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ABSTRACT.- We consider perturbations of the Feigenbaum map in n dimensions. In the
analytic topology we prove that the maps that are accumulated by period doubling bifurcations are
approximable with homoclinic tangencies. We also develop a n-dimensional Feigenbaum theory in
the C" topology, for r large enough. We apply this theory to extend the result of approximation
with homoclinic tangencies for C"maps.

RESUME.- On considére des perturbations de la transformation de Feigenbaum en dimen-
sion n. Dans la topologie analytique on prouve que les transformations qui sont accumulées par
des bifurcations de duplication de période sont approchées par des tangences homocliniques. On
développe aussi une théorie de Feigenbaum n-dimensionelle dans la topologie C™, avec r suffisan-
tement grand. Cette théorie est appliquée pour étendre le résultat d’approximation par tangences
homocliniques pour les transformations C”.

Introduction

The one-parameter unfolding of a homoclinic tangency, for locally dissipative maps of class C”
(r > 3), in dimension two, originates important dynamical phenomena [13] [15] [19] [16]. For
instance: horseshoes and hyperbolic sets, cascades of period doubling bifurcations [21], maps with
infinitely many sinks [12], Hénon-like attractors [11] [1]. Some of the results are also valid in higher
dimensions [17] [20] [18] [10]. In other words, the families unfolding a homoclinic tangency have
many of the known global bifurcations. They are notable examples of global unstable systems. It is
not known if the homoclinic bifurcations are in general necessary for global unstability. Precisely,
J. Palis has formulated the following:

Conjecture [16] The subset H of diffeomorphisms that are either hyperbolic (i.e. with hy-
perbolic limit set and no cycles) or homoclinic bifurcating is dense in the space of C* surface
diffeomorphisms.
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When formulating the question, J. Palis has also presented the following program: try to
approximate with homoclinic bifurcations some particular global unstabilities, as for example:

1. diffeomorphisms having an attractor (as discovered by Feigenbaum and independently by
Coullet and Tresser [6] [3]), at the accumulation of period doubling bifurcations.

2. diffeomorphisms having a Hénon-like attractor.
3. diffeomorphisms exhibiting infinitely many coexisting sinks.

To address the first case of the program above, we will consider a renormalization T" of n-
dimensional perturbations of the Feigenbaum map .

The spectral properties of dT'(®) in n dimensions were studied by Collet, Eckmann and Koch
[2] in the analytic topology. They proved that ® is a hyperbolic fixed point of the renormalization
T with a single unstable direction and that the maps in the stable manifold are accumulated by
period doubling bifurcations.

For one-dimensional analytic maps in a neighborhood of the Feigenbaum map, the accumu-
lation of the period doubling bifurcations are approximated by band-merging maps. This result
was proved by Eckmann and Wittwer [5].

Applying these results we can provide a partial answer to the part 1 of the program above:
n-dimensional analytic maps in the stable manifold of ® are the accumulation of period doubling
bifurcations and can be approximated with homoclinic tangencies.

A. M. Davie ([4]) has developed an one-dimensional Feigenbaum theory in the C%*? topology.
He proves that, although the renormalization is not Fréchet differentiable in that space, the
Feigenbaum map is a topologically hyperbolic fixed point. He shows the existence of a C! stable
submanifold of codimension one in the space C?*9.

Following the ideas of A. M. Davie we develop a n-dimensional Feigenbaum theory in the C”
topology, for r large enough. Some of the arguments of [4] have to be modified to work in a
n-dimensional setting. That is why we present a detailed exposition of the theory that occupies
entirely the sections 2 and 3. We conclude that there is a topologically hyperbolic behaviour of
the renormalization near ® in the space of n-dimensional C" maps, and the existence of the stable
submanifold.

Applying these results we can improve the first answer to the question of approximation with
homoclinic tangencies: also n-dimensional C” maps in the stable manifold of & are cascades of
period doubling bifurcations which are approximable with homoclinic tangencies.

The main theorems

We will denote Hp the space of bounded real analytic maps, defined in a neighborhood D of
[-1,1] x {0} in C™ to C". The map @, as will be defined in 1.2, is a particular endomorphism
of Hp, transforming D into an one-dimensional image, and will be called the Feigenbaum map in
n dimensions.

Theorem 1 In the space Hp there ezists a codimension one manifold W, containing the Feigen-
baum map ®, such that any differentiable curve {G,} in Hp that intersects transversally W at



Gy verifies:

a) It has a sequence of period doubling bifurcations for parameter values p,, — 0 monotonely.

b) There exists i, — 0 (monotonely, at the other side of 0 than p,), such that Gy — exhibits a
homoclinic tangency.

The part a) of the theorem above appears in [2].
We denote C” the set of C" maps defined in a neighborhood D of [-1,1] x {0} C R™ to R".

Theorem 2 For r large enough there exists in the space C" a codimension one manifold W,
containing the Feigenbaum map ®, such that any differentiable curve {G,} in C" that intersects
transversally W at G verifies:

a) It has a sequence of period doubling bifurcations for parameter values i, — 0 monotonely.

b) There exists fi,, — 0 (monotonely, at the other side of 0 than p,), such that G = exhibits a
homoclinic tangency.

In the section 1 we prove the first theorem, and in the sections 2 and 3 the second one. The first
theorem has been proved by the first author alone. The second theorem has been proved jointly.

We thank J. Palis for posing the problem, as well as for motivating conversations and constant
support, and K. Khanin for very useful discussions and suggestions. We also thank W. de Melo,
O. Lanford, and A. M. Davie. Finally, we thank to IMPA, Rio de Janeiro, for its hospitality.

1 The analytic perturbations of the Feigenbaum map

In this section we develop the theory in the analytic case, using the fact that the renormalization
is differentiable with derivative that is a compact operator whose spectrum is computable. In
the subsection 1.1 we analyse the spectrum of the renormalization and prove the part a) of the
theorem 1. In the subsection 1.2 we find the homoclinic tangencies and prove the part b).

1.1 Spectral analysis of the renormalization

Let us state some results in dimension one that give an understanding of the cascades of period
doubling bifurcations.

Let D be a neighborhood of [-1,1] in C, and H, the space of real analytic maps defined and
bounded in D. It is a Banach space with the supremum norm. In Hp let M be the manifold

M={e Hp:¥(z) = g(z%) for some g real analytic, g’ # 0, g(0) =1}
The renormalization transformation F is defined as:
(Fy) () = (1) op(v(1))

applied to the maps ¢ € M such that —1 < ¢(1) < 0 and Y(p(1)D) C D.
The following theorem provides some properties of F:

Theorem 1.1 If the neighborhood D is small enough, then:



a) There exists @ € M fized by F. The Schwarzian derivative Sy is negative. Moreover p?(0) =
o(1) =X =—.3995... and ©'(1) = \~!

b) Fisa C® transformation, and d]:"(go) is a compact operator having a single eigenvalue § =
4.6692 ... of modulus greater or equal than 1, which is simple.

c) The unstable manifold W“(cp) C M intersects transversally the codimension one manifold $
of period doubling bifurcations, defined as follows:

O = { e M : Y (z0) = —1 for mo fized by 1}

Proof: See O. Lanford III's article [9]. This theorem was conjectured in [6], [3] and [7]. m

The Feigenbaum map in dimension one is the map ¢ of the theorem above.

Following Collet, Eckmann and Koch [2], let us take a neighborhood D in C™ of the interval
[—1,1] x {0}. Our functional space Hp will be the Banach real space formed by the real analytic
maps defined and bounded in D with the supremum norm.

Usually we will consider only the restrictions to R™ of the maps in Hp. For simplicity we will
not use a different notation to refer to the restriction.

Let us fix « € R"™, a # 0, and define 6 : C" — C, and 6y : C — C, as follows:

0(20,2) = 22—a-Z
Oo(z) = 2*

Definition 1.2 The Feigenbaum map in n dimensions is the map:
®=(f00,0):DCC"—C"
where f o 6y = ¢ is the Feigenbaum map in dimension one.

For fixed «, there exists D small enough such that §(D) is contained in the domain of f, and
therefore ® is well defined.

Being A = (1) = —.3995..., let us define A : C" — C", the linear rescaling A(zo,Z) =
(Mz0,A2Z), and a (first) renormalization transformation :

NG=A10GoGoA

for all G € Hp in a neighborhood of ®.
The renormalization transformation N will be modified later (substituting the linear rescaling
A with a nonlinear change of coordinates), to get a new renormalization transformation 7" that will

have some desired properties. Observe that the Feigenbaum map @ is fixed by N and dN (®)u =
Alo(uo®+DPo® u)oA.



Remark 1.3 For any given real analytic map o: C" — C™ we will denote
U,=—-00®+Dd -0
It is a map in Hp tangent at ® to the curve of maps:
{(I+to) oo (I+to)}, te(—c,e)CR
of analytic conjugates of ® near ®.

Theorem 1.4 (Collet, Eckmann and Koch) [2]

a) N is infinitely differentiable and dN(®) is a compact operator whose eigenvalues of modulus
greater or equal than 1 are 1, A\™1, A2, 4.

b) Their respective spectral invariant subspaces So, S1, S2, and U, are eigenspaces.

Moreover, the subspace U is one-dimensional in Hp. The subspaces Sy, S1 and So are finite
dimensional described as:

So={¥y: 0(20,Z) = (a120, Bazg + A-Z)}
S| = {Uy : 0(20,72) = (ag, B120)}
So={V,: 0(z0,7) = (0, Bo)}
with ag and ay in R; By, By and By in R*™'; and A € L(R" 1, R*™1).
Proof: See [2]. m

For later purposes we need to modify the renormalization N. Let us define the transformation
F, applied to the maps G € Hp in a neighborhood of ®:

F(Q) :AaloGoGoAG
where Ag(20,Z) = (Agzo, \&Z) for

71 0 G2(0,0)

Ay =
¢ To G(0,0)

where 77 is the first coordinate projection.
Note that \¢ = A and F(®) = N(®) = ®. After some computations we find that for all
u= (up,U) € Hp:

df((b)u - dj\/(@)u + 7(“)\11017 (1)
where: 1 (1,0) 1 U(0,0)
u 5 a - 3

and o1(20, Z) = (20,27Z). We have:
o, (20, Z2) = (—f(25 —a- Z)+2f (2§ —a- Z) (2§ — - Z), O)

So y(¥,,) = 0. Observe that ¥,, € Sy, thus it is fixed by dNV(®) and dF(®). A consequence of
(1) and of theorem 1.4, is the following:



Proposition 1.5 .
a) ® is a fized point of F, and dF(®) has the same spectrum that AN (®P).

b) The spectral invariant subspaces Sy, S1, So and U corresponding respectively to the eigenvalues
1, A™', A72 and § have the same dimension that Sy, Si, So and U of the theorem 1.4.
Moreover So @ S1® Sy =Sy® S5, ® 5, =5.

c) For anyu € Hp there exists ou], the unique analytic map in C™ such that ¥, = Eu, where
E is the spectral projection on S. The transformation u — ou] is linear and bounded.

Proof: Let us denote F' = dF(®), N = dN(®). They are compact operators. Denote
Y(F), ¥(N) their spectra. We know that FU, = NV, = ¥, . Let p # 0. We assert that
w € X(F) with multiplicity m, if and only if g € X(N) with the same multiplicity. In fact, take
w € X(F), with spectral subspace ker(F — p)” of dimension m. Define V' = ker(F — u)” + [V, |.
It is invariant by F. The Jordan matrix J of F restricted to V has p in the diagonal repeated
m times (and a single 1 if ;4 # 1). In the same basis, the linear operator N restricted to V'
has a triangular matrix with the same diagonal than J, (due to (1)). Then u € X(N) and has
multiplicity at least m. Changing the roles of N and F', our assertion is proved, and also for
p=1, A7, A2 ord:

ker(F — )" + [, | = ker(N — p)” + [T, |
Now, part b) follows easily. Finally, Fu = ¥, for some o in the set

¥ = {o: C" +— C" analytic; o(20, Z) = (ao + a120, By + Bizo + Boz + A+ Z)}

due to theorem 1.4.

Let Q : ¥ — S be the linear transformation between finite-dimensional spaces defined by
Q(0) = ¥, asin 1.3. It is easy to check that Q is injective. Therefore u — ofu] = Q 'Fu is
linear and bounded. m

We are ready to define our final renormalization transformation in n dimensions:

Definition 1.6 The renormalization transformation T is:
T(G) = (I - o[F(G) = @)~ o F(G) o (I — a[F(G) — @)
applied to G € Hp in a neighborhood of ®.
The renormalization 1" was chosen so that it verifies the following properties:
Corollary 1.7 .
a) The map ® is a fixed point of T.

b) T is infinitely differentiable and dT(®) is a compact operator, having a single simple eigenvalue
0 =4.6692 ... of modulus greater or equal than 1.



c) The unstable manifold W*(®) = {®;} is formed by the maps ®, € Hp of the form:
(20, Z) = (fi(22 — a - Z),0)

where fi(2%) = @i(2) are the one-dimensional maps of the unstable manifold {¢} = W(p)
of the renormalization F in dimension one (cf. theorem 1.1).

Proof: Part a) can be easily verified.
Part b) follows from the proposition 1.5: in fact, taking derivatives in the equality of the
definition 1.6, and denoting F' = dF(®), we get:

dT(®)u = Fu + o[Fu] 0 ® — D® - o[Fu] = Fu — U p, = (I — E)Fu

Now, all vectors of S are in the kernel of dT'(®). Thus, the only unstable direction that remains
has eigenvalue §, as wanted.

We now show part ¢). Let M, defined at the beginning of this subsection, be the manifold of
one-dimensional maps 1. We will consider in Hp the submanifold

M:{\I’EHD:\II:(goe,O) where goeoeM}

(Recall that 0(20,Z) = 22 — a - Z and 0y(z) = 2%). Note that ® € M and that for all ¥ =
(g06,0) € M in a neighborhood of ®, FW¥ is in M and it is obtained computing ]:"(g o fp).

The theorem 1.1 implies that F restricted to a neighborhood of ® in M has derivative at
® whose spectrum exhibits a single eigenvalue § of modulus greater or equal than 1. Thus
ToM C ker(E), and ofu] =0 for all u € To M. As M —® C T M by the definition 1.6 TV = FU
for all ¥ in a neighborhood of ® in M. As FV is obtained computing F, the theorem 1.1 implies
c).

Due to the theorem 1.1 we can take a parametrization {¢;} of W¥(p) such that o = ¢,
F(pr) = @s: and @_1 is the transversal intersection of 31 with {p;}.

By the part ¢) of the corollary 1.7 we have the correspondent parametrization {®;} of W*(®).

The map ®_; has a fixed point (x_1,0) with x_; fixed by ¢_1, and

D®_y(x_1,0) = < 90’_1(09U_1) _O"flal(xzﬂ )

has eigenvalues —1 (simple) and 0 (with multiplicity n—1). So, there exists a neighborhood Ny of
®_; in Hp such that all G € Ny has a fixed point p¢, continuation of (x_1,0), and DG(p(G)) has
a eigenvalue p(G) near —1 and n —1 eigenvalues near 0. In particular, for ®; € Ny, p(®;) = (x¢,0)
and p(®;) = ¢ (21).
Let us define
X1 = {G € Ny : p(G) = —1}

It is a submanifold of codimension one in Hp. Any differentiable curve of analytic maps intersec-
ting transversally 3; exhibits a period doubling bifurcation of period 1 to period 2.

By the part ¢) of the theorem 1.1: %gog(xt)‘tzil # 0. So %P(q}t)‘t:,l # 0 and {®;} intersects
transversally 3; at ¢t = —1.



Remark 1.8 As 7" (®_s-m) = ®_;, arguing as above the submanifolds ¥,,, of codimension one
in Hp, where the period doubling bifurcations of period 2 to period 2™*! occur, are transversal
to {‘Pt} in @_67771.

We are ready to prove the first part of the theorem 1.

Proof of part a) of theorem 1: Let W = W?*(®). Given a differentiable curve {G,}
transversal at g = 0 to W its images by the renormalization 7" accumulate at W*(®) when
m — oo, due to the inclination lemma ([14]). So, for m sufficiently large there exists p,, such
that {7 G} intersects transversally 31 at 4 = p,. Therefore {G,} exhibits a period doubling
bifurcation of period 2™ to 2™+, The argument above works for any subarc of {G,} as near as
wanted from Gg. Thus p,, — 0. =

1.2 Homoclinic bifurcating maps

Let {G,.}, i € [a,b] be a continuous arc of maps in Hp. Let us suppose that for all i € [a, b] there
exists a hyperbolic periodic point p,,, depending continously on p, of stable codimension one.

Let us denote Ay, and Aj, compact parts of W*(p,) and W?(p,) respectively, depending
continously on p, as C' submanifolds with boundary of R". The point pu does not necessarily
belong to A or Ay,

Definition 1.9 The arc {G,}, p € [a,b] in Hp exhibits a homoclinic bifurcation with unavoidable
tangency if there exist p,, Aj;, Aj, as above, such that:

i. 0A}NAS =0A;,NA; =10, for all p € [a,b]
ii. AYNAs =10
iii. Ay N Aj contains at least one point of transversal intersection.
The name unavoidable tangency of the definition above is due to the following;:

Proposition 1.10 If {G,}, p € [a,b], is an arc as in the definition 1.9, then there exists pig €
[a,b] such that G, has a periodic point with a homoclinic tangency.

Proof: As the interval [a,b] is connected, there exists yg € (a,b) such that Aj, and A} have a
non transversal intersection. It must be a tangency because the dimension of A} is one. ®

We will take the definition of band-merging maps from [5], and relate it with the homoclinic
bifurcations.

Let M be a manifold of one-dimensional maps defined at the beginning of the subsection 1.1.

Definition 1.11 A map ¢ € M is band-merging if: 0 < 1 o (1) = —1p(1) < 1

As (x) = g(x?), we have the following equivalent definition: 0 < g((g(1))?) = —g(1) < 1. As
g(0) =1 and ¢g(1) < 0, ¢’ <0 and so z¢(x) < 0 for all = # 0.

Proposition 1.12 If ¢ is band-merging and the Schwarzian derivative S is negative then:



a) —(1) is a hyperbolic repellor, whose repelling basin includes [p(1), —1(1)],

b) any Y € M, near enough ¥, has a repelling fized point whose basin includes [1;(1), —1(1)].

Proof: Let us see part a) :

The map 1 09 is increasing in (0,2_1), where z_1 > 0 and t(z_;) = 0. Its graph, at z =0
is below the diagonal, at x_; is above the diagonal, and at xyp = —¢(1) € (0,z_;) intersects the
diagonal. By contradiction, suppose that (1 0 1)'(z9) < 1. Then, there exists x1; where (¢ o ¢))”
vanishes and (¢ o )" is non negative. This implies that S(1) o ¥)(x1) > 0, contradicting our
hypothesis, because Sv¥ < 0 implies S(¢ o 1)) < 0. The same contradiction is obtained if 1) o ¢
is supposed to have other fixed point Ty € [0,z¢). Therefore xq is a repellor and [0, x¢] is in its
basin. By symmetry, also [—xg, 0] is.

To show part b) , consider any 1) near enough 1, so that it also has a hyperbollic repellor, and
S < 0. The proof also works for 9 instead of ). m

Due to the above proposition, the band merging maps with negative Schwartzian derivative
satisfy the condition that the critical point lands after three iterations on the unstable periodic
point.

We recall that the family {¢;} is the unstable manifold in M of the hyperbolic fixed point ¢

N

of the renormalization F. It is parametrized such that ¢o = ¢, F(p:) = s and p_1 € Xj.

Theorem 1.13 (Eckmann and Wittwer) There exists tg > 0 such that oy, € W(¢) is band-
merging, and for all t near ty:

2 (orlpu(1) + @u(1) <0

Proof: See [5]. m

This last theorem asserts that W“(cp) at ¢y, intersects transversally in M the codimension one
(in M ) manifold of band-merging maps.

Now let us consider the family of maps {®;} in Hp, that is W*(®), the unstable manifold of
® by the renormalization T. Due to part ¢) of the corollary 1.7 it is obtained from {y;}.

The following lemma is a consequence of the theorem 1.13.

Lemma 1.14 Given ¢ > 0, for all v > 0 sufficiently small the arc {®:}, t € [to — 7v,t0 + 7]
exhibits a homoclinic bifurcation with unavoidable tangency, and the first coordinate projection of
the compact part A; (cf. definitionl.9) is contained in (—¢,¢).

Proof: First, we assert that ®;, = (fy, 00, 0) has a hyperbolic fixed point p;, = (—f,(1), 0)
of stable codimension one. In fact, it is fixed because f;, o fp is band merging. Let us see that it
is hyperbolic, computing D®y, (py, ):

Dy, = 2:5]%000 —(ft’ogﬁ)-a

with 2z f] (2%) = (fy, © 60)'(z). But fi, o 6y belongs to the unstable manifold WH(g) in M, and
all maps in W“((p) have negative Schwarzian derivative because all the maps in a neighborhood



of ¢ have, and also their renormalizations. Therefore, proposition 1.12 states that —f; (1) is a
repellor. Thus:

|20 f1, (a)] > 1 for g = —ft,(1)

Thus, our assertion is proved.

Let us choose v > 0 small enough so that, for all ¢ € [ty — 7,tp + 7] there exists p; = (x¢,0),
continuation of py,, hyperbolic fixed point of ®; = (f; 0 6,0) € W*(®). Here z; is the hyperbolic
repellor of the unimodal map ¢; = f; 06y , whose repelling basin includes [f;(1), —fi(1)], as proved
in the proposition 1.12.

We define:

A = {(@,X): X =0, [o] < — (1)} € W(p)

The theorem 1.13 allows us to choose v such that ¢;(p(1)) 4+ ¢¢(1) is positive for ¢ € [ty — v, o)
and negative for ¢ € (to,to + 7]
We assert that given § > 0 there exists v sufficiently small and y; € ¢, 2(xy), for all t €
[to — v, to + 7], such that:
l<y<144ifte [to—’y,to)
Yo =1
1—-0 <y <1lifte (ty,to+7]

In fact, if t € [tg — 7y, to) we have pi(pi(1)) +¢(1) > 0, i.e. the graph of p; at —¢y(1) is above the
diagonal. As ¢, is decreasing in (0, 1], the fixed point z; is at right of —¢;(1). Therefore, given
61 > 0:

0r(1) > —ar > (1) — 61

for all t € [tg — v, 1), near enough t.

The map ¢ is decreasing at right of 0 and defined in a neighborhood D of [—1, 1]. We conclude
that, given § > 0, there exists v and y; € o, ' (—x) for all t € [tg —,t), such that 1 < y; < 146.
As —x¢ € ¢ Y(z4), we have y; € o %(x¢). The same argument, with the opposite inequalities, is
valid for ¢ € (tp,t9 + ). This completes the proof of our assertion.

We have f;(0) = 1 and f/(0) < 0. If v is small, for any t € [to — 7,to + 7], the map f; is
invertible and decreasing in a fixed neighborhood of 0. Let us denote ; = f{l(yt). Our previous
assertion can be reformulated as follows:

Given € > 0, for all v sufficiently small:

—e2 < g <0ifte[tg—,t)
5t0:0

0<e <eifte (to,to+1]

With no loss of generality, let us suppose that ay,—1 # 0. (Recall that o = (a1, 9, ..., qp—1) #
0). Let us denote X = (X1, Xs,...,X,,—1). Now we can define, for given € > 0, :

A = {(ac,X) ‘2?2 —aX = e, |z) <e, [(X1,...,Xn2)| < z-:}.

It is easy to check that Af C ®;3(p;) C W*(py).

10



Let us see how A looks: For ¢t = tg, &, = 0 and A C {2 — aX = 0}. It is a quadratic
codimension one manifold of R", passing through (0,0) and tangent at (0,0) to Af. For t €
[to — v, t0), & < 0, and Af does not intersect {X = 0} D A¥. For t € (to,to + 7], & € (0,¢2). So
Aj intersects {X = 0} at two points ¢ = (—,/&¢,0) and r = (\/&¢,0), both in the e-neighborhood
of (0,0). Then both ¢ and r are in A}.

Moreover T, A and T, Aj are transversal to the subspace {X =0} = T, A} = T, A}

Finally, if € is small enough, we get 0A N A} = 0AY N A; =0, for all ¢ € [tg — v, to+7]. ®

Now we are ready to perturb the family {®;}, ¢ € [to — 7, to + 7], contained in W*(®), and
prove that the homoclinic bifurcation persists for nearby families.

Lemma 1.15 There ezists an interval [a,b] with b > a > 0 and neighborhoods N, Ny and Ny in
Hp, of {® : t € [a,b]}, Pq and Py respectively, such that any continuous arc {G,}, in N, with
extremities in N1 and No, exhibits a homoclinic bifurcation with unavoidable tangency.

Proof: Let us take ®;, = (fi, 0 6,0) with ¢y as in the theorem 1.13. We have that p;, =
(—f1(1),0) is a fixed point, of saddle type. Its local stable manifold is contained in {(z,X) :
2?2 —aX — (f,(1))? = 0}. Any G in a small neighborhood of ®;, in Hp, has an hyperbolic fixed
point p(G), whose local stable manifold is of codimension one, given in a neighborhood of p(G)
by the equation

{(z,X):U(z,X,G) =0}
where U(-,-,G) is a smooth real function of (z, X), depending continously on G ([8] [14]). We
have U(x, X, @) = 22 — aX — (fi,(1))%

Let us define, for any (z, X, G) in a certain small neighborhood of (0,0, ®;,) in R" x Hp, the

real function:

F(z,X,G)=U(G3(z,X),G)
The point (0,0) verifies @} (0,0) = p,, and so

F(0,0,®;,) =0

As in the proof of the previous lemma, let us suppose a,_1 # 0, and compute the partial

derivative:
oF

aanl
Now, by the implicit function theorem, there exists Ny, neighborhood of ®;, in Hp, and € > 0

such that for all G € Ny, for all z € B.(0) and for all (X1,..., X, 2) in R""? with norm less than
g, is defined the coordinate X,,—1 = u(z, X1, ..., X,—2, G) verifying:

(Ov 0, (@to) = 2an71ft0(1)(80§0)/(1)f£0 (0) 7& 0

(z,X) € G (Wige(p(G))) € W*(p(G))

with X = (Xq,..., X,—1).
Let us take

A(G) ={(z,X): Xp1 =u(z, X1,..., Xn-2,G); |z| <& ||(X1,...,Xn2)|| <&}

11



We have that A°(G) is a C! submanifold with boundary of R", that depends continously on
G € Ny. It is a compact part of W#(p(G)). For the neighborhood Ny and £ > 0 as above, let us
take 7 as in the previous lemma, and also such that ®; € Ny Vt € [a,b] = [to — v, to +y]. We take
A7 = A%(®4) and A} as in the proof of the previous lemma. A} is contained, for some fixed ng
independent of ¢, in ®}° (W} (p(®¢))). Let us take for any ¢ € [a, b], a small neighborhood N; of ®;
in N, such that G™ (W}, (p(G))) is C* near to ®}° (WL, (p(®:))), for any G € N;. Consequently,
compact parts A%(G) and A°(G) can be chosen, proximate to A¥ and Aj respectively as C!
submanifolds with boundary, for any G € N;. The three conditions in the definition 1.9 are
persistent under small C! perturbations of A% and A;. Therefore, the lemma is proved taking

N = U Ni; Ni=N,; No=N,m
te[a,b]

Now, we are ready to complete the proof of the theorem 1.

Proof of part b) of theorem 1: Let W = W?#(®). The lemma above states the existence
of the arc {®; : t € [a,b]} C W*(®) and the neighborhoods N, N, Na. Given a curve {G,},
transversal at yu = 0 to W, its images by the renormalization T accumulate, when m — oo, at
the unstable manifold of ®, due to the inclination lemma [14]. In particular they approach the
arc {®; : t € [a,b]} C W"(®). Consequently, there exists [am, by], for all m sufficiently large, such
that T G,,, € N1, T™Gy,, € N2, TG, € N for all pi € [am, bp].

Besides [anm, by] — 0, because the argument above works for any subarc of {G,} as near as
wanted from Gy.

The lemma 1.15 states that {T™G,}, p € [am,bn] exhibits a homoclinic bifurcation with
unavoidable tangency, and so there exists fi,, € [am,bn] — 0 with G exhibiting a homoclinic
tangency.

The part a) of the theorem 1 states the existence of p,, — 0 where G, is period doubling
bifurcating. As the intersection of ¥; with W¥(®) is produced at ®_; and the homoclinic tan-
gencies were found in a neighborhood N of {®;},c(44) With b > a > 0, it follows that 7, is at the
other side of 0 than p,,. =

2 The C" theory
Now we will work in a C" neighborhood U of ®¢ (r > 3). We define, for G € U

FUG) = Ak oG o Mg (2)

where A; ¢ € L(R", R") is defined as A; (20, Z) = (\i g2, AiGZ) with \j ¢ = %&?).

To obtain good spectral properties we need to redefine the renormalization for G € U, consi-
dering a sequence {7;};cz+, where
T,(G) = (I = o[F(G) = @o]) ' 0 FI(G) o (I = o[F(G) — o))
We need first to extend the linear operator o, using the spectral projection, which is defined, up

to the moment, only for the space Hp of real-analytic maps.

12



The main problem that arises in the C” topology is that the renormalization is not Fréchet
differentiable. But it is in the space Hp and its derivative, computed at an analytic map, can be
extended to a bounded linear operator on the space of C" maps. We will work with these operators
called formal derivatives. On the other hand the transformation T; is Fréchet differentiable when
considered from the space of C™ maps to the space of C" ! maps. We will work with its derivatives
in this sense too, computed at maps of class C". Finally these derivatives can be also extended
to bounded linear operators on the space of C"~! or C"~2 maps as formal derivatives. On each
case the sense in which a functional derivative (formal or Fréchet) is considered will be explicited
or otherwise clear from the context.

The unstable manifold found in the space of real-analytic maps verifies T;({®;}) = {®;}, now
immersed in the space C". The purpose of this section is to define T; for C" maps and then to
prove in the C"-topology that the distance of a renormalizable C" map G in U to the manifold
{®;}+ decreases. More precisely, we prove the following

Proposition 2.1 For r large enough there exist ¢ > 0 and an integer N as large as wanted such
that for all real t with |t| < ¢ and all C" map u with ||ul|, < ¢

1
1T (@r + 1) = Bsllr < S ullr

where s = 6™ (t + a(u)), and a is a bounded linear operator from C"to R.

This proposition is an extension to n-dimensional maps of the lemma 8 of the paper [4].

We begin giving some definitions.

Let us consider a compact parallelepiped D whose sides are parallel to the coordinates axes,
which is a neighborhood of [—1, 1] x {0} in R", and the Banach space C" of maps from D to R",
of class C" with the norm || - ||, For a given number n > 0, let us define the localized seminorm

|Gllry = sup [[D"G(z) = D"G(y)]|
Jle—yll<n

Let S be the bounded linear operator on C” defined as

where b; € C"*1, b;(D) C D; and for each z € D, a;(z) is a matrix n x n, depending C"*! of x.
Associated to S, let S, be the operator defined on the continuous functions from D to
L (R", R") (the set of r-linear applications from R"™ on R") defined as follows:

k
(S:H)(@) =) llas() |l Dbi(@)]|" H (bi())
i=1

where ||a;(z)]| is the norm of the n x n matrix a;(x) as linear operator in R"™ (it is a function
of z), and similarly we define ||Db;(z)]|.

13



Lemma 2.2 Let p > 0. If the spectral radius of S, is less than p, then for any € > 0 there
exists a positive integer No such that for all N > Ny and for some ng = no(e, N) we have
ISNG|lyy < epMN||G|l for all G € C™, and n < no.

Proof: First observe that SVG(z) can be written as

k!N
S uil@)Glui()
=1

with u;(z) € L(R", R™), depending C"*! on x; v; € C"*! such that v;(D) C D. Also,

(s™ Z [[wi () [ Doi () [ H (vi ()

We choose p' < p, p/ greater than the spectral radius of S,. Thus, ||(S,)V]| < pV < - " for N
large enough, being ||(S,)"|| the norm of (S,)" as linear operator. As ||(S™),| < ||(S )NH taking
= id we have that

N
Ep
an IDui(a)|" < L 3)

We agree into that, in what follows, K is a constant whose value may vary in the different
formulas.

We have to bound the localized seminorm of the r-th derivative of SNG. D"(SVNG)(z) is a
r-linear transformation, computed as follows:

D"(SNG)(x Z D" [ui(z Zul (v; D"G)(z) + R(z)

where (v} D"G)(x) - (e1,...,er) = D"G(vi(z)) - (Dvi(z)ey, ..., Dvi(x)e,); and R(z) involves deri-
vatives of G of order smaller than r and derivatives up to r of u; and v; that are C1.

IS¥Gllry = sup [|D"SVG(x) -~ D'SVG(y)| <

lz—yll<n
kN
< | SUﬁ> Z |ui(z)(v; D"G)(z) — ui(y) (v; D" G)(y)|| + [[R(z) — R(y)|l
z—yll<n =y

The last term is bounded as follows:
€
[R(z) — R(y)|| < K||G+|lz —yll < Knl|G|l» < §pNHGIIr
if i is small enough.
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The first term can be bounded by the sum of the following;:

A= Z\luz J(D"G(vi(z)) = D"G(viy)) - (Dvi(x)-, ..., Dvi(x)-)|

ZH% JD"G(vi(y)) - (Dvi(z) — Dui(y))-, - ., Dvi(x)-)]|

By = ZH% )D"G(vi(y)) - (Dvi(y)-,- - ., (Dvi(z) — Dui(y))-)||

C= ZII ui(x) —ui(y)) D" G(vi(y)) - (Dvi(y)-, . .., Dvi(y)-)]|

Now, using that u; and v; are of class C"*! and taking 7 small enough:

k:N
e
C <> Kllz = ylllD"Gllol|Duilly < Knl|Gll» < gpNHGHr
=1
kN
r r—1 € N
Bj <Y |luillo| D" Gllo]| Duillg ™ Kl — y|| < Knl|G|» < o IG1:
=1

A< Z [[ui () [ Doi () [ D" G (vi(x)) = D"G(ui(y))]| <

9
< Z [wi@) D) 720G < PV G llr

In the last inequality we have used (3). Thus, A+ > | B;j +C < § NG|y and [|SVG| .y <
epN||G||, as wanted. m

The last lemma allows us to bound |[|SNG|,, knowing a spectral bound of the associated
operator S,. The following lemma connects the r-norm with the localized seminorm:

Lemma 2.3 Let n > 0 be a sufficiently small real number. There exists ¢ = c¢(n,r) such that for
all GeCr,

2
1G]l < 2cmax{||G|ry, EHGHH}
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Proof: Let us make explicit the computations for n = 2 but observing that similar considera-
9tiG

tions can be made for n > 2. Let us denote Gyi i = 7.5, for itj = r, m (x,y) = x; ma(x,y) =y.
We have for i > 1, k € {1,2}:
x
/ Wkai,yj (t7 y) dt = Wkaifl,yj (.%', y) - Wkaifl,yj (.%'0, y) (4)
xo

We have a similar equality for j > 1, integrating respect to the second variable. The right member
of the equality is bounded in absolute value by 2||G||,_.
Let ¢ > 1 be a constant such that for every G of class C”

DG < Gi i
H (x7y)” = ci+j:£'?%§{1,2} ‘ﬂ-k x ,y]’

It is enough to prove that |G|, < 2¢ for all G € C" such that

max{(|Gllry, (2/MIGllr-1} =1

By contradiction suppose that we have a point z9 = (zg,%0), k € {1,2} and i and j with i +j =7
such that |m;G i i (20)| > 2. Thus, as [[D"G(z) — D"G(20)|| < 1 for z € D in a ball centered in zq
of radius n, we have

[Tk G i i (2)] = |TkG i i (20)] — [|D"G(20) — D"G(2)]] > 1

Integrating up to the boundary of the ball of radius 7, the absolute value of the left term of the
equality (4) is greater than 7. The absolute value of the right term is smaller than n because
|G|lr—1 < n/2. This contradiction proves the lemma. m

We recall the equation (1) from the analytic theory in the subsection 1.1. For v = (ug,U) € Hp
we have dF(®o)(u) =

uo(1,0) 1 a-U(0,0)
A

= A1[UO®OOA+(DCI)[)O@()OA)O(UOA)]-|-< +u0(0,0)(ﬁ —-1)— T) U, (5)

for U,, = —01 0P+ DDy - 01, and o1(x,Y) = (x,2Y). Now, if u € C", the last operator can be
extended to a bounded operator F', defining F'u as the right term of (5). The associated operator
F, is

FH = |M72|(D®g o A)A||"H o ®go A+ |A["|[A"LDBg o &g o A||H o A

Lemma 2.4 The spectral radius of F, converges to 0 when r goes to infinite. As a consequence,
there exists ro large enough such that the spectral radius is smaller than 1.

Proof: The spectral radius is bounded by the norm of the operator F;..

I < sup {JAI"(IA 72 Do 0 Ala,Y)|" + [|[AT D@y 0 @g 0 Az, Y)[])}

(z,Y)eD
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D®y(z,Y) = ( 20f'(a® —a-Y) —af(z®—a-Y) )

0 0

As we have 2z f/(2?) = ¢/(x) and the derivative of the Feigenbaum map ¢ in dimension one is
smaller than |A\|~! for z € [~ A, \], we have for a small enough that || Dggo Al < a < |A|~1. Then,
|Fy|| < [AI"(a"[A[72 4 b), where b = sup(, yyep A7 D®g o By o A(z,Y )|, proving the lemma. m

Remark 2.5 We can bound a < (1 —\)/(1 4+ \) < 2.3312; A = —.3995...; b < 6.2657. So, 19
can be taken equal to 27.

We recall the proposition 1.5 of the analytic theory in the subsection 1.1. In Hp, the spectrum
of DF(®¢) has eigenvalues 1, A™!, A\=2 and § with respective spectral invariant finite dimensional
subspaces Sp, S1, S and U. In particular dim U = 1. Let us define Ey, F;, F2 and J the
respective spectral projections in Hp. Now we prove that these projections can be extended to
cr.

Lemma 2.6 For r sufficiently large, the projections Eg, FEi, Fo and J defined in Hp can be
continuously extended to C”, to C™™1, and to C"2 as bounded linear operators. Moreover, given
e > 0, there exists a positive integer N as large as wanted such that

|EN —6NJ — By — A NE - A 2VEy|| <e

where the norm || - || of the linear operator can be taken either in C", in C™=1, or in C"=2. The
spectrum of F has 1, \™', A™2 and 6 as the only eigenvalues with modulus greater or equal to 1,
and the respective spectral invariant subspaces are Sg, S1, So, and U.

Proof: Due to the lemma 2.4, for r sufficiently large the spectral radius of F,., F;._1 and of
F,_o are smaller than 1. Let us take any p, 0 < p < 1, bound of these spectral radii. Using the
lemma 2.2 with ¢ = ﬁ, ¢ defined in the lemma 2.3, there exists N > 0 sufficiently large, and
n > 0 such that ||[FN ()|, < %Hqu forallu € C7, j =r—2,7—1,r. We will work with j = r,
observing that the proof also works for j =r—2and j =71 — 1.

In Hp we define Q = F —6J — Eg — A\'Ey — A"2Ey. As J, Ey, E; and E, are spectral
projections on the eigenspaces U, Sy, S1 and Sy with the eigenvalues of modulus greater or equal
to one, we have that, if N is large enough, then QN = FN —§VJ — Ey — A™VE; — A2V E, has
norm in Hp smaller than %

The unitary ball of C" is compact in C"~! because the Arzela-Ascoli theorem asserts that any
sequence of maps bounded in the C” topology has a convergent subsequence in the C"~! topology.
The density of analytic maps in C™ allows us to construct, given € > 0, a finite set of analytic maps
fi,-.., fi in the unitary ball of C" such that the balls in the C"~! topology centered at fi,... f;
with radius € > 0 covers the unitary ball of C". In other words, given v € C” with |jull, < 1
there exists f;, € {f1,..., fi} analytic such that || f;, ||, <1 and |u — fi,|r—1 < . Working with

N chosen at the beginning of the proof,

1N (w = fi)llr—1 < Mlju = fi |l < Me
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where M is the norm of FV considered as a linear operator of C"~!. Now we have that ||[F'™ (u —

N N .
fillrm < Gzllu — fillr < 5z because |lul, and [|fi ||, are less or equal to 1. Applying the
lemma 2.3:

N

p 2
FNu—f; <2 — —-M
7Y~ Sl < 2emax {5 2ave |

For ¢ < np"/(4Mc) we have ||FN(u — f;,)|» < p¥. We have proved that given v € C" with
|lu||» < 1 it is obtained f;, analytic such that FN(u) = FN(f;,) + pNuy with |Juy]l, < 1. Applying
to u; the same decomposition we have F2V (u) = F2N (f;,) + pVN FN(fi,) + p*Nug. After j steps:

FN () = FN(fiy) + pNFNUD(fiy) + o+ oMU RN () 4 oM
with |luj||, < 1. Now, for an analytic map f we have

N =QN() +NI(f) + Eo(f) + A NEL(f) + AV By (f)

Substituting we obtain
FNi(uy=Ag+ Ay + Ay + B+ C

where

Ao = Eo(fi,) + oV Eo(fiy) + ..+ oV VEy(£;,)

Ay = X"ME(fi) + PV ATNUVE(fiy) + .+ NNV EN(£)
Ay = XN Ey(fi) + pVATNUTVEy (i) 4+ 4+ pNUTUATNE(f))
B=QN (i) +pNQ UV (fi) + ...+ pNU*“QN(fij) + pMu;

C =" T(fiy) + pNoNUTVI(fi) + o+ pNUTDENI(f))

We will prove that Es(u) = lim;_ o A2NFNJ (4) exists in the C” topology. We will see later that
F5 is the wanted extension of Es.

NZNIENT () = NN (A + Ay + Ay + B+ C)
Let us show that all the terms at right converge to 0 with j — oo except A>VJ Ay. There exists

h > 1 such that for i = 1,...,1, ||Q™(fi)||» < h/27. This is because f; € Hp and the norm of QV
in Hp is smaller than % Therefore,

2 2i-1

2N J 1— (QPN)(j+1)
:h<2> 1 —92pN —j—o0 U
P

. h o h :
AN B, < AN <—, S Ab =R SN AL pNJh) =

because p < 1 and |\| < 1.
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As the set of maps where the f; is chosen is finite, take K a constant bounding ||J(f;)||r,
IEo(f)llrs IEL(f)llrs 1B2(fi)llr, for i = 1,..., 1. Thus

N Ny 1 N /sN\J
‘ p Nj . 1— (P /6 )
IN2Nic|, < (x26)™ <K+ NI+ <—5N> K) < (A26)™ K———§sn N JGN i 0

because A6 < 1 and p<1<§

) . . 1 Nj
IAZNI ||, < A2NI (K FONK 4.+ pNU—UK) < KNI~ _pp o 0
- » (PN Ay
IN2NT A < AN (K + (A)VE + .+ (pA)YOTVE) < KWNJW o0 0

/\ZNjAQ = FEs(fiy) + pN)\2NEQ(f¢2) +...+ ,ON(jil))\ZN(jfl)Eg(fij)

This series is majored by

2N N 2N N(—1)y2N(—1) 1 - (PN/\QN)j
which is convergent because p < 1 and A < 1. Then, we define
~ . . . e
By(u) = lim NN FN (u) = Tim XN Ay = (0" NV By (fi,,)
Jee Jee k=0

It is clear that Eg(u) is an analytic function because Ss is closed and formed by analytic functions
(S2 is a finite dimensional space).

Then, we define J, (which will be the extension of J, corresponding to the eigenvalue §). We
apply the same method to show that J(u) = limj_ 6N (FNI(u) — A72NI Ey(u)) exists. We
must study 6~V (Ay — A2V Ey(u)) + 6 NI(B + C + Ag + Ay). The first term is

7j—1 00
57N]A72N] <Z( N)\QN kEQ ka+1 Z N)\QN E2 flk.t,-l)) —

k=0 k=0

_5_Nj)‘_2Nj Z(pN)‘ZN)kEQ(fikH)

k=j

Thus, the r-norm of the first term is bounded by
o0 NY2N\j
§—NiN—2Nj ¢ Z(pN/\QN)k — K5 Niy\—2Nj (p™ A=)

1— pNAZN —j—00 0
h=j

because pd~! < 1.
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The second term is decomposed. |6~V B||, is treated as A*7 B above, substituting A\> by 61,
proving |6 NI B||, — ;e 0.
Analogously are treated [|[0="7 Ag||, and [|6N7 A, — .00 0. Now,

15N < [T (Fa)lle + 28 NI Fidlle + -+ (VTP I(fi )l < KDV

Thus J(u) = 372 ,(pNoN)* J(firs,)- As before, J(u) is analytic.
With the same procedure we define

o0
Er(u) = lim M (FY (u) = A7V By(u) = 88T () = 3 (0" M) En(fir.)
k=0

Eo(u) = lim FN (u) = X\2N Ey(u) — 6™ J(u) — XN E (u Z PN Eo (i)

— 00
J k=0

E’lu and Eou are analytic functions.
We have . o o o 3
|FNT (u) = A7N By (u) = 6™ J (u) = AN By (u) = Eo(u)l <

k=j k=j
J

h
+K|\|” NJZ PN AN +KZka+ 2Nk < e (6)

2J
k=j k=j k=0

for j large enough uniformly for all v with ||u/|, < 1. We know that E;(C") C S; for i = 0,1,2,
and J(C™) C U. In particular, if u is analytic, from (6) we conclude that E;(u) = E;(u), i =0,1,2
and J(u) = J(u). The formula (6) ends the proof of the lemma. m

From now on we will take r sufficiently large to apply the lemma 2.6.

The projection J on the one-dimensional space U of the eigenvectors with eigenvalue § can be
written as

J(u) = a(u)v

where v = %q)t’tzo € U and a(u) € Rforallu € C7, j =r,r — 1,7 — 2; a is linear and bounded.

The sum of the eigenspaces of F' corresponding to the eigenvalues 1, A™', and A2 is § =
So @ S1 @ S2. The same proof of the proposition 1.5, part ¢) shows that for any v € C” there
exists o[u], the unique analytic map in C" such that Yol = Eu € S, where E = Ey @ B, @ E».
The transformation u — of[u] is linear and bounded. We remark that Imo is a finite dimensional
space. For G € C" in a neighborhood U; of ®(, we define

Ti(G) = (I = o[F(G) = ®o]) ™ 0 F/(G) o (I = o[F(G) — Po])

where F! was defined in (2) at the beginning of this section. When restricted to Hp the
transformation 7; and F? are Fréchet differentiable. Its derivatives at ®; can be extended to
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C", r > 1 as bounded linear operators F; and F; respectively, which will be called the for-
mal derivatives at ®g. Let us observe that F; = dF (®g) = (dF(®g))* = F'. We also have
F;-u=dTy(®g) - u = Fu+ o[F'u] o &g — D®q - o[Fiu] = (I — E)(F* - u).

Lemma 2.7 Given € > 0, there exists N as large as wanted such that
||FN —5NJ|| <e
where the norm || - || of the linear operator can be taken either in C”, in C"~1, or in C"=2.

Proof: We will make explicit computations in C”, but the same argument is valid in C"~*
and C"~2. Using the density of Hp in C” it can be seen that Fy, E1, F5 and J commute with F
in C". Thus

||FN'u—5NJ(u)HT = H(I—E)FN-u—éNJ(u)HT = HFN-u—EFN‘u—cSNJ(u)HT =

= ||FY - u— Eo(u) = XN Ey(u) = A2V By(u) = 6V I ()l < ellully

The last inequality is due to the lemma 2.6. m

Now, let {b;};—o_ ov_; be a finite set of maps in C* with b;(D) C D. Let {a;};—g_ onv_; be
a finite set of matrices n x n depending CY of z € D. We define a bounded linear operator on
C%D, L.(R", R")) by

Let
= sup Z [lai (@) [[| Dbi(2)[|"
=0
Then, we have
Lemma 2.8 Given € > 0, there exists ( > 0 such that if a;(z) € L(R", R") depending C° on

z €D, and b; € C* with ||b; — billy < ¢, |las — aillo < ¢ and l;z(l?) C D fori=0,...2Y — 1, then
the corresponding operator @ on C°(D, L,(R™, R™)) satisfies ||Q — Q| < 2(M + e).

Proof:
2N _1 ~ 2N 1 )
OH - QH =Y a;[bjH -0 H]+ > [a; — a;|bjH
i=0 i=0

The second term has C° norm bounded by 22 L K| H|jo|la; — a1o for some constant K. Taking
¢ small enough this term is smaller than e||H Ho The first term can be written as

2N 1
> ailHobi—Hob]- [Db,...,Dbi]+ >  a;Hob;- (Db — Dbi)-,..., Db + ...+
=0 ]
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+ Y aiHob;- [Db;-,...,(Db; — Db;)|

As ||b; — bs||1 < ¢ the last terms of this sum can be treated as the former second term and proved
to have C° norm smaller than || H||g. The first term of this sum evaluated at a point x € D is in
L,(R"™ R") and has norm bounded by

Z [lai (@) |[|| Db () [["2[| H[lo < 2M|[H]lo

Hence, the lemma is proved. m

Lemma 2.9 For all N > 0 large enough there exists ¢ > 0 so that if t € R and u € C" with
[t| < ¢ and |Ju|l, < ¢, then | Tn (P +u) — Tn(Pr) — Fy - ully < %HuHT

Proof: For given € > 0, let us take NV such that (£,)" has norm less than € as an operator on
C° (lemma 2.4). After some computations we find that the functional derivative of Tl at a point
G € Hp, considered in the set of analytic functions is

dTn(G) -u = (I — Do[FN(G) — ®gl o (I — o[FN(G) — ®g]) Lo FN(G) o (I — o[FN(G) — D))

2N
Aa 1D (H DG(G? %o AN7G)> (G o Ang) | +o.t.| o (I = o[FN(G) — @)+
k=1
2N
+o Z (H DG(G? o ANg)) (G FoAng) | +ot.| o
o(I —a[FN(G) — ®g)) Lo FN(G) o (I — o[ FN(G) — ®g])—
—DFN(G) o (I —a[FN(G) — By))-
2N k-1
o AV 1D (H DG(G*N =% o AN,G)) (G o Ang) | +out. (7)
k=1 \s=1

where o.t. represents terms in which u appears evaluated in some point of the space. If G is
analytic dIv(G) can be extended to a bounded linear operator in C”. We recall that Imo C Hp
and is finite dimensional.

Let us define a bounded linear operator A(G) on C°(D, L,.(R", R")) as

A(G)-w = (I — Do[FN(G) — ®o] o (I — o[FN(G) — ®]) L o FN(G) o (I — o[ FN(G) — ®0))) !

oN k-1
AVe [ D (H DG(G* ~* o Ay o (I - olFN(G) - @om)

k=1 \s=1
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(G20 Ay o (I = alFN(G) - @) "w) ) |
If G is analytic and v € C", we define B, C,..., M as
D"(dTn(G) -u) = AG) - D"u+B(G) - D" 'u+C(G)- D" 2u+ ... + M(G) - u

depending nonlinearly on G and its first r + 1 derivatives.
Let us compute the spatial derivatives of Ty (G) for G € C".

DTn(G) = (I — Do[FN(G) — @) o (I - o[FN(GQ) — &))" o FN(GQ) o (I - o[ FN(G) — o)) -

2N
AN [ PG 0 Ang o (I — o[FN(G) — o)) Anc(I — DalFN(G) — @)
k=1
When computing the spatial derivative of T (G) of order r > 2 we are interested into separa-
ting the terms depending on D"G. In D?*T(G) the term having DG is

(I = Do[FN(G) — B o (I — o[FN(G) — D))~ 0 FN(G) o (I — o[ FN(G) — o)) -

2N k-1
AN ( DG(G*" 5o Aygo(I—o[FN(G) - <1>0]))> '
k=1 \s=1

(6o hng o (T olF¥(G) - @0]))* DG

In general for r > 2, D"Txn(G) has a term depending on D"G that is A(G) - D"(G).

Take u € C". When computing D"(Tn(®: + u) — Tn(P:)) we obtain a term depending on
D"u that is precisely A(®; + u)D"u, plus other term P(®;,u) depending on ®; and its first r
derivatives and on u and its first 7 — 1 derivatives. It is a sum of compositions and multiplications
of these maps. Thus P(®;,-) is a transformation from C” to C! that is null for v = 0 and has at
u = 0 Fréchet derivative when looked from C" to C°. That is

P((I)t, u) = P(<I>t)u + N(‘bt, U)

with ||V (®¢, u)llo < el|ul|, if [|u]|, is sufficiently small.
P(®;)u is linear on u and its first r — 1 derivatives. It is the linear part on w obtained from
D" (Tn(®¢ +u) — Tn(Py)) taking away the term A(Py + u)D"u. As

D" (dTn(®)u) = A(®,)D"u + B(®) D" tu+ ...+ M(®))u

we have

P(®)u=B(®)D"  'u+ ...+ M(®)u
Thus

D" (T (®;+u) —Tn(9)) = A(®; +u)D"u+B(®) D" tu+C(9:) D" 2u+. ..+ M(®)u+ N (Ps, u)
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where ||N(®¢,u)|lo < ¢||u||, for any given ¢ if ||ul|, is sufficiently small.
Provided that |¢| is small enough,

I(B(®:) — B(®o)) - D" Mullo, [[(C(D) = C(®R0)) - D" *ullo, ..., [[(M(Pe) = M(Po)) - ulo

will be all less that £|ul|,.
We must study A(G). We observe that

2N k-1
A(®o) = Aylg, [ D <H DPy(®" o AN,@0)> (@3 o Ana,)”

k=1 \s=1

Now, we apply the lemma 2.8 to A(®), the corresponding M is ||(FN),|| < |(F)N] < e. We
conclude that if |¢| and ||u||, are small enough, then A(®; + u) — A(Pp) has norm less than 4e as
an operator on C°. Putting everything together, and noting that

D"(Fy -u) = A(®g) - D"u+ B(®g) - D" tu+ ... + M(Pg) - u
we obtain )
D" (TN (®¢ +u) — Tn (D) — Fiv - u)lo < Gellullr

Tx as a transformation from C” to C"~! is differentiable Fréchet, so, for |¢t| and |jul/, small
enough:

| Tn (D¢ 4+ u) — T (D) — Fiv - ullr—1 < elully

1.
~ 1
1T (e + ) = T (@) — Fiv - ullr < Cllull- m

Remark 2.10 At the beginning of the proof of the lemma 2.9, we have computed the derivative
dTn(G) for G € Hp. The right term of the equality (7) defines for any G of class C" a bounded
linear operator in C"~! and also in C"~2. This operator will be called the formal derivative of T
at G. We do not have continuous dependence of this operator at G € C". But, arguing as in the
proof of the former lemma and using the lemma 2.8 with M < ||(F,.)"|| we obtain the following
result:

Given € > 0 there exists N large enough and ¢ > 0 such that if |G — ®g||, < ¢, then
dTn(G) — dTn(®g) has norm less than e as linear operator on C"~1.

Proof of the proposition 2.1: We apply the lemmas 2.7 and 2.9 to obtain

1
T (@1 + ) = T (@) — 6N I (w)]l, < 2l

We have Ty (®;) = ®snv, and J(u) = a(u)v where v = %(1)5}3:0' So
N 1
1T (@e + u) = any — 67 a(w)ollr < llullr
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®, is a curve of class C' of maps in C", thus PN (14a(u)) — Psve = %¢S|S=5Nt Na(u) + A
where ||All, < g|lullr if |Jull, and [t| are small enough. Moreover if [¢| is small then

1
Ma(u)] < llullr

r

— v
s=0Nt

d®,
ds

We obtain )
[P (t-4aquy) — Porve — 6™ a(wvlly < 2l

and we deduce that [T (P + u) — Pon (14 a@u))llr < $llully, as wanted. m

3 The stable manifold

In this section we prove the existence of the stable manifold of the renormalization in the space
C" and deduce the theorem 2.

We recall that the projection J on the one-dimensional subspace U corresponding to the
eigenvalue 0 is written as J(u) = a(u)v, where v = %@A =0 € U and a is linear and bounded

from C™, C"! or C"~2 to R. Thus a(v) = 1 and %a(@t - <I>0)‘t:O = a(v) = 1. We denote ||al|,
the norm of @ as a linear operator from C” to R. Analogously ||a|,—1, |la|lr—2-
Let ¢ as in the proposition 2.1 and also verifying that |a(®; — ®g) — ¢| < |t|/4 for |t] < C.
Now we are ready to define the stable set for T)y. Choose positive numbers € and &’ smaller
than one so that
20V < ¢
emax(1,30||al,) < &

Define the set W = {®¢ +u, u € C", ||lu|l, < e}. Given g+ u € W, we define recursively the
finite or infinite sequences {tj}x>0 and {uj}r>0 by the relations

t():o; ug = u

TR (g + u) = Oy, + up,
tier = 0N (t + alug)) if [tx] < ¢

They are defined as long as |t| < ¢. By the proposition 2.1 we have |Jug|, < 27*e. Moreover, if
|ti| < &', then
ltit1] < 6N (€ + lallre) < 26N < ¢

There are three mutually exclusive possibilities:
i) for some k, &’ <t < ¢ and [t;| <€ for j < k.
ii) for some k, &’ < —t;, < ¢ and [t;| <&’ for j < k.

iii) |tx| <&’ for all k> 0.
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We denote W, W_ and Wy the subsets of W where respectively i), ii) or iii) holds. The
map u — t; is continuous on W, so W, and W_ are open. Moreover &, € W, (W_) for all
t > 0 (resp. t < 0) small enough. Hence Wy is a relatively closed subset of W disconnecting it.

If &g+ u € Wy then there are infinite sequences {t;}r>0 and {ug}r>0. We assert that

ti| < ellall,27* (8)

In fact, suppose that there exists k such that |t;| > ella||,27%T!. As tpy1 = 0N (tx + a(uy))
and |jux|l, < 27%¢, we obtain [try1| > 6V a|,e27% > ¢|lal,27%2. Repeating the argument
|titj| > ellall,27%T ! for all j > 0, and this contradicts the inequality [tg;| < &’ for all j.

Therefore, for ®g +u € Wy, Tk (®g + u) — ®g as k — oo and || TX (®g + u) — ®o||, = O(27F).
W is thus the local stable set for T. To prove that Wy is locally a C'! submanifold of codimension
one we need some previous lemmas, obtained from [4].

Lemma 3.1 For Gy € Wy UW_, if & < |tx| < ( then |a(T%Gy — ®¢)| > €' /4
Proof:

|a(TN G — ®o)| = |a(®s, — o) + a(ur)| > |a(Py, — Po)| — [|allr|uxll- >

3 _ 3 g
> Z|tk| — |lall,e27% > 16/ -3 >e/4m

Lemma 3.2 There exists a continuous mapping G +— ag from Wy to (C"=2)* = L(C"2, R) such
that
14T N (G)u — 6" ag (u)v]lr—2 < CEN*F27F ull,—

for all G e Wy andu € C"2, k=1,2,..., where C is a constant. Moreover ap, = a.
Proof: Fix G € Wy and let R, = 5_deT]]f,(G). R}, acts as a bounded linear operator on C" 2.
We have Ry 1u = 6 NdTn(Gy)Ryu where Gy, = T]]@G. For |lull,—2 <1 we write Ryu = av + ¥y

where oy, € R and ¢, € C"2 are linear on u, defined recursively as follows: oy = 0,79 = u and
if o and ¥ have been defined:

Rii1u = 57NdTN(Gk)(OékU + wk) =

= v + apd N (dTN(Gy) — Fn)v + 6 N (dTn(Gr) — En)r + a(We)v + 6V Qniy

where Qnir = Fyiy, — Na(yy)v and Fy = dTn(®p). Now Rpi1u = agy1v + 41 where we
define

a1 = g + a(y)
U1 = axd” N (dTn (Gr) — Fn)v + 6V (dTn (Gr) — Fn )t + 6N Qniby

Since |Gy — @l = O(27%) and the mapping from C" to C"~2 given by G — dIn(G) - v is
differentiable at ®g, we have that ||[(dTn(Gy) — Fy) - v|lr—2 < K27F for some constant K which
can be taken independent of G € Wy. If € and &’ are chosen small enough we have that the norm
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of the operator dTx(Gy) — Fy on C"~2 is smaller that 6V /8. By lemma 2.7 also the norm of Qy
on C"~2 is smaller than 6"V /8. Then

1 - _
[Yrsalles < S 10kllr2 + KO~ ag[27 (9)

As apy1 = Z?:o a(v;), we obtain

k—1

1 _ _
19rsall—2 < ZI1xllr—2 +2 IOV lalle—2 D gl
=0

Let ko be such that K||al/,_20~" (%)_k < % for all k > ko. Define c¢; a constant, independent of
G € Wy and of v in the unitary ball of C"=2, such that ||[¢|.—2 < &1 (%)k for Kk =0,1,...,ko.
Then, by induction in k, it is easy to show that ||¢g|,—2 < ¢ (%)k for all £ > 0. Therefore

|1 — k| = la(yr)| = O((3/4)")

Thus ay, converges to a limit ag(u) linear on u. From (9) it is obtained that ||ix|l—2 = O(27F).
Therefore |ag — ag(u)| = O(27%) and we conclude

IRyu — ag (u)ollr—2 < C27|lull—2

for some constant C, for any u € C"~2 and any G € Wj.
To show that G +— ag is continuous, note first that the mapping G +— a o R;, € (C"72)* is
continuous on Wy for any k. For any u € C"~2 we have

lag(u) — a(Ryu)| = |a(ag (u)v — Ryu)| < Cllallr—22""ull,—2

so that ao Ry — ag uniformly on Wy, whence the mapping G +— a¢ is continuous. Note also that
ag, is the projection a because for G = &y we have Ryu — a(u) - v. m

For later purposes we will need the following lemma that implies a convexity property for the
C" norms:

Lemma 3.3 There exists a constant K such that for all C? map w: D — L,_o(R", R")
1Dwllo < K ([lwlla]|w]o)'/?

Proof: Let ¢ > 0 be a real number such that for any P € £,_1(R", R") determined by its n"

-----

IP| <e¢ max |P]
m

INEEREELE]

,...,l,m’
Let v be the length of the smallest side of the parallelepiped D and define

K=—+c¢y
~y
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Take w : D +— L, _o(R™ R™) of class C?, and by contradiction suppose that for some zg € D,
| Dw(zxo)|| > K (|Jwl]2]lwlo)*/?. Thus, there exist i, j,...,I,m such that

owl y(xo)| K
Jyeeosl s 1/2
o | > & Uwlllwlo)

As [[Dw(x) — Dw(xo)|| < [lwll2l[z — ol , we deduce

aw;l(x) 8“’;‘,...,1(930)

<
ool el B 0

for all z € D in a ball centered at x af radius n = v/||w||o/||w|2 < 7. Therefore for such x:

ow; ()

J7"'7
0T,

K 2
> (% =) Qolllholo) = 2 ol ol

Integrating respect x,, along a segment in D with extremities y; and y2 and length 7

%

' 2 1/2
[0t (1) = w0 (2)| > Zn ([ellzflwlo) /

-----

But the left member of the inequality above is smaller than 2||wl|g contradicting the definition of
n. A

Lemma 3.4 There exists a constant co such that if G and G1 € {®+w € C" : |t| <&, ||w|, < &}
then
3/2
|TvG1y = TNG = dTn (Gull s < collul 5

where u = G1 — G.

Proof: In what follows K stands for a constant that may vary in the different formulas. First
we assert that

E("3%)
TN (G +u) = Tn(G) = dTn(Gull—2 < K Y fuljlfull—j—1 (10)
j=0

where E(x) denotes the greater integer smaller or equal than x.
We have that
1
TN(G + u) — TN(G) — dTN(G)u = / (ClTN(G + tu) — dTN(G)) ~udt
0

and so it is enough to prove that

E(54)

I(dTn (G + tu) — dTN(G)) - ullp2 < K Y lulljllull—j—
=0
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for ¢ € [0, 1].
Computing explicitely dTn(G) as in the proof of the lemma 2.9 we see that dTn(G) - u is the
sum of compositions and multiplications of v with maps depending on G as follows:

s(4)
dTN(G)-u =" ai(G) - ubi(G)) + Y _ (@) - (H DG(ei,j<G>>) ~u(hi(G))
i i j=1

where a;(G), b;(G), ¢i(G), €;;(G), hi(G) are maps in C" that depend non linearly on G € C".
The transformations G — a;(G), etc have Fréchet functional derivatives respect to G when looked
from C” to C"2.

Thus

(dTn(G+tu) —dIN(G)) - u=A-u+B-u+C-u+P -u+E-u+H- -u

where
A-u= Z(ai(G + tu) — a; (@) - u(by (G + tu))
B.u= Z ai(G) - (u(bi(G + tu)) — u(bi(G))
C-u=> (ci(G+tu) - ci(G) [[ D(G + tu)(ei; (G + tu)) - u(hi(G + tu))
i J
(i

P-u= ch {Z (H DG(e; (G + tu))) -tDu(e; j(G + tu))-

s(i)
: ( II DG+ tu)(ein(G+ tu))> } -u(hi(G + tu))

k=j+1

7

s(1)
E-u=) G { (H DG (ein(G ) (DG(eij(G + tu)) — DG(e;,;(G)))-
1
(

s(4)
DG(ELR(G + tu))) } . u(hZ(G + tu))
41

Jj=
k=

H u= Z ci(G) (H DG(ez‘,j(G))> (u(hi(G + tu)) — u(hi(G)))

The hypothesis on G and G; gives bounds for |G|, and ||u|, and hence
E("3?)
| Au||r—2 = || Z/ da;(G + stu) - tuds - u(b;(G + tu))||,—2 < K Z l|wllj]wllr—j—2

7=0

29



1 E("54)
| Bully—2 = | Zaz-(c;)/ Du(b;(G + stu)) - dbi(G + stu) - tuds|,—o < K Y lulljllull—j—1
i 0 §=0
So ||A - ul|,—2 and ||B - u||,—2 are bounded by the second term of the inequality (10). In a
similar way are treated C - u, P-u, E -u and H - u, obtaining the inequality (10).
From (10) and the lemma 3.3 the thesis is obtained: in fact, applying 3.3 to w = D" 2u we

have
ID"ullo < K (Jfull|ull,—2)"/?

As |Jul|, is bounded we obtain
1
lulles < Kjull, %

Substituting in (10) and using |jul|; < ||ul/,—2 for j = 0,1,...,r — 2 we obtain the inequality of
the lemma. m

By lemma 3.2 we can find €9 < € such that if G € Vj = {G € Wy : |G — Pgl| < €0} then
ag(v) > 1/2 and [lag|lr—2 < 2||al/,—2.

Lemma 3.5 There exist positive numbers 3,7 and ¢ such that, if k is a sufficiently large positive
integer and G € Vi, G1 € W with ||G1 — G|,—2 < 367N then

ITNG1 = Ponrag(cy—cyllr < 6N

Proof: By lemma 3.2 there exists a constant ¢; > 1 such that if G € Wy then the norm of
dT%(G) as an operator on C"~2 is bounded by ¢;6™V* for any positive integer k.
Let
v=(1-5""2)?%/(8¢c)

where ¢q is as in the lemma 3.4, and let ¢o = v/(1 — 6~ N/2).
Let f = min(v, ¢/(4|lal|,—2), c2/C) with C as in the lemma 3.2 and ¢ as in the proposition 2.1.
Fix G and (G satisfying the hypothesis and let u = G; — G. Let [y be the first positive integer
value of [ such that either [ > k or |¢;| > &/, with TJZVGl =&y + 1.
We now define a sequence x; inductively by

l
TNG1 = TG +dTN(G)u+ Y dTy 7 (T4G)x; (11)
j=1
Let us prove by induction that [|x;|,—2 < c26*NU=8)/2 for j < lp:

First, for j = 1 |xillr2 = [TNG1 — TnG — dTNG(G1 — G)llr2 < allGr — GI% <

coﬁ3/25*3Nk/2 < 001/3/2573Nk/2 — VdeNk/Q(l _ 57N/2)/(261)3/2 < V(l __(57N/2)53N(17k:)/2
eo83N (=2,
By induction, we suppose ||x;|[r—2 < cp03NU=k)/2 holds for j =1,...,1 < ly. Applying (11) at

[ 4+ 1 and substituting T}VGl — T}VG, we obtain:

xi1 = TNGy — TG — dTn (TG (TG — THG)
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By lemma 3.4 we have
TS Gy — TG — AT (TEG) TGy — THG) =2 < o ThGr — THGI,

and so, for all [ < [y:

!
IXi51llr—2 < col|dTh (G)u + Z AT (TG x ”3/2
7j=1
] 3/2
<o [ oV peyey T gN IS G3NGR/2 <

=1
3/2
< ¢ <01V5N(lfk) + 160N P2 (1 — 57N/2)> -

3/2 3/2

— (ClV(SN(l—k) +CIV53N(l—k)/2>

It now follows that, if [ < [y then

< co (QCly(;N(z_k)) = ey BNR)/2 o §BN(H1-R)/2

l
IThG1 — TG — AT} (G)ullr—2 = | Y dT3 7 (ThG)x;llr—2 <
j=1

1
Z 16N =D) 0y 3NG=R)/2 < 1 0y 53N (—F) /2/( §N/2Y = ¢ pgBNU-R)/2

By lemma 3.2
1dTL Gu — 8N ag(w)vl|y—o < CEV2ufl,—o < c27tN R

In what follows K denotes a constant whose value may change in the different inequalities. Since
G € Wo: |[THG — @), < K271, Thus, for I < l:

ITLG1 — @9 — WV ag(w)v]r_s < K270 + cpa®N=H)/2 12)
Let m be the nearest integer to 3Nklogd/(2log2 + 3N logd), therefore
5—3N/4 _ 9—m
V2 T §3N(m—k)/2

We now assert that |a(T,G1 — ®0)| < €'/4, for k large enough and I < min(lp, m). In fact if
[ < lp we have

< 283N/

IT4GL — TG — 6™ ag(u)v],—o < eypd3NUETRI/2 4 ) gNU=R)

6% acw)ell— < K&VH
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we deduce
1Tk G1 — TNG |2 < K6NH)

and so
‘a(T]lVGl—(I)o)—a(T]lVG—(I)o)‘ < K(SN(l_k) < K(SN(m_k) < 5—N((2k1og2)/(210g2+3N10g6)—1/2) < 6//8

if k£ is large enough.
To prove our assertion it is enough to show that |a(T,G — ®)| < €/8. By proposition 2.1 we
can write THG = ®, + u;. By (8) we have

)
(TG — Do)| = |a(®s, — Do) + a(w)] < s+ llall [l <
5 _ T ¢
< 5 llall-e2 '+ lafle27! < 230 <%

Thus:

/

‘a (T}VGl - Q)O)‘ < % for | < min{ly, m}

Using lemma 3.1, the definition of /y and the fact that m < k, we deduce that min{ly, m} < lo.
So, m < lp. Applying the inequality (12):

TGy — @9 — 6™ Nag(u)v|,—y < K§3Nm=k)/2
and by proposition 2.1 we have for some ¢
ITRGy — @y, < e27™ < K§3Nm=k)/2 (13)
Writing sg = 6™V ag(u) we deduce that
|®; — By — 5002 < K§NM=R)/2
and so
[t = sol < K@ = o [lr—2 < K[| Pr — B0 — sov[l—2 + K| Ps, — Do — s0v]lr—2 <

< K§3Nm=k)/2 4 g2

As
s = (0™Vag(w)* < ("V||agll—2ull—2)* < KoV

we obtain |t — so| < K&*N(m=F)/2 and ||y — ®y |, < K&*N=F)/2, Using (13):
HT]Q;LGI - (I)S()Hr < K53N(mik)/2

By proposition 2.1 we can write, for j =0,1,...,k—m: T}\?HGl = &g, +uy, with so = §™Nag(u),
ug = THG1 — s, 5541 = 0V (sj + a(u;)) and

gl < 279 gl < 27 Kg#N /2
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We have sy, = 67750 + Z;:(r)nil 5N(k_m_j)a(uj), from which we deduce that
k—m—1
[$t-m — 8" *ag(u)] < Z gN(k=m—j) gro—i §3N(m—k)/2 < prsN(m—Fk)/2
§=0

Thus [|®s,_,, = ®svkaqllr < KSVH/2 and

Sk—m
HT]]\C/Gl - (I)(V\”“ag(u)HT = H(I)Sk—m - (I>5Nkac(u) + ukmer
< KoNM=R)/2 | pg3Nm—k)/2 < [cgN(m—h)/2
From the definition of m, we have that

< —2klog?2 1
~ 2log2+3Nlogd 2

50 |TR G — Pank gyl < 67N with 7 = log 2/(21og2 + 3N log §). m

Theorem 3.6 The local stable set of the renormalization Tx is a C* submanifold of C" of codi-
mension one. Its tangent subspace at Gq is

{ueC" :ag,(u) =0}
where ag, s defined in the lemma 3.2.

Proof: Let us prove that the local stable set Vo = {G € Wy : ||G — @l < eo} is a C*
submanifold of codimension one.
Consider Gg € Vpy and G1 = Gy + tv for t a small real number. By lemma 3.5:

ITNG1 — @yl < 6™ N7F

where s(t) = §™*tag, (v), if k is chosen so that /(6™ ||v|,—2) < 6VF|t| < B/||v|r—2-
So T]{}Gl is in a small neighborhood of ® ;) with

ﬁaGo (U) <

ﬂaGo(“)
ol = 10N <

= lvllr—2

As @, € Wy if £ > 0 and W is an open set, we have that, for ¢ small enough and positive
Tﬁ,Gl € W,. Therefore Gy + tv € W, if ¢ > 0 and small enough, say 0 < ¢t < £”. Analogously
Go+tve W_if 0>t > —¢".

By continuity, if we fix Gg € V} then for G in a small neighborhood of Gy the lines {G+tv, t €
(—¢”,€")} have one and only one intersection with Vy. Let H = {u € C"; ag,(u) = 0}. Tt is a
codimension one subspace of C". For v € H with ||u||, sufficiently small, there exists an unique
small real number y(u) such that Go + u + x(u)v € Vo. We will show that x is of class C' and
dx(0) = 0. Thus Vj is locally diffeomorphic to H and is a C' submanifold of codimension one.
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X is continuous: in fact if u; — uw with Go + u; + x(u;)v convergent, then it converges to a
point in Vj because V} is a relatively closed set, and so x(u;) — x(u). Let us prove that x is of
class C!. Let G; = Go + u; + x(u;)v for i = 1,2, so Gy, G € Vo. Let k be the largest integer
number so that ||Go — Gy |l,—2 < 86~ N*. Then 6~ N*+) < |Gy — Gy|lr—2 < ||G2 — G1l|,- and by
lemma 3.5

ITRGa — |, < 6N

for s = 6™*ag, (G — G1). Also by lemma 3.5,
HT]]\C]GQ — CI)[)”T < coNTR

Therefore
|s| < K||®s — B, < 2¢K5NTF

for some constant K and hence

lag, (G2 — G1)| < 2¢K (5~ M) = O(||G2 — Gul|T )

So:
ac, (uz — u1) + ag, (v) (x(u2) = x(u1)) = O(luz — ur + (x(u2) — x(u1))v|[7*)
We assert that |x(u2) — x(u1)| = O(JJus — ui||;). In fact, by contradiction if it were sequences

{u1,;} and {ug;} such that [lui; — ugjll — 0 and [luz; — u1jll» = o(x(u2,;) — x(u1,5)), then

ac, (v) (x(uz,7) = x(u1,5)) = O(Ix(uz;) = x(ur 7))
which is absurd because ag, (v) # 0.

Then

ac, (v)(x(uz) — x(u1)) + ag, (uz — w1) = O([Juz — ur ;1)

and Y is differentiable at u; with dy(u1) = —(ag, (v)) tag,.

From the continuity of G; ~— ag, we deduce the continuity of dx and hence V; is a C*
submanifold in a neighborhood of Gy. ®

For u € C" we have defined Ju = a(u)v the projection on the subspace [v] = U of dimension
one tangent to the unstable manifold W* = {®,} at ®;. Thus I — J is the projection on the
subspace S = {kera} tangent to the stable manifold W*# at ®.

Let us consider the decomposition in C": v = (u1, ug) where uy = Ju € U and ug = u—wuq € S.
In a neighborhood of ®( the unstable manifold W* is diffeomorphic to a neighborhood B" of 0 of
its tangent space U. We have a C! map 65 such that ®q + (u1,02(u1)) € W for all u; € B* C U.
Moreover, 65(0) = 0 and d62(0) = 0. Analogously, for the stable manifold we have a C* map 6,
such that ®g+ (01(u2), u2) € W* for ug € S in a neighborhood B?® of 0 and 6;(0) = 0, d6,(0) = 0.

We define the C' local change of coordinates  from B* x B* C C" to a neighborhood of ®
in C":

O(ur,u2) = ®o + (u1 + 01(u2), uz + 02(u1))
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Thus 6 is of class C*, 8(0,0) = ®, and df(0,0) is the identity. 0 is a local C! diffeomorphism in
C". Observe that 6 transforms B* C U and B® C S onto respectively the local submanifolds W*
and W?¥. Now consider the expression of the transformation 7 in the new coordinates:

TNZQ_IOTNOQ

It has 0 as fixed point, B* C U and B* C S as local unstable and stable manifolds.

Increasing 7 if necessary we can consider the local stable and unstable manifolds in C”~! which
contain respectively those in C". As before, we can define the local diffeomorphism 6 in C"~!. The
formal derivative dTn(G) for any G € C” has been defined in the remark 2.10 as a bounded linear
operator from C"~! to C"~'. So we have dTy(u) € L(C™,C"1), and dTn(®o) = dTn(0) = Fy.
As U and S are invariant by Fy we have

Fn(uy,ug) = (Ajug, Agus)

where Aju; = 6Nuy and by lemma 2.7

1
| Aqual[—1 < §||U2an71

Let us write B
Tn(ur,uz) = (Arur + A1 (ur, u2), Agug + Ao (ur, ug))

We have A;(0,u3) = Ag(ug,0) = 0 because U and S are invariant by Th.

Considering the formal derivative of Tl as a bounded linear operator from C™! to C"1,
we have bounded linear operators d Aq(u) and d Ag(u) on C™!. For u in a neighborhood of 0,
|d A1(w)]|r—1 and ||d Aa(u)||,—1 are smaller than a given positive number if N is large enough (see
the remark 2.10).

Lemma 3.7 (The inclination lemma) Given £ > 0, there exists N such that if {G,} is a C!
curve of maps in C" intersecting transversally W* at Go and Dy is the connected component
through TX Gy of {T]f,Gu} in BY x B C C", then there exists kg > 0 such that for k > kg, Dy, is
C' e-close to B* in the space C" 1.

Proof: We have to repeat the same arguments of the proof of the inclination lemma of [14] for
hyperbolic fixed points, using the C”~* norm of vectors in C”, and the bounded operator dTy on
CT—1, with the bounds given above. m

We recall the remark 1.8. Arguing in the space C"~! instead of Hp we deduce that the
codimension one submanifolds ¥, are transversal to the unstable manifold {®,},<¢ in C"~1.
Any curve of maps {G,} C C7~! that has a transversal intersection with 3,, presents a period
doubling bifurcation of period 2™ to 2m+!.

We also recall the definition of homoclinic bifurcation with unavoidable tangency (definition 1.9
and proposition 1.10). A version of the lemma 1.15 in the C" space can be stated with the same
proof:

Lemma 3.8 There exist an interval [a,b] with b > a > 0 and open sets N, N1 and Na in C"
containing respectively {®s; t € [a,b]}, ®o and Py such that any continuous arc {G,} in N with
extremities in N1 and No exhibits a homoclinic bifurcation with unavoidable tangency.
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Taking preimages of N1, No and N by a sufficiently large iterate of T, we can consider that
they are as near &y as wanted.
Proof of the theorem 2: Let us take )V the stable manifold W* of Ty. As {G,} intersects

transversally W# at Gy we have that %G“’”ZO is not contained in the tangent subspace T, W?,

that is, by theorem 3.6,
0
ag, | =—G =h#0
(0] (aﬂ H M:O)

Let us suppose h > 0. As {G} is differentiable respect u: |G, —Gol|,—2 < c3|p| for some constant
c3 and for all |u| small enough. For any large integer k > 0

|Gs-nry, — Gollr—2 < cs|plo™ N < B5~NF for all p € [—ﬁ, —]
C3 C3
Thus, by lemma 3.5:

HT]]ffGé_NkM — (I)S(M)HT < c§ Nk

for s(u) = 6NkaGO(G57NkH — GY) for all |u| < B/c3. Now
s(1) = M agy (Gy-nn, — Go) = 6V R *p + o) = hp + o(p)

Thus T]’f,G(;_Nku converges when k — 00 to ®p,,4,(,) uniformly in p € [-3/c3,3/c3]. Using
the inclination lemma 3.7, the arc {T%Gs-nk utuel—B/es,0) €xhibits, for all k sufficiently large a
period doubling bifurcation for a parameter value of u € [—(3/c3,0]. That is, there exists py €
6~ Nk[—B/c3,0] — 0 where G, presents a period doubling bifurcation.

Using the lemma 3.8 the arc {T]’%G6*N’€u}u6[0”@/C3] will have a subarc in N, with extremities in
N; and Ny and thus, it exhibits a homoclinic tangency for some value of p € [0, 3/cs]. Therefore,
there exists jip € 0-V*[0, 3/c3] — 0 such that G, exhibits a homoclinic tangency. m
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