high application cost. These are as-
sumptions under analysis at the moment.

7 Threats to Validity

There are various threats to the validity of this
experiment. These make it important to replicate
the experiment in order to know if the conclusions
can be generalized. Some of the threats that we
consider most important are mentioned below.

Only 14 subjects participated in the experiment.
Thus, we can only use nonparametric tests. It is
necessary to replicate the experiment with more
subjects in order to generalize the findings.

The subjects are all undergraduate students. Al-
though they are all advanced students and they
are carefully trained, they are not professionals in
software development. This might imply that the
test cases developed could be “worse” than those
an expert could develop.

Only one program is used in the experiment.
Therefore, the obtained results may be due to the
program’s special features and not to the tech-
niques studied. It is necessary to replicate the ex-
periment with different types of programs in order
to generalize the findings.

The obtained results are only useful for SC and
AU. Although in this experiment both techniques
show very low effectiveness (about 10%), this can-
not be generalized to other white-box techniques.
Future replications must consider other white-box
techniques and include black-box techniques.

8 Conclusions and Future Work

This article presents and empirical study that aims
to find out more about the effectiveness and cost of
the SC and AU techniques. As to the effectiveness,
we could not reject the null hypothesis; therefore
we cannot say that one technique is more effective
than the other.

As far as the cost is concerned, although the
subjects taking part in the experiment were few, we
can say that the AU technique is more expensive
than the SC technique. It is on average 50% more
expensive to execute.

It is necessary to make replications in order to
generalize the findings due to the different threats
to the validity of this experiment. In fact, it would be
interesting to increase the number of subjects, vary
the testing techniques and have different programs
to test.

If future replications of this experiment show the
same result, we could say it is convenient, concern-
ing the cost-benefit relation of executing white-box
techniques, to use simple white-box techniques.
The use of complex techniques such as AU would
not be worth while, since their cost is much higher
and there are no differences as to effectiveness.

As far as future work is concerned, it is our
intention to replicate this experiment with the same
type of subjects but a bigger number of them. This
would eliminate one of the threats to the validity
that were mentioned. In a longer period we would
have more programs to test and finally we would
add other testing techniques.

A The Script

The script for white box testing used in the exper-
iment is presented below. The script describes
the process to conduct the tests by the subjects.
It entails three phases: Preparation, Design and
Execution.



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert574

ISSN 2007-9737

A.1 Script for white box testing

Step 1. Preparation:

— Preparation activities for testing.

Step 2. Design:

— Design the test cases that satisfy the prescrip-
tion of the technique.

— Build the test cases in JUnit.

— Record the required data of the phase.

Step 3. Execution:

— Execute the designed test cases.

— Find the defects associated to the cases that
produce failures.

— Record the required data of the phase.

A.2 Script for the Preparation Phase

Preparation phase: Carry out an initial check-out to
guarantee that verification can be done.
Step 1. Verify Files:

— Verify that the source files are available.

— Verify that you have the Class Diagram.

— Verify that you have the Javadoc of the classes
to test.

— Verify that you have the defect and times
spreadsheet.

A.3 Script for the Design Phase

Design Phase: Make the design of the test cases
satisfying the prescription of the testing technique
to apply. The cases must be designed according to
the bottom-up approach.
Step 1. Define the data test set:

— Record the starting time of the activity.

— Define for each method the set of input values
that satisfy the prescription of the technique.

Step 2. Define the expected results:

— Define the expected result (or expected be-
havior) for each element of the set of input
values and thus make the test cases.

Step 3. Debugging:

— Eliminate the test cases that cannot be ex-
ecuted (imposible paths, etc.). Check if the
prescription is still satisfied. In case it is not
go back to step 1 trying to satisfy it.

Step 4. Codification of test cases in JUnit:

— Codify all the designed test cases in JUnit.

Step 5. Record of finishing:

— Record the design finishing time.

A.4 Script for the Execution Phase

Execution Phase: Carry out the execution of the
designed test cases. The cases must be executed
following the bottom-up approach.

Step 1. Execute the test cases:

— Execute the test cases.

Step 2. Analyze the obtained output:

— If there was no failure the phase is finished.

Step 3. Find defects:

— While there are test cases that produce a fail-
ure:

– Choose one of the cases that produce a
failure.

– Find the defect in the program that pro-
duces the failure.

– Execute step 4.

– Request the correction of the defect to
the research team.

– Run the test case again to confirm that
the correction has been made properly by
the research team.



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

All Uses and Statement Coverage: A Controlled Experiment 575

ISSN 2007-9737

Step 4. Defect recording:

— For each defect found record the following
data:

– General description of the defect. It is
important that the description is clear and
accurate.

– Name of the file that contains the defect.

– Line in which the defect is. In case the
defect is not on a specific line record 0
(zero). Beware: if the file that is being
tested has been modified compared to
the original (because some defect has
been corrected), the line of the original
file must be indicated.

– Structure associated to the defect (i.e. IF,
FOR, WHILE, name of the method, etc).If
the defect has no associated line this field
must be completed necessarily.

– Starting line of the structure (mandatory
if an associated structure is indicated).

References

1. Andrews, J. H., Briand, L. C., Labiche, Y., &
Namin, A. S. (2006). Using mutation analysis for
assessing and comparing testing coverage crite-
ria. IEEE Transactions on Software Engineering,
Vol. 32, pp. 608 – 624.

2. Basili, V., Caldiera, G., & Rombach, H. (1994).
Goal question metric approach. Encyclopedia of
Software Engineering, pp. 528–532.

3. Frankl, P. G. & Weiss, S. N. (1993). An exper-
imental comparison of the effectiveness of branch
testing and data flow testing. IEEE Transactions on
Software Engineering, Vol. 19, No. 8, pp. 774–787.

4. Frankl, P. G., Weiss, S. N., & Hu, C. (1997).
All-uses vs mutation testing: An experimental com-
parison of effectiveness. Journal of Systems and
Software, Vol. 38, pp. 235– 253.

5. Frankl, P. G. & Weyuker, E. J. (1988). An applicable
family of data flow testing criteria. IEEE Transactions
on Software Engineering, Vol. 14, No. 10, pp. 1483–
1498.

6. Harrold, M. J. & Rothermel, G. (1994). Performing
data flow testing on classes. SIGSOFT Softw. Eng.
Notes, Vol. 19, No. 5, pp. 154–163.

7. Harrold, M. J. & Soffa, M. L. (1989). Interprocedual
data flow testing. ACM SIGSOFT ’89 third Sympo-
sium on Software Testing, Analysis, and Verification
(TAV3), ACM, New York, NY, USA, pp. 158–167.

8. Hutchins, M., Foster, H., Goradia, T., & Ostrand,
T. (1994). Experiments on the effectiveness of
dataflow- and control-flow-based test adequacy cri-
teria. 16th International Conference on Software
Engineering (ICSE-16), pp. 191 –200.

9. Kakarla, S., Momotaz, S., & Namin, A. (2011).
An evaluation of mutation and data-flow testing: A
meta-analysis. IEEE Fourth International Confer-
ence on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 366–375.

10. Li, N., Praphamontripong, U., & Offutt, J. (2009).
An experimental comparison of four unit test criteria:
Mutation, edge-pair, all-uses and prime path cover-
age. International Conference on Software Testing,
Verification and Validation Workshops (ICSTW’09),
pp. 220 –229.

11. Mathur, A. P. & Wong, W. E. (1994). An empirical
comparison of data flow and mutation-based test
adequacy criteria. Software Testing, Verification and
Reliability, Vol. 4, pp. 9– 31.

12. Moreno, A., Shull, F., Juristo, N., & Vegas, S.
(2009). A look at 25 years of data. IEEE Software,
Vol. 26, No. 1, pp. 15–17.

13. Offutt, A. J., Pan, J., Tewary, K., & Zhang, T.
(1996). An experimental evaluation of data flow and
mutation testing. Software Practice and Experience,
Vol. 26, pp. 165– 176.

14. Rapps, S. & Weyuker, E. J. (1982). Data flow
analysis techniques for test data selection. 6th
international conference on Software engineering
(ICSE’82), IEEE Computer Society Press, Los
Alamitos, CA, USA, pp. 272–278.

15. Vallespir, D., Apa, C., De Leı̈¿ 1
2
n, S., Robaina, R.,

& Herbert, J. (2009). Effectiveness of five verifica-
tion techniques. XXVIII International Conference of
the Chilean Computer Society.

16. Vallespir, D., Bogado, C., Moreno, S., & Herbert,
J. (2010). Comparing verification techniques: All
uses and statement coverage. Ibero-American Sym-
posium on Software Engineering and Knowledge
Engineering, pp. 85–95.

17. Vallespir, D. & Herbert, J. (2009). Effectiveness
and cost of verification techniques: Preliminary con-
clusions on five techniques. Mexican International
Conference on Computer Science (ENC), pp. 264–
271.



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 563–576
doi: 10.13053/CyS-19-3-1969

Diego Vallespir, Silvana Moreno, Carmen Bogado, Juliana Herbert576

ISSN 2007-9737

18. Weyuker, E. (1990). The cost of data flow testing:
An empirical study. IEEE Transactions on Software
Engineering, Vol. 16, pp. 121–128.

19. Weyuker, E. J. (1984). The complexity of data flow
criteria for test data selection. Information Process-
ing Letters, Vol. 19, No. 2, pp. 103–109.

Diego Vallespir is an Assistant Professor at
the Engineering School of the Universidad de
la República (UdelaR), Director of the Informat-
ics Professional Postgraduate Center at UdelaR,
Director of the Software Engineering Research
Group (GrIS) at UdelaR, and a Researcher at
PEDECIBA-Informatics. He holds an Engineering
degree in Computer Science, a Master of Science
in Computer Science, and a Doctor of Philosophy
in Computer Science, all of them obtained from
UdelaR. He has published several articles in in-
ternational conference proceedings. His main re-
search topics are empirical software engineering,
software process, and software testing.

Silvana Moreno is a Teaching and Research As-
sistant at the Engineering School of the Universi-
dad de la República (UdelaR). She is a member of
the Software Engineering Research Group (GrIS)
at the Instituto de Computación (INCO). Moreno
holds an Engineering degree in Computer Science
from UdelaR and a Master of Science in Com-
puter Science from the same university. She is
currently pursuing her doctoral degree in Computer
Science.

Carmen Bogado is a Research Assistant at
the Engineering School of the Universidad de la
República (UdelaR). She is a member of the Soft-
ware Engineering Research Group (GrIS) at the In-
stituto de Computación (INCO). She holds an Engi-
neering degree in Computer Science from UdelaR.

Juliana Herbert is the founder and Director of the
Herbert Consulting. PhD and Master in Computer
Science, on Software Validation and Verification,
by Universidade Federal do Rio Grande do Sul
(UFRGS). Juliana led, as SCAMPI Lead Appraiser,
14 official CMMI-DEV appraisals by SEI/CMU
(Software Engineering Institute of Carnegie Mellon
University). She is Certified Scrum Master (CSM)
and Certified Scrum Professional (CSP), by the
Scrum Alliance. Juliana has being certificated as
a PMI Agile Certified Practitioner (PMI- ACP), as
a Project Management Professional (PMP) and a
PMI Scheduling Professional (PMI- SP) by Project
Management Institute (PMI). She is a 6 Sigma
Black Belt by ASQ (American Society of Quality).
Juliana is also a Senior Consultant, Appraiser and
Instructor of models MPS-SW (Brazilian Quality
Model for Software) and MPS-SV (Brazilian Quality
Model for Services), accredited by Softex. She is a
lead appraiser of CERTICS model (a product qual-
ity model, of the Brazilian government), accred-
ited by the Federal Government of Brazil. She is
the Vice-coordinator of the Technical Team Model
(ETM) of Internationalization aspects of MPS mod-
els. Juliana works as a Senior Consultant in pro-
cess management, software validation and verifi-
cation since 1999 . Juliana is an Associate Profes-
sor at the Universidad de la República del Uruguay,
where she advises Master and Doctor students.

Article received on 06/06/2014; accepted on 05/06/2015.
Corresponding author is Diego Vallespir.


