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TOPOLOGICAL ENTROPY ON POINTS WITHOUT
PHYSICAL-LIKE BEHAVIOUR

ELEONORA CATSIGERAS, XUETING TIAN!, AND EDSON VARGAS

Abstract. Let f: M — M be a C' diffeomorphism on a compact Riemannian
manifold M. Let Of denote the space of all SRB-like measures and for z € M,
pw(z) denote the limit set of {% Z;’:ol d4i(x)tnen in weak* topology where
0y is the Dirac probability measure supported at y € M. We state a sufficient
condition to prove that the set of points without physical-like behaviour

'y ={z:pw(x)n Oy =0}

has full topological entropy, even though in general it always has zero Lebesgue
measure. In particular, this phenomena is valid for all C! transitive Anosov
diffeomorphisms and time—1 maps of all C! transitive Anosov flows. We
emphasize that the system is just required C!. The proof ideas are mainly
based on Pesin’s entropy formula and variational principle of saturated sets.

1. INTRODUCTION

Let f: M — M be a continuous map on a compact manifold M. Let m be a
Lebesgue measure normalized such that m(M) = 1, and not necessarily f- invariant.
Let P denote the space of all probability measures, and Py C P denote the space
of f-invariant probability measures, endowed with the weak® topology. For a point
x € M we consider the following sequence

1 n—1
i ;0 50} e

where 6, is the Dirac probability measure supported at y € M. Define the set
pwy(z) of probability measures:

* 1
pwyi(z) = {,u € P: dn; — 4oo such that leinoo - Z Ofi(x) = ,u}.

We say that pw;(x) describes the asymptotic statistics of the orbit of z. It is
standard to check that pwy(z) C Py. From [11] we know that pwy(z) is always
nonempty, compact and connected.

Recall that a measure p € P is called physical or SRB (Sinai-Ruelle-Bowen), if
the set

A(p) ={z € M: pwy(z) = {u}t}

has positive Lebesgue measure. The set A(u) is called basin of attraction of u. Now
let’s recall the definition of SRB-like measure [9].

Definition 1.1. (SRB-like measures, c.f. [9]) A probability measure y € Py is
SRB-like (or observable or physical-like) if for any € > 0 the set

Ae(p) = {z € M: dist(pwy (), n) < e}
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has positive Lebesgue measure. The set A.(p) is called basin of e—attraction of pu.

We denote with Oy the set of all SRB-like measures for f : M — M. It is
standard to check that every SRB-like measure for f is f-invariant. Let’s recall
some basic results related with SRB-like measures. We call basin of attraction
A(K) of any nonempty weak* compact subset K of probabilities, to

AK) :=={x € M : pws(xz) C K}

The following theorem is a basic characterization of SRB-like measures, which is a
reformulation of the main results of [9]:

Theorem 1.2. Let f: M — M be a continuous map on a compact manifold M .
Then the set Oy of all SRB-like measures for f is the minimal weak™ compact subset
of P whose basin of attraction has total Lebesque measure.

In other words: Oy is nonempty and weak™ compact, and the minimal nonempty
weak® compact set that contains, for Lebeque almost all the initial states © € M,

the limits of the convergent subsequences of{% Z;:ol 43 (z) fneN-

Define
(1) Ay ={z:pw(z) C Os}.

Note that Ay is the maximal set such that all limit points of empirical measure of
points in this set are SRB-like. By Theorem 1.2, A; has Lebesgue full measure.
Let

(2) I'y={z:pw(x)nOf =0}

The set I'y is called the set of points without physical-like behaviour. Obviously,
I'y € M\ Ay and thus I'y has Lebesgue zero measure. However, in this paper we
will show for lots of smooth dynamics, the topological entropy of I'y can be large
and even equal to the full entropy.
Before stating main results we combine I'y with irregular set for consideration
together. Let
It ={z € M : pws(x) is not a singleton},

called irregular set of f. By weak® topology, x € Iy if and only if there is some
continuous function ¢ : X — R such that the ergodic average

)
1=0

does not converge as n — +o00. By Birkhoff Ergodic theorem, irregular set I has
zero measure for any ergodic measure and then by Ergodic Decomposition theorem
so does for any invariant measure. Since I'y has Lebesgue zero measure, we have

Proposition 1.3. Let f: M — M be a continuous map on a compact manifold
M. Then the set I'y N I¢ has zero measure not only for Lebesgue measure but also
for all invariant measures.

In strong contrast, we observe that I'y N Iy may be ‘large’ in the sense of topo-
logical entropy. Now let us start to state the main result, in which the concepts of
g-almost product property and uniform separation will be introduced in section 2.2
and 2.3 respectively.

Theorem 1.4. Let f : M — M be a C' diffeomorphism on a compact Riemannian
manifold M. Suppose that:
(H1) f has a dominated splitting TM = E & F for f such that E is not expanding
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and F' is not contracting in the sense of SRB-like measures, that is, for any u € Oy
and p a.e. x,

1
liminf —log || Dy f"|g|| <0, limsup— logm(D flr) >
n—4+oco N

n—-+4oo

(H2) there is an invariant measure vy such that Pesin’s entropy formula fails, that
is, the metric entropy of vy is not equal to the integral of the sum of all nonnegative
Lyapunov exponents of vy a.e. x;

(H3) f has g-almost product property and uniform separation.

Then the set I'y NIy has full topological entropy.

It seems that the assumptions of Theorem 1.4 are so many and very strong.
However, it is suitable for all hyperbolic dynamics. That is,

Theorem 1.5. Let M be a compact Riemannian manifold and let f : M — M be
a C! transitive Anosov diffeomorphism on M or be time-1 map of a C' transitive
Anosov flow on M. Then I'y N Iy has full topological entropy.

We emphasize that the system is just required C'. From [1] we know for a
C" transitive Anosov diffeomorphism, Iy carries full topological entropy so that
Theorem 1.5 can be as a further refined observation of irregular points by combing
the physical-like behaviour.

This paper is organized as follows. In section 2 we will introduce some concepts
and some useful lemmas, and in section 3 we will prove Theorem 1.4 and Theorem
1.5.

2. PRELIMINARIES

2.1. Entropy. Let p € Py. Given & = {Aq,---, Ay} a finite measurable partition
of M, i.e., a disjoint collection of elements of B(M) whose union is M, we define
the entropy of £ by

Zu ) log p(A;).

The metric entropy of f with respect to £ is given by

n—1

hu(f, €)= lim flogH (\V 7.

=0

The metric entropy of f with respect to u is given by
hu(f) = Suph (f,6),

where £ ranges over all finite measurable partitions of M.
Let us recall the definition of entropy working for non-compact sets (see [6]). Let
A, ={0,1,2,--- ,n—1}. Let x € M. The dynamical ball B,,(z,¢) is the set

By (x,€) = {y € M| max{d(f’(x), /' (y))| j € An} < e}
Definition 2.1. For a general subset E C M, let G, (E, o) be the collection of all
finite or countable covers of F by sets of the form B, (x,c) with u > n. We set

C(E;t,n,o, f):= inf —tu
(Bt )= ot (Z)Ece
w(z,0o

and
C(E;t,o,f):= lim C(E;t,n,o, f).
n—oo
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Then

hiop(E5 0, f) :=1int{t : C(E;t,0, f) = 0} =sup{t: C(E;t, 0, f) = oo}
and the Bowen’s (Hausdorff) topological entropy of E is
(3) hiop(f, E) := ;igbhtop(Eﬂ"a f)-

It was proved by Bowen that hye,(f, M) equals to the classical hop(f).
Now let us first state a basic fact that

Theorem 2.2.

htop(f7Af) S sup h,u(f), htop(fvrf) S sup hu(f)
ueO; HEP\Oy

Proof. This can be deduced from the definition of Ay or I'y and the estimate
of [6] for ¢t = sup,co, hu(f) or sup,ep o, hu(f)-

Theorem 2.3. [6, Theorem 2] Let f be a continuous map of a compact metric
space M. If we denote

QR(t) = {x : Ju € pwy(z) s.t. h,(f) <t},
then hiop(f, QR(t)) < t.
(]

2.2. g—almost product property. Firstly we recall the definition of specification
property which is stronger than g—almost product property, see [11, 17, 4, 5, 3, 19].

Definition 2.4. We say that the dynamical system f satisfies specification property,
if the following holds: for any e > 0 there exists an integer M, such that for any
k > 2, any k points x1, - , Tk, any integers
a1 <byp <ag <by---<ap < by
with a;41 — b; > M. (1 <1i <k — 1), there exists a point € M such that
(4) d(f'(x), f/(2:)) <€, forai<j<b,1<i<k
The original definition of specification, due to Bowen [4], was stronger.

Definition 2.5. We say that the dynamical system f satisfies Bowen’s specification
property, if f satisfies specification and besides for any integer p > M. + by — aq,
there exists a point 2 € M such that fP(x) = x satisfies (4).

Now we start to recall the concept g—almost product property in [16] (there
is a slightly weaker variant, called almost specification, see [20]). It is weaker
than specification property (see Proposition 2.1 in [16]). A striking and typical
example of g—almost product property (and almost specification) is that it applies
to every S—shift [16, 20]. In sharp contrast, the set of 8 for which the S—shift has
specification property has zero Lebesgue measure [7].

Definition 2.6. Let g : N — N be a given nondecreasing unbounded map with the
properties
g(n) <n and lim M: .
n—oo N
The function g is called blowup function. Let x € M and € > 0. The g—blowup of
By, (z,¢) is the closed set

Bu(giz,e):={yeM| FACA,#(A,\A)<g(n) and
max{d(f’(z), f(y))|j € A} <e },
where #1I" denotes the cardinality of a finite set I'.
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Definition 2.7. We say that the dynamical system f satisfies g—almost product
property with blowup function g, if there is a nonincreasing function m : Rt — N,

such that for any k > 2, any k points z1,--- ,zp € M, any positive €1, -+ , e and
any integers n; > m(e1), - ,ng > m(eg),
k
() £ "B, (g;25,25) # 0,
j=1

WheI'eMo ZZO,MZ‘ ::n1—|—-~-—|—ni,i:1,2,~-- ,]{1—1.

2.3. Uniform separation. Now we recall the definition of uniform separation
property [16]. For 2 € M, define

1 n—1
Th(z) = - Z(Sfj(m)
§=0

where d, is the Dirac probability measure supported at y € M. For § > 0 and
e > 0, two points x and y are (§,n,¢)-separated if #{j : d(f'x, fly) > ¢,j €
An} > dn. A subset E is (d,n,e)-separated if any pair of different points of E are
(0,n,e)—separated. Let F' C P be a neighborhood of v € Py. Define

M, r:={x e M|YT,(z) € F},
and define
N(F;6,n,¢) := maximal cardinality of a (4, n, ) — separated subset of M, p.

Definition 2.8. We say that the dynamical system f satisfies uniform separation
property, if following holds. For any n > 0, there exist 6* > 0,e¢* > 0 such that
for p ergodic and any neighborhood F' C P of y, there exists n¥, , ., such that for
TET.

N(F; 6% n,e) > 2hulH)=n),

Now let us recall a basic relation between expansiveness and uniform separation
in [16].

Theorem 2.9. [16, Theorem 3.1] Let f be a continuous map of a compact metric
space M. If f is expansive (or asymptotically h-expansive), f satisfies uniform
separation.

2.4. Variational Principle for saturated sets. Now we recall a result from
[16]. The system f is said to be saturated (or f has saturation property), if for any
compact connected nonempty set K C Py,

hiop(f, Gxc) = nf{h,(f) | € K},
where Gx = {z € M|pwy(z) = K}.

Lemma 2.10. (Variational Principle, [16, Theorem 1.1])
Let f be a continuous map of a compact metric space M with g—almost product
property and uniform separation property. Then f is saturated.

Remark that Lemma 2.10 is one key tool for all the proofs of our main results
in present article. It allows the entropy estimates to be reduced to the problem of
describing the various gap sets in terms of pwy(z).

On the other hand, from [16] if one does not have uniform separation proper-
ty, then the saturated property just holds for any singleton K. For convenience
to compare saturated property, we give a following notion called single-saturated
property. We say f is single-saturated, if hiop(f, G) = hyu(f) holds for any p € Py,
where G, = {x € M|pws(x) = {u}}.
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Lemma 2.11. (Variational Principle, [16, Theorem 1.2])
Let f be a continuous map of a compact metric space M with g—almost product
property. Then f is single-saturated.

Remark that for any continuous map f of a compact metric space M, there is
a general fact (see Theorem 4.1 (3) in [16]): for any compact connected nonempty
set K C M(M, f),

(Bhtop(f, Gi) < inf{hy(f)|p € K}, where Gk ={z € M|pws(z) = K}.
In particular, for any p € M (M, f), we have

(6) hiop(fs Gu) < hu(f), where G, ={x € M|pws(z) = {u}t}.

Theorem 2.12. If f satisfies g-almost product property, then

htop(vaf) = Ssup h,u(f), htop(f7rf) = sup h,u(f)
neO; HEPs\Oy

Proof. By Lemma 2.11, every invariant measure p satisfies that heop(f, Gp) =
hyu(f). Since for any p € Of, G, C Ay, then

htop(fa Af) > sup htop(f; G,u) = sup hu(f)~
ne0y ne0y

Together with Theorem 2.2, one has htop(f, Af) = sup,eo, hu(f).
Similarly, one gets the other equality. O

2.5. Dominated Splitting & Pesin Entropy Formula.

Definition 2.13. (Dominated Splitting) Let f : M — M be a C' diffeomorphism
on a compact Riemannian manifold M. Let TM = E & F be a D f-invariant and
continuous splitting such that dim(E) - dim(F) #0. We call TM = E® F to be a
(o0—)dominated splitting if there exists o > 1 such that

IDf|E@ll

where m(A) = ||[A7Y|| 7Y for linear map A.

<o lVoe M,

Remark that the continuity of the splitting in the definition is not necessary
because it can be naturally deduced from the required inequality in the dominated
splitting(for example, see [2]). Remark that

Df* "D f| g
IDf LE(x)” <11 L L R V2
m(Df*p@) ~ g DI IFsi ()

This means if T)yM = E & F is a c—dominated splitting of f for some ¢ > 1, then
for any integer k > 1, TyyM = E @ F is a o—dominated splitting for system f*.

There is an equivalent statement of dominated splitting. TM = E @ F is a
dominated splitting if there exist C' > 0 and 0 < A < 1 such that

IDS" @l
Remark that Gourmelon ([10]) proved that there always exists an adapted metric

for which C' = 1.
Now let us recall a result from [8].

<C\N'/Wxe M, n>1.
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Theorem 2.14. [8, Theorem 1] Let f : M — M be a C diffeomorphism on a
compact Riemanian manifold M. If there is a dominated splitting Thy M = E@ F,
then for any SRB-like measure p, one has

dim(F)

7) Nz > o= [ 1og|det el d,

where x1(x) > xa(x) -+ > xdim(M)(x) denote the Lyapunov exponents of z € M.

Combining with Ruelle’s inequality, Theorem 2.14 have a direct corollary as
follows. Let PE¢ denote the set of all invariant measures satisfying Pesin’s entropy
Formula, that is,

PEf:={pePr: hu(f)= [ > xil)du},
Xi(z)>0

where x1(x) > x2(2) - - - > Xaim(ar)(z) denote the Lyapunov exponents of z € M.

Corollary 2.15. Let f : M — M be a C* diffeomorphism on a compact Riemanian
manifold M with a dominated splitting TnyM = E @ F. Let p € O¢. If for p a.e.
x?

1
liminf —log || D, f" || <0, hmsup logm(D flr) >
n—+oco N —+00

then u € PEy, that is,
dim(F)

(8) /Z xi(z)dp = /Z xi(x)dp = /log|deth\F\du.

xi(z)>0

Moreover, if f € C*T%, by classical Pesin theory ([13]) p € PEy implies (in fact,
is equivalent) that p has absolutely continuous conditional measures on unstable
manifolds.

In particular, we have a following consequence of Corollary 2.15, since by Theo-
rem 1.2 we know that O # 0.

Corollary 2.16. Let f : M — M be a C'T< diffeomorphism on a compact Riema-
nian manifold M with a dominated splitting ThyyM = E & F. If for any invariant
measure [t and | a.e. x,
1

liminf —log || Dy f"|e|| <0, limsup— logm(D flr) >

n—+oo 1 n—+o00
then there is at least one invariant measure which is SRB-like, satisfies Pesin’s
entropy formula and has absolutely continuous conditional measures on unstable
manifolds.

2.6. Basic description of PFEy.

Theorem 2.17. Let f : M — M be a C' diffeomorphism on a compact Riemanian
manifold M. Then PE; is a convex subset of Py, and PE; either is equal to Py
or it can not contain interior points.

Proof. It is easy to check that PE; is convex. Now we prove the other part.
Suppose PE; # P;. By contradiction, assume that there exists p € PE; and a
neighbourhood U C PEy of u. Take v € Py \ PE;. Then it is easy to check that

{Ou+(1—0)w: 0e[0,1)} C P;\ PE;.

However, if taking 6 close to 1, 6y + (1 — 6)v should be in & C PEy, which is a
contradiction. O
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Theorem 2.18. Let f: M — M be a C' diffeomorphism on a compact Riemanian
manifold M with a dominated splitting ThnyM = E®F. If for any invariant measure
wand p ae. x,

1 1
liminf —log || D, f" || <0, limsup —logm(D,f"|r) > 0;
n—+oo N n—4oco N

and the entropy function h.(f) : Py — [0,400), 0 — h,(f) is upper-continuous,
then PEy is non-empty, convex and compact.

Proof. By assumption and Corollary 2.15 PE is non-empty. By Theorem 2.17
PE; is convex. By assumption, for any invariant measure ;1 € Py,

dim(F)
| ¥ w@de= [ Y @ [1og]det sl dp
Xi(2)>0 i=1

Suppose p, € PEf and p, — p. Since dominated splitting is always continuous
[2], then

[ S xitwydn= [ 1og|det Dileldu= i [ tog|det Dflr|d,

Xi(x)>0

= Jim [ 37 xile)d, = Jim by, () < h(5).
Xi(x)>0
On the other hand, by Ruelle’s inequality,

m < [ 3 it

Xi(2)=0
Thus u € PEy. ]

Remark 2.19. (1) It is well-known that any Anosov diffeomorphism satisfies the
assumptions of Theorem 2.18 and every periodic measure does not satisfy Pesin’
entropy formula. Thus for Anosov case, PEy is always non-empty, convex, compact
and does not contain interior point.

(2) Let f be the time-t (¢ # 0) map of a Anosov flow of a compact Riemannian
manifold X. In this case, f is partially hyperbolic with one-dimension central
bundle and satisfies conditions restricted on the sum of stable and central bundle,
and unstable bundle. Then f is far from tangency so that f is entropy-expansive
which implies the upper-continuity of entropy function h.(f) (see [14] or see [12, 15]).
Note that every periodic measure of flow is still invariant for f and does not satisfy
Pesin’s entropy formula. Thus for time-t map f of a Anosov flow, PEy is always
non-empty, convex, compact and does not contain interior point.

3. PROOF OF THEOREMS 1.4 AND 1.5

Firstly let us prove a general proposition. Let f: M — M be a C' diffeomor-
phism on a compact Riemannian manifold M. Define I'; := {z : pw(z)NPE; = 0}.
Given a continuous function ¢ : X — R, let

R} ={zeX di LS
% = {z € X| ergodic averages - Z d(f*(x)) converge as n — +0o0}.
i=0
For convenience, we call R? to be regular set w.r.t. ¢ (simply, ¢-regular set). Define
the ¢-irregular set I? =X\ R?. If C°(X) denotes the space of all continuous
functions on X, note that
(9) =

$eCO(X)
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Proposition 3.1. Let f : M — M be a C' diffeomorphism on a compact Rie-
mannian manifold M. Suppose that f is saturated, PEy # 0 and Py \ PE; # 0.
Then

(A). For any ¢ € C°(X), if

(10) inf /gbdw < sup /d)dw,
wePy w€ePy

then F} N I? carries full topological entropy.
(B). The set I't N Iy has full topological entropy.

Proof of Proposition 3.1 (A). We divide the proof into two cases.

Case 1. sup,cpg, ho(f) < hiop(f).
Fix h satisfying sup,epp, fuw(f) < h < hiop(f). By Variational Principle [21], there
is p1 € Py such that hy, (f) > h > supyepp, ho(f). Thus p1 € Py \ PEy. Take
7 € (0,1) close to 1 enough such that 7h,, (f) > h. By assumption of (10) we can
take pg € Py such that [ ¢dpo # [ ¢dui. Let po = 71 + (1 — 7)po. Then

(1) [ odus # [ odu

and
s (F) = Thy, (F) + (L= 1)l (f) = Thy, (f) > .
It follows that us € Py \ PEjy.
Let
K={0u1+(1—-0)puz: 6€0,1]}.
Then each w € K satisfies that hy,(f) > min{h,, (f), hu,(f)} > h and thus w €
P;\ PE;. It follows that Gx C T N ij. In other words, for z € Gk, pwy(z) = K

so that using (11) we have z € I? by weak* topology and moreover, pws(z) = K C
Py \ PEy which implies z € I'}.
On the other hand, since f is saturated, then

htop(f, F; N I?) > htop(f7 GK) = Jg&hw(f) = min{h‘MI (f)v huz(f)} > h.

By arbitrariness of h, we complete the proof of Case 1.

Case 2. sup,ecpp, hw(f) = htop(f)-

By assumption we can take pg € PEy and ng € Py \ PE;..

Fix € > 0. Take 1 € PE; such that h,, (f) > hiop(f) — €. If there is some wy €
P; \ PEj such that [ ¢dwy # [ ¢duy, take vy = wy. Otherwise, [ ¢dny = [ ¢dus
and by assumption of (10) we can take pg € PEy such that [ ¢dpy # [ ¢dpq. Let
vy = %7704—%,00. Then for both cases of the chosen measure vy, we have vy € Py\PE;
and fqbdul 7é f¢dl/0.

Take t1 # t2 € (0,1) close 1 enough such that min{ti,ta}h,, (f) > heop(f) — €
Let p=tiu + (1 —t1)vo and v = topy + (1 — t2)rp. Then

(12) /¢>du £ /d)du

Let
K={0u+(1—-0)v: 6€][0,1]}.
Since 1 € PE(f) but vy € Py\ PEy, then for any 7 € [0,1), 71+ (1 —7)vp € Py )\
PEy. In particular, p,v € Py \ PEy. It follows that for any w € K, w € Py \ PEjy.
It follows that G C F*OIJ?. More precisely, for x € Gk, pws(x) = K so that using
(12) we have = € ij by weak* topology and moreover, pw¢(z) = K C Py \ PEy
which implies = € I'}.
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On the other hand, since f is saturated, then
htop(f7 F} N I?) Z htop(f7 GK) = Jgﬁ( hw(f) = mln{hu<f)7 hl/(f)} > htop(f) — €.
By arbitrariness of €, we complete the proof of Case 2.

(B). By assumption there are two different invariant measures p # v. By weak*
topology, there is a continuous function ¢ € C°(X) such that [¢du # [ ¢dv. In
other words,

inf | ¢dw < sup / odw.

wePy w€EPy

By (A) s N I? carries full topological entropy and thus I'; N Iy also has full
topological entropy, since I}j) C Iy by (9). O

Proof of Theorem 1.4 From assumption (H2), Py \ PEy # . By assumption
(H1) and Corollary 2.15 PE; contains Oy and thus is non-empty. Moreover, Of C
PEy implies that

(13) % C Ty

By assumption (H3) and Lemma 2.10, f is saturated. Thus, one can use (13) and
the case (B) of Proposition 3.1 to complete the proof. O

Proof of Theorem 1.5. We firstly verify the assumptions of Theorem 1.4.

(1) diffeomorphism case. Condition (H1) is obvious. It is well-known that tran-
sitive Anosov diffeomorphism has specification property which is stronger than
g-almost product property and it is expansive which implies uniform separation
(by Theorem 2.9) so that condition (H3) holds. For the condition (H2), one just
consider a periodic measure.

(2) flow case. As discussed in the second part of Remark 2.19, condition (H1)
and (H2) holds, and moreover the time-1 map f is entropy-expansive which implies
unform separation (by Theorem 2.9). From [19] we know f satisfies specification
(even though the shadowing point may be not periodic) which is stronger than
g-almost product property.

Then, we can complete the proof by using Theorem 1.4. O
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