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Abstract: We show that, among area contracting embeddings of the 2-disk, infinitely renormal-
izable maps with a bounded geometry either have positive topological entropy or correspond to a
cascade of period doubling.

I. Introduction

Let f be a C1 map from the unit m-dimensional disk Dm into itself and (an)n≥0 a sequence of
integers greater or equal to 2. We say that the map f is (an)n≥0-infinitely renormalizable if there
exists a sequence of nested m-dimensional disks Dm ⊃ D0(f) ⊃ D1(f) ⊃ . . . ⊃ Dn(f) . . . such that,
for each n:

f i(Dn(f)) ∩ Dn(f) = ∅, for 1 ≤ i ≤ a0.a1 . . . an − 1,
and

fa0.a1...an(Dn(f)) ⊂ Dn(f).
The sets f i(Dn), for 0 ≤ i ≤ a0.a1 . . . an − 1, are called the atoms of generation n of f .
Maps which satisfy this property but only for a finite sequence (an)m−1≥n≥0 are called (an)m−1≥n≥0-
renormalizable or m-times renormalizable when there is no ambiguity.
We say that an infinite renormalisable map is of bounded combinatorial type if the sequence (an)n≥0

is bounded. Notice that, in this case, the sequence (an)n≥0 has an accumulation point, i.e. there
is an integer that appears infinitely many times in the sequence.
This type of map occurs very naturally in one dimensional dynamics: actually for any sequence
(an)n≥0 there exists a value of the parameter a for which the quadratic map x 7→ 1 − ax2 is an
(an)n≥0-infinitely renormalizable map. Since any continuous map on the interval which possesses
a periodic orbit whose period is not a power of 2, has positive topological entropy [BF], it follows
easily that the only infinitely renormalizable maps with topological entropy zero are the ones for
which each element of the sequence (an)n≥0 is a power of 2. The aim of this paper is to prove
a similar result for area contracting maps of the 2-disk. But, before that, let us emphasize some
recent results about infinitely renormalizable maps on the interval.
To an (an)n≥0-infinitely renormalizable map f , we can associate another map, that we call the
renormalized map of f , denoted by R(f), and defined by:

R(f) = ξ−1(f) ◦ fa0 ◦ ξ(f),

where ξ(f) is an affine scaling which maps D1 onto D0(f).
The renormalized map R(f) is again a (bn)n≥0-infinitely renormalizable map with bn = an+1 for
all n, and its corresponding sequence of nested intervals is given by:

Dn(R(f)) = ξ−1(f)(Dn+1(f)) for all n ≥ 0.
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From the independent discovery and explanation by Coullet and Tresser ([CT], [TC]) and Feigen-
baum [Fe] in 1978, that infinitely renormalizable maps exhibit universal geometrical behaviors,
to the culminating work of Sullivan [Su] in 1992, a huge amount of works, both numerical and
theoretical, has been done in this field. It is not our intention to give here a panorama of the
actual knowledge. For this purpose, we refer the reader to [MS] and the references quoted therein.
We just want to focus on a key point of Sullivan’s theory, often refered to as ”real bounds”, that
we present here, for sake of simplicity, in a very weakened form:
Consider a smooth map, f , with a quadratic singularity: more precisely we consider the set U1+1

of the maps f : [0, 1]→ [0, 1] that can be written as

f = φ ◦ Q ◦ ψ,

where ψ : [0, 1]→ [ψ(0), 1] is an orientation preserving diffeomorphism such that ψ(0) is in (−1, 0),
Q : [ψ(0), 1] → [0, 1] is the quadratic map Q(x) = x2, φ : [0, 1] → [0, 1] is an orientation reversing
diffeomorphism, and the two maps φ and ψ are C1+1, that is to say, C1 and the derivatives satisfy
a Lipschitz condition. Sullivan proves the following “beau” theorem:
Theorem 1.1 [Su]: Let f ∈ U1+1 be an infinitely renormalizable map with combinatorial type
bounded by N . Then, for all n ≥ 0:
1- The renormalized maps Rn(f) belong to U1+1, their C1-norm and the Lipschitz constants are
bounded by a constant which depends only on f .
2- There exist two constants af and bf which depend only on f such that, if I is an atom of the
generation m and J ⊂ I is an atom of the generation m + 1 of Rn(f) then, 0 < af ≤ |J |/|I| ≤
bf < 1 (where |.| stands for the diameter).
All these bounds are “beau” (bounded and eventually universally (bounded)), that is to say, that
for n big enough, these bounds can be chosen so that they depend only on N .
In dimension 2, infinitely renormalizable maps are also frequently observed. For instance, they
appear naturally in the infinitely dissipative situation for a map (x, y) 7→ (g(x), 0), where g is
an infinitely renormalisable map on the interval, and also in the area preserving case of a map
exhibiting resonant islands.
To an (an)n≥0-infinitely renormalizable map f of the 2-disk, we can again associate a renormalized
map of f , defined by:

R(f) = ξ−1(f) ◦ fa0 ◦ ξ(f),

where ξ(f) is a C1 scaling which maps D2 onto D0(f).
The renormalized map R(f) is a (bn)n≥0-infinitely renormalizable map with bn = an+1 for all n,
and its corresponding sequence of nested disks is given by:

Dn(R(f)) = ξ−1(f)(Dn+1(f)) for all n ≥ 0.

Definition: By analogy with the one dimensional case, we say that a C1+1 infinitely renormalizable
map of the 2-disk, has a bounded geometry if it satisfies the following two conditions:
1- For all n ≥ 0, the renormalized maps Rn(f), the scaling maps ξ(Rn(f)), and their inverse
ξ(Rn(f))−1, are C1+1 and their C1norm and their Lipschitz constants are bounded by a constant
Kf which only depends on f .
2- There exist constants 0 < af < bf < 1 which depend only on f such that, for all n ≥ 0, if I
is an atom of the generation m and J ⊂ I is an atom of the generation m + 1 of Rn(f), then ,
af ≤ |J |/|I| ≤ bf ( where |.| stands for the diameter).
3- There exists a constant 0 < cf which depends only on f such that, for all n ≥ 0, the distance
from Rn(f)(D2) to the boundary of the disk D2 is bigger than cf .
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Remark: To have a bounded geometry is a very strong asumption. An infinitely renormalizable
map f ∈ U1+1 with bounded combinatorial type, satisfies this asumption, and recently it has
been proved that this is also the case for other one-dimensional maps with finitely many critical
points(see [Hu]). However there is no result of this type for two-dimensional maps.
Unlike in dimension 1, for any sequence (an)n≥0, we can find (an)n≥0-infinitely renormalizable C2

diffeomorphisms of the 2-disk with topological entropy zero; moreover if the sequence (an)n≥0 is
bounded, these maps can be constructed with a bounded geometry [GT2].
However, for an area contracting map of the 2-disk the situation seems to be much more rigid.
One one hand, the only known examples of area contracting infinitely renormalizable embeddings
with topological entropy zero are such that the sequence (an)n≥0 is a sequence of powers of 2
[GST]. Actually, these maps are the only known area contracting embeddings of the 2-disk with
topological entropy zero, that can be transformed by an arbitrary small C1-perturbation into maps
with positive topological entropy. On the other hand, there are some numerical evidences that show
that for the Hénon model, maps which belong to the C1-boundary of positive topological entropy,
are geometrically bounded infinitely renormalizable maps of the 2-disk such that the sequence
(an)n≥0 is eventually a sequence of powers of 2[GT1].
The central result of this paper may be seen as a step towards an explanation of these numerical
evidences and can be stated as follows:
Theorem 1.2: Let f be a (an)n≥0-infinitely renormalizable map of the 2-disk with a bounded
geometry, which contracts uniformly the area. Then:

- either, the topological entropy of f is positive,
- or, eventually the sequence (an)n≥0 is a sequence of powers of 2.

It would be nice to have some simple asumptions on the dynamics that imply that a map is
infinitely renormalizable. In dimension one, in the case of multimodal maps, we are helped by
the kneading theory. However, kneading invariants give us necessary but not sufficient conditions
for the existence infinitely renormalizable maps. The only positive result in this direction is the
following theorem due to Hu and Tresser:
Theorem 1.3 [HT]: Let f be a real polynomial map on the interval such that the set of period of
f is the set of all powers of 2;
Then, f is (an)n≥0-infinitely renormalizable.
Notice that this theorem is also true if, instead of assuming that the map is a real polynomial
map, we make the weaker assumption that it is a multimodal map with no wandering intervals,
no plateaux and no more than finitely many periodic attractors (see [HT]).
It seems reasonable to make a similar conjecture for maps in dimension 2:
Conjecture: Let f be a real polynomial map on the the 2-disk, which contracts uniformely the
area and such that the set of periods of f is the set of all powers of 2;
Then, f is (an)n≥0-infinitely renormalizable.

II. Proof of the Theorem

The techniques we use in this paper were first introduced in [Ca].
Let us start with some notations. For any positive K, we denote by U(K) the set of C1+1 maps from
the disk D2 into itself, whose derivatives are Lipschitz, with Lipschitz constant smaller than K.
Thanks to the Arzela-Ascoli theorem, any sequence of maps in U(K) has a converging subsequence
in the C1 topology. All along the proof, we shall frequently make use of this property.
Consider now an (an)n≥0-infinitely renormalizable map f of the 2-disk with a bounded geometry.
Since the sequence (Rn(f))n≥0 remains in U(Kf ), it possesses an accumulation point in U(Kf ).
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Lemma 3.1: Let p0 be an accumulation point of the sequence (an)n≥0. Then, there is a map g0
in U(Kf ) which is an accumulation point of the sequence (Rn(f))n≥0 and which satisfies:
(i) g0 is 1-time renormalizable, more precisely there exists a differentiable disk D0(g0) ⊂ D2 such
that D0(g0), g0(D0(g0)), . . . gp0−1

0 (D0(g0)) are disjoint and gp00 (D0(g0)) ⊂ D0(g0).
(ii) Every atom J of the first generation of g0 satisfies |J | ≤ 2bf (where bf is the bound given in
the above definition).
Proof: Let p0 be an accumulation point of the sequence (an)n≥0. Then, there exists a subsequence
(aφ(n))n≥0 which is constant and equal to p0. From the sequences Rφ(n)(f) and ξ(Rφ(n)(f)), we
can extract subsequences Rψ(n)(f) and ξ(Rψ(n)(f)) which respectively converge to maps g0 and
ξ0 in U(Kf ).
For each n ≥ 0, we have:

D0(Rψ(n)(f)) = ξ(Rψ(n)(f))(D2).

Since the maps Rψ(n)(f) are 1-time renormalizable, we get:

(Rψ(n)(f))i(D0(Rψ(n)(f))) ∩ D0(Rψ(n)(f)) = ∅ for 1 ≤ i ≤ p0 − 1,

and
(Rψ(n)(f))p0(D0(Rψ(n)(f))) ⊂ D0(Rψ(n)(f)).

By setting
D0(g0) = ξ0(D2),

we get by continuity:
(gi0(D0(g0)) ∩ D0(g0) = ∅ for 1 ≤ i ≤ p0 − 1,

and
gp00 (D0(g0)) ⊂ D0(g0).

The fact that D0(g0) is a differentiable disk comes from the uniform estimates on the norm of the
derivative of the inverse scaling functions.
Since f has bounded geometry, we know that, for each n ≥ 0 and for each atom J of the first
generation of Rn(f), we have:

|J | ≤ 2bf .

By continuity we get the same estimate for g0.
(q.e.d.)

Lemma 3.1 is actually the first step of an inductive process:
Lemma 3.2: Let p0 be an accumulation point of the sequence (an)n≥0. Then, there exists a
sequence of maps (gl)l≥0 in U(Kf ) which are accumulation points of the sequence (Rn(f))n≥0 and
which satisfy, for each l ≥ 0:
(i) gl is l+1 times renormalizable. More precisely, there exists a sequence (al,n)l≥n≥0 with al,l = p0,
such that gl is (al,n)l≥n≥0-renormalizable.
(ii) R(gl) = gl−1.
(iii) Every atom J of the nth generation of gl, 0 ≤ n ≤ l + 1, satisfies |J | ≤ 2bnf .
Proof: Let p0 be an accumulation point of the sequence (an)n≥0. There exists a subsequence
(aφ(n))n≥0 which is constant and equal to p0. The subsequence (aφ(n)−1)n≥0 has also an accumu-
lation point, say p1. By iterating this process l times, we can find a subsequence (aφl(n))n≥0 which
is such that:

- aφl(n) is constant and equal to pl,
- aφl(n)+1 is constant and equal to pl−1,
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- . . .
- aφl(n)+l is constant and equal to p0.

By a diagonal process, we can extract from the sequencesRφl(n)(f) and ξ(Rφl(n)(f)), subsequences
Rψl(n)(f) and ξ(Rψl(n)(f)) which respectively converge to maps gl and ξl in U(Kf ) and gl is such
that R(gl) = gl−1. From this point, we can use the same techniques as in the proof of Lemma 3.1,
to terminate the proof of Lemma 3.2.

(q.e.d.)
Lemma 3.3: For each l ≥ 0, there exist an atom Jl, of the lth generation of gl and a point xl in
Jl such that ‖dgl(xl)‖ ≥ 1.
Proof 3.3: We know that

gp1...pll (Dl(gl)) ⊂ Dl(gl),

where
Dl(gl) = ξl−1 . . . ξ0(D2),

and that gp1...pll possesses in Dl(gl) a periodic orbit with period p0.
It follows that there exists a point yl in Dl(gl) such that

‖dgp1...pll (yl)‖ ≥ 1.

Consequently, in one of the p1 . . . pl − 1 first images of Dl(gl), that is to say, in an atom Jl, of the
lth generation of gl there is a point xl, image of yl by some iterate of f , such that ‖dgl(xl)‖ ≥ 1.

(q.e.d.)
Let us now assume that the map f contracts uniformly the area, i.e. there exists b such that
|det(df(x))| ≤ b < 1 for all x in D2. Then we have the following result:
Lemma 3.4: Any accumulation point g0 of the sequence (Rn(f))n≥0 is a singular map, i.e.
det(dg0(x)) = 0 for all x ∈ D2.
Proof: We have

Rn(f) = ξ−1(Rn−1(f)) ◦ . . . ◦ ξ−1(f) ◦ fa0...an−1 ◦ ξ(f) ◦ . . . ◦ ξ(Rn−1(f)).

Since for any linear map A in dimension two, we have |detA| ≤ ‖A‖2, it follows that:

|detdRn(f)(x)| ≤ K4n
f ba0...an−1 ,

and this quantity goes to 0 when n goes to ∞. Thus, by continuity, any accumulation point of the
sequence (Rn(f))n≥0 is a singular map.

(q.e.d.)
Consider now the sequence (gl, xl) defined in Lemmas 3.2 and 3.3. We can extract from it, a
subsequence (gθ(l), xθ(l)) which converges to some (g, x) where g is a map in U(Kf ) which is an
accumulation point of the sequence (Rn(f))n≥0, and x is an accumulation of the sequence (xl)l≥0.
By continuity, we get ‖dg(x)‖ ≥ 1. It follows that there exist a connected neighbourhood V of x
and an integer l0 such that, for all y ∈ V, and for all l ≥ l0 :

(i) ‖dgθ(l)(y)‖ ≥ 1/2,
and

(ii) V contains Jθ(l) (the atom of the θ(l)th generation of gθ(l) containing yθ(l)).
Thanks to Lemma 3.4, we know that the maps gl and g are singular:

det(dgl(y)) = det(dg(y)) = 0,∀y ∈ D2.
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Therefore, for all l ≥ l0, and for all y ∈ V, the dimension of the kernel of Dgθ(l) is 1. Thus,
kerDgθ(l) defines a Lipschitz field of directions on V, and consequently a Lipschitz foliation. The
image of each leaf is a point because the derivative of gθ(l) along the leaves is zero. Consider now
a trivialisation of this foliation in V. That is to say a map τ : V → R2 which is a Lipschitz
homeomorphism onto its image and that maps each leaf of the foliation in V into a horizontal line.
Recall now that gθ(l) maps its atom of the θ(l)th generation, Jθ(l), into itself after qθ(l) = p1. . . . pθ(l)
iterations:

g
qθ(l)
θ(l) (Jθ(l)) ⊂ Jθ(l),

and that gqθ(l)θ(l) possesses in Jθ(l), and thus in V, a periodic orbit with period p0.

Using the conjugacy by the trivialisation τ , the map fθ(l) = τ ◦ gqθ(l)θ(l) ◦ τ
−1 : τ(V)→ R2 reads:

fθ(l)(x1, x2) = (f1,θ(l)(x2), f2,θ(l)(x2)),

where (x1, x2) are the canonical coordinates in R2 and f1 and f2 are two continuous maps from
some interval to the reals.
Since the map gqθ(l)θ(l) has a periodic orbit with period p0 in V, we get that the map f2,θ(l) possesses
also a periodic orbit with period p0.
We are now in a good position to prove our theorem. Assume that we started with a (an)n≥0-
infinitely renormalizable map f of the 2-disk with a bounded geometry. Assume also that f
contracts uniformly the area. If the sequence (an)n≥0 is not eventually a sequence of powers of 2,
it has an accumulation point p0 which is not a power of 2. The construction we made above yields
an interval map f2,θ(l) which has a periodic orbit whose period p0 is not a power of 2, and thus has
positive topological entropy. This means [Mi] that there exist an interval I where f2,θ(l) is defined,
two disjoint subintervals I0 ⊂ I and I1 ⊂ I, and an integer n such that:

- fn2,θ(l)(I0) ⊃ I,
and

- fn2,θ(l)(I1) ⊃ I.
It follows that the map fnθ(l) maps the two horizontal strips D0 = (R × I0) ∩ τ(V) and D1 =
(R× I1)∩ τ(V) on two lines whose projections on the vertical axis (parallely to the horizontal one)
cover the interval I.
Consider now a continuous map g : τ(V)→ τ(V). If g is C0 close enough to the map fθ(l), it will
map the two strips D0 and D1 on two strips whose projections on the vertical axis (parallely to
the horizontal one) cover the interval I and such that gn(R× ∂I0)∩ τ(V) and gn(R× ∂I1)∩ τ(V)
do not intersect R× I, where ∂I stands for the boundary of I.
It follows that gn has an invariant set in τ(V) such that gn, restricted to this invariant set, is semi-
conjugate to the shift on two symbols. Thus gn, and consequently g, have positive topological
entropy. Since the map gθ(l) is an accumulation point of the sequence (Rn(f))n≥0, we get that
some iterates of maps in this sequence accumulate (in the C1-topology) on the map g

qθ(l)
θ(l) . Thus,

their images by the conjugacy by τ accumulate, in the C0-topology, on fθ(l). Consequently the
renormalized maps (Rn(f))n≥0 and then f have positive topological entropy. This achieves the
proof of our theorem.
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