
HOMOCLINIC TANGENCIES NEAR CASCADES OF PERIOD

DOUBLING BIFURCATIONS

Eleonora Catsigeras ∗ and Heber Enrich †‡

Published in Annales de lInstitute Henri Poincaré. Analyse non linéaire Vol. 15 Num. 3, pp 255-299,
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ABSTRACT.- We consider perturbations of the Feigenbaum map in n dimensions. In the
analytic topology we prove that the maps that are accumulated by period doubling bifurcations are
approximable with homoclinic tangencies. We also develop a n-dimensional Feigenbaum theory in
the Cr topology, for r large enough. We apply this theory to extend the result of approximation
with homoclinic tangencies for Crmaps.

RÉSUMÉ.- On considère des perturbations de la transformation de Feigenbaum en dimen-
sion n. Dans la topologie analytique on prouve que les transformations qui sont accumulées par
des bifurcations de duplication de période sont approchées par des tangences homocliniques. On
développe aussi une théorie de Feigenbaum n-dimensionelle dans la topologie Cr, avec r suffisan-
tement grand. Cette théorie est appliquée pour étendre le résultat d’approximation par tangences
homocliniques pour les transformations Cr.

Introduction

The one-parameter unfolding of a homoclinic tangency, for locally dissipative maps of class Cr

(r ≥ 3), in dimension two, originates important dynamical phenomena [13] [15] [19] [16]. For
instance: horseshoes and hyperbolic sets, cascades of period doubling bifurcations [21], maps with
infinitely many sinks [12], Hénon-like attractors [11] [1]. Some of the results are also valid in higher
dimensions [17] [20] [18] [10]. In other words, the families unfolding a homoclinic tangency have
many of the known global bifurcations. They are notable examples of global unstable systems. It is
not known if the homoclinic bifurcations are in general necessary for global unstability. Precisely,
J. Palis has formulated the following:

Conjecture [16] The subset H of diffeomorphisms that are either hyperbolic (i.e. with hy-
perbolic limit set and no cycles) or homoclinic bifurcating is dense in the space of C∞ surface
diffeomorphisms.
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When formulating the question, J. Palis has also presented the following program: try to
approximate with homoclinic bifurcations some particular global unstabilities, as for example:

1. diffeomorphisms having an attractor (as discovered by Feigenbaum and independently by
Coullet and Tresser [6] [3]), at the accumulation of period doubling bifurcations.

2. diffeomorphisms having a Hénon-like attractor.

3. diffeomorphisms exhibiting infinitely many coexisting sinks.

To address the first case of the program above, we will consider a renormalization T of n-
dimensional perturbations of the Feigenbaum map Φ.

The spectral properties of dT (Φ) in n dimensions were studied by Collet, Eckmann and Koch
[2] in the analytic topology. They proved that Φ is a hyperbolic fixed point of the renormalization
T with a single unstable direction and that the maps in the stable manifold are accumulated by
period doubling bifurcations.

For one-dimensional analytic maps in a neighborhood of the Feigenbaum map, the accumu-
lation of the period doubling bifurcations are approximated by band-merging maps. This result
was proved by Eckmann and Wittwer [5].

Applying these results we can provide a partial answer to the part 1 of the program above:
n-dimensional analytic maps in the stable manifold of Φ are the accumulation of period doubling
bifurcations and can be approximated with homoclinic tangencies.

A. M. Davie ([4]) has developed an one-dimensional Feigenbaum theory in the C2+θ topology.
He proves that, although the renormalization is not Fréchet differentiable in that space, the
Feigenbaum map is a topologically hyperbolic fixed point. He shows the existence of a C1 stable
submanifold of codimension one in the space C2+θ.

Following the ideas of A. M. Davie we develop a n-dimensional Feigenbaum theory in the Cr

topology, for r large enough. Some of the arguments of [4] have to be modified to work in a
n-dimensional setting. That is why we present a detailed exposition of the theory that occupies
entirely the sections 2 and 3. We conclude that there is a topologically hyperbolic behaviour of
the renormalization near Φ in the space of n-dimensional Cr maps, and the existence of the stable
submanifold.

Applying these results we can improve the first answer to the question of approximation with
homoclinic tangencies: also n-dimensional Cr maps in the stable manifold of Φ are cascades of
period doubling bifurcations which are approximable with homoclinic tangencies.

The main theorems

We will denote HD the space of bounded real analytic maps, defined in a neighborhood D of
[−1, 1]× {0} in Cn to Cn. The map Φ, as will be defined in 1.2, is a particular endomorphism
of HD, transforming D into an one-dimensional image, and will be called the Feigenbaum map in
n dimensions.

Theorem 1 In the space HD there exists a codimension one manifold W, containing the Feigen-
baum map Φ, such that any differentiable curve {Gµ} in HD that intersects transversally W at
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G0 verifies:
a) It has a sequence of period doubling bifurcations for parameter values µm → 0 monotonely.
b) There exists µm → 0 (monotonely, at the other side of 0 than µm), such that Gµm exhibits a
homoclinic tangency.

The part a) of the theorem above appears in [2].
We denote Cr the set of Cr maps defined in a neighborhood D of [−1, 1]× {0} ⊂ Rn to Rn.

Theorem 2 For r large enough there exists in the space Cr a codimension one manifold W,
containing the Feigenbaum map Φ, such that any differentiable curve {Gµ} in Cr that intersects
transversally W at G0 verifies:
a) It has a sequence of period doubling bifurcations for parameter values µm → 0 monotonely.
b) There exists µm → 0 (monotonely, at the other side of 0 than µm), such that Gµm exhibits a
homoclinic tangency.

In the section 1 we prove the first theorem, and in the sections 2 and 3 the second one. The first
theorem has been proved by the first author alone. The second theorem has been proved jointly.

We thank J. Palis for posing the problem, as well as for motivating conversations and constant
support, and K. Khanin for very useful discussions and suggestions. We also thank W. de Melo,
O. Lanford, and A. M. Davie. Finally, we thank to IMPA, Rio de Janeiro, for its hospitality.

1 The analytic perturbations of the Feigenbaum map

In this section we develop the theory in the analytic case, using the fact that the renormalization
is differentiable with derivative that is a compact operator whose spectrum is computable. In
the subsection 1.1 we analyse the spectrum of the renormalization and prove the part a) of the
theorem 1. In the subsection 1.2 we find the homoclinic tangencies and prove the part b).

1.1 Spectral analysis of the renormalization

Let us state some results in dimension one that give an understanding of the cascades of period
doubling bifurcations.

Let D̃ be a neighborhood of [−1, 1] in C, and HD̃ the space of real analytic maps defined and
bounded in D̃. It is a Banach space with the supremum norm. In HD̃ let M̂ be the manifold

M̂ = {ψ ∈ HD̃ : ψ(z) = g(z2) for some g real analytic, g′ 6= 0, g(0) = 1}

The renormalization transformation F̂ is defined as:

(F̂ψ)(x) = ψ(1)−1ψ ◦ ψ(ψ(1)x)

applied to the maps ψ ∈ M̂ such that −1 < ψ(1) < 0 and ψ(ψ(1)D̃) ⊂ D̃.
The following theorem provides some properties of F̂ :

Theorem 1.1 If the neighborhood D̃ is small enough, then:
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a) There exists ϕ ∈ M̂ fixed by F̂ . The Schwarzian derivative Sϕ is negative. Moreover ϕ2(0) =
ϕ(1) = λ = −.3995 . . . and ϕ′(1) = λ−1

b) F̂ is a C∞ transformation, and dF̂(ϕ) is a compact operator having a single eigenvalue δ =
4.6692 . . . of modulus greater or equal than 1, which is simple.

c) The unstable manifold Ŵu(ϕ) ⊂ M̂ intersects transversally the codimension one manifold Σ̂1

of period doubling bifurcations, defined as follows:

Σ̂1 = {ψ ∈ M̂ : ψ′(x0) = −1 for x0 fixed by ψ}

Proof: See O. Lanford III’s article [9]. This theorem was conjectured in [6], [3] and [7].
The Feigenbaum map in dimension one is the map ϕ of the theorem above.
Following Collet, Eckmann and Koch [2], let us take a neighborhood D in Cn of the interval

[−1, 1]× {0}. Our functional space HD will be the Banach real space formed by the real analytic
maps defined and bounded in D with the supremum norm.

Usually we will consider only the restrictions to Rn of the maps in HD. For simplicity we will
not use a different notation to refer to the restriction.

Let us fix α ∈ Rn−1, α 6= 0, and define θ : Cn 7→ C, and θ0 : C 7→ C, as follows:

θ(z0, Z) = z2
0 − α · Z

θ0(z) = z2

Definition 1.2 The Feigenbaum map in n dimensions is the map:

Φ = (f ◦ θ,0) : D ⊂ Cn 7→ Cn

where f ◦ θ0 = ϕ is the Feigenbaum map in dimension one.

For fixed α, there exists D small enough such that θ(D) is contained in the domain of f , and
therefore Φ is well defined.

Being λ = ϕ(1) = −.3995 . . ., let us define Λ : Cn 7→ Cn, the linear rescaling Λ(z0, Z) =
(λz0, λ

2Z), and a (first) renormalization transformation :

NG = Λ−1 ◦G ◦G ◦ Λ

for all G ∈ HD in a neighborhood of Φ.
The renormalization transformation N will be modified later (substituting the linear rescaling

Λ with a nonlinear change of coordinates), to get a new renormalization transformation T that will
have some desired properties. Observe that the Feigenbaum map Φ is fixed by N and dN (Φ)u =
Λ−1 ◦ (u ◦ Φ +DΦ ◦ Φ · u) ◦ Λ.
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Remark 1.3 For any given real analytic map σ: Cn 7→ Cn we will denote

Ψσ = −σ ◦ Φ +DΦ · σ

It is a map in HD tangent at Φ to the curve of maps:

{(I + tσ)−1 ◦ Φ ◦ (I + tσ)}, t ∈ (−ε, ε) ⊂ R

of analytic conjugates of Φ near Φ.

Theorem 1.4 (Collet, Eckmann and Koch) [2]

a) N is infinitely differentiable and dN (Φ) is a compact operator whose eigenvalues of modulus
greater or equal than 1 are 1, λ−1, λ−2, δ.

b) Their respective spectral invariant subspaces S̄0, S̄1, S̄2, and Ū , are eigenspaces.

Moreover, the subspace Ū is one-dimensional in HD. The subspaces S̄0, S̄1 and S̄2 are finite
dimensional described as:

S̄0 = {Ψσ : σ(z0, Z) = (a1z0, B2z
2
0 +A · Z)}

S̄1 = {Ψσ : σ(z0, Z) = (a0, B1z0)}
S̄2 = {Ψσ : σ(z0, Z) = (0, B0)}

with a0 and a1 in R; B0, B1 and B2 in Rn−1; and A ∈ L(Rn−1,Rn−1).

Proof: See [2].
For later purposes we need to modify the renormalization N . Let us define the transformation

F , applied to the maps G ∈ HD in a neighborhood of Φ:

F(G) = Λ−1
G ◦G ◦G ◦ ΛG

where ΛG(z0, Z) = (λGz0, λ
2
GZ) for

λG =
π1 ◦G2(0,0)
π1 ◦G(0,0)

where π1 is the first coordinate projection.
Note that λΦ = λ and F(Φ) = N (Φ) = Φ. After some computations we find that for all

u = (u0, U) ∈ HD:
dF(Φ)u = dN (Φ)u+ γ(u)Ψσ1 , (1)

where:

γ(u) =
1
λ
dλG|G=Φ =

u0(1,0)
λ

+ u0(0,0)
(

1
λ2
− 1
)
− α · U(0,0)

2λ2

and σ1(z0, Z) = (z0, 2Z). We have:

Ψσ1 (z0, Z) =
(
−f(z2

0 − α · Z) + 2f ′(z2
0 − α · Z)(z2

0 − α · Z), 0
)

So γ(Ψσ1) = 0. Observe that Ψσ1 ∈ S̄0, thus it is fixed by dN (Φ) and dF(Φ). A consequence of
(1) and of theorem 1.4, is the following:
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Proposition 1.5 .

a) Φ is a fixed point of F , and dF(Φ) has the same spectrum that dN (Φ).

b) The spectral invariant subspaces S0, S1, S2 and U corresponding respectively to the eigenvalues
1, λ−1, λ−2 and δ have the same dimension that S̄0, S̄1, S̄2 and Ū of the theorem 1.4.
Moreover S0 ⊕ S1 ⊕ S2 = S̄0 ⊕ S̄1 ⊕ S̄2 = S̄.

c) For any u ∈ HD there exists σ[u], the unique analytic map in Cn such that Ψσ[u] = Eu, where
E is the spectral projection on S̄. The transformation u 7→ σ[u] is linear and bounded.

Proof: Let us denote F = dF(Φ), N = dN (Φ). They are compact operators. Denote
Σ(F ), Σ(N) their spectra. We know that FΨσ1 = NΨσ1 = Ψσ1 . Let µ 6= 0. We assert that
µ ∈ Σ(F ) with multiplicity m, if and only if µ ∈ Σ(N) with the same multiplicity. In fact, take
µ ∈ Σ(F ), with spectral subspace ker(F − µ)ν of dimension m. Define V = ker(F − µ)ν + [Ψσ1 ].
It is invariant by F . The Jordan matrix J of F restricted to V has µ in the diagonal repeated
m times (and a single 1 if µ 6= 1). In the same basis, the linear operator N restricted to V
has a triangular matrix with the same diagonal than J , (due to (1)). Then µ ∈ Σ(N) and has
multiplicity at least m. Changing the roles of N and F , our assertion is proved, and also for
µ = 1, λ−1, λ−2 or δ :

ker(F − µ)ν + [Ψσ1 ] = ker(N − µ)ν + [Ψσ1 ]

Now, part b) follows easily. Finally, Eu = Ψσ for some σ in the set

Σ =
{
σ : Cn 7→ Cn analytic; σ(z0, Z) = (a0 + a1z0, B0 +B1z0 +B2z

2
0 +A · Z)

}
due to theorem 1.4.

Let Q : Σ 7→ S̄ be the linear transformation between finite-dimensional spaces defined by
Q(σ) = Ψσ as in 1.3. It is easy to check that Q is injective. Therefore u 7→ σ[u] = Q−1Eu is
linear and bounded.

We are ready to define our final renormalization transformation in n dimensions:

Definition 1.6 The renormalization transformation T is:

T (G) = (I − σ[F(G)− Φ])−1 ◦ F(G) ◦ (I − σ[F(G)− Φ])

applied to G ∈ HD in a neighborhood of Φ.

The renormalization T was chosen so that it verifies the following properties:

Corollary 1.7 .

a) The map Φ is a fixed point of T .

b) T is infinitely differentiable and dT (Φ) is a compact operator, having a single simple eigenvalue
δ = 4.6692 . . . of modulus greater or equal than 1.
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c) The unstable manifold Wu(Φ) = {Φt} is formed by the maps Φt ∈ HD of the form:

Φt(z0, Z) = (ft(z2
0 − α · Z),0)

where ft(z2) = ϕt(z) are the one-dimensional maps of the unstable manifold {ϕt} = Ŵu(ϕ)
of the renormalization F̂ in dimension one (cf. theorem 1.1).

Proof: Part a) can be easily verified.
Part b) follows from the proposition 1.5: in fact, taking derivatives in the equality of the

definition 1.6, and denoting F = dF(Φ), we get:

dT (Φ)u = Fu+ σ[Fu] ◦ Φ−DΦ · σ[Fu] = Fu−Ψσ[Fu] = (I − E)Fu

Now, all vectors of S̄ are in the kernel of dT (Φ). Thus, the only unstable direction that remains
has eigenvalue δ, as wanted.

We now show part c). Let M̂ , defined at the beginning of this subsection, be the manifold of
one-dimensional maps ψ. We will consider in HD the submanifold

M =
{

Ψ ∈ HD : Ψ = (g ◦ θ,0) where g ◦ θ0 ∈ M̂
}

(Recall that θ(z0, Z) = z2
0 − α · Z and θ0(z) = z2). Note that Φ ∈ M and that for all Ψ =

(g ◦ θ,0) ∈M in a neighborhood of Φ, FΨ is in M and it is obtained computing F̂(g ◦ θ0).
The theorem 1.1 implies that F restricted to a neighborhood of Φ in M has derivative at

Φ whose spectrum exhibits a single eigenvalue δ of modulus greater or equal than 1. Thus
TΦM ⊂ ker(E), and σ[u] = 0 for all u ∈ TΦM . As M −Φ ⊂ TΦM by the definition 1.6 TΨ = FΨ
for all Ψ in a neighborhood of Φ in M . As FΨ is obtained computing F̂ , the theorem 1.1 implies
c).

Due to the theorem 1.1 we can take a parametrization {ϕt} of Ŵu(ϕ) such that ϕ0 = ϕ,
F̂(ϕt) = ϕδt and ϕ−1 is the transversal intersection of Σ̂1 with {ϕt}.

By the part c) of the corollary 1.7 we have the correspondent parametrization {Φt} of Wu(Φ).
The map Φ−1 has a fixed point (x−1,0) with x−1 fixed by ϕ−1, and

DΦ−1(x−1,0) =
(
ϕ′−1(x−1) −α · f ′−1(x2

−1)
0 0

)
has eigenvalues −1 (simple) and 0 (with multiplicity n−1). So, there exists a neighborhood N0 of
Φ−1 in HD such that all G ∈ N0 has a fixed point pG, continuation of (x−1,0), and DG(p(G)) has
a eigenvalue ρ(G) near −1 and n−1 eigenvalues near 0. In particular, for Φt ∈ N0, p(Φt) = (xt, 0)
and ρ(Φt) = ϕ′t(xt).

Let us define
Σ1 = {G ∈ N0 : ρ(G) = −1}

It is a submanifold of codimension one in HD. Any differentiable curve of analytic maps intersec-
ting transversally Σ1 exhibits a period doubling bifurcation of period 1 to period 2.

By the part c) of the theorem 1.1: d
dtϕ
′
t(xt)

∣∣
t=−1

6= 0. So d
dtρ(Φt)

∣∣
t=−1

6= 0 and {Φt} intersects
transversally Σ1 at t = −1.
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Remark 1.8 As Tm(Φ−δ−m) = Φ−1, arguing as above the submanifolds Σm of codimension one
in HD, where the period doubling bifurcations of period 2m to period 2m+1 occur, are transversal
to {Φt} in Φ−δ−m .

We are ready to prove the first part of the theorem 1.
Proof of part a) of theorem 1: Let W = Ws(Φ). Given a differentiable curve {Gµ}

transversal at µ = 0 to W its images by the renormalization Tm accumulate at Wu(Φ) when
m → ∞, due to the inclination lemma ([14]). So, for m sufficiently large there exists µm such
that {TmGµ} intersects transversally Σ1 at µ = µm. Therefore {Gµ} exhibits a period doubling
bifurcation of period 2m to 2m+1. The argument above works for any subarc of {Gµ} as near as
wanted from G0. Thus µm → 0.

1.2 Homoclinic bifurcating maps

Let {Gµ}, µ ∈ [a, b] be a continuous arc of maps in HD. Let us suppose that for all µ ∈ [a, b] there
exists a hyperbolic periodic point pµ, depending continously on µ, of stable codimension one.

Let us denote Auµ and Asµ compact parts of W u(pµ) and W s(pµ) respectively, depending
continously on µ, as C1 submanifolds with boundary of Rn. The point pµ does not necessarily
belong to Auµ or Asµ.

Definition 1.9 The arc {Gµ}, µ ∈ [a, b] inHD exhibits a homoclinic bifurcation with unavoidable
tangency if there exist pµ, Auµ, A

s
µ as above, such that:

i. ∂Auµ ∩Asµ = ∂Asµ ∩Auµ = ∅, for all µ ∈ [a, b]

ii. Aua ∩Asa = ∅

iii. Aub ∩Asb contains at least one point of transversal intersection.

The name unavoidable tangency of the definition above is due to the following:

Proposition 1.10 If {Gµ}, µ ∈ [a, b], is an arc as in the definition 1.9, then there exists µ0 ∈
[a, b] such that Gµ0 has a periodic point with a homoclinic tangency.

Proof: As the interval [a, b] is connected, there exists µ0 ∈ (a, b) such that Asµ and Auµ have a
non transversal intersection. It must be a tangency because the dimension of Auµ is one.

We will take the definition of band-merging maps from [5], and relate it with the homoclinic
bifurcations.

Let M̂ be a manifold of one-dimensional maps defined at the beginning of the subsection 1.1.

Definition 1.11 A map ψ ∈ M̂ is band-merging if: 0 < ψ ◦ ψ(1) = −ψ(1) < 1

As ψ(x) = g(x2), we have the following equivalent definition: 0 < g((g(1))2) = −g(1) < 1. As
g(0) = 1 and g(1) < 0, g′ < 0 and so xψ(x) < 0 for all x 6= 0.

Proposition 1.12 If ψ is band-merging and the Schwarzian derivative Sψ is negative then:
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a) −ψ(1) is a hyperbolic repellor, whose repelling basin includes [ψ(1),−ψ(1)],

b) any ψ̃ ∈ M̂ , near enough ψ, has a repelling fixed point whose basin includes [ψ̃(1),−ψ̃(1)].

Proof: Let us see part a) :
The map ψ ◦ ψ is increasing in (0, x−1), where x−1 > 0 and ψ(x−1) = 0. Its graph, at x = 0

is below the diagonal, at x−1 is above the diagonal, and at x0 = −ψ(1) ∈ (0, x−1) intersects the
diagonal. By contradiction, suppose that (ψ ◦ ψ)′(x0) ≤ 1. Then, there exists x1 where (ψ ◦ ψ)′′

vanishes and (ψ ◦ ψ)′′′ is non negative. This implies that S(ψ ◦ ψ)(x1) ≥ 0, contradicting our
hypothesis, because Sψ < 0 implies S(ψ ◦ ψ) < 0. The same contradiction is obtained if ψ ◦ ψ
is supposed to have other fixed point x0 ∈ [0, x0). Therefore x0 is a repellor and [0, x0] is in its
basin. By symmetry, also [−x0, 0] is.

To show part b) , consider any ψ̃ near enough ψ, so that it also has a hyperbollic repellor, and
Sψ̃ < 0. The proof also works for ψ̃ instead of ψ.

Due to the above proposition, the band merging maps with negative Schwartzian derivative
satisfy the condition that the critical point lands after three iterations on the unstable periodic
point.

We recall that the family {ϕt} is the unstable manifold in M̂ of the hyperbolic fixed point ϕ
of the renormalization F̂ . It is parametrized such that ϕ0 = ϕ, F̂(ϕt) = ϕδt and ϕ−1 ∈ Σ̂1.

Theorem 1.13 (Eckmann and Wittwer) There exists t0 > 0 such that ϕt0 ∈ Ŵu(ϕ) is band-
merging, and for all t near t0:

∂

∂t
(ϕt(ϕt(1)) + ϕt(1)) < 0

Proof: See [5].
This last theorem asserts that Ŵu(ϕ) at ϕt0 intersects transversally in M̂ the codimension one

(in M̂) manifold of band-merging maps.
Now let us consider the family of maps {Φt} in HD, that is Wu(Φ), the unstable manifold of

Φ by the renormalization T . Due to part c) of the corollary 1.7 it is obtained from {ϕt}.
The following lemma is a consequence of the theorem 1.13.

Lemma 1.14 Given ε > 0, for all γ > 0 sufficiently small the arc {Φt}, t ∈ [t0 − γ, t0 + γ]
exhibits a homoclinic bifurcation with unavoidable tangency, and the first coordinate projection of
the compact part Ast (cf. definition1.9) is contained in (−ε, ε).

Proof: First, we assert that Φt0 = (ft0 ◦ θ, 0) has a hyperbolic fixed point pt0 = (−ft0(1), 0)
of stable codimension one. In fact, it is fixed because ft0 ◦ θ0 is band merging. Let us see that it
is hyperbolic, computing DΦt0(pt0):

DΦt0 =
[

2xf ′t0 ◦ θ −(f ′t0 ◦ θ) · α
0 0

]
with 2xf ′t0(x2) = (ft0 ◦ θ0)′(x). But ft0 ◦ θ0 belongs to the unstable manifold Ŵu(ϕ) in M̂ , and
all maps in Ŵu(ϕ) have negative Schwarzian derivative because all the maps in a neighborhood

9



of ϕ have, and also their renormalizations. Therefore, proposition 1.12 states that −ft0(1) is a
repellor. Thus:

|2x0f
′
t0(x2

0)| > 1 for x0 = −ft0(1)

Thus, our assertion is proved.
Let us choose γ > 0 small enough so that, for all t ∈ [t0 − γ, t0 + γ] there exists pt = (xt,0),

continuation of pt0 , hyperbolic fixed point of Φt = (ft ◦ θ,0) ∈ Wu(Φ). Here xt is the hyperbolic
repellor of the unimodal map ϕt = ft ◦θ0 , whose repelling basin includes [ft(1),−ft(1)], as proved
in the proposition 1.12.

We define:
Aut = {(x,X) : X = 0, |x| ≤ −ft(1)} ⊂W u(pt)

The theorem 1.13 allows us to choose γ such that ϕt(ϕt(1)) + ϕt(1) is positive for t ∈ [t0 − γ, t0)
and negative for t ∈ (t0, t0 + γ].

We assert that given δ > 0 there exists γ sufficiently small and yt ∈ ϕ−2
t (xt), for all t ∈

[t0 − γ, t0 + γ], such that:
1 < yt < 1 + δ if t ∈ [t0 − γ, t0)
yt0 = 1
1− δ < yt < 1 if t ∈ (t0, t0 + γ]

In fact, if t ∈ [t0− γ, t0) we have ϕt(ϕt(1)) +ϕt(1) > 0, i.e. the graph of ϕt at −ϕt(1) is above the
diagonal. As ϕt is decreasing in (0, 1], the fixed point xt is at right of −ϕt(1). Therefore, given
δ1 > 0:

ϕt(1) > −xt > ϕt(1)− δ1

for all t ∈ [t0 − γ, t0), near enough t0.
The map ϕt is decreasing at right of 0 and defined in a neighborhood D of [−1, 1]. We conclude

that, given δ > 0, there exists γ and yt ∈ ϕ−1
t (−xt) for all t ∈ [t0−γ, t0), such that 1 < yt < 1 + δ.

As −xt ∈ ϕ−1
t (xt), we have yt ∈ ϕ−2

t (xt). The same argument, with the opposite inequalities, is
valid for t ∈ (t0, t0 + γ]. This completes the proof of our assertion.

We have ft(0) = 1 and f ′t(0) < 0. If γ is small, for any t ∈ [t0 − γ, t0 + γ], the map ft is
invertible and decreasing in a fixed neighborhood of 0. Let us denote εt = f−1

t (yt). Our previous
assertion can be reformulated as follows:

Given ε > 0, for all γ sufficiently small:

−ε2 < εt < 0 if t ∈ [t0 − γ, t0)
εt0 = 0
0 < εt < ε2 if t ∈ (t0, t0 + γ]

With no loss of generality, let us suppose that αn−1 6= 0. (Recall that α = (α1, α2, . . . , αn−1) 6=
0). Let us denote X = (X1, X2, . . . , Xn−1). Now we can define, for given ε > 0, :

Ast =
{

(x,X) : x2 − αX = εt, |x| ≤ ε, ‖(X1, . . . , Xn−2)‖ ≤ ε
}
.

It is easy to check that Ast ⊂ Φ−3
t (pt) ⊂W s(pt).
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Let us see how Ast looks: For t = t0, εt0 = 0 and Ast0 ⊂ {x
2 − αX = 0}. It is a quadratic

codimension one manifold of Rn, passing through (0,0) and tangent at (0,0) to Aut0 . For t ∈
[t0 − γ, t0), εt < 0, and Ast does not intersect {X = 0} ⊃ Aut . For t ∈ (t0, t0 + γ], εt ∈ (0, ε2). So
Ast intersects {X = 0} at two points q = (−√εt,0) and r = (

√
εt,0), both in the ε-neighborhood

of (0,0). Then both q and r are in Aut .
Moreover TqAst and TrA

s
t are transversal to the subspace {X = 0} = TqA

u
t = TrA

u
t .

Finally, if ε is small enough, we get ∂Ast ∩Aut = ∂Aut ∩Ast = ∅, for all t ∈ [t0 − γ, t0 + γ].
Now we are ready to perturb the family {Φt}, t ∈ [t0 − γ, t0 + γ], contained in Wu(Φ), and

prove that the homoclinic bifurcation persists for nearby families.

Lemma 1.15 There exists an interval [a, b] with b > a > 0 and neighborhoods N, N1 and N2 in
HD, of {Φt : t ∈ [a, b]}, Φa and Φb respectively, such that any continuous arc {Gµ}, in N , with
extremities in N1 and N2, exhibits a homoclinic bifurcation with unavoidable tangency.

Proof: Let us take Φt0 = (ft0 ◦ θ,0) with t0 as in the theorem 1.13. We have that pt0 =
(−ft0(1),0) is a fixed point, of saddle type. Its local stable manifold is contained in {(x,X) :
x2 − αX − (ft0(1))2 = 0}. Any G in a small neighborhood of Φt0 in HD, has an hyperbolic fixed
point p(G), whose local stable manifold is of codimension one, given in a neighborhood of p(G)
by the equation

{(x,X) : U(x,X,G) = 0}

where U(·, ·, G) is a smooth real function of (x,X), depending continously on G ([8] [14]). We
have U(x,X,Φt0) = x2 − αX − (ft0(1))2.

Let us define, for any (x,X,G) in a certain small neighborhood of (0,0,Φt0) in Rn ×HD, the
real function:

F (x,X,G) = U(G3(x,X), G)

The point (0,0) verifies Φ3
t0(0,0) = pt0 , and so

F (0,0,Φt0) = 0

As in the proof of the previous lemma, let us suppose αn−1 6= 0, and compute the partial
derivative:

∂F

∂Xn−1
(0,0,Φt0) = 2αn−1ft0(1)(ϕ2

t0)′(1)f ′t0(0) 6= 0

Now, by the implicit function theorem, there exists N0, neighborhood of Φt0 in HD, and ε > 0
such that for all G ∈ N0, for all x ∈ Bε(0) and for all (X1, . . . , Xn−2) in Rn−2 with norm less than
ε, is defined the coordinate Xn−1 = u(x,X1, . . . , Xn−2, G) verifying:

(x,X) ∈ G−3(W s
loc(p(G))) ⊂W s(p(G))

with X = (X1, . . . , Xn−1).
Let us take

As(G) = {(x,X) : Xn−1 = u(x,X1, . . . , Xn−2, G); |x| ≤ ε; ‖(X1, . . . , Xn−2)‖ ≤ ε}
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We have that As(G) is a C1 submanifold with boundary of Rn, that depends continously on
G ∈ N0. It is a compact part of W s(p(G)). For the neighborhood N0 and ε > 0 as above, let us
take γ as in the previous lemma, and also such that Φt ∈ N0 ∀t ∈ [a, b] = [t0− γ, t0 + γ]. We take
Ast = As(Φt) and Aut as in the proof of the previous lemma. Aut is contained, for some fixed n0

independent of t, in Φn0
t (W u

loc(p(Φt))). Let us take for any t ∈ [a, b], a small neighborhood Nt of Φt

in N0, such that Gn0(W u
loc(p(G))) is C1 near to Φn0

t (W u
loc(p(Φt))), for any G ∈ Nt. Consequently,

compact parts Au(G) and As(G) can be chosen, proximate to Aut and Ast respectively as C1

submanifolds with boundary, for any G ∈ Nt. The three conditions in the definition 1.9 are
persistent under small C1 perturbations of Aut and Ast . Therefore, the lemma is proved taking

N =
⋃

t∈[a,b]

Nt ; N1 = Na ; N2 = Nb

Now, we are ready to complete the proof of the theorem 1.
Proof of part b) of theorem 1: Let W = Ws(Φ). The lemma above states the existence

of the arc {Φt : t ∈ [a, b]} ⊂ Wu(Φ) and the neighborhoods N, N1, N2. Given a curve {Gµ},
transversal at µ = 0 to W, its images by the renormalization Tm accumulate, when m → ∞, at
the unstable manifold of Φ, due to the inclination lemma [14]. In particular they approach the
arc {Φt : t ∈ [a, b]} ⊂ Wu(Φ). Consequently, there exists [am, bm], for all m sufficiently large, such
that TmGam ∈ N1, TmGbm ∈ N2, TmGµ ∈ N for all µ ∈ [am, bm].

Besides [am, bm] → 0, because the argument above works for any subarc of {Gµ} as near as
wanted from G0.

The lemma 1.15 states that {TmGµ}, µ ∈ [am, bm] exhibits a homoclinic bifurcation with
unavoidable tangency, and so there exists µm ∈ [am, bm] → 0 with Gµm exhibiting a homoclinic
tangency.

The part a) of the theorem 1 states the existence of µm → 0 where Gµm is period doubling
bifurcating. As the intersection of Σ1 with Wu(Φ) is produced at Φ−1 and the homoclinic tan-
gencies were found in a neighborhood N of {Φt}t∈[a,b] with b > a > 0, it follows that µm is at the
other side of 0 than µm.

2 The Cr theory

Now we will work in a Cr neighborhood U of Φ0 (r ≥ 3). We define, for G ∈ U

F i(G) = Λ−1
i,G ◦G

2i ◦ Λi,G (2)

where Λi,G ∈ L(Rn,Rn) is defined as Λi,G(z0, Z) = (λi,Gz0, λ
2
i,GZ) with λi,G = π1◦G2i (0,0)

π1◦G(0,0) .
To obtain good spectral properties we need to redefine the renormalization for G ∈ U , consi-

dering a sequence {Ti}i∈Z+ , where

Ti(G) = (I − σ[F i(G)− Φ0])−1 ◦ F i(G) ◦ (I − σ[F i(G)− Φ0])

We need first to extend the linear operator σ, using the spectral projection, which is defined, up
to the moment, only for the space HD of real-analytic maps.
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The main problem that arises in the Cr topology is that the renormalization is not Fréchet
differentiable. But it is in the space HD and its derivative, computed at an analytic map, can be
extended to a bounded linear operator on the space of Cr maps. We will work with these operators
called formal derivatives. On the other hand the transformation Ti is Fréchet differentiable when
considered from the space of Cr maps to the space of Cr−1 maps. We will work with its derivatives
in this sense too, computed at maps of class Cr. Finally these derivatives can be also extended
to bounded linear operators on the space of Cr−1 or Cr−2 maps as formal derivatives. On each
case the sense in which a functional derivative (formal or Fréchet) is considered will be explicited
or otherwise clear from the context.

The unstable manifold found in the space of real-analytic maps verifies Ti({Φt}) = {Φt}, now
immersed in the space Cr. The purpose of this section is to define Ti for Cr maps and then to
prove in the Cr-topology that the distance of a renormalizable Cr map G in U to the manifold
{Φt}t decreases. More precisely, we prove the following

Proposition 2.1 For r large enough there exist ζ > 0 and an integer N as large as wanted such
that for all real t with |t| < ζ and all Cr map u with ‖u‖r < ζ

‖TN (Φt + u)− Φs‖r ≤
1
2
‖u‖r

where s = δN (t+ a(u)), and a is a bounded linear operator from Crto R.

This proposition is an extension to n-dimensional maps of the lemma 8 of the paper [4].
We begin giving some definitions.
Let us consider a compact parallelepiped D whose sides are parallel to the coordinates axes,

which is a neighborhood of [−1, 1]×{0} in Rn, and the Banach space Cr of maps from D to Rn,
of class Cr with the norm ‖ · ‖r For a given number η > 0, let us define the localized seminorm

‖G‖r,η = sup
‖x−y‖<η

‖DrG(x)−DrG(y)‖

Let S be the bounded linear operator on Cr defined as

SG(x) =
k∑
i=1

ai(x) ·G(bi(x))

where bi ∈ Cr+1, bi(D) ⊂ D; and for each x ∈ D, ai(x) is a matrix n× n, depending Cr+1 of x.
Associated to S, let Sr be the operator defined on the continuous functions from D to

Lr(Rn,Rn) (the set of r-linear applications from Rn on Rn) defined as follows:

(SrH)(x) =
k∑
i=1

‖ai(x)‖‖Dbi(x)‖rH(bi(x))

where ‖ai(x)‖ is the norm of the n × n matrix ai(x) as linear operator in Rn (it is a function
of x), and similarly we define ‖Dbi(x)‖.
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Lemma 2.2 Let ρ > 0. If the spectral radius of Sr is less than ρ, then for any ε > 0 there
exists a positive integer N0 such that for all N ≥ N0 and for some η0 = η0(ε,N) we have
‖SNG‖r,η ≤ ερN‖G‖r for all G ∈ Cr, and η ≤ η0.

Proof: First observe that SNG(x) can be written as

kN∑
i=1

ui(x)G(vi(x))

with ui(x) ∈ L(Rn,Rn), depending Cr+1 on x; vi ∈ Cr+1 such that vi(D) ⊂ D. Also,

((SN )rH)(x) =
kN∑
i=1

‖ui(x)‖‖Dvi(x)‖rH(vi(x))

We choose ρ′ < ρ, ρ′ greater than the spectral radius of Sr. Thus, ‖(Sr)N‖ < ρ′N < ερN

12 for N
large enough, being ‖(Sr)N‖ the norm of (Sr)N as linear operator. As ‖(SN )r‖ ≤ ‖(Sr)N‖, taking
H = id we have that

kN∑
i=1

‖ui(x)‖‖Dvi(x)‖r < ερN

12
(3)

We agree into that, in what follows, K is a constant whose value may vary in the different
formulas.

We have to bound the localized seminorm of the r-th derivative of SNG. Dr(SNG)(x) is a
r-linear transformation, computed as follows:

Dr(SNG)(x) =
kN∑
i=1

Dr[ui(x) ·G(vi(x))] =
kN∑
i=1

ui(x) · (v∗iDrG)(x) +R(x)

where (v∗iD
rG)(x) · (e1, . . . , er) = DrG(vi(x)) · (Dvi(x)e1, . . . , Dvi(x)er); and R(x) involves deri-

vatives of G of order smaller than r and derivatives up to r of ui and vi that are C1.

‖SNG‖r,η = sup
‖x−y‖<η

‖DrSNG(x)−DrSNG(y)‖ ≤

≤ sup
‖x−y‖<η

kN∑
i=1

‖ui(x)(v∗iD
rG)(x)− ui(y)(v∗iD

rG)(y)‖+ ‖R(x)−R(y)‖

The last term is bounded as follows:

‖R(x)−R(y)‖ ≤ K‖G‖r‖x− y‖ ≤ Kη‖G‖r ≤
ε

2
ρN‖G‖r

if η is small enough.
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The first term can be bounded by the sum of the following:

A =
kN∑
i=1

‖ui(x)(DrG(vi(x))−DrG(vi(y)) · (Dvi(x)·, . . . , Dvi(x)·)‖

B1 =
kN∑
i=1

‖ui(x)DrG(vi(y)) · ((Dvi(x)−Dvi(y))·, . . . , Dvi(x)·)‖

...

Br =
kN∑
i=1

‖ui(x)DrG(vi(y)) · (Dvi(y)·, . . . , (Dvi(x)−Dvi(y))·)‖

C =
kN∑
i=1

‖(ui(x)− ui(y))DrG(vi(y)) · (Dvi(y)·, . . . , Dvi(y)·)‖

Now, using that ui and vi are of class Cr+1 and taking η small enough:

C ≤
kN∑
i=1

K‖x− y‖‖DrG‖0‖Dvi‖r0 ≤ Kη‖G‖r ≤
ε

6
ρN‖G‖r

Bj ≤
kN∑
i=1

‖ui‖0‖DrG‖0‖Dvi‖r−1
0 K‖x− y‖ ≤ Kη‖G‖r ≤

ε

6r
ρN‖G‖r

A ≤
kN∑
i=1

‖ui(x)‖‖Dvi(x)‖r‖DrG(vi(x))−DrG(vi(y))‖ ≤

≤
kN∑
i=1

‖ui(x)‖‖Dvi(x)‖r2‖G‖r ≤
ε

6
ρN‖G‖r

In the last inequality we have used (3). Thus, A +
∑r

j=1Bj + C ≤ ε
2ρ

N‖G‖r and ‖SNG‖r,η ≤
ερN‖G‖r as wanted.

The last lemma allows us to bound ‖SNG‖r,η knowing a spectral bound of the associated
operator Sr. The following lemma connects the r-norm with the localized seminorm:

Lemma 2.3 Let η > 0 be a sufficiently small real number. There exists c = c(n, r) such that for
all G ∈ Cr,

‖G‖r ≤ 2cmax{‖G‖r,η,
2
η
‖G‖r−1}
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Proof: Let us make explicit the computations for n = 2 but observing that similar considera-
tions can be made for n > 2. Let us denote Gxi,yj = ∂i+jG

∂xi∂yj
, for i+j = r, π1(x, y) = x; π2(x, y) = y.

We have for i ≥ 1, k ∈ {1, 2}:∫ x

x0

πkGxi,yj (t, y) dt = πkGxi−1,yj (x, y)− πkGxi−1,yj (x0, y) (4)

We have a similar equality for j ≥ 1, integrating respect to the second variable. The right member
of the equality is bounded in absolute value by 2‖G‖r−1.

Let c ≥ 1 be a constant such that for every G of class Cr

‖DrG(x, y)‖ ≤ c max
i+j=r; k∈{1,2}

|πkGxi,yj |

It is enough to prove that ‖G‖r ≤ 2c for all G ∈ Cr such that

max{‖G‖r,η, (2/η)‖G‖r−1} = 1

By contradiction suppose that we have a point z0 = (x0, y0), k ∈ {1, 2} and i and j with i+ j = r
such that |πkGxi,yj (z0)| > 2. Thus, as ‖DrG(z)−DrG(z0)‖ ≤ 1 for z ∈ D in a ball centered in z0

of radius η, we have

|πkGxi,yj (z)| ≥ |πkGxi,yj (z0)| − ‖DrG(z0)−DrG(z)‖ > 1

Integrating up to the boundary of the ball of radius η, the absolute value of the left term of the
equality (4) is greater than η. The absolute value of the right term is smaller than η because
‖G‖r−1 ≤ η/2. This contradiction proves the lemma.

We recall the equation (1) from the analytic theory in the subsection 1.1. For u = (u0, U) ∈ HD
we have dF(Φ0)(u) =

= Λ−1[u◦Φ0 ◦Λ+(DΦ0 ◦Φ0 ◦Λ)◦ (u◦Λ)]+
(
u0(1,0)

λ
+ u0(0,0)(

1
λ2
− 1)− α · U(0,0)

2λ2

)
Ψσ1 (5)

for Ψσ1 = −σ1 ◦ Φ0 +DΦ0 · σ1, and σ1(x, Y ) = (x, 2Y ). Now, if u ∈ Cr, the last operator can be
extended to a bounded operator F , defining Fu as the right term of (5). The associated operator
Fr is

FrH = |λ|−2‖(DΦ0 ◦ Λ)Λ‖rH ◦ Φ0 ◦ Λ + |λ|r‖Λ−1DΦ0 ◦ Φ0 ◦ Λ‖H ◦ Λ

Lemma 2.4 The spectral radius of Fr converges to 0 when r goes to infinite. As a consequence,
there exists r0 large enough such that the spectral radius is smaller than 1.

Proof: The spectral radius is bounded by the norm of the operator Fr.

‖Fr‖ ≤ sup
(x,Y )∈D

{|λ|r(|λ|−2‖DΦ0 ◦ Λ(x, Y )‖r + ‖Λ−1DΦ0 ◦ Φ0 ◦ Λ(x, Y )‖)}
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DΦ0(x, Y ) =
(

2xf ′(x2 − α · Y ) −αf ′(x2 − α · Y )
0 0

)
As we have 2xf ′(x2) = ϕ′(x) and the derivative of the Feigenbaum map ϕ in dimension one is
smaller than |λ|−1 for x ∈ [−λ, λ], we have for α small enough that ‖Dφ0 ◦Λ‖ < a < |λ|−1. Then,
‖Fr‖ ≤ |λ|r(ar|λ|−2 + b), where b = sup(x,Y )∈D ‖Λ−1DΦ0 ◦ Φ0 ◦ Λ(x, Y )‖, proving the lemma.

Remark 2.5 We can bound a < (1 − λ)/(1 + λ) < 2.3312; λ = −.3995 . . . ; b < 6.2657. So, r0

can be taken equal to 27.

We recall the proposition 1.5 of the analytic theory in the subsection 1.1. In HD, the spectrum
of DF(Φ0) has eigenvalues 1, λ−1, λ−2 and δ with respective spectral invariant finite dimensional
subspaces S0, S1, S2 and U . In particular dim U = 1. Let us define E0, E1, E2 and J the
respective spectral projections in HD. Now we prove that these projections can be extended to
Cr.

Lemma 2.6 For r sufficiently large, the projections E0, E1, E2 and J defined in HD can be
continuously extended to Cr, to Cr−1, and to Cr−2 as bounded linear operators. Moreover, given
ε > 0, there exists a positive integer N as large as wanted such that

‖FN − δNJ − E0 − λ−NE1 − λ−2NE2‖ ≤ ε

where the norm ‖ · ‖ of the linear operator can be taken either in Cr, in Cr−1, or in Cr−2. The
spectrum of F has 1, λ−1, λ−2 and δ as the only eigenvalues with modulus greater or equal to 1,
and the respective spectral invariant subspaces are S0, S1, S2, and U .

Proof: Due to the lemma 2.4, for r sufficiently large the spectral radius of Fr, Fr−1 and of
Fr−2 are smaller than 1. Let us take any ρ, 0 < ρ < 1, bound of these spectral radii. Using the
lemma 2.2 with ε = 1

4c , c defined in the lemma 2.3, there exists N > 0 sufficiently large, and
η > 0 such that ‖FN (u)‖j,η ≤ ρN

4c ‖u‖j for all u ∈ Cj , j = r− 2, r− 1, r. We will work with j = r,
observing that the proof also works for j = r − 2 and j = r − 1.

In HD we define Q = F − δJ − E0 − λ−1E1 − λ−2E2. As J , E0, E1 and E2 are spectral
projections on the eigenspaces U , S0, S1 and S2 with the eigenvalues of modulus greater or equal
to one, we have that, if N is large enough, then QN = FN − δNJ − E0 − λ−NE1 − λ−2NE2 has
norm in HD smaller than 1

2 .
The unitary ball of Cr is compact in Cr−1 because the Arzela-Ascoli theorem asserts that any

sequence of maps bounded in the Cr topology has a convergent subsequence in the Cr−1 topology.
The density of analytic maps in Cr allows us to construct, given ε > 0, a finite set of analytic maps
f1, . . . , fl in the unitary ball of Cr such that the balls in the Cr−1 topology centered at f1, . . . fl
with radius ε > 0 covers the unitary ball of Cr. In other words, given u ∈ Cr with ‖u‖r ≤ 1
there exists fi1 ∈ {f1, . . . , fl} analytic such that ‖fi1‖r ≤ 1 and ‖u − fi1‖r−1 < ε. Working with
N chosen at the beginning of the proof,

‖FN (u− fi1)‖r−1 ≤M‖u− fi1‖r−1 < Mε
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where M is the norm of FN considered as a linear operator of Cr−1. Now we have that ‖FN (u−
fi1)‖r,η ≤ ρN

4c ‖u − fi1‖r ≤
ρN

2c because ‖u‖r and ‖fi1‖r are less or equal to 1. Applying the
lemma 2.3:

‖FN (u− fi1)‖r ≤ 2cmax
{
ρN

2c
,

2
η
Mε

}
For ε ≤ ηρN/(4Mc) we have ‖FN (u − fi1)‖r ≤ ρN . We have proved that given u ∈ Cr with
‖u‖r ≤ 1 it is obtained fi1 analytic such that FN (u) = FN (fi1) + ρNu1 with ‖u1‖r ≤ 1. Applying
to u1 the same decomposition we have F 2N (u) = F 2N (fi1) + ρNFN (fi2) + ρ2Nu2. After j steps:

FNj(u) = FNj(fi1) + ρNFN(j−1)(fi2) + . . .+ ρN(j−1)FN (fij ) + ρNjuj

with ‖uj‖r ≤ 1. Now, for an analytic map f we have

FN (f) = QN (f) + δNJ(f) + E0(f) + λ−NE1(f) + λ−2NE2(f)

Substituting we obtain
FNj(u) = A0 +A1 +A2 +B + C

where
A0 = E0(fi1) + ρNE0(fi2) + . . .+ ρN(j−1)E0(fij )

A1 = λ−NjE1(fi1) + ρNλ−N(j−1)E1(fi2) + . . .+ ρN(j−1)λ−NE1(fij )

A2 = λ−2NjE2(fi1) + ρNλ−2N(j−1)E2(fi2) + . . .+ ρN(j−1)λ−2NE2(fij )

B = QNj(fi1) + ρNQN(j−1)(fi2) + . . .+ ρN(j−1)QN (fij ) + ρNjuj

C = δNjJ(fi1) + ρNδN(j−1)J(fi2) + . . .+ ρN(j−1)δNJ(fij )

We will prove that Ẽ2(u) = limj→∞ λ
2NjFNj(u) exists in the Cr topology. We will see later that

Ẽ2 is the wanted extension of E2.

λ2NjFNj(u) = λ2Nj(A0 +A1 +A2 +B + C)

Let us show that all the terms at right converge to 0 with j → ∞ except λ2NjA2. There exists
h > 1 such that for i = 1, . . . , l, ‖QNj(fi)‖r ≤ h/2j . This is because fi ∈ HD and the norm of QN

in HD is smaller than 1
2 . Therefore,

‖λ2NjB‖r ≤ λ2Nj

(
h

2j
+ ρN

h

2j−1
+ . . .+ ρN(j−1)h

2
+ ρNjh

)
=

= h

(
λ2N

2

)j 1− (2ρN )(j+1)

1− 2ρN
→j→∞ 0

because ρ < 1 and |λ| < 1.
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As the set of maps where the fi is chosen is finite, take K a constant bounding ‖J(fi)‖r,
‖E0(fi)‖r, ‖E1(fi)‖r, ‖E2(fi)‖r, for i = 1, . . . , l. Thus

‖λ2NjC‖r ≤
(
λ2δ
)Nj (

K +
ρN

δN
K + . . .+

(
ρN

δN

)j−1

K

)
≤
(
λ2δ
)Nj

K
1−

(
ρN/δN

)j
1− ρN/δN

→j→∞ 0

because λ2δ < 1 and ρ < 1 < δ

‖λ2NjA0‖r ≤ λ2Nj
(
K + ρNK + . . .+ ρN(j−1)K

)
≤ Kλ2Nj 1− ρNj

1− ρN
→j→∞ 0

‖λ2NjA1‖r ≤ |λ|Nj
(
K + (ρ|λ|)NK + . . .+ (ρ|λ|)N(j−1)K

)
≤ K|λ|Nj 1− (ρN |λ|N )j

1− ρN |λ|N
→j→∞ 0

λ2NjA2 = E2(fi1) + ρNλ2NE2(fi2) + . . .+ ρN(j−1)λ2N(j−1)E2(fij )

This series is majored by

‖λ2NjA2‖r ≤ K + ρNλ2NK + . . .+ ρN(j−1)λ2N(j−1)K ≤ K 1− (ρNλ2N )j

1− ρNλ2N

which is convergent because ρ < 1 and λ < 1. Then, we define

Ẽ2(u) = lim
j→∞

λ2NjFNj(u) = lim
j→∞

λ2NjA2 =
∞∑
k=0

(ρNλ2N )kE2(fik+1
)

It is clear that Ẽ2(u) is an analytic function because S2 is closed and formed by analytic functions
(S2 is a finite dimensional space).

Then, we define J̃ , (which will be the extension of J , corresponding to the eigenvalue δ). We
apply the same method to show that J̃(u) = limj→∞ δ

−Nj(FNj(u) − λ−2NjẼ2(u)) exists. We
must study δ−Nj(A2 − λ−2NjẼ2(u)) + δ−Nj(B + C +A0 +A1). The first term is

δ−Njλ−2Nj

(
j−1∑
k=0

(ρNλ2N )kE2(fik+1
)−

∞∑
k=0

(ρNλ2N )kE2(fik+1
)

)
=

= −δ−Njλ−2Nj
∞∑
k=j

(ρNλ2N )kE2(fik+1
)

Thus, the r-norm of the first term is bounded by

δ−Njλ−2NjK

∞∑
k=j

(ρNλ2N )k = Kδ−Njλ−2Nj (ρNλ2N )j

1− ρNλ2N
→j→∞ 0

because ρδ−1 < 1.
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The second term is decomposed. ‖δ−NjB‖r is treated as λ2NjB above, substituting λ2 by δ−1,
proving ‖δ−NjB‖r →j→∞ 0.

Analogously are treated ‖δ−NjA0‖r and ‖δ−NjA1‖r →j→∞ 0. Now,

‖δ−NjC‖r ≤ ‖J(fi1)‖r + ρNδ−N‖J(fi2)‖r + . . .+ (ρNδ−N )j−1‖J(fij )‖r ≤ K
∞∑
k=0

(ρNδ−N )k

Thus J̃(u) =
∑∞

k=0(ρNδ−N )kJ(fik+1
). As before, J̃(u) is analytic.

With the same procedure we define

Ẽ1(u) = lim
j→∞

λNj(FNj(u)− λ−2NjẼ2(u)− δNj J̃(u)) =
∞∑
k=0

(ρNλN )kE1(fik+1
)

Ẽ0(u) = lim
j→∞

FNj(u)− λ−2NjẼ2(u)− δNj J̃(u)− λ−NjẼ1(u) =
∞∑
k=0

ρNkE0(fik+1
)

Ẽ1u and Ẽ0u are analytic functions.
We have

‖FNj(u)− λ−2NjẼ2(u)− δNj J̃(u)− λ−NjẼ1(u)− Ẽ0(u)‖r ≤

≤ Kλ−2Nj
∞∑
k=j

(ρNλ2N )k +KδNj
∞∑
k=j

(ρNδ−N )k+

+K|λ|−Nj
∞∑
k=j

(ρN |λ|N )k +K

∞∑
k=j

ρNk +
h

2j

j∑
k=0

(2ρN )k < ε (6)

for j large enough uniformly for all u with ‖u‖r ≤ 1. We know that Ẽi(Cr) ⊂ Si for i = 0, 1, 2,
and J̃(Cr) ⊂ U . In particular, if u is analytic, from (6) we conclude that Ẽi(u) = Ei(u), i = 0, 1, 2
and J̃(u) = J(u). The formula (6) ends the proof of the lemma.

From now on we will take r sufficiently large to apply the lemma 2.6.
The projection J on the one-dimensional space U of the eigenvectors with eigenvalue δ can be

written as
J(u) = a(u)v

where v = d
dtΦt

∣∣
t=0
∈ U and a(u) ∈ R for all u ∈ Cj , j = r, r − 1, r − 2; a is linear and bounded.

The sum of the eigenspaces of F corresponding to the eigenvalues 1, λ−1, and λ−2 is S̄ =
S0 ⊕ S1 ⊕ S2. The same proof of the proposition 1.5, part c) shows that for any u ∈ Cr there
exists σ[u], the unique analytic map in Cn such that ψσ[u] = Eu ∈ S̄, where E = E0 ⊕ E1 ⊕ E2.
The transformation u 7→ σ[u] is linear and bounded. We remark that Imσ is a finite dimensional
space. For G ∈ Cr in a neighborhood Ui of Φ0, we define

Ti(G) = (I − σ[F i(G)− Φ0])−1 ◦ F i(G) ◦ (I − σ[F i(G)− Φ0])

where F i was defined in (2) at the beginning of this section. When restricted to HD the
transformation Ti and F i are Fréchet differentiable. Its derivatives at Φ0 can be extended to
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Cr, r ≥ 1 as bounded linear operators F̃i and Fi respectively, which will be called the for-
mal derivatives at Φ0. Let us observe that Fi = dF i(Φ0) = (dF(Φ0))i = F i. We also have
F̃i · u = dTi(Φ0) · u = F iu+ σ[F iu] ◦ Φ0 −DΦ0 · σ[F iu] = (I − E)(F i · u).

Lemma 2.7 Given ε > 0, there exists N as large as wanted such that

‖F̃N − δNJ‖ ≤ ε

where the norm ‖ · ‖ of the linear operator can be taken either in Cr, in Cr−1, or in Cr−2.

Proof: We will make explicit computations in Cr, but the same argument is valid in Cr−1

and Cr−2. Using the density of HD in Cr it can be seen that E0, E1, E2 and J commute with F
in Cr. Thus

‖F̃N · u− δNJ(u)‖r = ‖(I − E)FN · u− δNJ(u)‖r = ‖FN · u− EFN · u− δNJ(u)‖r =

= ‖FN · u− E0(u)− λ−NE1(u)− λ−2NE2(u)− δNJ(u)‖r ≤ ε‖u‖r

The last inequality is due to the lemma 2.6.
Now, let {bi}i=0,...2N−1 be a finite set of maps in C1 with bi(D) ⊂ D. Let {ai}i=0,...2N−1 be

a finite set of matrices n × n depending C0 of x ∈ D. We define a bounded linear operator on
C0(D,Lr(Rn,Rn)) by

ΩH(x) =
2N−1∑
i=0

ai(x) · b∗iH(x)

Let

M = sup
x∈D

2N−1∑
i=0

‖ai(x)‖‖Dbi(x)‖r

Then, we have

Lemma 2.8 Given ε > 0, there exists ζ > 0 such that if ãi(x) ∈ L(Rn,Rn) depending C0 on
x ∈ D, and b̃i ∈ C1 with ‖bi − b̃i‖1 < ζ, ‖ai − ãi‖0 < ζ and b̃i(D) ⊂ D for i = 0, . . . 2N − 1, then
the corresponding operator Ω̃ on C0(D,Lr(Rn,Rn)) satisfies ‖Ω̃− Ω‖ < 2(M + ε).

Proof:

ΩH − ΩH =
2N−1∑
i=0

ai[b∗iH − b̃∗iH] +
2N−1∑
i=0

[ai − ãi]b̃∗iH

The second term has C0 norm bounded by
∑2N−1

i=0 K‖H‖0‖ai− ã1‖0 for some constant K. Taking
ζ small enough this term is smaller than ε‖H‖0. The first term can be written as

2N−1∑
i=0

ai[H ◦ bi −H ◦ b̃i] · [Dbi· , . . . , Dbi·] +
2N−1∑
i=0

aiH ◦ b̃i · [(Dbi −Db̃i)· , . . . , Dbi·] + . . .+
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+
2N−1∑
i=0

aiH ◦ b̃i · [Db̃i· , . . . , (Dbi −Db̃i)·]

As ‖bi − b̃i‖1 < ζ the last terms of this sum can be treated as the former second term and proved
to have C0 norm smaller than ε‖H‖0. The first term of this sum evaluated at a point x ∈ D is in
Lr(Rn, Rn) and has norm bounded by

2N−1∑
i=0

‖ai(x)‖‖Dbi(x)‖r2‖H‖0 ≤ 2M‖H‖0

Hence, the lemma is proved.

Lemma 2.9 For all N > 0 large enough there exists ζ > 0 so that if t ∈ R and u ∈ Cr with
|t| < ζ and ‖u‖r < ζ, then ‖TN (Φt + u)− TN (Φt)− F̃N · u‖r ≤ 1

8‖u‖r.

Proof: For given ε > 0, let us take N such that (Fr)n has norm less than ε as an operator on
C0 (lemma 2.4). After some computations we find that the functional derivative of TN at a point
G ∈ HD, considered in the set of analytic functions is

dTN (G) · u = (I −Dσ[FN (G)−Φ0] ◦ (I − σ[FN (G)−Φ0])−1 ◦ FN (G) ◦ (I − σ[FN (G)−Φ0]))−1·

·


Λ−1

N,G

 2N∑
k=1

(
k−1∏
s=1

DG(G2N−s ◦ ΛN,G)

)
· u(G2N−k ◦ ΛN,G)

+ o.t.

 ◦ (I − σ[FN (G)− Φ0])+

+σ

Λ−1
N,G

 2N∑
k=1

(
k−1∏
s=1

DG(G2N−s ◦ ΛN,G)

)
· u(G2N−k ◦ ΛN,G)

+ o.t.

 ◦
◦(I − σ[FN (G)− Φ0])−1 ◦ FN (G) ◦ (I − σ[FN (G)− Φ0])−

−DFN (G) ◦ (I − σ[FN (G)− Φ0])·

· σ

Λ−1
N,G

 2N∑
k=1

(
k−1∏
s=1

DG(G2N−s ◦ ΛN,G)

)
· u(G2N−k ◦ ΛN,G)

+ o.t.

 (7)

where o.t. represents terms in which u appears evaluated in some point of the space. If G is
analytic dTN (G) can be extended to a bounded linear operator in Cr. We recall that Imσ ⊂ HD
and is finite dimensional.

Let us define a bounded linear operator A(G) on C0(D,Lr(Rn,Rn)) as

A(G) · w = (I −Dσ[FN (G)− Φ0] ◦ (I − σ[FN (G)− Φ0])−1 ◦ FN (G) ◦ (I − σ[FN (G)− Φ0]))−1·

·

Λ−1
N,G

 2N∑
k=1

(
k−1∏
s=1

DG(G2N−s ◦ ΛN,G ◦ (I − σ[FN (G)− Φ0]))

)
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((G2N−k ◦ ΛN,G ◦ (I − σ[FN (G)− Φ0]))∗w)
)}

If G is analytic and u ∈ Cr, we define B, C, . . . ,M as

Dr(dTN (G) · u) = A(G) ·Dru+ B(G) ·Dr−1u+ C(G) ·Dr−2u+ . . .+M(G) · u

depending nonlinearly on G and its first r + 1 derivatives.
Let us compute the spatial derivatives of TN (G) for G ∈ Cr.

DTN (G) =
(
I −Dσ[FN (G)− Φ0] ◦ (I − σ[FN (G)− Φ0])−1 ◦ FN (G) ◦ (I − σ[FN (G)− Φ0])

)−1 ·

·Λ−1
N,G

2N∏
k=1

DG(G2N−k ◦ ΛN,G ◦ (I − σ[FN (G)− Φ0]))ΛN,G(I −Dσ[FN (G)− Φ0])

When computing the spatial derivative of TN (G) of order r ≥ 2 we are interested into separa-
ting the terms depending on DrG. In D2TN (G) the term having D2G is(

I −Dσ[FN (G)− Φ0] ◦ (I − σ[FN (G)− Φ0])−1 ◦ FN (G) ◦ (I − σ[FN (G)− Φ0])
)−1 ·

·Λ−1
N,G

2N∑
k=1

(
k−1∏
s=1

DG(G2N−s ◦ ΛN,G ◦ (I − σ[FN (G)− Φ0]))

)
·

·
(
G2N−k ◦ ΛN,G ◦ (I − σ[FN (G)− Φ0])

)∗
D2G

In general for r ≥ 2, DrTN (G) has a term depending on DrG that is A(G) ·Dr(G).
Take u ∈ Cr. When computing Dr(TN (Φt + u) − TN (Φt)) we obtain a term depending on

Dru that is precisely A(Φt + u)Dru, plus other term P(Φt, u) depending on Φt and its first r
derivatives and on u and its first r−1 derivatives. It is a sum of compositions and multiplications
of these maps. Thus P(Φt, ·) is a transformation from Cr to C1 that is null for u = 0 and has at
u = 0 Fréchet derivative when looked from Cr to C0. That is

P(Φt, u) = P (Φt)u+N(Φt, u)

with ‖N(Φt, u)‖0 ≤ ε‖u‖r if ‖u‖r is sufficiently small.
P (Φt)u is linear on u and its first r − 1 derivatives. It is the linear part on u obtained from

Dr(TN (Φt + u)− TN (Φt)) taking away the term A(Φt + u)Dru. As

Dr(dTN (Φt)u) = A(Φt)Dru+ B(Φt)Dr−1u+ . . .+M(Φt)u

we have
P (Φt)u = B(Φt)Dr−1u+ . . .+M(Φt)u

Thus

Dr(TN (Φt+u)−TN (Φt)) = A(Φt+u)Dru+B(Φt)Dr−1u+C(Φt)Dr−2u+ . . .+M(Φt)u+N(Φt, u)
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where ‖N(Φt, u)‖0 ≤ ε‖u‖r for any given ε if ‖u‖r is sufficiently small.
Provided that |t| is small enough,

‖(B(Φt)− B(Φ0)) ·Dr−1u‖0, ‖(C(Φt)− C(Φ0)) ·Dr−2u‖0, . . . , ‖(M(Φt)−M(Φ0)) · u‖0

will be all less that ε
r‖u‖r.

We must study A(G). We observe that

A(Φ0) = Λ−1
N,Φ0

 2N∑
k=1

(
k−1∏
s=1

DΦ0(Φ2N−s
0 ◦ ΛN,Φ0)

)
(Φ2N−k

0 ◦ ΛN,Φ0)∗


Now, we apply the lemma 2.8 to A(Φ0), the corresponding M is ‖(FN )r‖ ≤ ‖(Fr)N‖ < ε. We
conclude that if |t| and ‖u‖r are small enough, then A(Φt + u)−A(Φ0) has norm less than 4ε as
an operator on C0. Putting everything together, and noting that

Dr(F̃N · u) = A(Φ0) ·Dru+ B(Φ0) ·Dr−1u+ . . .+M(Φ0) · u

we obtain
‖Dr(TN (Φt + u)− TN (Φt)− F̃N · u)‖0 ≤ 6ε‖u‖r

TN as a transformation from Cr to Cr−1 is differentiable Fréchet, so, for |t| and ‖u‖r small
enough:

‖TN (Φt + u)− TN (Φt)− F̃N · u‖r−1 ≤ ε‖u‖r
If ε ≤ 1

48 :

‖TN (Φt + u)− TN (Φt)− F̃N · u‖r ≤
1
8
‖u‖r

Remark 2.10 At the beginning of the proof of the lemma 2.9, we have computed the derivative
dTN (G) for G ∈ HD. The right term of the equality (7) defines for any G of class Cr a bounded
linear operator in Cr−1 and also in Cr−2. This operator will be called the formal derivative of TN
at G. We do not have continuous dependence of this operator at G ∈ Cr. But, arguing as in the
proof of the former lemma and using the lemma 2.8 with M ≤ ‖(Fr)N‖ we obtain the following
result:

Given ε > 0 there exists N large enough and ζ > 0 such that if ‖G − Φ0‖r < ζ, then
dTN (G)− dTN (Φ0) has norm less than ε as linear operator on Cr−1.

Proof of the proposition 2.1: We apply the lemmas 2.7 and 2.9 to obtain

‖TN (Φt + u)− TN (Φt)− δNJ(u)‖r ≤
1
4
‖u‖r

We have TN (Φt) = ΦδN t and J(u) = a(u)v where v = d
dsΦs

∣∣
s=0

. So

‖TN (Φt + u)− ΦδN t − δNa(u)v‖r ≤
1
4
‖u‖r
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Φt is a curve of class C1 of maps in Cr, thus ΦδN (t+a(u)) − ΦδN t = d
dsΦs

∣∣
s=δN t

δNa(u) + ∆
where ‖∆‖r ≤ 1

8‖u‖r if ‖u‖r and |t| are small enough. Moreover if |t| is small then∥∥∥∥ dΦs

ds

∣∣∣∣
s=δN t

− v
∥∥∥∥
r

δN |a(u)| ≤ 1
8
‖u‖r

We obtain
‖ΦδN (t+a(u)) − ΦδN t − δNa(u)v‖r ≤

1
4
‖u‖r

and we deduce that ‖TN (Φt + u)− ΦδN (t+a(u))‖r ≤ 1
2‖u‖r, as wanted.

3 The stable manifold

In this section we prove the existence of the stable manifold of the renormalization in the space
Cr and deduce the theorem 2.

We recall that the projection J on the one-dimensional subspace U corresponding to the
eigenvalue δ is written as J(u) = a(u)v, where v = d

dtΦt

∣∣
t=0
∈ U and a is linear and bounded

from Cr, Cr−1 or Cr−2 to R. Thus a(v) = 1 and d
dta(Φt − Φ0)

∣∣
t=0

= a(v) = 1. We denote ‖a‖r
the norm of a as a linear operator from Cr to R. Analogously ‖a‖r−1, ‖a‖r−2.

Let ζ as in the proposition 2.1 and also verifying that |a(Φt − Φ0)− t| ≤ |t|/4 for |t| < ζ.
Now we are ready to define the stable set for TN . Choose positive numbers ε and ε′ smaller

than one so that
2δNε′ < ζ

εmax(1, 30‖a‖r) < ε′

Define the set W = {Φ0 + u, u ∈ Cr, ‖u‖r < ε}. Given Φ0 + u ∈ W , we define recursively the
finite or infinite sequences {tk}k≥0 and {uk}k≥0 by the relations

t0 = 0; u0 = u

T kN (Φ0 + u) = Φtk + uk

tk+1 = δN (tk + a(uk)) if |tk| < ζ

They are defined as long as |tk| < ζ. By the proposition 2.1 we have ‖uk‖r < 2−kε. Moreover, if
|tk| < ε′, then

|tk+1| ≤ δN (ε′ + ‖a‖rε) ≤ 2δNε′ < ζ

There are three mutually exclusive possibilities:

i) for some k, ε′ < tk < ζ and |tj | ≤ ε′ for j < k.

ii) for some k, ε′ < −tk < ζ and |tj | ≤ ε′ for j < k.

iii) |tk| ≤ ε′ for all k ≥ 0.
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We denote W+, W− and W0 the subsets of W where respectively i), ii) or iii) holds. The
map u 7→ tk is continuous on W , so W+ and W− are open. Moreover Φt ∈ W+ (W−) for all
t > 0 (resp. t < 0) small enough. Hence W0 is a relatively closed subset of W disconnecting it.

If Φ0 + u ∈W0 then there are infinite sequences {tk}k≥0 and {uk}k≥0. We assert that

|tk| < ε‖a‖r2−k+1 (8)

In fact, suppose that there exists k such that |tk| ≥ ε‖a‖r2−k+1. As tk+1 = δN (tk + a(uk))
and ‖uk‖r < 2−kε, we obtain |tk+1| ≥ δN‖a‖rε2−k ≥ ε‖a‖r2−k+2. Repeating the argument
|tk+j | ≥ ε‖a‖r2−k+j+1 for all j ≥ 0, and this contradicts the inequality |tk+j | ≤ ε′ for all j.

Therefore, for Φ0 + u ∈W0, T kN (Φ0 + u)→ Φ0 as k →∞ and ‖T kN (Φ0 + u)− Φ0‖r = O(2−k).
W0 is thus the local stable set for TN . To prove that W0 is locally a C1 submanifold of codimension
one we need some previous lemmas, obtained from [4].

Lemma 3.1 For G1 ∈W+ ∪W−, if ε′ < |tk| < ζ then |a(T kNG1 − Φ0)| ≥ ε′/4

Proof:

|a(T kNG1 − Φ0)| = |a(Φtk − Φ0) + a(uk)| ≥ |a(Φtk − Φ0)| − ‖a‖r‖uk‖r ≥

≥ 3
4
|tk| − ‖a‖rε2−k ≥

3
4
ε′ − ε′

30
≥ ε′/4

Lemma 3.2 There exists a continuous mapping G 7→ aG from W0 to (Cr−2)∗ = L(Cr−2,R) such
that

‖dT kN (G)u− δNkaG(u)v‖r−2 ≤ CδNk2−k‖u‖r−2

for all G ∈W0 and u ∈ Cr−2, k = 1, 2, . . ., where C is a constant. Moreover aΦ0 = a.

Proof: Fix G ∈W0 and let Rk = δ−NkdT kN (G). Rk acts as a bounded linear operator on Cr−2.
We have Rk+1u = δ−NdTN (Gk)Rku where Gk = T kNG. For ‖u‖r−2 ≤ 1 we write Rku = αkv + ψk
where αk ∈ R and ψk ∈ Cr−2 are linear on u, defined recursively as follows: α0 = 0, ψ0 = u and
if αk and ψk have been defined:

Rk+1u = δ−NdTN (Gk)(αkv + ψk) =

= αkv + αkδ
−N (dTN (Gk)− F̃N )v + δ−N (dTN (Gk)− F̃N )ψk + a(ψk)v + δ−NQNψk

where QNψk = F̃Nψk − δNa(ψk)v and F̃N = dTN (Φ0). Now Rk+1u = αk+1v + ψk+1 where we
define

αk+1 = αk + a(ψk)

ψk+1 = αkδ
−N (dTN (Gk)− F̃N )v + δ−N (dTN (Gk)− F̃N )ψk + δ−NQNψk

Since ‖Gk − Φ0‖r = O(2−k) and the mapping from Cr to Cr−2 given by G 7→ dTN (G) · v is
differentiable at Φ0, we have that ‖(dTN (Gk) − F̃N ) · v‖r−2 ≤ K2−k for some constant K which
can be taken independent of G ∈W0. If ε and ε′ are chosen small enough we have that the norm
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of the operator dTN (Gk)− F̃N on Cr−2 is smaller that δN/8. By lemma 2.7 also the norm of QN
on Cr−2 is smaller than δN/8. Then

‖ψk+1‖r−2 ≤
1
4
‖ψk‖r−2 +Kδ−N |αk|2−k (9)

As αk+1 =
∑k

j=0 a(ψj), we obtain

‖ψk+1‖r−2 ≤
1
4
‖ψk‖r−2 + 2−kKδ−N‖a‖r−2

k−1∑
j=0

‖ψj‖r−2

Let k0 be such that K‖a‖r−2δ
−N (3

2

)−k
< 1

8 for all k ≥ k0. Define c1 a constant, independent of

G ∈ W0 and of u in the unitary ball of Cr−2, such that ‖ψk‖r−2 ≤ c1

(
3
4

)k for k = 0, 1, . . . , k0.

Then, by induction in k, it is easy to show that ‖ψk‖r−2 ≤ c1

(
3
4

)k for all k ≥ 0. Therefore

|αk+1 − αk| = |a(ψk)| = O((3/4)k)

Thus αk converges to a limit aG(u) linear on u. From (9) it is obtained that ‖ψk‖r−2 = O(2−k).
Therefore |αk − aG(u)| = O(2−k) and we conclude

‖Rku− aG(u)v‖r−2 ≤ C2−k‖u‖r−2

for some constant C, for any u ∈ Cr−2 and any G ∈W0.
To show that G 7→ aG is continuous, note first that the mapping G 7→ a ◦ Rk ∈ (Cr−2)∗ is

continuous on W0 for any k. For any u ∈ Cr−2 we have

|aG(u)− a(Rku)| = |a(aG(u)v −Rku)| ≤ C‖a‖r−22−k‖u‖r−2

so that a ◦Rk → aG uniformly on W0, whence the mapping G 7→ aG is continuous. Note also that
aΦ0 is the projection a because for G = Φ0 we have Rku→ a(u) · v.

For later purposes we will need the following lemma that implies a convexity property for the
Cr norms:

Lemma 3.3 There exists a constant K such that for all C2 map w : D 7→ Lr−2(Rn,Rn)

‖Dw‖0 ≤ K (‖w‖2‖w‖0)1/2

Proof: Let c > 0 be a real number such that for any P ∈ Lr−1(Rn,Rn) determined by its nr

real components {P ij,...,l,m}1≤i,j,...,l,m≤n

‖P‖ ≤ c max
i,j,...,l,m

|P ij,...,l,m|

Let γ be the length of the smallest side of the parallelepiped D and define

K =
2c
γ

+ cγ
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Take w : D 7→ Lr−2(Rn,Rn) of class C2, and by contradiction suppose that for some x0 ∈ D,
‖Dw(x0)‖ > K(‖w‖2‖w‖0)1/2. Thus, there exist i, j, . . . , l,m such that∣∣∣∣∣∂wij,...,l(x0)

∂xm

∣∣∣∣∣ > K

c
(‖w‖2‖w‖0)1/2

As ‖Dw(x)−Dw(x0)‖ ≤ ‖w‖2‖x− x0‖ , we deduce∣∣∣∣∣∂wij,...,l(x)
∂xm

−
∂wij,...,l(x0)

∂xm

∣∣∣∣∣ ≤ ‖w‖2η
for all x ∈ D in a ball centered at x0 af radius η = γ

√
‖w‖0/‖w‖2 ≤ γ. Therefore for such x:∣∣∣∣∣∂wij,...,l(x)

∂xm

∣∣∣∣∣ >
(
K

c
− γ
)

(‖w‖2‖w‖0)1/2 =
2
γ

(‖w‖2‖w‖0)1/2

Integrating respect xm along a segment in D with extremities y1 and y2 and length η

|wij,...,l(y1)− wij,...,l(y2)| > 2
γ
η (‖w‖2‖w‖0)1/2

But the left member of the inequality above is smaller than 2‖w‖0 contradicting the definition of
η.

Lemma 3.4 There exists a constant c0 such that if G and G1 ∈ {Φt+w ∈ Cr : |t| < ε′, ‖w‖r < ε}
then

‖TNG1 − TNG− dTN (G)u‖r−2 ≤ c0‖u‖3/2r−2

where u = G1 −G.

Proof: In what follows K stands for a constant that may vary in the different formulas. First
we assert that

‖TN (G+ u)− TN (G)− dTN (G)u‖r−2 ≤ K
E( r−1

2
)∑

j=0

‖u‖j‖u‖r−j−1 (10)

where E(x) denotes the greater integer smaller or equal than x.
We have that

TN (G+ u)− TN (G)− dTN (G)u =
∫ 1

0
(dTN (G+ tu)− dTN (G)) · u dt

and so it is enough to prove that

‖(dTN (G+ tu)− dTN (G)) · u‖r−2 ≤ K
E( r−1

2
)∑

j=0

‖u‖j‖u‖r−j−1
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for t ∈ [0, 1].
Computing explicitely dTN (G) as in the proof of the lemma 2.9 we see that dTN (G) · u is the

sum of compositions and multiplications of u with maps depending on G as follows:

dTN (G) · u =
∑
i

ai(G) · u(bi(G)) +
∑
i

ci(G) ·

s(i)∏
j=1

DG(ei,j(G))

 · u(hi(G))

where ai(G), bi(G), ci(G), ei,j(G), hi(G) are maps in Cr that depend non linearly on G ∈ Cr.
The transformations G 7→ ai(G), etc have Fréchet functional derivatives respect to G when looked
from Cr to Cr−2.

Thus

(dTN (G+ tu)− dTN (G)) · u = A · u+B · u+ C · u+ P · u+ E · u+H · u

where
A · u =

∑
i

(ai(G+ tu)− ai(G)) · u(bi(G+ tu))

B · u =
∑
i

ai(G) · (u(bi(G+ tu))− u(bi(G))

C · u =
∑
i

(ci(G+ tu)− ci(G))
∏
j

D(G+ tu)(ei,j(G+ tu)) · u(hi(G+ tu))

P · u =
∑
i

ci(G)


s(i)∑
j=1

(
j−1∏
k=1

DG(ei,k(G+ tu))

)
· tDu(ei,j(G+ tu))·

·

 s(i)∏
k=j+1

D(G+ tu)(ei,k(G+ tu))

 · u(hi(G+ tu))

E · u =
∑
i

ci(G)


s(i)∑
j=1

(
j−1∏
k=1

DG(ei,k(G))

)
· (DG(ei,j(G+ tu))−DG(ei,j(G)))·

·

 s(i)∏
k=j+1

DG(ei,k(G+ tu))

 · u(hi(G+ tu))

H · u =
∑
i

ci(G)

∏
j

DG(ei,j(G))

 · (u(hi(G+ tu))− u(hi(G)))

The hypothesis on G and G1 gives bounds for ‖G‖r and ‖u‖r and hence

‖Au‖r−2 = ‖
∑
i

∫ 1

0
dai(G+ stu) · tu ds · u(bi(G+ tu))‖r−2 ≤ K

E( r−2
2

)∑
j=0

‖u‖j‖u‖r−j−2
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‖Bu‖r−2 = ‖
∑
i

ai(G)
∫ 1

0
Du(bi(G+ stu)) · dbi(G+ stu) · tu ds‖r−2 ≤ K

E( r−1
2

)∑
j=0

‖u‖j‖u‖r−j−1

So ‖A · u‖r−2 and ‖B · u‖r−2 are bounded by the second term of the inequality (10). In a
similar way are treated C · u, P · u, E · u and H · u, obtaining the inequality (10).

From (10) and the lemma 3.3 the thesis is obtained: in fact, applying 3.3 to w = Dr−2u we
have

‖Dr−1u‖0 ≤ K (‖u‖r‖u‖r−2)1/2

As ‖u‖r is bounded we obtain
‖u‖r−1 ≤ K‖u‖1/2r−2

Substituting in (10) and using ‖u‖j ≤ ‖u‖r−2 for j = 0, 1, . . . , r − 2 we obtain the inequality of
the lemma.

By lemma 3.2 we can find ε0 < ε such that if G ∈ V0 = {G ∈ W0 : ‖G − Φ0‖r < ε0} then
aG(v) > 1/2 and ‖aG‖r−2 ≤ 2‖a‖r−2.

Lemma 3.5 There exist positive numbers β, τ and c such that, if k is a sufficiently large positive
integer and G ∈ V0, G1 ∈W with ‖G1 −G‖r−2 ≤ βδ−Nk then

‖T kNG1 − ΦδNkaG(G1−G)‖r ≤ cδ−Nτk

Proof: By lemma 3.2 there exists a constant c1 > 1 such that if G ∈ W0 then the norm of
dT kN (G) as an operator on Cr−2 is bounded by c1δ

Nk for any positive integer k.
Let

ν = (1− δ−N/2)2/(8c2
0c

3
1)

where c0 is as in the lemma 3.4, and let c2 = ν(1− δ−N/2).
Let β = min(ν, ζ/(4‖a‖r−2), c2/C) with C as in the lemma 3.2 and ζ as in the proposition 2.1.
Fix G and G1 satisfying the hypothesis and let u = G1−G. Let l0 be the first positive integer

value of l such that either l > k or |tl| > ε′, with T lNG1 = Φtl + ul.
We now define a sequence χj inductively by

T lNG1 = T lNG+ dT lN (G)u+
l∑

j=1

dT l−jN (T jNG)χj (11)

Let us prove by induction that ‖χj‖r−2 ≤ c2δ
3N(j−k)/2 for j ≤ l0:

First, for j = 1: ‖χ1‖r−2 = ‖TNG1 − TNG − dTNG(G1 − G)‖r−2 ≤ c0‖G1 − G‖3/2r−2 ≤
c0β

3/2δ−3Nk/2 ≤ c0ν
3/2δ−3Nk/2 = νδ−3Nk/2(1 − δ−N/2)/(2c1)3/2 ≤ ν(1 − δ−N/2)δ3N(1−k)/2 =

c2δ
3N(1−k)/2.
By induction, we suppose ‖χj‖r−2 ≤ c2δ

3N(j−k)/2 holds for j = 1, . . . , l < l0. Applying (11) at
l + 1 and substituting T lNG1 − T lNG, we obtain:

χl+1 = T l+1
N G1 − T l+1

N G− dTN (T lNG)(T lNG1 − T lNG)
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By lemma 3.4 we have

‖T l+1
N G1 − T l+1

N G− dTN (T lNG)(T lNG1 − T lNG)‖r−2 ≤ c0‖T lNG1 − T lNG‖
3/2
r−2

and so, for all l < l0:

‖χl+1‖r−2 ≤ c0‖dT lN (G)u+
l∑

j=1

dT l−jN (T jNG)χj‖3/2r−2 ≤

≤ c0

c1νδ
N(l−k) + c1c2

l∑
j=1

δN(l−j)δ3N(j−k)/2

3/2

≤

≤ c0

(
c1νδ

N(l−k) + c1c2δ
3N(l−k)/2/(1− δ−N/2)

)3/2
=

= c0

(
c1νδ

N(l−k) + c1νδ
3N(l−k)/2

)3/2
≤ c0

(
2c1νδ

N(l−k)
)3/2

= c2δ
3N(l−k)/2 < c2δ

3N(l+1−k)/2

It now follows that, if l ≤ l0 then

‖T lNG1 − T lNG− dT lN (G)u‖r−2 = ‖
l∑

j=1

dT l−jN (T lNG)χj‖r−2 ≤

≤
l∑

j=1

c1δ
N(l−j)c2δ

3N(j−k)/2 ≤ c1c2δ
3N(l−k)/2/(1− δ−N/2) = c1νδ

3N(l−k)/2

By lemma 3.2
‖dT lNGu− δlNaG(u)v‖r−2 ≤ CδNl2−l‖u‖r−2 ≤ c22−lδN(l−k)

In what follows K denotes a constant whose value may change in the different inequalities. Since
G ∈W0: ‖T lNG− Φ0‖r ≤ K2−l. Thus, for l ≤ l0:

‖T lNG1 − Φ0 − δlNaG(u)v‖r−2 ≤ K2−l + c1νδ
3N(l−k)/2 (12)

Let m be the nearest integer to 3Nk log δ/(2log 2 + 3N log δ), therefore

δ−3N/4

√
2
≤ 2−m

δ3N(m−k)/2
≤
√

2δ3N/4

We now assert that |a(T lNG1 − Φ0)| < ε′/4, for k large enough and l ≤ min(l0,m). In fact if
l ≤ l0 we have

‖T lNG1 − T lNG− δlNaG(u)v‖r−2 ≤ c1νδ
3N(l−k)/2 + c2δ

N(l−k)

As
‖δlNaG(u)v‖r−2 ≤ KδN(l−k)
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we deduce
‖T lNG1 − T lNG‖r−2 ≤ KδN(l−k)

and so

|a(T lNG1−Φ0)−a(T lNG−Φ0)| ≤ KδN(l−k) ≤ KδN(m−k) ≤ δ−N((2k log 2)/(2 log 2+3N log δ)−1/2) < ε′/8

if k is large enough.
To prove our assertion it is enough to show that |a(T lNG−Φ0)| < ε′/8. By proposition 2.1 we

can write T lNG = Φsl + ul. By (8) we have

|a(T lNG− Φ0)| = |a(Φsl − Φ0) + a(ul)| ≤
5
4
|sl|+ ‖a‖r‖ul‖r ≤

≤ 5
2
‖a‖rε2−l + ‖a‖rε2−l ≤

7
2
ε′

30
<
ε′

8
Thus: ∣∣∣a(T lNG1 − Φ0

)∣∣∣ < ε′

4
for l ≤ min{l0,m}

Using lemma 3.1, the definition of l0 and the fact that m < k, we deduce that min{l0,m} < l0.
So, m < l0. Applying the inequality (12):

‖TmN G1 − Φ0 − δmNaG(u)v‖r−2 ≤ Kδ3N(m−k)/2

and by proposition 2.1 we have for some t

‖TmN G1 − Φt‖r < ε2−m ≤ Kδ3N(m−k)/2 (13)

Writing s0 = δmNaG(u) we deduce that

‖Φt − Φ0 − s0v‖r−2 ≤ Kδ3N(m−k)/2

and so

|t− s0| ≤ K‖Φt − Φs0‖r−2 ≤ K‖Φt − Φ0 − s0v‖r−2 +K‖Φs0 − Φ0 − s0v‖r−2 ≤

≤ Kδ3N(m−k)/2 +Ks2
0

As
s2

0 = (δmNaG(u))2 ≤ (δmN‖aG‖r−2‖u‖r−2)2 ≤ Kδ2N(m−k)

we obtain |t− s0| ≤ Kδ3N(m−k)/2 and ‖Φt − Φs0‖r ≤ Kδ3N(m−k)/2. Using (13):

‖TmN G1 − Φs0‖r ≤ Kδ3N(m−k)/2

By proposition 2.1 we can write, for j = 0, 1, . . . , k−m: Tm+j
N G1 = Φsj +uj , with s0 = δmNaG(u),

u0 = TmN G1 − Φs0 , sj+1 = δN (sj + a(uj)) and

‖uj‖r ≤ 2−j‖u0‖r ≤ 2−jKδ3N(m−k)/2
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We have sk−m = δN(k−m)s0 +
∑k−m−1

j=0 δN(k−m−j)a(uj), from which we deduce that

|sk−m − δNkaG(u)| ≤
k−m−1∑
j=0

δN(k−m−j)K2−jδ3N(m−k)/2 ≤ KδN(m−k)/2

Thus ‖Φsk−m − ΦδNkaG(u)‖r ≤ KδN(m−k)/2 and

‖T kNG1 − ΦδNkaG(u)‖r = ‖Φsk−m − ΦδNkaG(u) + uk−m‖r

≤ KδN(m−k)/2 +Kδ3N(m−k)/2 ≤ KδN(m−k)/2

From the definition of m, we have that

m− k ≤ −2k log 2
2 log 2 + 3N log δ

+
1
2

so ‖T kNG1 − ΦδNkaG(u)‖r ≤ cδ−Nτk with τ = log 2/(2 log 2 + 3N log δ).

Theorem 3.6 The local stable set of the renormalization TN is a C1 submanifold of Cr of codi-
mension one. Its tangent subspace at G0 is

{u ∈ Cr : aG0(u) = 0}

where aG0 is defined in the lemma 3.2.

Proof: Let us prove that the local stable set V0 = {G ∈ W0 : ‖G − Φ0‖r < ε0} is a C1

submanifold of codimension one.
Consider G0 ∈ V0 and G1 = G0 + tv for t a small real number. By lemma 3.5:

‖T kNG1 − Φs(t)‖r ≤ cδ−Nτk

where s(t) = δNktaG0(v), if k is chosen so that β/(δN‖v‖r−2) ≤ δNk|t| ≤ β/‖v‖r−2.
So T kNG1 is in a small neighborhood of Φs(t) with

βaG0(v)
δN‖v‖r−2

≤ |s(t)| ≤ βaG0(v)
‖v‖r−2

As Φs(t) ∈ W+ if t > 0 and W+ is an open set, we have that, for t small enough and positive
T kNG1 ∈ W+. Therefore G0 + tv ∈ W+ if t > 0 and small enough, say 0 < t < ε′′. Analogously
G0 + tv ∈W− if 0 > t > −ε′′.

By continuity, if we fix G0 ∈ V0 then for G in a small neighborhood of G0 the lines {G+tv, t ∈
(−ε′′, ε′′)} have one and only one intersection with V0. Let H = {u ∈ Cr; aG0(u) = 0}. It is a
codimension one subspace of Cr. For u ∈ H with ‖u‖r sufficiently small, there exists an unique
small real number χ(u) such that G0 + u + χ(u)v ∈ V0. We will show that χ is of class C1 and
dχ(0) = 0. Thus V0 is locally diffeomorphic to H and is a C1 submanifold of codimension one.
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χ is continuous: in fact if uj → u with G0 + uj + χ(uj)v convergent, then it converges to a
point in V0 because V0 is a relatively closed set, and so χ(uj) → χ(u). Let us prove that χ is of
class C1. Let Gi = G0 + ui + χ(ui)v for i = 1, 2, so G1, G2 ∈ V0. Let k be the largest integer
number so that ‖G2 −G1‖r−2 ≤ βδ−Nk. Then βδ−N(k+1) < ‖G2 −G1‖r−2 ≤ ‖G2 −G1‖r and by
lemma 3.5

‖T kNG2 − Φs‖r ≤ cδ−Nτk

for s = δNkaG1(G2 −G1). Also by lemma 3.5,

‖T kNG2 − Φ0‖r ≤ cδ−Nτk

Therefore
|s| ≤ K‖Φs − Φ0‖r ≤ 2cKδ−Nτk

for some constant K and hence

|aG1(G2 −G1)| ≤ 2cK(δ−Nk)τ+1 = O(‖G2 −G1‖τ+1
r )

So:
aG1(u2 − u1) + aG1(v)(χ(u2)− χ(u1)) = O(‖u2 − u1 + (χ(u2)− χ(u1))v‖τ+1

r )

We assert that |χ(u2) − χ(u1)| = O(‖u2 − u1‖r). In fact, by contradiction if it were sequences
{u1,j} and {u2,j} such that ‖u1,j − u2,j‖r → 0 and ‖u2,j − u1,j‖r = o(χ(u2,j)− χ(u1,j)), then

aG1(v)(χ(u2,j)− χ(u1,j)) = O(|χ(u2,j)− χ(u1,j)|τ+1)

which is absurd because aG1(v) 6= 0.
Then

aG1(v)(χ(u2)− χ(u1)) + aG1(u2 − u1) = O(‖u2 − u1‖τ+1
r )

and χ is differentiable at u1 with dχ(u1) = −(aG1(v))−1aG1 .
From the continuity of G1 7→ aG1 we deduce the continuity of dχ and hence V0 is a C1

submanifold in a neighborhood of G0.
For u ∈ Cr we have defined Ju = a(u)v the projection on the subspace [v] = U of dimension

one tangent to the unstable manifold W u = {Φt} at Φ0. Thus I − J is the projection on the
subspace S = {ker a} tangent to the stable manifold W s at Φ0.

Let us consider the decomposition in Cr: u = (u1, u2) where u1 = Ju ∈ U and u2 = u−u1 ∈ S.
In a neighborhood of Φ0 the unstable manifold W u is diffeomorphic to a neighborhood Bu of 0 of
its tangent space U . We have a C1 map θ2 such that Φ0 + (u1, θ2(u1)) ∈W u for all u1 ∈ Bu ⊂ U .
Moreover, θ2(0) = 0 and d θ2(0) = 0. Analogously, for the stable manifold we have a C1 map θ1

such that Φ0 + (θ1(u2), u2) ∈W s for u2 ∈ S in a neighborhood Bs of 0 and θ1(0) = 0, d θ1(0) = 0.
We define the C1 local change of coordinates θ from Bu × Bs ⊂ Cr to a neighborhood of Φ0

in Cr:
θ(u1, u2) = Φ0 + (u1 + θ1(u2), u2 + θ2(u1))
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Thus θ is of class C1, θ(0, 0) = Φ0, and dθ(0, 0) is the identity. θ is a local C1 diffeomorphism in
Cr. Observe that θ transforms Bu ⊂ U and Bs ⊂ S onto respectively the local submanifolds W u

and W s. Now consider the expression of the transformation TN in the new coordinates:

T̃N = θ−1 ◦ TN ◦ θ

It has 0 as fixed point, Bu ⊂ U and Bs ⊂ S as local unstable and stable manifolds.
Increasing r if necessary we can consider the local stable and unstable manifolds in Cr−1 which

contain respectively those in Cr. As before, we can define the local diffeomorphism θ in Cr−1. The
formal derivative dTN (G) for any G ∈ Cr has been defined in the remark 2.10 as a bounded linear
operator from Cr−1 to Cr−1. So we have dT̃N (u) ∈ L(Cr−1, Cr−1), and dTN (Φ0) = d T̃N (0) = F̃N .
As U and S are invariant by F̃N we have

F̃N (u1, u2) = (A1u1, A2u2)

where A1u1 = δNu1 and by lemma 2.7

‖A2u2‖r−1 ≤
1
2
‖u2‖r−1

Let us write
T̃N (u1, u2) = (A1u1 + ∆1(u1, u2), A2u2 + ∆2(u1, u2))

We have ∆1(0, u2) = ∆2(u1, 0) = 0 because U and S are invariant by T̃N .
Considering the formal derivative of T̃N as a bounded linear operator from Cr−1 to Cr−1,

we have bounded linear operators d∆1(u) and d∆2(u) on Cr−1. For u in a neighborhood of 0,
‖d∆1(u)‖r−1 and ‖d∆2(u)‖r−1 are smaller than a given positive number if N is large enough (see
the remark 2.10).

Lemma 3.7 (The inclination lemma) Given ε > 0, there exists N such that if {Gµ} is a C1

curve of maps in Cr intersecting transversally W s at G0 and Dk is the connected component
through T kNG0 of {T kNGµ} in Bu ×Bs ⊂ Cr, then there exists k0 ≥ 0 such that for k ≥ k0, Dk is
C1 ε-close to Bu in the space Cr−1.

Proof: We have to repeat the same arguments of the proof of the inclination lemma of [14] for
hyperbolic fixed points, using the Cr−1 norm of vectors in Cr, and the bounded operator dT̃N on
Cr−1, with the bounds given above.

We recall the remark 1.8. Arguing in the space Cr−1 instead of HD we deduce that the
codimension one submanifolds Σm are transversal to the unstable manifold {Φµ}µ<0 in Cr−1.
Any curve of maps {Gµ} ⊂ Cr−1 that has a transversal intersection with Σm presents a period
doubling bifurcation of period 2m to 2m+1.

We also recall the definition of homoclinic bifurcation with unavoidable tangency (definition 1.9
and proposition 1.10). A version of the lemma 1.15 in the Cr space can be stated with the same
proof:

Lemma 3.8 There exist an interval [a, b] with b > a > 0 and open sets N , N1 and N2 in Cr

containing respectively {Φt; t ∈ [a, b]}, Φa and Φb such that any continuous arc {Gµ} in N with
extremities in N1 and N2 exhibits a homoclinic bifurcation with unavoidable tangency.
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Taking preimages of N1, N2 and N by a sufficiently large iterate of TN , we can consider that
they are as near Φ0 as wanted.

Proof of the theorem 2: Let us take W the stable manifold W s of TN . As {Gµ} intersects

transversally W s at G0 we have that ∂
∂µGµ

∣∣∣
µ=0

is not contained in the tangent subspace TG0W
s,

that is, by theorem 3.6,

aG0

(
∂

∂µ
Gµ

∣∣∣∣
µ=0

)
= h 6= 0

Let us suppose h > 0. As {Gµ} is differentiable respect µ: ‖Gµ−G0‖r−2 ≤ c3|µ| for some constant
c3 and for all |µ| small enough. For any large integer k > 0

‖Gδ−Nkµ −G0‖r−2 ≤ c3|µ|δ−Nk ≤ βδ−Nk for all µ ∈
[
− β
c3
,
β

c3

]
Thus, by lemma 3.5:

‖T kNGδ−Nkµ − Φs(µ)‖r ≤ cδ−Nτk

for s(µ) = δNkaG0(Gδ−Nkµ −G0) for all |µ| ≤ β/c3. Now

s(µ) = δNkaG0(Gδ−Nkµ −G0) = δNkhδ−Nkµ+ o(µ) = hµ+ o(µ)

Thus T kNGδ−Nkµ converges when k → ∞ to Φhµ+o(µ) uniformly in µ ∈ [−β/c3, β/c3]. Using
the inclination lemma 3.7, the arc {T kNGδ−Nkµ}µ∈[−β/c3,0] exhibits, for all k sufficiently large a
period doubling bifurcation for a parameter value of µ ∈ [−β/c3, 0]. That is, there exists µk ∈
δ−Nk[−β/c3, 0]→ 0 where Gµk presents a period doubling bifurcation.

Using the lemma 3.8 the arc {T kNGδ−Nkµ}µ∈[0,β/c3] will have a subarc in N , with extremities in
N1 and N2 and thus, it exhibits a homoclinic tangency for some value of µ ∈ [0, β/c3]. Therefore,
there exists µ̄k ∈ δ−Nk[0, β/c3]→ 0 such that Gµ̄k exhibits a homoclinic tangency.
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