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TOPOLOGICAL ENTROPY ON POINTS WITHOUT
PHYSICAL-LIKE BEHAVIOUR

ELEONORA CATSIGERAS, XUETING TIAN!, AND EDSON VARGAS

Abstract. We study a class of asymptotically entropy-expansive C* dif-
feomorphisms with dominated splitting on a compact manifold M, that
satisty the specification property. This class includes, in particular, tran-
sitive Anosov diffeomorphisms and time-one maps of transitive Anosov
flows. We consider the nonempty set of physical-like measures that
attracts the empirical probabilities (i.e. the time averages) of Lebesgue-
almost all the orbits. We define the set Iy NI'y C M of irregular points
without physical-like behaviour. We prove that, if not all the invariant
measures of [ satisfy Pesin Entropy Formula (for instance in the Anosov
case), then IyNI'; has full topological entropy. We also obtain this result
for some class of asymptotically entropy-expansive continuous maps on
a compact metric space, if the set of physical-like measures are equilib-
rium states with respect to some continuous potential. Finally, we prove
that also the set (M \ Iy) NIy of regular points without physical-like
behaviour, has full topological entropy.

1. INTRODUCTION

The differentiable ergodic theory of dynamical systems is mainly developed in
the C''*® scenario. Relatively few results were obtained in the C' context. In this
paper we focus our attention on C! dynamical systems with some kind of weak
hyperbolicity, for which the Lebesgue measure is not necessarily invariant.

Among the most useful concepts in the ergodic theory, the definition of physical
probability measure plays an important role. An invariant probability measure p
is called physical if for a Lebesgue-positive set of initial states z, the time-average
of any continuous function ¢ along the orbit of x, up to time n, converges (when
n — +00) to the expected value of ¢ with respect to . Not all systems, principally
in the C'' context, possess physical measures. This problem can be easily dodged
by substituting the definition of physical measure by a weaker concept: physical-
like measures, also called SRB-like or observable measures (see Definition 2.4]).
Physical-like measures do always exist (see [9]).

For any C'*® transitive Anosov diffeomorphism f, the classical Pesin Theory
implies the existence of a unique physical measure z s, which is also of SRB (Sinai-
Ruelle-Bowen) type. Besides, s has a basin of statistical attraction with full
Lebesgue measure and satisfies Pesin Entropy Formula. The typical points are
those in the basin of statistical attraction of u. Analogously, in [9] was proved that
for any C? system f, there exists a nonempty set Oy composed by all the observable
or physical-like measures. Besides, the basin of statistical attraction of O has full
Lebesgue measure, and if f is (for instance) a C' Anosov diffeomorphism, then any
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measure p in Oy satisfies Pesin Entropy Formula (see [§]). In this general case, the
typical points are those in the basin of statistical attraction of Oy.

Along this paper, we will disregard the typical orbits, and look only at the orbits
in the set of zero-Lebesgue measure that have non physical-like behaviour. Precisely,
a point x € M has non physical-like behaviour if none of the limits when n — oo
of the convergent subsequences of its time-averages, is a physical-like measure. In
other words z is anything but typical.

We will adopt also a topologial point of view, and look at the increasing rate of
the topological information quantity of f; namely, its topological entropy hiop(f)-
In [7], Bowen defined the topological entropy hiop(f, E) restricted to an arbitrary
subset E of the space M. Among its properties: hiop(f, E) increases with E, and
hiop(f, M) = hiop(f). We say that a set E C M has full topological entropy if
hiop(f, E) = hiop(f). If so, the dynamics of f restricted to E produces the total
increasing rate of topological information of the system. In other words, even if one
disregards the orbits whose initial states are not in E, the information obtained
from the sub-dynamics is, roughly speaking, the information of the whole system.

Our first purpose is to prove the following result that holds in the C! scenario:

Theorem 1. Let M be a compact Riemannian manifold and let f: M — M be a
C! transitive Anosov diffeomorphism. Then, the set of points without physical-like
behaviour has full topological entropy.

A point x € M is irregular if the sequence of time-averages along its orbit is
not convergent. The points without physical-like behaviour may be irregular or
not. Besides, and principally for hyperbolic systems that are C' but not C'+2,
the typical points may also be irregular or not. In [I] it is proved that the set of
irregular points has full topological entropy. We will prove:

Theorem 2. For any C' transitive Anosov diffeomorphism f on a compact Rie-
mannian manifold M , the set of irreqular points without physical-like behaviour has
full topological entropy.

In contrast, for any continuous map f: M +— M, the set of irregular points
without physical-like behaviour has zero Lebesgue measure and also zero p-measure
for any f-invariant measure p.

We prove the above theorems using, among other tools, two well known topolog-
ical properties of Anosov diffeomorphisms: the expansiveness and the specification
property. But indeed, these conditions are too strong. They can be substituted
by weaker hypothesis: the asymptotical entropy-expansiveness (see [4l [12] [14] [15]),
and the g-almost product property for some blow-up function g (see [16]). In par-
ticular expansive maps are asymptotically entropy expansive, and maps satisfying
the specification property, also satisfy the g-almost product property. Also uniform
hyperbolicity is too strong and can be weakened. We obtain:

Theorem A. Let f: M — M be a C* diffeomorphism on a compact Riemannian
manifold M with a dominated splitting TM = E & F. Assume that the Lyapunov
exponents are non positive along E and non negative along F. If f is asymptotically
entropy-expansive, if it satisfies the g-almost product property, and if not all the
invariant measures satisfy Pesin Entropy Formula, then the set of irregular points
without physical-like behaviour has full topological entropy.

Time-one diffeomorphisms of C'! transitive Anosov flows are also particular cases
for which Theorem [A] applies:

Corollary 1. Let f : M — M be the time-one map of a C' transitive Anosov flow
on the compact Riemannian manifold M. Then, the set of irregular points without
physical-like behaviour has full topological entropy.
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Proof. The time-t (¢ # 0) map of an Anosov flow is partially hyperbolic with
one-dimensional central bundle tangent to the flow. So, it has a dominated splitting
TM = E & F, where E is the sum of stable and central bundles, and F' is the
unstable bundle. Then, f is far “from tangencies” (see [I4]), and applying the known
results of the theory of entropy-expansiveness (see [I4] or see [12] [15]), we deduce
that f is entropy-expansive. This is a stronger condition than the asymptotical
entropy-expansiveness. The other hypothesis of Theorem[&]are well known for time-
t maps of Anosov flows (as for Anosov diffeomorphisms): f satisfies the specification
property, and the invariant measures supported on periodic orbits do not satisfy
Pesin Entropy Formula. Thus, Theorem [A] applies. O

Actually, we will prove a more general result than Theorem [A]l which we will
state and prove in Section @ (Theorem [AJ]). Theorem [Alis only a particular case
of Theorem [T}

We also obtain a variational principle that holds for continuous maps, and a
generalization of Theorem [A] in a C° setting. Before stating this result, let us
introduce some notation. Let f : M — M be a continuous map on a compact
Riemannian manifold M. Denote by Ay C M the set of typical points, and by
I'y € M the set of points without physical-like behaviour. Denote by Py the set of
f-invariant probability measures, and by O the set of observable (or physical-like)
measures. Denote by Iy the set of irregular points. (The precise definitions of these
sets are in Section [2])

Theorem B. For any continuous map [ on a compact Riemannian manifold M
the following properties hold:

a) hiop(f,Af) < SUPco; hu(f)s haop(f,Ty) < SUPLeP\O; hy(f)-
b) If f satisfies the g-almost product property for some blow-up function g, then
the above inequalities are equalities.
c) If besides condition b), f is asymptotically entropy-expansive, if Oy is contained
in the set ES(v) of equilibrium states of some continuous potencial ¥ : M — R,
and if ES§(y) # Py, then:

cl) The set Ty NIy of irregular points without physical-like behaviour has full
topological entropy.

c2) For all € > 0 there exists a non physical-like invariant measure p such that
hu(f) > hiop(f) — €, and the set of regular points whose sequence of time-averages
converge to fu has topological entropy larger than hi.p(f) — €.

c3) The set Ty N (M\ Iy) of regular points without physical-like behaviour also
has full topological entropy.

We remark that indeed, the diffeomorphisms satisfying the hypothesis of The-
orem [A] (in particular transitive Anosov diffeomorphisms and time-one maps of
transitive Anosov flows), also satisfy the hypothesis of part ¢) of Theorem [Bl Thus,
assertions ¢2) and ¢3) also hold for them. We will prove in fact, a more general
result than Theorem [B] in Section @ (Theorem A.2)), which contains all the results
that we announced in this introduction.

To prove the theorems, we will use the following main tools: the topological and
metric properties of asymptotically entropy-expansive maps ([4, 12} 14 [15]), the
formulae of the topological entropy of saturated sets according to [16], the basic
definitions and properties of the theory of equilibrium states [I3], and Pesin Entropy
Formula for physical-like measures of certain C! diffeomorphisms according to [8].

Organization of the paper. Section[2lis a review of definitions to make precise
the statements of the theorems and their proofs. In Section 8] we prove two lemmas
and Section [ contains the end of the proofs.
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2. DEFINITIONS

Let f: M — M be a continuous map on a compact manifold M, which does not
necessarily preserve any smooth measures with respect to the Lebesgue measure.
Let P denote the space of all the probability measures endowed with the weak*
topology, and Py C P denote the space of f-invariant probability measures.

2.1. Physical-like or SRB-like measures.

Definition 2.1. (Empirical probabilities or time-averages and p-omega limit.)
For any point x € M and for any integer number n > 1, the empirical probability
or time-average measure Y, (x) of the f-orbit of 2 up to time n, is defined by

n—1
1
T(z) = - Z 043 ()
j=0

where ¢, is the Dirac probability measure supported at y € M. Consider the
sequence {Tn}n N+ of empiric probabilities in the space P, and define the p-omega-
limit set pwy(z) C P as follows:

pwy(z) == {u €P: dn; — +oosuch that lim T, = u}.
11— 400
It is standard to check that pwy(x) C Py. From [I1] we know that pw(x) is always
nonempty, weak*-compact and connected.

Definition 2.2. (Physical or SRB measures and their basins)
We call a measure p € P physical or SRB (Sinai-Ruelle-Bowen), if the set

(1) A(p) ={x € M: pws(z) = {u}}

has positive Lebesgue measure. The set A(u) is called basin of statistical attraction
of p1, or in brief, basin of p (even if y is not physical).

Remark 2.3. The above definition of physical or SRB measures is not adopted by
all the authors. Some mathematicians require the measure p to be ergodic to call
it physical. Besides, some mathematicians when studying C'T® systems do not
define SRB as a synonym of physical measure, but take into account the property
of absolute continuity on the unstable foliation. But, in the scenario of continuous
systems, and even for C' systems, the unstable conditional measures can not be
defined because the unstable foliation may not exist.

Definition 2.4. (Physical-like measures and their e-basins, cf. [9])

Choose any metric dist* that induces the weak* topology on the space P of
probability measures. A probability measure p € P is called physical-like (or SRB-
like or observable) if for any £ > 0 the set

(2) Ac(p) = {o € M: dist” (pus (), ) < <}

has positive Lebesgue measure. The set A.(u) is called basin of e-partial statistical
attraction of u, or in brief, e-basin of u. We denote by Oy the set of physical-
like measures for f. It is standard to check that every physical-like measure is
f-invariant and that O does not depend on the choice of the metric in P.

Definition 2.5. (Basin of a compact set of probabilities)
Let K by a nonempty weak™ compact set of probabilities. The basin of statistical
attraction A(K), in brief basin of K, is defined by:

AK) :=={x e M : pws(xz) C K}.
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Theorem 2.6. (Characterization of physical-like measures [9])

Let f : M — M be a continuous map on a compact manifold M. Then, the
set Oy of physical-like measures is the minimal weak* compact set whose basin has
total Lebesgue measure.

In other words: Oy is nonempty, weak® compact, and contains the limits of
the convergent subsequences of the empiric probabilities for Lebesgue almost all
the initial states z € M. Besides, no proper subset of Of has the latter three
properties simultaneously.

Proof. See [9].

2.2. Typical, irregular, and without physical-like behaviour.

Definition 2.7. (The set Ay of typical points)

We call a point € M typical if pw(x) C Oy. Equivalently, all the convergent
subsequences of empirical probabilities of z converge to physical-like measures. We
denote by Ay the set of typical points. Thus:

(3) Ay = {z:pw(z) C Or},.
From Theorem 2.6, Ay has Lebesgue full measure.

Definition 2.8. (The set I'; of points without physical-like behaviour).

We say that a point x € M has not physical-like behaviour if pw(z) N Of = 0.
Equivalently, none of the convergent subsequences of the empirical probabilities of
x converge to a physical-like measure. We denote by I'y the set of such points
without physical-like behaviour. Thus

(4) I'y={z:pw(x)NO; =0}.
Since I'y € M \ Ay we deduce that I'y has zero Lebesgue measure.

Definition 2.9. (The set Iy of irregular points).

We call a point « € M irregular if pw(x) is not a singleton. Equivalently, the
sequence of empirical probabilities T, (x) does not converge. We denote by Iy the
set of irregular points. Thus,

(5) Ip:={x e M: {Th(x)}n>1 does not converge}.

2.3. Topological definitions. In this subsection we list some other concepts that
we will use along the proofs. Indeed, we will not formally use the mathematical
conditions that impose those definitions, but only some already known relations
among them. So here, we just cite the bibliography where the definitions can be
found.

Topological entropy of a subset £ C M. We adopt Bowen’s definition of the
topological entropy hiop(E, f) of an arbitrary subset E C M, for any compact
metric space M and any continuous map f on M (see [7]).

Entropy-expansive and asymptotically entropy-expansive maps. We re-
call the definitions of expansive, entropy-expansive and asymptotically entropy-
expansive maps in [4, 12, 14, [I5]. From those definitions, trivially every expansive
homeomorphism is entropy-expansive, and every entropy expansive map (not nec-
essarily an homeomorphism) is asymptotically entropy-expansive.

Specification and g-almost product properties

We adopt the definition of the specification property of the map f, as for instance
in [IT) I8} 5L [6, 3, 19]). We note that the original definition of specification, due to
Bowen [5], was stronger than the specification property that we adopt here.

We recall the definition of the blowup functions ¢g : N — N, and of the g-almost
product property of the map f, in [16]). Every continuous map f that has the
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specification property, also has the g-almost product property for some blow up
function g ([16, Proposition 2.1]). In other words, the g-almost product property
is weaker than the specification property.

2.4. Saturated sets and saturation property of the entropy. Let f: M —
M be a continuous map on a compact metric space M. Recall equality (II) defining
the (maybe empty) basin A(u) of any measure u. Recall also Definition [Z5] of basin
A(K) of any nonempty weak*-compact set K C Py.

We reformulate the definition of the saturated sets in [I6], as follows:

Definition 2.10. (Saturated sets) Let K € Py be a nonempty, weak*-compact and
connected set of f-invariant probability measures. We call the (maybe empty)
following set Gx C M, the saturated set of K :

Gk ={x e M: pws(z) = K} C A(K).
Note that Gy} = A(u) for any invariant measure j.

For convenience, we introduce the following new definition inspired in the results
of [16]:

Definition 2.11. (Saturation property of the entropy) We say that the continuous
system f : M — M has the saturation property of the entropy, if for any nonempty,
weak™® compact and connected set K C Py, the following equality holds:

hiop(f, G ) = inf{h,(f): pe K},

where G C M is the saturated set of K, hip(f, Gi) is the Bowen’s topological
entropy of the set Gx, and h,(f) is the metric entropy of f with respect to the
probability measure .

Then, if f has the saturation property of the entropy, in particular for any
invariant (not necessarily ergodic) measure p, the basin of statistical attraction
A(p) satisfies

(6) hiop(f; A1) = hu(f)-

In [7, Theorem 3], Bowen proved that equality (@) holds for any ergodic measure p,
for any continuous map f on a compact metric space M, even if f does not satisfy
the saturation property of the entropy. Besides, in [16, Theorem 1.2] it is proved
equality (@) also for any non-ergodic invariant measure, provided that f satisfies
the g-almost product property, even if it does not satisfy the saturation property
of the entropy for other weak*-compact sets K.

2.5. Dominated Splitting.

Definition 2.12. (Dominated Splitting)

Let f : M — M be a C' diffeomorphism on a compact Riemannian manifold M.
Let TM = E @ F be a D f-invariant and continuous splitting such that dim(E) -
dim(F) # 0. It is called a dominated splitting if there exists o > 1 such that

IDFle@ D7l prapl < o' Vo e M.

Remark 2.13. The continuity of the splitting in the latter definition is redundant
(see |2} p. 288]). The classical definition of dominated splitting is TM = F @ F
such that there exists C' > 0 and o > 1:

||Dfn|E(m)|| . HDf7n|F(fn(m))|| < CO’in,VSC eM, n>1.
It is equivalent to Definition [Z12] (see [10]).
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2.6. Pesin Entropy Formula.

Definition 2.14. (Pesin Entropy Formula)
Let f : M + M be a C' diffeomorphism on a compact Riemannian manifold M
and let 11 € Pr. We say that p satisfies Pesin Entropy Formula if

(") mf) =[5 itwhdn,

Xi(z)>0

where h,,(f) is the metric entropy of u and x1(x) > x2(z) - -+ > Xdim(ar)(z) denote
the Lyapunov exponents of p-a.e. x € M. We denote

PEj:={u € Ps: p satisfies Pesin Entropy Formula () }.

Remark 2.15. Recall that PEy is convex, because the metric entropy is affine on
convex combinations of the invariant measures ([20, Theorem 8.1]). Besides, due to
the affinity property and Ruelle’s inequality [I7], either PEy = Py or the interior
of PEy in Py is empty. If besides f is asymptotically entropy-expansive, then the
entropy function p + h,(f) is upper semi-continuous (see [20, Theorem 8.2] for the
expansive case, and [4] for the entropy-expansive case; with a standard adaptation
the proofs are extended to the asymptotically entropy-expansive case). Joining the
upper-continuity of the entropy function with Ruelle’s inequality, it is deduced that
PEy is weak*-compact. We conclude that under the hypothesis of Theorem [A] the
set PE; is (a priori maybe empty), convex, weak*-compact and with empty interior
in Py.

2.7. Equilibrium States. Let us return to the continuous setting and state the
basic definitions and properties of the thermodynamic formalism (see for instance
[13]). Let f be a continuous map on a compact manifold M. Fix a continuous
real function ¢ : M — R, which is called the potential. Consider the following real

number pr(¢):
pr(0)i= sup (a(h) = [ wan)
nEPy
The number py () is called the pressure with respect to the potential .

Definition 2.16. The (maybe empty) set ES¢(¢)) of f-invariant probability mea-
sures, is defined by

BS; = {ne Py u(h) - [wiu=ps0)}.

The measures p in ESy are called equilibrium states of f with respect to the po-
tential ¥. So ES¢(v) is the set of equilibrium states.

Remark 2.17. Due to the affinity property of the entropy function, ES(¢) is con-
vex and either is the whole space Py, or it has empty interior in Py. If f is
asymptotically entropy-expansive, then, as said above, the entropy function is up-
per semi-continuous. Thus, ESf(¢) is besides nonempty and weak*-compact (see
for instance [13, Theorem 4.2.3]).

3. THE KEY LEMMAS.

Consider a C! diffeomorphism f on a compact Riemannian manifold.

Recall the definition of the set I'¢ of points without physical-like behaviour, given
by equality (). Recall the notation PE; for the set of measures that satisfy Pesin
Entropy Formula. Define the set I'} by:

(8) I} :={z: pw(x)NPE; = 0}.
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We denote by C°(M,R) the space of continuous real functions ¢ : M ~ R. Recall
equality (B]) defining the set I; of irregular points. Given ¢ € C°(M,R), consider
the set /7 defined by

n—1
1 .
I = {ac eEM: - E ¢(f7(x)) is not convergent }
Jj=0

n—1
1
—frem: = Y, (z) is not t }
{m - JZ_; /(p (x) is not convergen
Then, due to the weak™ topology, we have
) - U
p€C(M,R)

Lemma 3.1. Let f : M — M be a C' diffeomorphism on a compact Riemannian
manifold M.
a) If f satisfies the saturation property of the entropy and if O # PEy # Py, then:

al) For any p € C°(M,R) such that
(10) inf /(pdw < sup /(pdw,

wePy w€EPy

the set s N I}P carries full topological entropy.

a2) The set Iy NIy has full topological entropy.

b) If f satisfies the hypothesis of part a), and besides Oy C PEy, then the setT ¢NIf
of irreqular points without physical-like behaviour has full topological entropy.

c) If f is asymptotically entropy expansive and satisfies the g-almost product prop-
erty for some blow up function g, then f satisfies the saturation property of the
entropy.

Remark 3.2. We will show below that assertion ¢) of Lemma Bl holds for any
continuous map f : M — M on a compact metric space M.

Proof of Lemma [3.1].

Part al). We divide the proof into two cases.

Case 1. sup,cpp, hu(f) < hiop(f).
Fix h satisfying sup,c pg, hu(f) < I < hiop(f). From the Variational Principle [20],
there exists p1 € Py such that

hyuy (f) > h > sup hyu(f).
nePEy

Thus p1 € Py \ PEy. From inequality (I0) we can take py € Py such that

/ wdpo # / edpy .

Take 7 € (0,1) close to 1 enough such that 7h,, (f) > h. Construct the measure
p2 =711+ (1 —7)po.  Then,

(11) /wdm #/wdum and

o (F) = Thy (F) + (L= 1)l (f) = Thy (f) > D
It follows that ps € Py \ PEy. Let

K:={pu=0u+1—-0)uz: 6€[0,1]}. Then,
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hy(f) > min{h,, (f), hu, (f)} > h and thus p € Py \ PE; V pe K.
Let us prove that
G C F; n I}p.
In fact, for € Gk, we have pwys(z) = K So, using ([II)) we deduce z € I}". Besides
pwg(z) = K C Py \ PEy which implies z € I'}.
By hypothesis, f satisfies the saturation property of the entropy. Then

htop(fv F; N I}p) 2 htop(f; GK) - #Helf( h,u(f) = min{h’#l(f)ﬂ h,u2(f)} > h

Since h is arbitrarily closed to hiop(f), the proof of Case 1 is complete.

Case 2. sup,cpp, hu(f) = hiop(f).
Fix € > 0 and take two measures 1o, ;41 such that

7]0€7>f\PEf, 1 GPEf and hm(f)>htop(f)fe.

Either there exists
vy € Py \ PEy such that /cpdz/o #* /gpdul,

or, f(pdno = f(pd,ul. In this latter case, from inequality (I0) we can take py € Py
such that [@dpy # [ pdps. So, we can construct the measure vy = %770 + %po,
which satisfies

vy € Py \ PEy such that /cpdz/o #* /gpdul.
Take t1,t2 € (0,1), t1 # to, close to 1 such that
min{ty, ta}hy, (f) > hiop(f) — €.
Construct the measures

,LL:tLLtl +(17t1>1/0, l/:t2,u,1 +(17t2>1/0. Then

(12) /(pdu # /(pdu. Define: K :={0p+(1—-0)v: 0<[0,1]}.

Since u1 € PEy but vy € Py \ PEy, we have 7u1 + (1 — 7)vy € Py \ PE; for all
7 € [0,1). In particular,
M,VEPf\PEf, KC'Pf\PEf.
Let us prove that
Gig C I n I}D
In fact, pwy(z) = K for all z € G Thus, using ([2) we deduce z € I7. Besides,

pwy(z) = K C Py \ PE; which implies x € I'}. Finally, recalling that f satisfies
the saturation property of the entropy, we obtain

hiop(f, 5 NIF) = hiop(f, Gx) = Migf(hu(f) = min{hu(f), o (f)} > heop(f) — €.
Since € > 0 is arbitrarily small, the proof of Case 2 is complete. We have proved

part al) of Lemma BT}

Part a2). By assumption there are two different invariant measures p; # po.
From Riesz Theorem, there exists a continuous function ¢ € C°(M,R) such that
[ edur # [ pdps. In other words,

inf /cpdu < sup /cpdu.
HnEPy HEPy
Applying part al), F?OI}D carries full topological entropy. Besides, I7 C Iy because
of equality (@)). Therefore, NIy DI%N I}". Since the topological entropy of a set
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increases when the set increases, we deduce that I'; N [y also has full topological
entropy. We have proved part a2) of Lemma 3]

Part b) Note that Oy C PEy implies I'; C I'y. Thus:
M>TI'ynIy D F?ﬂ[f, htop(f, M) > htop(f, Ffﬂ[f) > htop(f, F;ﬂlf) = htop(f)-

Since hiop(f, M) = hiop(f), we deduce that the above inequalities are equalities;
hence hyop(f, T f N If) = hiop(f), ending the proof of part b).

Part c¢). It is an immediate corollary of the theory of saturated sets in [I6]. For a
seek of completeness, and also for futher use, let us explain how assertion c¢) follows
from [16]. From now on, and until the end of this subsection, M is a compact
metric space and f : M — M is continuous. Let us first recall the definitions of
uniformly separated sets: For any pair of real numbers (d, €) such that 0 < § < 1
and € > 0, any pair of points z,y € M and any natural number n > 1, we say that
x,y are (0, n,e)-separated, if
#{j€{1,2,...n}: dist(f/z, fly) > e} > on.

A subset E is called (6,n,e)-separated if any pair of different points of E are
(6, n,e)—separated. Now, let us fix some notation: For any f-invariant measure pu,
for any neighborhood F of p in the space of probability measures P (i.e. FF C P

is a weak*-open subset such that v € F), and for any natural number n > 1 we
construct the following set of points A, (F) C M:

Ap(F):={z e M|Y,(z) € F},
where Y, (x) is the empirical probability defined in 21l We denote:
(13) N(F;0,n,e) := maximal cardinality of a (d, n,)-separated subset A, (F).

From the hypothesis that f is asymptotically entropy-expansive, applying [16, The-
orem 3.1], it is deduced that there exist uniform values of € and § such that for any
ergodic measure u and any neighborhood F C P of u, if n is large enough, then
the difference

ha(f) — logQN(Z;;é,n,s)
is as small as wanted. Precisely:
Assertion B.Jl1. For any n > 0, there exist uniform values of € > 0 and § > 0
satisfying the following condition: for any ergodic measure u and any neighborhood
F CP of u, there exists ng > 1 such that

logy N(F;6,n, ¢
() NS

where N (F;8,n,¢) is defined by equality ([I3).

By hypothesis f has the g-almost product property. The Variational Principle
proved in [16, Theorem 1.1] states that if f satisfies assertion BIl1 and the g-
almost product property, then for any nonempty weak*-compact and connected set
K C Py, the saturated set Gx C M (recall Definition 2T0) satisfies hiop(f, Gx) =
inf,cx h,(f). For convenience, we named this condition as the saturation property
of the entropy (recall Definition 2TT)). Now, part c¢) of Lemma BJlis proved. O

vnz”Oa

Remark 3.3. We could prove directly assertion a2) of Lemma Bl without proving
assertion al). But we preferred to prove also al) because its statement is stronger
than a2). In fact, I; is the union of the noncountable familiy of sets I}D, for all
¢ € CO(M,R).
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The uniform separation property. For convenience and further use, let us
recall the following definition:

Definition 3.4. (Uniform separation property) A continuous map f on a compact
metric space M satisfies the uniform separation property if assertion BIl1 in the
proof of Lemma [B.1] holds.

Remark 3.5. .

(1) As proved in [16, Theorem 3.1], for any continuous map f on a compact
metric space, if f is asymptotically entropy-expansive, then f satisfies the uniform
separation property.

(2) Besides, in [I6], Theoreml.1] it is proved that if a continuous map f satis-
fies the uniform separation and the g-almost product properties, then f has the
saturation property of the entropy.

Next lemma applies to continuous maps f: M — M on a compact metric space
M. Before stating it let us fix some notation. Consider the (necessarily nonempty
and weak*-compact) set Oy. We will assume that Oy C ES¢(¢) for some continu-
ous potential . Let us denote

L) :={x e M: pw(x) NESs(v) # 0}.
Recall equality (@) defining the set I'; of points without physical-like behaviour,
and note that
Lp(y) C Ty,
because Oy C ESf(v)).

Lemma 3.6. Let f: M — M be a continuous map on a compact metric space M. If
[ satisfies the saturation property of the entropy, and if besides Oy C ESf(¢) # Py
for some continuous potential v : M — R, then the set T ;(¢)NIy has full topological
entropy, and hence the set I' s N1y of irreqular points without physical-like behaviour
also has full topological entropy.

Proof. To simplify the notation along the proof, we write ES; instead of
ES¢(1). As in the proof of Lemma [B.1] we discuss two cases:

Case 1. sup,cp,\gs, hu(f) = hiop(f). In this case, for any e > 0, there exists a
measure g € Py \ ESf such that

Py (f) > htoz)(f) — €.

Choose any measure j; € FSy and consider the segment in Py composed by all
the measures of the form
pe =t p1+(1—1t) p, 0<t<1

We have pu; € ESy, and po ¢ ESy. Due to the affinity property of the entropy
and of the definition of equilibrium states respect to the continuous potential v, we
obtain:

& ESy YO<t<l1.
Besides j1; converges to pig in the strong topology when t — 0% (i.e. uy(B) — po(B)
for all measurable set B C M). So, there exists 0 < ¢; < 1 such that

By, > hiop(f) —€ V11 >t >0.

Denote

K:{Mt: Ogtgtl} CPf\ESf.
By hypothesis, f has the saturation property of the entropy. Thus, the saturated
set of K verifies the following equality:

htop(GK) = JIE%’( h,u(f) = min {h#tl (f)a h,uo (f)} > htop(f) — €.
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Since Gg = {x € M: pw(zx) = K}, and K is not a singleton, and besides it is
contained in Py \ ESy, we deduce
(14) Gr C Iy NTp(9),
Therefore
hiop(Lf VL (1)) 2 htop(Gr) > hiop(f) — €.

Since this condition holds for all € > 0 we deduce that

htop(lf n Ff(1/1>> = htop(f)’
We have proved the lemma in case 1.

Case 2. sup,cp,\ps, hu(f) < hop(f)-
From the Variational Principle, for all € > 0, there exists a measure p; such that

m € ESy, h#o(f) >ht0p(f)*€'
Take any measure po € ESy, and consider the segment in Py composed by all the

measures of the form
,U/tZ:t'/Ll-i-(l—f)',U,m nggl

We have 1 € ESy, and p9 € ESp. Due to the affinity property of the entropy
and of the definition of equilibrium states respect to the continuous potential ¥, we
obtain:

w € ESy VO<t<l1.
Take 0 < t; < 1 close to 0 such that
By > hiop —€ V0 <t <.
Take a real number t5 € (0,¢1). Denote
K={u:ta <t<t}CP;\ES;.
Thus, the saturated set of K verifies:
hiop(GK) = Mlg( hu(f) = min { Ty, (f), Ty (F)} > Teop(f) — €

Now, the proof finishes as in the first case (from inequality ([I4)) to the end). We
have proved Lemma O

Remark 3.7. Using a similar argument to the proof of Lemma Bl one also can
deduce that, in the hypothesis of Lemma B.6] for any continuous function ¢ : M

M such that
inf /(pd,u< sup /(pd,u
#pr ,LLEPf

e se as full topological entropy, which is a stronger resu an the
the set I7 (T has full topological ent hich i trong It than th
assertion that was proved in Lemma

4. END OF PROOFS.

4.1. End of the proof of Theorem [Al. Recall Definition [3.4] of the uniform sep-
aration property, and the statement (1) of Remark 3.5l Using them, we reformulate
Theorem [A] in a more general version:

Theorem 4.1. Let f : M+~ M be a C* diffeomorphism on a compact Riemannian
manifold M such that:

(1) f has a dominated splitting TM = E & F.

(2) For every physical-like measure p, and for p a.e. x € M, the Lyapunov expo-
nents of x are non positive along E and non negative along F'.

(3) f satisfies the uniform separation property.

(4) f has the g-almost product property.
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(5) There exists some invariant probability measure that does not satisfy Pesin
Entropy Formula.

Then, the set Iy N I'y of irreqular points without physical-like behaviour has full
topological entropy.

Proof. It is enough to check that f satisfies the hypothesis of part b) of Lemma
Bl First, f has the saturation property of the entropy because it satisfies condi-
tions (3) and (4) (see Remark BH). Now, taking into account that Of # 0 (see
Theorem [2.6)), it is enough to check that Oy C PEjy.

To show that Oy C PEy, we first characterize the (a priori, maybe empty)
set Oy N PE;. For any invariant measure p, and for p-a.e. x € M, denote the
Lyapunov exponents of x by x1 > X2 > ... > Xdim(um)- By hypothesis (1) and (2),
for all u € Oy and for p-a.e. x € M, the following equality holds:

dim(F)
> @)= Y xl@).
xi(z)>0 =1

By Ruelle’s inequality and the invariance of the sub-bundle F', we have

dim(F)
mf) < [ S xidu= [ 3 xedn= [log|detDflrldn ¥ e 0y,
xi>0 1=1

Joining the above inequality with Definition 214] of the set PEy, we deduce that
pu € Of(PEy if and only if

(15) half) > / log | det Df| | dy.

Finally, we recall [8, Theorem 1], where inequality (&) is proved for any C! dif-
feomorphism with dominated splitting, and for any p € Of. We conclude that
Of C Of Py, or equivalently Oy C Py, as wanted. O

4.2. End of the proof of Theorem [Bl. a) From the definition of Ay and I'y
(see Subsection 22), we have

z € Ay if and only if pw(x) C Oy,

xz €'y if and only if pw(x) N Of =0 if and only if pw(z) C Ps\ Oy.
Define to = sup,co, hu(f) = 0. Thus, h,(f) <to V p € pw(z), Vo €Ay
For any real number ¢t > 0, define the (maybe empty) set

Q(t) :={z: Ip € pws(x) s.t. hu(f) <t}
From [7, Theorem 2]: hyop(f, Q(t)) < t. So, in particular for ¢ = tg, we deduce
Ap CQto) = hiop(fi Af) < hiop(f, Qo)) < to = sup hu(f),
ey

proving the first inequality of part a) of Theorem[Bl To prove the second inequality,
define t; := SUPLep\O; hu(f), and repeat the argument above, with ¢; instead of
to. We have proved part a).

b) By hypothesis, f satisfies the g-almost product property. Consider equality ()
defining the basin of statistical attraction A(u) of any (non necessarily ergodic)
invariant measure p, and observe that A(u) is the saturated set of the singleton

{p} (recall Definition 2Z-T0). Now, we apply [16, Theorem 1.2], which states that if
a continuous map f satisfies the g-almost property, then

htop (f7 A(M)) = h#(f)
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for any f-invariant measure p. Since for any g € Oy we have A(n) C Ay, then

htop(fa Af) Z sup htop(fa A(,U,)) = Ssup hu(f)
ne0y ne0y
Together with part a), we deduce that hiop(f, Ay) = sup,co, hu(f), proving the
first equality of part b). To prove the second equality, repeat the argument above,
with Py \ Oy instead of Of. We have proved part b).

c) We will prove the following more general result, substituting the hypothesis of
asymptotical entropy-expansiveness by the weaker condition of the uniform sepa-
ration property (recall Definition B4l and assertion (1) of Remark [B2)):

Theorem 4.2. Let f be a continuous map on a compact metric space M. If f
satisfies the uniform separation property and the g-almost product properties, and
besides, if Oy is contained in the set ESf() # Py of equilibrium states of some
continuous potencial ¥ : M +— R, then the assertions cl), ¢2)and c3) of Theorem
hold.

Proof. From the hypothesis of uniform separation and g-almost product, the
map f satisfies the saturation property of the entropy (recall Remark B.5]).
cl) Applying Lemmal[3.6 the set I'yNIy of irregular points without physical-like
behaviour has full topological entropy.
c2) Applying c1) and part b) of Theorem [B]l we deduce
sup iy (f) = hiop(L'y) = heop(L'g N 1) = hiop(f).
neP\Of

Therefore, for all € > 0 there exists an invariant measure p € Py \ Oy such that

h(f) > heop(f) — €.

Besides, the saturation property of the entropy implies that the basin of statistical
attraction A(p) has a topological entropy equal to h,(f). Thus,

hiop(A(1)) = hyu(f) > hiop(f) — €,

as wanted.

c3) Finally, we must prove that the set I'y N (P \ I) of regular points without
physical-like behaviour also has full topological entropy. In fact, for any p ¢ Oy
any point z in the basin of statistical attraction A(u) belongs, by definition, to the
set I'¢, and is regular because its sequence of empirical probabilities converges to
. Thus:

hiop(A(1)) < hiop(Ly N (M \ Ig)) V p & Oy.
For all € > 0 we take p & Oy as in part c¢2). We conclude:

hiop(Ty V(M I)) > huop(f) — € Ve > 0.

Therefore, the set I'y N (M \ Iy) has full topological entropy, ending the proof of
Theorem .2} hence also of Theorem O
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