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Abstract

A time series is a sequence of real values that can be considered as observations of a certain
system. In this work, we are interested in time series coming from dynamical systems. Such
systems can be sometimes described by a set of equations that model the underlying mech-
anism from where the samples come. However, in several real systems, those equations are
unknown, and the only information available is a set of temporal measures, that constitute
a time series. On the other hand, by practical reasons it is usually required to have a predic-
tion, v.g. to know the (approximated) value of the series in a future instant ¢. The goal of
this thesis is to solve one of such real-world prediction problem: given historical data related
with the liquefied bottled propane gas sales, predict the future gas sales, as accurately as
possible. This time series prediction problem is addressed by means of neural networks,
using both (dynamic) reconstruction and prediction. The problem of to dynamically recon-
struct the original system consists in building a model that captures certain characteristics
of it in order to have a correspondence between the long-term behavior of the model and of
the system.

The networks design process is basically guided by three ingredients. The dimensionality
of the problem is explored by our first ingredient, the Takens-Mané’s theorem. By means
of this theorem, the optimal dimension of the (neural) network input can be investigated.
Our second ingredient is a strong theorem: neural networks with a single hidden layer are
universal approximators. As the third ingredient, we faced the search of the optimal size
of the hidden layer by means of genetic algorithms, used to suggest the number of hidden
neurons that maximizes a target fitness function (related with prediction errors). These
algorithms are also used to find the most influential networks inputs in some cases. The
determination of the hidden layer size is a central (and hard) problem in the determination
of the network topology.

This thesis includes a state of the art of neural networks design for time series prediction, in-
cluding related topics such as dynamical systems, universal approximators, gradient-descent
searches and variations, as well as meta-heuristics. The survey of the related literature is
intended to be extensive, for both printed material and electronic format, in order to have a
landscape of the main aspects for the state of the art in time series prediction using neural
networks. The material found was sometimes extremely redundant (as in the case of the
back-propagation algorithm and its improvements) and scarce in others (memory structures
or estimation of the signal subspace dimension in the stochastic case). The surveyed litera-
ture includes classical research works ([27], [50], [52]) as well as more recent ones ([79] , [16]
or [82]), which pretends to be another contribution of this thesis.

Special attention is given to the available software tools for neural networks design and time
series processing. After a review of the available software packages, the most promising
computational tools for both approaches are discussed. As a result, a whole framework
based on mature software tools was set and used. In order to work with such dynamical
systems, software intended specifically for the analysis and processing of time series was
employed, and then chaotic series were part of our focus.

Since not all “randomness” is attributable to chaos, in order to characterize the dynamical
system generating the time series, an exploration of chaotic-stochastic systems is required,
as well as network models to predict a time series associated to one of them. Here we
pretend to show how the knowledge of the domain, something extensively treated in the
bibliography, can be someway sophisticated (such as the Lyapunov’s spectrum for a series
or the embedding dimension).
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In order to model the dynamical system generated by the time series we used the state-space
model, so the time series prediction was translated in the prediction of the next system
state. This state-space model, together with the delays method (delayed coordinates) have
practical importance for the development of this work, specifically, the design of the input
layer in some networks (multi-layer perceptrons - MLPs) and other parameters (taps in the
TFLNs). Additionally, the rest of the network components where determined in many cases
through procedures traditionally used in neural networks: genetic algorithms.

The criteria of model (network) selection are discussed and a trade-off between performance
and network complexity is further explored, inspired in the Rissanen’s minimum description
length and its estimation given by the chosen software. Regarding the employed network
models, the network topologies suggested from the literature as adequate for the prediction
are used (TLFNs and recurrent networks) together with MLPs (a classic of artificial neural
networks) and networks committees. The effectiveness of each method is confirmed for the
proposed prediction problem. Network committees, where the predictions are a naive convex
combination of predictions from individual networks, are also extensively used.

The need of criteria to compare the behaviors of the model and of the real system, in the long
run, for a dynamic stochastic systems, is presented and two alternatives are commented.

The obtained results proof the existence of a solution to the problem of learning of the
dependence Input — Output . We also conjecture that the system is dynamic-stochastic
but not chaotic, because we only have a realization of the random process corresponding to
the sales. As a non-chaotic system, the mean of the predictions of the sales would improve
as the available data increase, although the probability of a prediction with a big error is
always non-null due to the randomness present. This solution is found in a constructive and
exhaustive way. The exhaustiveness can be deduced from the next five statements:

e the design of a neural network requires knowing the input and output dimension,the
number of the hidden layers and of the neurons in each of them.

e the use of the Takens-Mané’s theorem allows to derive the dimension of the input data

e by theorems such as the Kolmogorov’s and Cybenko’s ones the use of multi-layer
perceptrons with only one hidden layer is justified so several of such models were
tested

e the number of neurons in the hidden layer is determined many times heuristically
using genetic algorithms

e a neuron in the output gives the desired prediction

As we said, two tasks are carried out: the development of a time series prediction model
and the analysis of a feasible model for the dynamic reconstruction of the system. With
the best predictive model, obtained by an ensemble of two networks, an acceptable average
error was obtained when the week to be predicted is not adjacent to the training set (7.04%
for the week 46/2011). We believe that these results are acceptable provided the quantity
of information available, and represent an additional validation that neural networks are
useful for time series prediction coming from dynamical systems, no matter whether they
are stochastic or not.

Finally, the results confirmed several already known facts (such as that adding noise to the
inputs and outputs of the training values can improve the results; that recurrent networks
trained with the back-propagation algorithm don’t have the problem of vanishing gradients
in short periods and that the use of committees - which can be seen as a very basic of
distributed artificial intelligence - allows to improve significantly the predictions).



Resumen

Una serie temporal es una secuencia de valores reales que pueden ser considerados como ob-
servaciones de un cierto sistema. En este trabajo, estamos interesados en series temporales
provenientes de sistemas dinamicos. Tales sistemas pueden ser algunas veces descriptos por
un conjunto de ecuaciones que modelan el mecanismo subyacente que genera las muestras.
sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la tinica infor-
macion disponible es un conjunto de medidas en el tiempo, que constituyen la serie temporal.
Por otra parte, por razones practicas es generalmente requerida una prediccion, es decir,
conocer el valor (aproximado) de la serie en un instante futuro ¢. La meta de esta tesis es
resolver un problema de prediccién del mundo real: dados los datos histéricos relacionados
con las ventas de gas propano licuado, predecir las ventas futuras, tan aproximadamente
como sea posible. Este problema de prediccion de series temporales es abordado por medio
de redes neuronales, tanto para la reconstruccién como para la prediccion. El problema de
reconstruir dindmicamente el sistema original consiste en construir un modelo que capture
ciertas caracteristicas de él de forma de tener una correspondencia entre el comportamiento
a largo plazo del modelo y del sistema.

El proceso de diseno de las redes es guiado basicamente por tres ingredientes. La dimension-
alidad del problema es explorada por nuestro primer ingrediente, el teorema de Takens-Mané.
Por medio de este teorema, la dimensién 6ptima de la entrada de la red neuronal puede ser
investigada. Nuestro segundo ingrediente es un teorema muy fuerte: las redes neuronales
con una sola capa oculta son un aproximador universal. Como tercer ingrediente, encaramos
la biisqueda del tamano oculta de la capa oculta por medio de algoritmos genéticos, usados
para sugerir el nimero de neuronas ocultas que maximizan una funcion objetivo (relacionada
con los errores de prediccion). Estos algoritmos se usan ademés para encontrar las entradas
a la red que influyen més en la salida en algunos casos.La determininacion del tamano de la
capa oculta es un problema central (y duro) en la determinacion de la topologia de la red.

Esta tesis incluye un estado del arte del disenio de redes neuronales para la prediccién de series
temporales, incluyendo topicos relacionados tales como sistemas dindmicos, aproximadores
universales, busquedas basadas en el gradiente y sus variaciones, asi como meta-heuristicas.
El relevamiento de la literatura relacionada busca ser extenso, para tanto el material im-
preso como para el que esta en formato electronico, de forma de tener un panorama de los
principales aspectos del estado del arte en la prediccion de series temporales usando redes
neuronales. El material hallado fue algunas veces extremadamente redundante (como en
el caso del algoritmo de retropropagaciéon y sus mejoras) y escaso en otros (estructuras de
memoria o estimacion de la dimensiéon del sub-espacio de senal en el caso estocastico). La
literatura consultada incluye trabajos de investigacion clasicos ( ([27], [50], [52])‘asi como
de los més reciente ([79] , [16] or [82]).

Se presta especial atencién a las herramientas de software disponibles para el diseno de redes
neuronales y el procesamiento de series temporales. Luego de una revisién de los paquetes
de software disponibles, las herramientas més promisiorias para ambas tareas son discuti-
das. Como resultado, un entorno de trabajo completo basado en herramientas de software

iii
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maduras fue definido y usado. Para trabajar con los mencionados sistemas dinamicos, soft-
ware especializado en el anélisis y proceso de las series temporales fue empleado, y entonces
las series cadticas fueron estudiadas.

Ya que no toda la “aleatoriedad” es atribuible al caos, para caracterizar al sistema dindmico
que genera la serie temporal se requiere una exploracién de los sistemas cadticos-estocésticos,
asi como de los modelos de red para predecir una serie temporal asociada a uno de ellos.
Aqui se pretende mostrar cémo el conocimiento del dominio, algo extensamente tratado en
la literatura, puede ser de alguna manera sofisticado (tal como el espectro de Lyapunov de
la serie o la dimension del sub-espacio de sefnal).

Para modelar el sistema dinamico generado por la serie temporal se usa el modelo de espa-
cio de estados, por lo que la prediccion de la serie temporal es traducida en la prediccion
del siguiente estado del sistema. Este modelo de espacio de estados, junto con el método
de los delays (coordenadas demoradas) tiene importancia practica en el desarrollo de este
trabajo, especificamente, en el diseno de la capa de entrada en algunas redes (los percep-
trones multicapa) y otros parametros (los taps de las redes TLFN). adicionalmente, el resto
de los componentes de la red con determinados en varios casos a través de procedimientos
tradicionalmente usados en las redes neuronales: los algoritmos genéticos.

Los criterios para la seleccién de modelo (red) son discutidos y un balance entre performance
y complejidad de la red es explorado luego, inspirado en el minimum description length de
Rissanen y su estimacién dada por el software elegido.

Con respecto a los modelos de red empleados, las topologbdas de sugeridas en la literatura
como adecuadas para la prediccion son usadas (TLFNs y redes recurrentes) junto con per-
ceptrones multicapa (un cléasico de las redes neuronales) y comités de redes. La efectividad
de cada método es confirmada por el problema de prediccién propuesto. los comités de
redes, donde las predicciones son una combinaciéon convexa de las predicciones dadas por
las redes individuales, son también usados extensamente.

La necesidad de criterios para comparar el comportamiento del modelo con el del sistema
real, a largo plazo, para un sistema dindmico estocastico, es presentada y dos alternativas
son comentadas.

Los resultados obtenidos prueban la existencia de una solucién al problema del aprendizaje
de la dependencia Entrada — Salida . Conjeturamos ademads que el sistema genrador de
serie de las ventas es sindmico-estocastico pero no caético, ya que solo tenemos una real-
izacion del proceso aleatorio correspondiente a las ventas. Al ser un sistema no cadtico, la
media de las predicciones de las ventas deberia mejorar a medida que los datos disponibles
aumentan, aunque la probabilidad de una prediccién con un gran error es siempre no nu-
ladebido a la aleatoriedad presente. Esta solucién es encontrada en una forma constructiva
y exhaustiva. La exhaustividad puede deducirse de las siguiente cinco afirmaciones:

e ¢l disenio de una red neuronal requiere conocer la dimensiéon de la entrada y de la
salida, el numero de capas ocultas y las neuronas en cada una de ellas

e ¢l uso del teorema de takens-Mané permite derivar la dimensién de la entrada

e por teoremas tales como los de Kolmogorov y Cybenko el uso de perceptrones con solo
una capa oculta es justificado, por lo que varios de tales modelos son probados

e ¢l nimero de neuronas en la capa oculta es determinada varias veces heuristicamente
a través de algoritmos genéticos

e una sola neurona de salida da la prediccién deseada



Como se dijo, dos tareas son llevadas a cabo: el desarrollo de un modelo para la prediccién
de la serie temporal y el anélisis de un modelo factible parala reconstruccién dinadmica del
sistema. Con el mejor modelo predictivo, obtenido por el comité de dos redes se logro
obtener un error aceptable en la prediccién de una semana no contigua al conjunto de
entrenamiento (7.04% para la semana 46/2011). Creemos que este es un resultado aceptable
dada la cantidad de informacién disponible y representa una validaciéon adicional de que las
redes neuronales son tutiles para la predicciéon de series temporales provenientes de sistemas
dindmicos, sin importar si son estocasticos o no.

Finalmente, los resultados experimentales confirmaron algunos hechos ya conocidos (tales
como que agregar ruido a los datos de entrada y de salida de los valores de entrenamiento
puede mejorar los resultados: que las redes recurrentes entrenadas con el algoritmo de
retropropagaciéon no presentan el problema del gradiente evanescente en periodos cortos y
que el uso de de comités - que puede ser visto como una forma muy bnasica de inteligencia
artificial distribuida - permite mejorar significativamente las predicciones).
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Terminology

%FNN
*
X = [21, T2, ...Tp]

y=A{vy1, - Ym}

Nety,

Netg(n)

S, S-1, S-2, S-3...

V, V-1, V-2, V-3

V+1

Variables and functions

False Nearest Neighbors percentage.
Arithmetic product of two scalars
Denotes an n-dimensional vector (sometimes denoted by = when
there is no risk of confusion).

Represents either an ordered list of n elements or elements from
a matrix. For instance, the matrix H = {h;;} contains the
elements h;; where i represents the row and j the column.
Denotes the gradient of a scalar function E = E(w), being

VE = [aafl , gfn] and w = [wy, ....wy,]

Error function. In some cases denoted by J(w).
Hessian matrix of the scalar function £ : H = {H;; =

87E}
Ow; Ow;
Denotes input number i of a neuron.

Weight from position j (regarding the set of weights as a vector)
Weight of the connection from neuron i towards j.

Expectation of X =X(K) among all the possible values of the
random variable K.

Output function (or transfer).

Output function for the hidden layer.

Output function for the output layer.

Learning rate.

Learning rate for the hidden layer.

Learning rate for the output layer.

Input of neuron &, defined for the current instant as

Nety, = Zi:l,n TiWhsi

Analogously, but for instant n.

Desired output for neuron i, given its current inputs.

Real output for neuron i, given its current inputs.

Global dimension of the embedding, also denoted by m.

Local dimension of the embedding.

Optimal delay for the embedding, also denoted by 7.

Denotes the field of real numbers.

Denotes respectively the current week (S), previous (S-1), and
earlier weeks.

Denotes the corresponding gas sales from current and previous
weeks. They are the sales to be predicted, although in some
parts V+1 is used (mainly when the network input is inspired in
Takens-Maifié’s theorem).

Sales from the next week, to be predicted.

3



%FNN False Nearest Neighbors percentage.

* Arithmetic product of two scalars

T, T-1, T-2, T-3  Average of maximun daily temperatures from current and
previous weeks respectively.

A, A-1, A-2, A-3  Indicator of price increase from current and previous weeks.

%Error CV Percentage error when a step is predicted, averaged over the
cross-validation set.

Acronyms
GA Genetic Algorithm
AlIC Akaike’s Information Criterion
BP Back-propagation

BPTT Back-propagation Through Time
BPTT(h) Truncated BPTT

cv Cross validation

CD Correlation Dimension

deKf Decoupled Extended Kalman Filter
h.n. hidden neuron(s)

FNN False Nearest Neighbors

IFS Tterated Functions Systems

LMS Least Mean Squares

LSTM Long Short-Term Memory

MDL Minimun Description Length

MLP Multi Layer Perceptron

MSE Mean Squares Error

PCA Principal Component Analysis

RP Recurrence Plot

RQA Recurrence Quantification Analysis
RTRL Real Time Recurrent Learning
SER Signal to Error Ratio

SOM Self Organizing Map

TDNN Time Delayed Neural Network
TLFN Time Lagged Feed-forward Network



Symbols

YA Y ¥

Connection between two neurons, or input/output flow to/from one of them.

This type of arrow represents all possible connections between two neurons.

The output of a node labeled wit a capital sigma equals the arithmetic sum of its
inputs.

The output of a node labeled with a capital pi equals the arithmetic product of its
inputs.

The outputs of a node of this class are identical to its input.

Represents the product of their inputs by the value inside the triangle.






Chapter 1

Introduction and Problem
Formulation

A time series is a set of observations z;, each one being recorded at a specific time ¢. [13].
In general, those values can be regarded as measurements (observations) of a characteristic
variable inside a certain system. On the other hand, one of the most common real systems
are the dynamical systems. These systems, as well as their associated time series, are
characterized by their “dynamic effect”, where dynamic refers to the phenomena that produce
time changing patterns, the characteristics of the partner at one time being interrelated with
those at other times. The term [dynamic] is nearly synonymous with time-evolution or
pattern of change. It refers to the unfolding events in a continuing evolutionary process|[44].
In other words, in a dynamical system the current status conditions the future, and several
state variables can be interrelated and interacting. This class of systems are studied in
all branches of science, from the solar system to the evolution of the stocks prices. These
systems evolve with time in accordance with a set of (usually non-linear) rules which, if
known, allow us to predict the complete evolution of the system. In this case, we will study
the time series associated with the liquefied propane gas sales in bottles, measured in liters,
trying to use some properties of the underlying dynamical system.

To summarize, in this thesis we address the prediction of a time series: a good prediction
will reduce, for instance, the costs associated with stock maintenance. A prediction is
characterized by a horizon (temporary scope in the future) relatively short (e.g. two steps in
the future). Collaterally, we will be interested in the dynamic reconstruction (or dynamic
modeling). Indeed, dynamic modeling and prediction of time series are two areas which share
several aspects in common but differ in the way the obtained solution is evaluated. In the
classical theory of time series prediction [59], the goal is to get the correct (or the most
accurate) value in the near future (for instance, by using well known modeling techniques
such as ARIMA or ARMA [13]. The goal of a dynamic reconstruction is to capture the
dynamics (behavior in the long-term future) of the system by means of an appropriate
model. For example, by means of dynamic reconstruction a simulation benchmark for the
gas sales could be obtained [30]. In the present work both approaches are considered and
several models are discussed in order to find adequate models for our case study.

Generally, when there exists enough information about the laws that govern the system
(mathematical or physical in the case of natural systems), an analytical approach for pre-
diction may be adequate, and the reconstruction is derived from the equations that describe
the underlying mechanism responsible from the time series generation. In a deterministic
system, such values are given by the equations that produce the series ([10], [30], [69]).
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However, in several real problems, the available information is scarce as to try an analytical
approach. Indeed, even when the system has several variables that govern its behavior, usu-
ally only one of them is available as a time series. In the absence of enough information to
derive mathematical equations, it is mandatory to employ non-analytic approaches. A clear
example is the neural networks approach, where a network is trained in such a way that its
output respects a measure of similarity with the observed values. Therefore, a neural model
is built in order to approximate ideal equations, instead of trying an explicit inference of the
equations that describe the underlying dynamic of the system. Alternatively, in the case of
a stochastic dynamical system, the observed values are samples of a possible result of the
random process that produces the observed variable, and the issue is to make the neural
network a statistical model of that process [1]. Neural networks are attractive to model
non-linear dynamical systems, given that they are intrinsically non-linear (mainly because
of the non-linear output functions of the neurons) and they approximate functions with a
solid foundational background (see for example 2.10 on Kolmogorov’s and Cybenko’s theo-
rems). Additionally, feedforward networks represent a feasible way to model the conditional
probability density function of a certain desired output d given a known input x ([10]).

Regarding the previous elements as our point of departure, we can summarize the main
goals of this work as follows:

1. reveal the state of the art of neural networks for the prediction of time series.

2. build a neural model in order to predict propane gas sales, from which only a few
variables are known (such as the daily temperatures and volume of gas sales), using
the most adequate computational tools. The model(s) should allow us to predict the
gas sales at least in a period of one week. This modeling related to the research of the
theoretical properties that make one model preferable over another one.

This thesis is structured as follows:

e Chapter 2 contains the state of the art in the application of neural networks to the
modeling of dynamical systems. In order to make this document self-contained, a
thorough description of the Back-Propagation (BP) algorithm is presented, including
some variations to look for the global optimum. Several network topologies adequate
for this are discussed, and the most promising software tools are also investigated and
described.

e Chapter 3 presents the application of neural networks to a real life problem (our case
study), the prediction of weekly gas sales. The experimental setup is fully described,
and the main results are summarized. This chapter is connected with Chapter 5,
which contains further numerical results and tables with the used data.

e Chapter 4 includes a discussion of the experimental setup and remarks the main
conclusions and possible future work.

e Finally, this document is closed with bibliographical references and an appendix con-
taining characteristics of several software packages for neural modeling.



Chapter 2

State of the Art

2.1 Basic Concepts of Neural Networks for the Time Se-
ries Prediction

This chapter revisits the foundational theory on which the present work is based. The back-
propagation algorithm is first described in its static case (inputs and outputs independent
of time), linking it with the Least Mean Squares (LMS) rule and further discussing several
improvements, such as second order searches. Networks committees and combinations of
predictors are then covered using concepts coming from machine learning. The treatment
is extensively related with concepts of the theory of information systems such as entropy
and mutual information. Dynamical networks are then discussed, which represent a kind of
networks that naturally model dynamical systems. Additionally, several criteria for the dis-
crimination of outliers and the concept of minimum description length are explained.
Finally, some guidelines on the network design and its training are included.

2.1.1 The Back-Propagation Algorithm

In this subsection we will describe the basic algorithm for the training of all the networks
employed in this work, as well as its theoretical support and its major variants.

Learning in neural networks can be divided into supervised and unsupervised. The super-
vised technique is based on a direct comparison between the real network output and the
desired output. Its custom formulation is the minimization of a difference function (error
function) between the real and the desired outputs, such as the mean square error, and
where the variables are the weights of the neural network. In order to minimize the error
function several optimization algorithms can be applied, such as gradient descend (of which
back-propagation is an instance), simulated annealing and genetic algorithms, to name a
few. On the other hand, unsupervised techniques are based on the correlations between the
inputs; here is not information available for the desired output and the process produces a
change of weights of the neural network [72].

With the term retro-propagation we basically understand a learning algorithm used to train
multilayer networks', designed by David Rumelhart, G.E. Hinton and R. J. Williams in
1986, from the pioneering works of Parker (1985) and Werbos (1974) [10]. This supervised

IThe model of a multilayer feedforward network trained with this learning algorithm, is usually called
“back-propagation network” ([20] y [33])
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learning algorithm can be regarded as a generalization of the delta rule. Currently, BP
represents one of the most popular algorithms (models), mainly because its simplicity of
implementation, its speed (it is faster than many other method) and its wide acceptance
and success in practice. The two learning rules in which this method is based are the least
mean squares (LMS) and the delta rule.

2.1.1.1 The Delta Rule

This rule is an extension of the LMS rule for neural networks with non-linear, continous
output functions. This is a local rule when we consider the pattern and its weights: it needs
information about the specific pattern, the corresponding neuron error and its input, as it
is detailed as follows.

LMS rule seen as a stochastic process Consider the following neuron to be trained,
whose output function is linear (so we call it a linear neuron):

Figure 2.1

where z;,¢7 = 1,...n represent the inputs, w; the weights, wy the activation threshold, and d
the desired output value (assumed known) and y = y(w) the output value the output value

of the neuron:
n
Yy = E T, W; = XTW
i=0

We will try to minimize the mean square error (with a fixed artificial input z¢ = 1 for the
sake of notation simplicity ) defined as:

Blw) = 5 {(x"w — d)?),

where (o) represents the mean among all feasible training vectors x. In order to find the
minimum for F, a possible technique is a gradient descend. The gradient vector is:

VE(w) = {(x"w — d)x)_
We can approximate the gradient vector VE(w) with its instantaneous value:
VkE = [(Xk)TWk — dk]Xk

where the sub-index k£ meaning “corresponding to the presentation of the k—th pattern in
the input”, arriving to the following algorithm:

T

wk]xk

wo  arbitrary
Wet1 = Wi, + prldi — (x1)
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being pi a constant whose properties are detailed below.

The previous iterative process is known as a stochastic approximation process (or of
Kiefer-Wolfowitz or of Robbins-Monro, see [29]).

Convergence Consider the autocorrelation matrix C = <xxT>X where (...) is understood
as the matrix with the corresponding expected values of its entries. In this case we have
C = {cij = (w;x;)  } where X is a random variable representing all possible patterns for
the input x. It can be proved [29] that if C is non-singular and the learning rates p; meet
the following requirements

p=>0
lim >0, pr = +o0

m—r oo

. m 2 . .
im0y (px)” = A (finite)

being m the number of training patterns, then the sequence {wy} asymptotically converges
in mean square to the vector w* that produces the minimum value for the error function
E:

. AN
Jim, (s = 17) =0

The Delta rule In the case where the output y is given by y = f (3}, z;w;) for a
non-linear differentiable function f, the obtained training rule is known as delta rule,
because the issue is to minimize a “delta” (difference) between the obtained and desired
values. Analogously than before, we try to minimize the expected value of the difference
J(w) = 5 ((y(w,x) — d)?) ., whose gradient is approximated via its instantaneous gradient:

ViJ(w) = —(dr — yi) f'(Nety)
Nety = Z?:O<xi>kwi

'(Nety) = 535
f'(Netw) = 354 Nety

where (z;); represents the i-th element (component) for the k-th pattern.
As a consequence, the delta rule can be formulated as follows:

wy arbitrary
Wii1 = Wi + Pk [dk — f(Netk)]f/(Netk)Xk = wi + pk(skxk
Ok = [dr — f(Nety)]f'(Nety)

Note that, continuing with the example, we have assumed a scalar output y but the result
can be be generalized when the output is a vector.

Convergence Wittner and Denker [87] proved that under certain circumstance the delta
rule never converges.
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2.1.1.2 BP Algorithm for the static case

A static network is a network which outputs only depend on the current inputs. For
instance, a MLP is a static network.

A network is called feedforward if its neurons can be ordered in such a way that there is
no connection between neurons ¢ and j whenever i = j ([69]). This definition assumes that
the network is directed: the connection ¢ — j is different to the j — 7. In other words, a
network is feedforward whenever it can be represented as an acyclic directed graph [36].

To start, let us consider the simplest case, where the network makes to correspond to every
input pattern x; an output y;, no matter the historical inputs or outputs generated before;
this is, with a static behavior with time. Assume we have the following feedforward network:

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
Xy d,
— >
1]
»
H
. .
H H H
] [ H
. . .
. . .
q . ]
. H H
: . .
H .
. 4
H
[
.
.
.
d |
X;
—>
H
"
1]
. »
H H
1]
: i :
. H 1
. H ’
. H 1
; - :
. 1]
. "
.
.
.
.
.
.
.
X d.
<+
Ny

Figure 2.2

being s; the output for the i-th input neuron, wj; the weight between neurons i and j,
and z; the output for the hidden j-th neuron. The results obtained for this case can be
generalized to more than one hidden layer [69].

Neurons must have non-decreasing output functions with continuous derivative. Each layer
can have different output functions: f, for the output layer and f; for the hidden layer,
respectively. Here we will assume the same output function (identical in both type and
parameters) in the whole hidden layer, just for the sake of notational simplicity (it suffices
to add a new index to denote a neuron inside the layer for function f). The same statement
holds for the output functions corresponding to the output neurons.

This network receives a set of scalar values (signals) [z1,...xx] = x as input, with x € RV.
The hidden layer returns a real-valued vector z = [z1,...z5] € R7, and the output layer
another vector y = y(w,X) = [y1,...yz] € R® which, when the network is fully trained,
should be identical (or at least very close) to the desired vector d associated with x.
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Let us consider a set of m input/output pairs {xj,d;} where dj, is an L-dimensional vector
that represents the desired output for the network when the input is x;. The goal is to
adjust the weights in order to learn correctly the correspondence between the inputs x and
the underlying desired output values d. As we have the desired value for each input, we
can define an error function to evaluate the approximation quality for every set of network
weights. For the moment we will use the following expression as the error function :

> (di—y)?

=1

E(w) =

| =

where w represents the whole set of network weights, and where we omitted, for simplicity,
the pattern indexes (in the next subsections another feasible criteria to define error functions
are discussed).

The algorithm view as an optimization problem

Since we defined an error function, the learning process is reduced to an optimization process:
we wish to minimize the error function over the space of all possible weights. The function
E is differentiable, hence, we can produce a local search with a traditional gradient descent
and obtain a learning rule. This approach was independently analyzed by Amari (1967,
1968), Bryson and Ho (1969), Werbos (1974) and Parker (1985).

The rule of incremental learning Given that the desired values for the outputs are
known, we can use the delta-rule (a special case of gradient descent) in order to update the
weights w;; that finish at the output neurons obtaining that:

Awy; = wlnjew _ wlcjurrent _ _pOaawi = po(d; — yl)fé(Netl)Zj
being p, the learning rate for the neurons at the output layer, and | = 1,2,...L j =
0,1,....J. We stick to the rule (as in Subsection 2.1.1.1) that the activation threshold 6; for
each neuron is simulated adding an an auxiliary input with a constant unit value and weight
0; coming from an artificial neuron. We do not represent that artificial neuron in the diagram
nor its connections, but the activation thresholds 6; must be adjusted as additional weights
when training the network. Additionally, f! represents the first derivative of f (output
function) with respect to Net, and wji®” and w{*"""* represent respectively the updated
and current weights (after and before the application of the update rule). The values z;
(outputs of the hidden layer) are found by a propagation of the input vector x through the

network:

zj = fh(z wjis;) = fn(Nety)
=0

with j =1,2...J and f;, the output function for the neurons in the hidden layer (h).

The learning rule for the weights entering the hidden layer is not so obvious because we
do not know the set of desired output values for the hidden layer. However, we could
try to derive that rule minimizing the error for the output layer. This is equivalent to
back-propagate the errors from the output layer (d; — ;) towards the hidden neurons in an
attempt to dynamically estimate the desired values for those units. This learning rule is
called incremental back-propagation. It is worth to notice that the delta-rule can be
used to update the weights that reach the output layer. As a consequence, BP is regarded
as an extension of the delta-rule. This version of the algorithm is said to be incremental,
given that the weight adaptation is produced in accordance with the presentation of the
input patterns. Later we will describe another version of BP, called batch.
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The weights that reach the hidden layer are modified according to a gradient descent with
respect to the hidden weights from function E(w) :

Awji = —prpls j=1,2..0i=0,1,2..N

where the partial derivatives with the current weights must be found. By means of the chain
rule we get that:

OF - 8£ 8zj 8N€tj

8’wj7; B aZj 5N6tj 8u)ﬁ

aNet 0z;

and by the facts that ONeE;

ment:

=24 = g, and

= f;(Net;) we get the learning rule by replace-

L
Awj; = paY_(di — o) fo(Netrywyy] fr,(Net;)s;
=1

Comparing the last expression with the associated with the output layer, we can define an
“expected estimated value” d; for the j-th hidden layer in terms of a back-propagated error:

L

corresponds
dj — 2 BTN " (dy— ) £ (Nety)w,

=1

These equations can be extended to networks with more than one hidden layer, or networks
where there are connections between non-adjacent layers [69]

The incremental back-propagation algorithm can be outlined as follows:
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Step 0 — Initialization

Initialize the weights with small values chosen uniformly at random. They should be small
to prevent the network paralysis (loosing capability of learning) and random to fight against
possible symmetries in weights and avoid other learning problems [29]. We take these values
as “current”: wf;-m""‘"t . Besides, assign to both p, and py positive small values (with big
values we risk to pass over the minimum and oscillate).

Step 1 — Application of a pattern

Present an arbitrary vector Xi to the input network chosen uniformly at random from the
training set, and propagate it through the network, finding the corresponding output values
using the current weights.

Step 2 — Find the error for that pattern

Compare the real outputs with the correct ones dy associated with Xy and find the error at
the output layer. Find the changes in the weights that reach the output layer, by means of
the formula

Awyj = po(d; — 1) fo(Nety)zj.

Step 3 — Find the increments in the weights
Find the increments in the weights that reach the hidden layer,Awj;, by using

L
Awji = prD_(di = y0) fL(Netr)wy) i (Net;)s;

=1

Step 4 — Update the weights
Update all the weights according to

new __ current
wyj = wij + Aw;
and
.. new _ ,,current ..
Wj; = wi; + Awj;

for both the output and hidden layer, respectively.

Step 5 — Convergence test

Repeat Steps 1 to 5 with all the training patterns. Fix wﬁ”wm =wji" and wlc;-”””t = w
and return to Step 1 until the output error, for all the vectors over the training set, have
been reduced below an acceptable (previously established) value. Other convergence tests can
be carried out, using other error functions [29].

Convergence: The algorithm, when converges, finds a local minimum that is not neces-
sarily the global minimum.

Generally, an algorithm can not be proved to converge [30]. For that reason, several stop-
ping criteria have been suggested, being one of them the “cross validation” (see 2.2.3 on
page 46).

The algorithm uses an instantaneous estimation of the gradient of the surface error in the
space of weights. Additionally, the pattern to be presented is randomly chosen, that is of
the first point where the gradient vector will be found. As a consequence, the algorithm has
a tendency to zigzag with respect to the correct direction, once it is close to a minimum of
the error surface. This occurs because it is an application of the Robbins-Monro method for
stochastic approximation [30]. As soon as it does zigzag trajectories, it tends to converge
slowly.
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We say that the series of solutions {x;, &k =1,2,...} produced by an iterative algorithm has
g-linear convergence if there exists areal number a : 0 < a < 1 such that e(xx41)/e(x) <
a being e(xy) the error of x; with respect to the optimal solution x*. For example, a
possible selection is e(xy) = ||x; — xj||. Saarinen and Cybenko |74] developed a study of the
convergence rate for some methods described in this work (direct gradient descent, Newton’s
method, conjugated gradient, etc.), and showed that the common gradient descent has q-
linear convergence rate, with an asymptotic constant error that equals (k—1)/(k+1), being
k the condition number of H(xx), H the Hessian matrix of £ and x* the global minimum
for the error function. They also showed that under certain circumstances (e.g. when the
Jacobian or Hessian matrix are “ill-conditioned”? in some of the iterative points), the direct
gradient descent does not converge when implemented on a computer.

Gori and Maggini [25] proved the algorithm in its incremental version does converge to an
optimal solution when used to train a network for pattern classification, whenever they are
linearly separable. What is more, it makes the correct pattern classification independently
of the choice of the learning rate.

The two calculation phases in Back-Propagation It is instructive to observe that
the incremental back-propagation algorithm has two-run stages: the first run is forward
whereas the second run is backward. During the forward stage the weights do not change,
and the output is found for each neuron, given the presented input (i.e. the input pattern).
After having found the output values for each output neuron, they are contrasted with
the corresponding desired values, and so we get an error for that pattern in each output
neuron. Immediately, the second backward stage starts (from the right towards the left in
our network), layer by layer, finding a local gradient for each neuron and the changes in the
weights, always from the output layer towards the input. Both stages can be graphically
summarized as follows:

TPUT (FORWARD
@ OUTPUT (FO ) DESIRED
‘ OUTPUT

INPUT OUTPUT ERROR ERROR
:> NEURAL NETWORK :> CRITERIUM |cELCULUS

@ ERROR(BACKWARD)

Figure 2.3

The interconnection algorithm This algorithm is an implementation of the general

2 A matrix is said to be “ill-conditioned” when the quotient between the highest and lowest singular values
of its singular value decomposition is very high.
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incremental back-propagation algorithm, and is based on two networks: the original one,
where the input data is propagated, and the dual network, where the errors are propagated.
The interconnection algorithm was encoded for the first time by Lefebvre (1991) ([69]).

If we consider the network as a set of adjacent layers, the vector x (input) in one layer is
the output (y) of the previous layer, from left to right:

méayer L+1 _ f(zj wijxé_ayer L)

Graphically, we can represent the interconnection algorithm as follows:

Layer L
: ) /w/
: XiIayerL+1 {
: — .
: . i-thneuron
W; W
XIjayefL
Figure 2.4

where the circle represents a bifurcation point or paths separation.

If we express the weight update with
Awji(n) = pdj(n)yi(n)

taking y;(n) = s;(n) or y;(n) = z(n) depending whether is a hidden or output layer,
respectively, then

FIUPUEIAYET () — ¢ (n) f'(Net?"P** 19T (1)) for the output layer

S () = fI(Neti™ F(n)) 2, 6,9 F g, (n) for the other layers (Eq. 2.1)

By its definition, ¢; is the local gradient [30] for the i-th neuron. It holds that

0i(n) = srertsy = ei(n)f] [Net;(n)] (Eq. 2.2)
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being e;(n) the error from neuron 4 in the output layer, at step n.

We can represent Equations 2.10and 2.20 with the following diagram:

f (Net)

Figure 2.5

The network shown in Figure 2.5 is, by its definition, the dual network (or adjoint) of that
from Figure 2.4.

The relation between both networks is that in the original the input (z;) flows from the
i-th neuron from left to right, whereas the local gradient (J;) in the dual network travels
from right to left, briefly, the inputs are outputs in the dual and vice-versa. Besides, the
adding points (}_) in the original network are separation points in the dual network, and
simultaneously, separation points are now adding points in the dual network. The weights
of the corresponding connections are preserved. The error in the dual network is multiplied
by f'(Net;) to produce §;. The local gradient is proportional to the local error (Eq. 2.2).

A conclusion from these observations is that we can imagine that the error ¢; = d; — y;
produced in the output of the original network is injected to the input layer of the dual
network, and allow us to find the gradient of the error in the original network as the output
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of the nodes in the dual network. Therefore, we can re-write the back-propagation algorithm
as follows:

o Step 1 — Initialize the weights with small values uniformly chosen at random.

e Step 2.

— Repeat the following steps until reaching a negligible error or a non-convergence
test holds:

x Step 2a — Choose a pattern at random from the training set, present it to
the network and get the output for each neuron of the network.

x Step 2b — Inject the computed error through the dual network, and find the
local gradient in each neuron.

x Step 2c — Update the weights according to the search rule chosen. For
instance, for the direct gradient descend we have that:

Awij (TL) = p5j (n)yz (n)

End Repeat

It can be seen that the local gradient is available as a value (signal) at the nodes of the dual
topology, which avoid us to compute the expression

0T (n) = f(Net™" () S 67" i ()

Instead, it suffices to have the topological specification of the network, and the computation
via backward propagation in the dual network makes the rest for us. The implementation
of the BP algorithm in the dual network is much more versatile than encoding its equations
directly, mainly because the dual network can be easily settled up from the topology of
the original network. As we will see, BP can be adapted to train recurrent networks with
dynamic learning, and the interconnection algorithm can be generalized for those cases as
well [69]. What is more, the algorithm can be adapted to an arbitrary topology, whenever
the dual network can be built. In accordance with [69], this is the best way to implement
“back-propagation”; and it is the chosen method for the neural networks simulator, though
there is not information at disposal about the implementation of the data flow.

To sum up, the key advantage of this algorithm is that it avoids long computations using
output functions in the original network: the local gradient is always available at the nodes
of the dual network.

Incremental vs. Batch An alternative to the incremental learning described before is to
use batch learning, where the weight updates occur only after the presentation of the whole
pattern set and the complete possible variations of weights are found, with no application
of them (recall that we are working with a finite training set). Formally, the batch learning
is implemented considering the sum of the right-hand sides of the weight changes equations,
for all the possible inputs x;, k=1,...m:

Awsi = S on[S () — W)kl fLL(Net)elwis }f[(Net;)i](si)r for the hidden
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Awyj = ZZ;I Pol(d) e — (Y1) k) fLI(Nety)g](z;)x for the output neurons,

where (d;)y refers to the i-th element from the desired output di = [(d1), (d2)k - .. (dL)k]
and (Net;), represents Net; for the pattern k-th. This is precisely a descent according to
the gradient of the objective function

E(w) =330 S ld)e — w)i))? (Eq. 2.3)

The batch update moves the search point w in the correct gradient direction in each it-
eration. However, the incremental update is desirable for two reasons: its implementation
in a computer saves storage (it is not needed to keep information about the cumulative
weight variations) and the search path in the weight space is randomly chosen once the in-
put pattern is picked at random among the set of training pairs {x, d}. The latter property
enriches the diversification process during the incremental update, helping to better explore
the search space, and, potentially, leads to solutions with better quality. By means of the
stochastic approximation theory (Robbins-Monro) Finoff (cited by [29]) showed that, for
learning rates close to zero, the incremental back-propagation tends to the batch technique
and produces essentially the same results. Besides, for small learning rates, the stochastic el-
ement in the training process prints to the incremental back-propagation a “quasi-annealing”
character, where the cumulative gradient (relative to error function E(w) from Eq. 2.3) is
permanently perturbed, thus running away from local minima with small plain attractors, or
“basing” ([29]). Additionally, when the data set is redundant (there are several copies of the
same pair {x, d}) the incremental mode possesses advantages for both pattern presentation
and for that redundancy ([30]). For the reasons exposed before, the incremental training
has been always chosen throughout this work.

2.1.1.3 Variants of the algorithm

In general, the learning with back-propagation is slow ([29] y [30]), because of the shape of
the error surfaces, which present generally several plain regions or very steep ones, or even
regions that are plain in the search direction. Several works studied the geometry of the error
surface. These problems become more crucial when the network is designed for classification
tasks, specially when the cardinality of the data set is small [29]. As a consequence, several
variations to the algorithm have been proposed, most of them heuristics that try to speed-up
the convergence rate, avoid local minima and/or improve the generalization capacity of the
network. We mention here some of these modifications and in 2.20 they are treated more
extensively.

Convergence towards local minimum These improvements try to accelerate the con-
vergence rate towards a (surely local) minimum. See 2.2

Learning rate The convergence rate in back-propagation is directly associated with the
learning rate (p, and pj, in the equations), so several heuristics have been proposed to address
the correct choosing of learning rates. Some of them try to determine the learning rate for
each neuron statically, that is, independent of the learning phase, for instance, taking the
inverse of square roots of the number of connections (or “fan in”) that input the neuron
([30] Chap. 4). Other works suggest to dynamically adapt the learning rate with the time,
for example,

1

p(t) = POW
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where 7 is a positive constant and ¢ is the iteration [29].

Finally, other works (for example Almeida, cited by [69]) either increase or reduce the
learning rate whether the search point is getting near or far away from the minimum.
Almeida’s algorithm takes a learning rate for each weight. The main idea is that the learning
rate should be increased whenever the gradient component associated with that weight
preserves its sign during two consecutive iterations; otherwise, it should be decreased. That
increase (decrease) is geometric (i.e. multiplying it by a factor [51]).

Use of Moments It has been suggested to include an additional term of the Taylor series
for E(w) when used to find Aw.

Such second-order term, or an approximation, is usually called first-order moment [61] or
simply moment. This artifice tries to speed-up the convergence when the error surface is
near-plain, so to escape from local minima.

The learning rate using the first-moment order will be:
Aw;(t) = fp% + aAw;(t —1)

where 0 < o < 1 is the moment rate. This rate can be either constant or be dynamically
changed with the iterations ([29]).

The implementation of moments is inspired in the Newton’s method, where the weights are
updated in the following manner

Aw = _(H(Wactual))71VE(Wactual)

Given that the implementation of Newton’s method is computationally intensive (with order
O(N?3), being N the number of weights), several heuristics have been proposed as well as
approximations to get second-order methods that reduce the computational cost (see [29]).

The moment rate can be either constant or change with the iteration number. Suppose we
want to adjust a in each step such that the gradient search returns a local optimum, that
is, we wish to find « for time ¢ such that the error E at time ¢ + 1 is minimum. In this case,
the moment rate obtained [29] is

VE®)TAw(t —1)

O = = D

In the most general way, more terms from the Taylor series for F(w) can be added; for
instance, the third-order terms (called second-order moments [61]).

While the original batch algorithm with its proposal: Aw(t) = —p% converges towards

a minimum for the error function (when regarded as the sum of square errors) in a certain
time ¢ not higher than (Amax/Amin)/4, where (Amax/Amin) is the ratio between the highest

and lowest eigenvalues for the Hessian matrix of E with respect to w (note that if E,,;,

Amin
represent the local minimum found, then F - E,,;, tends to 0 slower than e~ M Xiax when ¢

tends to infinite), adding the first-order moment the time is improved to be not higher than
[v/ (Amax/Amin)]/4 even for the “batch” case. However, if a second-order moment is added,
this bound practically does not change. What is more, the relative advantage tends to 0
when Apax/Amin — 0 ([61]).
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Conjugated Gradient These methods are based on geometrical considerations, and
have been tested for several authors in multilayer feedforward networks, showing to be better
than the original back-propagation, in terms of convergence [29]. The key is to look for the
minimum using directions such that the direction search for iteration &, dg, is conjugated® ,
with respect to the Hessian matrix of £ , with the previous d; . ..dy_1, employing a process
similar in spirit to the Gram-Schmidt orthogonalization scheme. Each search direction will
be given by

di, = —VE|wk + Brdr—1

being (i a scalar: this parameter leads to different variants for the gradient conjugated
method ([36],[10]). For instance, the Fletcher-Reeves formula takes

_ ViV
ﬂkﬁ - vT v
k—1"Y k-1

V,=-VE,,

Output function The issue here is to avoid the premature neuron saturation (hence the
network paralysis). To that purpose, we can add a disturbance to the derivative of the
output function or alter some parameter that defines the function itself, in such a way that
the weights are updated faster in the first training stages, and then, make it disappear the
disturbance as long as convergence is reached.

Other convergence criteria The use of other convergence criteria, such as alternative
error functions (different to the euclidean distance), will induce variations in the time to
reach the desired solution. Additionally, the use of cross validation will both modify the
training execution time and help to obtain better final results, when regarded the general-
ization capacity (see 2.2 on page 45).

The use of other error functions (criteria) lead us to have different convergence criteria for
the algorithm. To the sake of the greatest generality, the error function must meet certain
basic conditions: the characteristics of a distance (or at least to be non-negative and null
when the two points are identical) and have first continuous derivative in order to apply
the algorithm. As a concrete example, we can cite the Minkowsky function of degree r:
E(w)=1%"|d; — y;|"with 7 > 0 and i over the number of output neurons. When r = 2
the square error is retrieved *(except for the constant factor 1/2). When r = 1 we get the
Manhattan norm [41], that owns interesting mathematical properties (see 2.2 on page 45).

There are other error measures based on the relative entropy ([29], [5], [4]).

2.1.1.4 Other ways of improving the solution

Search for global optimum The back-propagation algorithm converges to an optimum
that is not necessarily a global one, the search for “the” minimum is an evident and appealing
improvement. We will give next a brief overview of some promising techniques. The reader
can find further details in 2.3 on page 50.

®This is that d] Hd; = 0
4We consider the instantaneous errors, for the recently presented pattern to the input.
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Random gradient search This technique is designed to better explore the search space
trying to evade local minima. The basic idea is to add noise to the weights that will
be progressively vanish with the number of iterations. The so obtained learning method
(called the Langevin method) owns valuable properties: from a theoretical viewpoint, it
is similar to simulated annealing, since a “heat bath” is given to the network (the additive
noise represents the temperature of the heat bath, which will decrease with time to produce
the annealing) helping to get weight settings that escape from local minima [72]. From a
practical viewpoint, it can be combined with other back-propagation techniques, and has
no great computational requirements.

This method, together with genetic algorithms and simulated annealing, as we will see next,
tries to escape from local minima. In this work a function from the neural network simulator
called “jog” has been used. The function sums to each weight (in a desired training iteration)
a uniform noise with mean the current weight and specified variance for all the weights.

Methods not based on derivatives Evolutionary algorithms (for instance, genetic algo-
rithms), together with simulated annealing are “non-derivative” methods. In these methods
we can even use non-differentiable output functions, because their fitness function is not
necessarily differentiable. This property permits the application of complex error functions
without sacrificing the elapsed computational time.

By means of evolutionary algorithms, better convergence rates can be obtained than with
simulated annealing, though they are slower than the derivative-based methods ([36]).

Evolutionary algorithms allow parallel searches, that can be implemented in multi-core or
independent, computers to massively accelerate the process. They can also be applied to
continuous or discrete problems, and help to identify the network structure as well as the
parameters (weights) in complex models ([36]).

However, given that genetic algorithms provide searches in random directions, finding the
global optimum will possibly require a considerable, if not prohibitive, amount of time.
Besides, it is hard to develop analytical studies of them, in part because of their randomness.
As a consequence, most of the knowledge about these algorithms is derived from empirical
studies ([36], [90]).

There are two ways to implement evolutionary algorithms to train a neural network:

e directly, trying to evolve a set of weights w; in order to minimize the error function.
This method can lead to a slow and inefficient process, using large storage resources.
The training would be a genetic search of the optimum weights.

e in a hybrid algorithm: the network is divided into two sub-networks: the gradient
descent is applied for the network with hidden and output layer, whereas the sub-
network that consists of input/hidden layers a GA is introduced pointing to obtain
the desired output whenever the input of the hidden/output sub-network equals the
output of the input/hidden sub-network. The solution converges faster than in the
direct way (see 2.3 on page 50 and [29]).

Elimination of weights and neurons The seminal works from Baum and Haussler ([5])
suggest that the number of training patterns should be considerably higher than the number
of weights ® in the network to get a good generalization capacities. A natural consequence

5Tn fact, it is the number of independent weights, or degrees of freedom for the associated optimization
problem. The weights can be equal or related to reduce that quantity, by means of special techniques as
“weight sharing” (see 2.8 on page 85).
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is the need to reduce the number of such weights, hence simplifying the network structure
and improving the generalization capacity for the same training data set. This is specially
useful when few training information is available. As a result, given that each neuron
needs certain time for training, the learning rate is increased when some of them are deleted
together with their corresponding weights. It is certainly hard to predict the optimal number
of neurons or weights that should be deleted (or kept) beforehand. Hence, some automatic
weight reduction techniques were studied, that give hints to decide which neurons to keep
or delete. Basically, the idea is to include a penalty in the error function to the weights
which are non-zero (or different each other). In this way, after successive training steps
those weights are reduced in magnitude faster than linearly, whenever the learning rate for
that neuron is negligible (in other words, if that weight practically does not change with
a normal training). When all weights that reach a certain neuron that is not in the input
layer (or weights that depart a certain neuron that is not in the output layer) are close
to null, this neuron is redundant and hence can be deleted. These techniques are called
pruning algorithms. Reciprocally, we can start with a very small network and enrich it
progressively, defining growing algorithms ([30], [10]).

Adding noise to the desired values Up to this moment additive noise has been included
in different parts of the network to improve the convergence rate (in the weights as in the
case of Langevin, or implicitly at the input, via incremental back-propagation). Another
option is to add noise to the desired values and minimize the “instantaneous” error (the one
obtained with the presented input pattern) instead of the sum-square error: for each desired
value d;(t) a new desired value is taken d;(¢) +n;(¢), where n; represent independent equally
distributed (normal or uniform) additive noises, with zero mean and finite variance, also
independent of both the input values x;(¢) and the desired vectors d;(¢) , and we compute

gi = 5 32_,[di(t) = yi(0)][di(t) = yi(t)]" (see [83]).

It can be proved that, under these conditions and using Borel measurable output functions
(such as a sigmoid or any other continuous function of the commonly used in the neural
networks) the final values are not affected in the following statistical sense:

(Y () +n(t))) = Yy

What is more, this conclusion holds for every network architecture, having proved the result
for both dynamic and static networks, achieving good performances [83].

This methodology has a practical advantage: we can use the existent network simulators,
because the algorithmic back-propagation implementation is in no way affected when the
desired values are modified.

2.1.2 Networks Committees

A way to improve the performance of neural networks is to use several independent net-
works with different sizes and characteristics to address the same problem. The idea comes
from previous research developed around the properties of the estimator (in our case, the
predictor of the future values) obtained with an average of independent estimators [62].
The application of these ideas leads to interesting results, specially when the training data
set is small. When different networks are integrated making another network a modular
network is obtained ([68] y [69]). These networks, having equal number of neurons with
a ordinary network, have less weights, since neurons are not fully connected. As a conse-
quence, their learning phase is shorter and less training samples are needed. On the other
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hand, there is scarce research on how to divide a feedforward network into modules in an
optimal fashion [69].

Suppose we train C' different networks with the same data set. If we picked the network
with the best error over the training set, we would not be taking the best decision as we’ll
see. First, we would be wasting the training of the other networks (discarding potentially
useful information stored in them). Second, it is worth to remark that the cross validation
set is randomly chosen, so there is a non-negligible probability that other network has better
performance for new data, with the same probability distribution. A much better strategy is
to use all the trained networks, that is, to use a network committee. Formally, a network
committee is a “set of trained neural networks with the same data set, whose topologies tend
to be different, and their output are interpreted as a vote for classification (or a suggested
value for prediction)” [69].

Model combination using concepts from “machine learning” FEach predictive model
used, including parametric models, makes assumptions about the available data that some-
times are not true, providing the different models good approximations in different circum-
stances. A valuable approach [3] is to adequately combine the models in order to obtain
complementary decisions (having a committee when all models are neural networks), in
order to gain accuracy in the result. This can be realized in several ways:

a) using the same learning algorithm but using different hyper-parameters (such as the
number of hidden layer of a perceptron, or the starting values of the network weights prior
to the implementation of back-propagation, etc.). Distinct models can be obtained in this
way, and the resulting average gains in a variance reduction in the resulting prediction.

b) taking different representations and generating models of the same input object to get the
output. The idea is to have different and independent predictions, using distinct combination
of dimensions at a time, because the simultaneous use would turn the model complex and
would need too many data to adjust it.

c) using distinct training data sets for the different models. This can be do by extracting
training sub-data sets at random ("bagging" technique). If the partition of the training
data set is done in such a way that each model is specifically trained in a region over the
input domain, we obtain what is called mixture of experts.

We are then interested in how to combine the different models to generate the final series.
Specifically, we are concerned with the combination of multiple experts: models that work
in parallel, where each one is trained, their prediction is taken and a subsequent mixer
returns the final decision using these predictions. Examples of this technique is voting, the
mixture of experts and the “stacked generalization”. Here we will analyze voting and stacked
generalization, because of its use and relevance in this work.

a) Voting: This is the simplest way to combine several models: taking a weighted
average from the results of each model. This method is sometimes also called “ensembles”.
Perrone [62] shows a remarkable property of ensembles relative to the resulting average
error produced when the number of predictors is increased (see 3.4 on page 165). When the
weights are identical for all the models, we have a simple voting.

An alternative is to rank the accuracy of each model and assign higher weights to the more
accurate models.

The voting schemes can be seen as approximations in a Bayesian context, being the weights
an estimation of the a priori probabilities of the model, and the models outputs represent
model’s conditional probabilities (Bayesian combination of models). Analytically:
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P(yJ = d) = Zall.models.Mj P(y] = d|x’MJ)P(MJ)

being x the input data, y; the output for the j-th model and d the desired output for the
input x.

Simple voting just corresponds to a simple uniform a priori probability.

When a simple voting is chosen regarding a set of L predictors with output y; j = 1...L,
independents and identically distributed with mean FE(y;) and variance Var(y;), and an
output 7 is found as a function of them, then

The expected value does not change, but the variance (and hence the mean square error) is
decreased with the numbers of predictors L.

If they were not independent we would get:
Var(y) = £2Var(> ;) = 7= | Y _Var(y) +2> > Cov(y;, v:)
J J Joi<J

Note that the variance could be reduced whenever the votes are negatively correlated [3].

b) stacked generalization This technique was proposed by Wolpert and extends the
voting ins the sense that the models are combined in accordance with the weights offered
by a system (which is in fact another model) f(e|p) whose parameters ¢ are also trained:
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2.1. BASIC CONCEPTS OF NEURAL NETWORKS 27

If f(e|p) is a linear model with constraints w; > 0, Zwl = 1 the optimum weights can be

7

obtained by regression, as Bishop proposes [10].

When stacked generalization is performed, the models are intended to be as dissimilar as
possible to be complementary. It is even recommended to have the models trained by using
different algorithms (for instance, to mix a parametric predictor with a MLP).

The “ensemble method” The mean square error when the average solution for all net-
. . 1 C

works is chosen (that is, the average over the output values ycommirree = rol Zi:l Yi)

assuming the errors in each network have zero mean and are not correlated will be (Perrone

[55] and cited by [69]):
1_
EcomMMmITTEE = GE

where E is the MSE averaged over all individual networks. As a consequence, the resulting
error is statistically C' times lower than the average of the MSE, so the resulting error
coming from a network committee can be reduced as low as desired increasing the size
of the networks set. While this is something optimistic, given that the errors between
the different networks are not uncorrelated and in that case not drastic improvements are
performed, it can be proved that the error Ecoayarrrer is never greater than F anyway

([10])-

Advantages of the committees A valuable property of committees is that, even though
we are considering estimations generated from neural networks, the same could be generated,
as previously mentioned, by other kinds of models (for instance statistical models), and in
the case that all the models were neural network-based, we might be working over different
training sets. The latter has a remarkable corollary that we will now describe. A standard
method to avoid “overfitting” when training is to use a “cross validation” set. The main
drawback of this is that given that we use this method to escape from overfitting, each
estimation is restricted to “see” only a subset of the whole data set, and will possibly be
loosing valuable information over the rest of the data distribution, specially when the data set
is small. This will always be the case when a prediction (estimation) uses “cross validation”
as a stopping rule on a single network. However, using the committees method (sometimes
named “ensemble process” [62]), once the set of estimators is found we might train each
network with the whole data set and let the smoothing property ¢ of the “ensemble process”
remove any feasible overfitting. In this manner, the different networks are capable to see
the whole data set, whereas if we used the cross validation method to avoid overfitting this
would not occur [55]. Another clear advantage is the variance reduction in the error when
the average of individual outputs is taken [30].

Possible improvements for network committees Bishop ([10]) shows that the error
committed by the committee will be minimized when the weight p; corresponding to model

number 7 is o
-1
. Zj:l (C )ij
= —C C _
D k=1 Zj:l (c 1)kj
where C denotes the correlation matrix for the errors between the networks:
C={Cy = (cigj) x }

8Error reduction within a factor 1/C with respect to MSE

Di
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being ; = d; — y;, X the random variable that represents all possible patterns and the
average is taken regarding all possible initial conditions of the networks.

In particular, if we approximate C from the available data we have
1N
Cij = N Z_:l(ym —dn)(Yjn — dn)

being n the pattern number and y;; the output result for network ¢ and the pattern k.

2.1.3 Entropy and mutual information

Here we will sketch the basic properties for the entropy, the relative entropy and the mutual
information. These concepts (specially the one of mutual information and relative entropy)
will be useful in order to study the properties of the time series when choosing the error
function, as well as when comparing the different models that predict the time series.

2.1.3.1 Entropy

Informally, the entropy is a quantification of the uncertainty for a certain random variable.
Let X be a discrete random variable and X its possible outcomes. Denote its probability
mass with P(X = z) = p(z) « € X. The absolute entropy (or Shannon entropy, or simply
entropy) of X is

H(X) == p(z)log, p(x)

zeX

Observations:

e The entropy is measured in bits. If the logarithm were natural, the entropy would be
measured in nats.

o We stick to the convention 0log0 = 0. In words, the entropy is not altered when
outcomes with null probability are added.

e The entropy does not depend on the outcomes of X, but on their probabilities.

A basic application of the entropy is that the length of the shortest binary code for an
arbitrary random variable is within H(X) and H(X)+1 ([19]).

Another interpretation for the entropy Consider a discrete random variable X. The
feasibility of its outcomes xj (noted as xx € X) can be interpreted as a message, that is,
we consider this occurrence (event) as the message “X takes the value xp”. This message
can be more or less expected (in other words, we can feel highly “surprised” or not with
the message). The information that is carried by the message is its measure of uncertainty:
indeed, a totally predictable message does not contain information at all. Denote with
P(z) = P(X = zy,) the probability that X takes the possible outcome zj. We define the

information carried by message xj as

ro0) = toge (5 )

and the entropy of X is the expected information of a message:

H(X) =) _p,ex Plap) (k) (Eq. 2.4)
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Entropy properties From Eq. 2.4 we get that the entropy H(X) can be interpreted as
an average of the information carried in the random variable X [69].

The entropy is bounded by
0 < H(X) < log2(N)

being N the possible outcomes for X. In fact, the entropy is the highest when P(x;) = 1/N,
precisely when the uncertainty is the highest, and minimum whenP(xy) = 1 for some
outcome, or when there is complete certainty of the result (when X is constant).

Relative entropy The entropy of a random variable is a measure of the uncertainty about
it. On the other hand, the relative entropy is a notion of distance between two probability
density functions, and a measure of the inefficiency of assuming that the density function
for X is ¢ when the correct one is p. We define the relative entropy (or cross-entropy, or
Kullback-Leibler distance) between two probability distribution functions p(x) and ¢(z) for
the discrete random variable X with possible outcomes X as [19]:

_ p(x)
D(pllg) = Y _ p(x)loga=—

= q(z)

We stick again to the conventions 0Log(0/q) = 0 and pLog(p/0) = occ.
The relative entropy is always non-negative and assumes the value 0 if and only if p = q.

In the continuous case is

+o00
D(pllq) = / p(x)logzzgd;p

where p and ¢ are the density functions.

Application: relative entropy as an error function When the desired and real net-
work outputs represent probability vectors it is reasonable to use the relative entropy as an
error function: D(X ||Y) is non-negative, convex in its two variables and gets null if and
only if x = y. Strictly speaking, it is not a distance, because it is not symmetric and the
triangular inequality does not hold. The symmetry can be obviously recovered taking as
distance d = D(X]||Y) + D(Y||X), but this is not necessary in practice. In that case we

then take D(X ||Y) = >, cx wilogy - In [6] a practical application is fully detailed.

If the sum of the network outputs equals 1 (or, in the terminology of the networks simulator,
they are “softmax”), then it is proved that the relative entropy criterion can be implemented
by the MSE criterion (that is, to minimize the relative entropy is precisely the same as to
minimize the MSE between the desired and real network outputs) [69].

In [4] the authors propose that, in the case y; = x; +¢; Vi, then we get

2
&

DIX|IY)~ > =+
i, €EX v

Conditional entropy The conditional entropy between two discrete random variables X
e Y is defined as:

H(Y|X) =) pa)H(Y|X = z)
zeX
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Mutual information The mutual information is, in a first approach, a measure of
the information that carries one random variable about another one, or the reduction of
uncertainty of a random variable given the knowledge of another one. The entropy is then
the information that a random variable has about itself. Formally, let us consider two
random variables X and Y with joint probability p(=z, y), and marginal probabilities p(z)
and p(y) respectively. The mutual information [(X, Y) is the relative entropy between
the joint probability and the product of the marginals [19]:

plz,y)
=2 > pay)! 2 p(@)p(y)

reX yeY

Application to the “optimal delay” The mutual information can be used to determine
the value of the “optimal delay” (see 2.9.4.2 on page 102) for the reconstruction of the state
space. The delayed mutual information is a particular case of mutual information,
applied to the outcomes of a certain variable X (¢) and its delayed version X (¢t + 7). A
difference with the autocorrelation is that the mutual information takes into account non-
linear correlations [31]. The delayed mutual information is computed by

bij{4L) (1)
I(X+T,X)=1IT pij (T)loga
( Z ! Pip;

where A1, As, .. ., represents a partition of the real field, p; is the probability to find a value
from the time series inside A; and p;;(7T") the joint probability to have one value inside A;
and other value after T' time steps inside the set A; (see 2.9.4.2 on page 102). If we plotI(T)
versus T, I(T) starts with a really high value (I(0) = 1) and when T is increased, I(T)
decreases until a certain time where it increases again. There are strong arguments [31]
that suggest the delay where I(T') reaches the first minimum should be used as the “optimal
delay” of the signal sub-space.

Basic relations It can be proved ([19]) that

I(X,Y) = H(X)— HXY)

As a consequence, the mutual information is the reduction of uncertainty for X given the
knowledge of Y.

It can be also proved that
I(X,)Y)=1(Y,X)

so X says of Y as much information as Y says of X.

Finally, the following equalities hold:

I(X,X) = H(X)

H(X,Y)=H(X)+ H(X|Y)

2.1.4 Networks with dynamic behavior

Static networks are trained to produce a spatial output as an answer to a spatial input
(here the term spatial means that it does not depend on time), that is, they represent static
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systems. However, in several applications it is required to model dynamic processes where
the output is a sequence of changing values with time, corresponding to a certain input
variable that is also time-dependent. The aim is to design a model capable of simulate the
reality, and dynamically adapts its parameters to approximately capture the observations of
the real system. Briefly, a model with a dynamic behavior. We will call such networks simply
dynamic. A recurrent network is a clear example. Another example is a network TLFN
(time lagged feedforward network). In this subsection we will be concerned with dynamical
networks, with special emphasis in recurrent networks. The recurrent architecture allows us
to include the time-dependent nature of the relations between the data. Additionally, it is
possible to extend multilayer feedforward networks and their associated training algorithms
(e.g. BP) to the time domain in order to train these networks.

2.1.4.1 Introduction

Dynamic behavior of the data Both the classification and the prediction problems can
be formulated as a certain arbitrary mapping between two vector spaces. In the static case
the dimension of the input defines the dimension of the patterns space (e.g. if the inputs are
two independent variables, the input space has dimension 2). In static pattern recognition
(and prediction) the way from which the data are taken from the data set is irrelevant: for
instance, the classification problem is the same when we shuffle the data presented to the
network, because we assume the data “clusters” are not assumed to be ordered (we do not
assume there is an internal sequencing for the data).

In dynamic problems the measures are not an independent sample of observations, but also
time-dependent. If we change the order of the samples, we are distorting the time series
x(n), so the order of the observations must be kept during the processing.

Dynamic networks seen as dynamical systems For a given a certain dynamical net-
work we will suppose that its input is time-dependent, I(n) = [I1(n),. .. In(n)]. Whenever
the vector I(n) is changed, the network will need a certain amount of time to reach a stable
output, if it does. Hence, it seems natural to introduce two scales of time for the network:
one associated with the external stimulus, and the other describing the time-response for
the network (inertia with respect to that stimulus). To make the training feasible, it is
necessary to assume that the changes in the external inputs are slower than the time that
the network needs to reach an a steady state [42]. From now on we will assume this is the
case, so the network has “enough” time to evolve after a change in its inputs. For example,
when a fixed-point learning is performed (see 2.1.5 on page 34 ), we let the network evolve
until an equilibrium point is met, so we can think that I(n) is held constant during that pe-
riod, and such equilibrium point exists. The training algorithm will continuously adjust the
weights in order to reach an equilibrium point and at the same time have the values as close
as possible to the desired ones. In this process we do not need to know the output values
from the hidden layers. The sub-problem related with the search of attractors (equilibrium
points) “as close as possible” to the desired values can be treated as a minimization of a
certain error function, that will depend on the instantaneous output value and the desired
ones. On the other hand, all the networks treated in this work comply that, for an arbitrary
neuron i:

yiln+1) = f[Zw”y](n) + Zwijyj(n +1)+Li(n+1)] i=1,...N
§>i j<i
where I;(n) is the exogenous input for neuron 4, with the agreement that I;(n) = 0 if that
input does not exist.

To verify this condition it suffices to see that
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1. If w;; =0 Vj > i a feedforward network is obtained (such as TLFNs).
2. The MLP is obtained making w;; =0 Vj > ¢ and I(n) = 0.

3. The general case corresponds to a totally recurrent network (see 2.1.4.2).
So, for the neuron i we can write:
yi(n+1) = Gilyi(n), w(n), Li(n)] (Eq 2.5)

when we hold the inputs I;(n) and vary n. We also minimize the error via a gradient descent,
s0:

Awij(n) = —p% (Eq. 2.6)

(or other equation, corresponding to the weight update). Then, if we take the outputs y;(n)
for each neuron and the weights w(n) as the network states, equations Eq 2.50 and Eq. 2.60
fully describe the behavior of the network as a dynamical system. In vectorial form:

y(n+1) = Gly(n), w(n),1(n)]
This system of non-linear equations can not be analytically solved because of its complexity.

If we also consider the training dynamics it is required to add that
Aw(n) = —pVE |yewm) (Eq. 2.7)

Equation Eq. 2.70 represents a gradients system that can converge towards a stable state
(see [42]).

The convergence conditions for the output y;(n) towards an attractor point have been de-
rived for general cases, though particular cases have been studies as well (for example,
imposing that the weight matrix to be symmetric in a Hopfield’s network).

2.1.4.2 Recurrent architecture

We define a recurrent network to be a network with one or more closed loops, this is,
which topology can be represented by a directed graph with cycles, or looking the data,
those networks where the output depends on the previous outputs [30]. The network in
figure 2.7 is hence recursive.

Figure 2.7

In a recurrent network, neurons can be of input, of output or of both type simultaneously,
and the desired output values are given for an arbitrary set of neurons for predefined times.
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Totally and partially recurrent networks

To start, the most intuitive definition is the one used by Neurosolutions:

“A totally recurrent network connects the first hidden layer to itself with at least one recurrent
connection. A partially recurrent network adds to the totally recurrent at least one forward
connection from the input layer towards the next layer of the first hidden layer.”

We can see the idea graphically in figure 2.8

INPUT FIRST TIDDEN OUTPUT INPUT FRST  bECOND OUTPUT
LAYER wippen PR LAYER LAYER HIDDEN ~ HIDDEN LAYER
LAYER LAYER LAYER

Totally (right) and partially (left) recurrent networks
Figure 2.8

Principe gives an alternative definition of a totally recurrent network [69]:
If a network verifies that

{ Neti(n+1) =3, wiy;(n+ 1) + 30 wiy;(n) + Li(n + 1)

where I; is the external input connected with neuron i if there exists such external input,
or 0 otherwise, the neurons are labeled respecting the definition of “feedforward” network at
instant n+1 and we define a delay in all “feed-back” connections (that go from a higher to a
lower neuron), then we say the network is totally recurrent.

For example, the network from figure 2.9 is totally recurrent:

Figure 2.9

The reader is referred to [65] for a strict and formal definition for totally and partially
recurrent networks.
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2.1.4.3 Static vs. dynamic networks

In the case of static networks we do not have the concept of stability, or better, they are
always stable. Dynamic networks can be either stable or not. Stability is here understood
in a uniform sense (2.3.1): the network response to a bounded input must be a finite value
(bounded). This does not occur for instance in a context neuron: if 7> 1 it turns unstable
[51].

Static networks only have a “long term memory” that is defined by its weights: the infor-
mation from the data set is translated during the training process into weights, using learning
rates. These networks contain a historical repository associated with its memory, though
they are not capable to distinguish the temporal relations between the data, because the
collected information is collapsed in the weight values. Dynamic networks, instead, have a
“short term memory”, as in the case of the time lagged feedforward networks (TLFNs), or
recurrent networks, that are sensitive to the sequence in which the information is presented.
They also have weights, consequently long term memory, but unlike the static networks their
weights capture the differences in the order of the data set within an observation window.

The short term memory structures allow to convert dynamic phenomena into static, handling
a set of D successive data over the time as a point in a D-dimensional space [69].

2.1.5 On the training of recurrent networks

Error criteria A key difference between the weight adaptation in dynamic and static
networks is that in the former, the local gradient is time-dependent. Indeed, the optimization
problems are also different, because in dynamic networks we are interested in the overall
network performance within a certain period instead of instantaneously. The most common
error criterion for dynamic networks is called “trajectory learning”, where the error is
summed over all steps fromn=0ton =1T:

E:ZE”:ZZE%%(W

n=0m=1

where F,, is the instantaneous error and N the number of output neurons (the sum over
all patterns was here omitted for the sake of simplicity). The time T is the length of the
trajectory, related with the time-length of the temporal pattern of interest. As a common
rule, the trajectory has exactly the same length of the pattern to be learned, though it could
be higher. The error function is then found over a period, and we attempt to adapt the
weights in order to minimize F,, over the whole time interval. Particularly, if the dynamical
system represented by the network reaches the stationarity (in the sense that an output can
be statically associated with an input pattern), the following error function can be used

E= 22:1 Em (Eq. 2.8)

This error criterion is used when the network is trained using a fized-point learning [69].

Learning paradigms for dynamic networks
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Point-fixed learning In this training method (only used for recurrent networks) the idea
is to make correspond a static input with a desired, static output. The error function is
exactly given by equation Eq. 2.8. The system must be reach a steady state. The stable
value returned by the network (a value that does not change) for a certain input pattern,
after reaching its steady state is, by its definition, a fized-point ([69]). In that moment
the network behaves statically. Therefore, after reaching that fixed-point, the resulting
output for an input pattern can be compared with the desired output, and the error can be
back-propagated.

The “back-propagation” algorithm can be further generalized to implement this kind of
learning, in the following manner:

e Present an input pattern and hold it in the input until the output is stable (it does not
change)

o Compare the output with the desired output value, compute the error and back-
propagate it through the dual network, in the same way as in static case. It is manda-
tory to present the error to the dual network and hold the input until the propagated
error is stable.

o Use any desired procedure to update the weights in order to find the minimum for E.
For instance, a raw gradient descent would return

oFE
Awi = 7p3w,;

o Repeat steps 1 to 4 for the next pattern.

It must be taken into account that:

1. This training is convergent provided the original network is stable, namely, the network
outputs can be stabilized. If the original network is stable, the dual onewill inherit
this stability property [69]. However, the necessary time for both networks to reach
a steady state can be different and even change with the iterations. Sometimes, the
original and dual networks take more time to get stable as soon as the algorithm gets
closer to the solution [69].

2. The learning rates must be chosen so to have a slow training. This is to allow to have a
learning dynamics slower than the network’s one. If this condition is not met, a family
of networks are trained instead of one, and there is no certainty to get a convergent
process.

3. The static back-propagation is a special case of fixed-point training, with null stabi-
lization times.

4. A tentative initial value for the stabilization time in the fixed-point case might be 100,
that is, to hold the input pattern one-hundred times more than in the static case [69].

Learning trajectories We define a trajectory as a sequence of patterns together with
their respective outputs through time. in this case, we wish to train the network such as
the outputs follow a specific temporal sequence. Note that we are not only interested in
the last instant, but the intermediate outputs as well (the trajectory). The learning of
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trajectories can be implemented using RTRL or BPTT indistinctly [69]. A variant on the
learning of trajectories is to store the inputs, outputs and neurons weights for the last part
of the trajectory (the most recent part), obtaining a truncated BPTT (or BPTT(h)).
The reader is referred to 2.4 or [30] to have an overview of truncated BPTT.

2.1.5.1 Difficulties to train recurrent networks

There are several circumstances that make a given task irresolvable with a recurrent network.
In a first place, it is possible that the chosen neural model is not adequate for that task,
something hard to judge beforehand. In the second place, even if the model is adequate
(including the number of neurons and the input/output representation), it can occur that
the employed training method is not capable to return a correct set of weights. There
are mainly two reasons for this drawback: the presence of local minima and long term
dependencies. There is also the risk to turn the network unstable. “Training recurrent
networks with BPTT (or RTRL) is yet more an art than a science, being TLFN networks
easier to be trained, and they should be the point of departure for every solution” [69].

e Local minima

The error function E defines a multidimensional surface called error hyper-surface. Nor-
mally, the error hyper-surface presents a global minimum (possibly more than one “global”
minimum where E assumes the same value, because of symmetries in the network) and
several local minima, that may not correspond to a correct solution of the problem. These
local minima are consequence of the high dimensionality of the search space, and represent
the major cause of concern, given that all the learning algorithms tend to be trapped in
them, specially naive local searches as the raw gradient descent. Anyway, the local minima
problem is not specific of the recurrent neural networks, and affects nearly all the neural
network models. Additionally, the error surface from dynamic networks tend to have very
narrow valleys, and the learning rate must be carefully controlled for the training stage. The
algorithms that use adaptive learning rates are the most appropriate here. In particular,
the neural network simulator here chosen allows the manual and/or automatic rate adjust.

o Stability

Recurrent networks can turn unstable during their training. The non-linearity in the neurons
will avoid a “network explosion”, keeping the outputs bounded, though the neuron outputs
can oscillate between extremal values. Normally, to watch that it does not happen, and to
restart the training in the unfortunate case, represent the only way-out [69].

e Error flow and vanishing gradient

Consider the network flow between neurons ¢ and j. In this case the resulting error at
instant ¢ in neuron i, represented by ¢;(t), “travels” back with time (assuming we are using
BPTT) until neuron j is reached at instant s < ¢ . This error signal tries to “modify the
past” hence outperforming the last result in the present with respect to the desired output
d(t). It can be proved ([34] and [70]) that the error flow backwards (reaching neuron j) is
either increased without bound and neuron j gets an error value that can make oscillate
the weights, turning the whole training unstable, or the error exponentially decreases with
the distance between t and s, that is, the error flow vanishes and the learning is no more
possible. This turns the training both hard and slow.

This degradation problem of the error information (or equivalently, the local gradient)
through non-linearities has been called the vanishing gradient problem, and is linked
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with the long term dependencies problem. From a dynamic viewpoint, if a recurrent
network, as a dynamic system, has an hyperbolic attractor and is being trained with a learn-
ing gradient-based method, either the network is not able to learn when the inputs have
noise or cannot determine long-term dependencies between the data [30]. In order to face
these drawbacks, a training with the extended Kalman filter, second-order descend methods
can be used or even to change of topology (for example, to LSTM networks). There is no
mathematical solution to this problem at hand yet, even though new topologies to avoid it
(LSTM networks to “avoid the vanishing gradient”), and the use of other training methods
(using deKf, see 2.5 on page 70). The long-term dependence problem means that when
a recurrent network is trained, the gradients can be highly attenuated, and the long-term
relations will be learned with difficulty, if they can. However, if structures with linear mem-
ories are employed (LSTM networks), then the gradients are not attenuated when they are
back-propagated. A mixture of non-linear neurons and neurons with memory, as in a TLFN,
can lead to better results than totally recurrent topologies [69].

e The long-term dependence problem

Practically all training algorithms for recurrent networks face big troubles (sometimes not
surmountable) to track the information over a sequence, specially when the time between the
presentation of an input and its corresponding affected output is relatively large (normally
higher than 10 time-steps), because of the vanishing gradient. Formally:

Given a data source that generates a sequence s(1),...s(ty),...,s(ty),...we will say that
there exists a long-term dependence between the value at instant t,, and the one at instant
ty, and we will denote it by s(t,)—os(ty), if the following conditions are met:

1. the value of s(t,) depends on the value s(t,)
2.ty >ty

3. there is no t,, with &, <ty <t, such that s(t,)—os(ty)—os(ty)

As seen before, the training gradient-based algorithms for recurrent networks are usually un-
able to represent long-term dependences given that the current network output is insensitive
to old inputs [34].

2.1.5.2 Back-propagation through time (BPTT)

There are several modifications to the “back-propagation” algorithm for dynamic networks:
back-propagation through time (BPTT), recurrent back-propagation, BP with stationarity
(or Pearlmutter’s method) and real-time recurrent learning (RTRL). Each one is associated
with a special behavior of the system that generates the inputs with time and how the
network is trained. We will see BPTT next.

BPTT and RTRL are both based on unfolding the network through time, and though this
is widely general from a theoretical viewpoint, it is limited in practice by the number of
neurons generated by unfolding the network (for example, if we want to learn a length-3
trajectory, the number of neurons is multiplied by 3).

To be more specific with the unfolding process consider a recurrent network NN that must
be trained from a certain time ng until a time n. Let NN * the feedforward network obtained
by unfolding NN through time. NN * is built from NN in the following manner (so it
always exists):
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e For each time step within the interval (ng,n| the network NN * has a layer with k
neurons, where k is the number of neurons of NN

e In each layer of the network NN * there is a copy of each neuron of the network NN

e For each instant | € [ng,n|, the connection from neuron i in layer | towards neuron
j in layer | + 1 of the network NN * is a copy of the corresponding connection from
neuron i towards neuron j in NN .

Regarding the high computational costs required to handle real applications with back-
propagation through time, they are usually considered additional algorithms that do not
unfold the network, such as some implementations of BPTT (h) (truncated back-propagation,
see 2.4 on page 58 and [30]).

2.1.5.3 Back-propagation (BP) vs. BPTT

If the network is either static or dynamic, but feedforward (such as the TDNNs) and the
desired output is known for every instant, it can be proved that BPTT is equivalent to use
an ordinary BP and sum the local gradients multiplied by the inputs along the specified
period [69]. However, there are cases where the output is only known in the last instant of
that period. In those cases we have to use BPTT since we do not have an explicit expression
for the error at each instant. If the network can be trained by BPTT in some parts and by a
common back-propagation in others (such as in the case of the TDNNs), it is recommended
for simplicity to apply BPTT through the whole network [69].

2.1.5.4 Recurrent BP

Let us suppose that the network under study (where time varies continuously) is recurrent
and presents an equilibrium point (stationarity) for its inputs in the sense that after training,
the same outputs are obtained for the same inputs no matter the instant. In [34] some
necessary conditions are discussed in order to reach the steady state. In this case, a variation
for the back-propagation algorithm can be proposed, called “recurrent back-propagation”
(see 2.4 on page 58).

2.1.5.5 Recurrent time-dependent BP - Pearlmutter’s method

Let us now consider a network that does not reach an equilibrium point for a set of fixed
inputs, so the network output is always a function of the continuous time. Further, assume
the output of the neurons in the network comply that

Ti% =—y;, + f(Net;) +x;(t) i=1,2,...N

where the 7; are independent of time and constant, and x;(t), y;(t) are continuous functions
representing respectively the input to and output from the neuron 7, and N is the number of
neurons in the network. In this case, working on a closed time interval we can essay an “off-
line” learning, called Pearlmutter algorithm. This algorithm basically uses a generalization
of the sum of squares as its error function:
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1 (b 5
p=g ), S -upa

The algorithm performs a descent search on the weights and simultaneously, other descent
according with the numbers 7; (see [29] and [60]).

2.1.5.6 Real Time Recurrent Learning (RTRL)

In the discrete-time case, an “on line” training can be performed (in real time, while the
network is processing the presented values at the input), that does not imply major com-
putational challenges. This method has been widely employed (see 2.4 on page 58 and
[30]).

This training makes sense when the weights change slowly when compared with the changes
of the output respect the inputs. We can say that this algorithm is local in time but not in
space (in the topology), so in some way it is dual to the BPTT. Indeed, if we consider the
weight adaptation equations we get that (see 2.4 on page 58):

Aw;j(n) =p 25:1 [dp(n) = yp(n)] 3851
Awij =3, Awij(n)

where n varies with time, p, 7 and j over the number of neurons. It can be appreciated
that the gradient with respect to a given weight (in a certain instant) does depend on the
derivative with respect to other weights and the error in the other neurons. That is the
reason why the algorithm is called local in time but not in the topology.

2.1.5.7 BPTT vs. RTRL

The following table summarizes the main characteristics of both methods [69]:

RTRL BPTT
Required storage O(N?) O(NT)
Number of required O(N'T) O(N°2T)
operations
Local in space (topol- NO YES
ogy)
Local in time YES NO

being N the number of neurons in the network and T the size of the trajectory

2.1.5.8 Jordan and Elman networks

While TLFN networks are able to implement any mapping I — O, there are some cases
where such mapping is out of the scope for a reasonable size of a focused TLFN. Jordan
and Elman proposed simple networks based on context neurons and recurrences, easy to
train and able to learn such mappings by means of small topologies [69]. Their schemes are
presented in Figure 2.10:
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Figure 2.10

The thick arrows represent all the possible connections. Both networks have the feedback
parameter, 7, fixed, and there is no recurrence between the input and the output. They
can be roughly trained using the ordinary BP (and this is the case of the neural network
simulator chosen here, [69]). In principle these networks are more efficient than focused
architectures (see 2.1.5.12 on the facing page) to code temporal information.

Both networks have been used for sequences recognition, and because of this they are de-
nominated sequential.

2.1.5.9 Memory

These networks use a memory structure called “feed-back” memories. The neurons that
possess those memories are called context neurons. The memory of the context neurons
is obtained using a “feed-back” loop, which corresponds to find the output summing the past
input values multiplied by 7 (time constant):

y(n) = a(n)r"
i=0
This can be graphically represented by:
y(n)

x(n)

Figure 2.11

Observe than an impulse in the input z (such that z(0) = 1, z(n) = 0 if n # 0)
will generate an output series y(n) = 7™. This is the reason why context neurons are
called memory neurons: they “remember” past events. The time constant 7 (chosen once
the network is designed) should verify 0 < 7 < 1, otherwise, the neuron response will
progressively turn unstable.
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2.1.5.10 Relation with AR and MA models

In linear systems, the use of previous values in the input creates the models known as Moving
Average (MA), whereas the use of historic values of the output defines Auto-Regressive (AR)
models. In the case of non-linear system, such as the ordinary neural networks, those two
topologies correspond with NMA and NAR (the N comes from non-linear) respectively.
The Jordan network is a particular case of a NAR model, whereas a special case of NMA is
obtained when the context neurons are fed with the input layer. The Elman network does
not have a counterpart in the theory of linear systems [68].

2.1.5.11 Computational power of recurrent systems

In a wide sense, one of the most remarkable computational capacities of the general recurrent
networks is given by Siegelmann and Sontag’s theorem (1991, cited by [30]): Every Turing
machine can be simulated by a fully connected recurrent neural network with sig-
moid transfer function. Finally, other interesting conclusion related with these networks
is the Funahashi and Nakamura’s theorem. Funahashi and Nakamura proved that the
output of a recurrent neural network with enough hidden neurons (with a continuous-time
domain) can approximate as exactly as desired any trajectory in the space state (that is,
the behavior of any dynamical system). In other words, recurrent neural networks
are universal approximators for deterministic dynamical systems [29].

2.1.5.12 Time Lagged Feed-forward Networks” (TLFNs) and “Time Lagged
Recurrent Networks” (TLRNSs)

TLFNs are non-linear networks represented by feedforward arrays of memory elements and
non linear neurons. The main advantage is that they share valuable properties with feed-
forward networks (for instance, stability) and additionally capture the present information
from temporal input data. A TLFN is “focused” if its memory elements are restricted to
the input layer ([69] and [30]). When the memory is distributed over the network, we will
refer to a distributed TLFN [30] or “non-focused” [69]. When the memory elements are
of type “delay line” and exist only in the input layer we have a “time delay neural network”
(TDNN). Here we will generalize the definition including the case of “non-focused” TDNN
(that is a “delay-line” TLFN with delay line memory elements, focused or not). When the
elements with memory present an architecture with cycles (they are recurrent networks) we
have the “time lagged recurrent networks” (TLRNs). These can also be focused or
not.

2.1.6 Design issues

We will pay particular attention to several design issues such as the network topology,
transfer functions to use, etc. in order to improve the obtained solution (smaller network,
better generalization capacity, easier to train, etc.). Some of these considerations were taken
into account in our experimental development.

To start, Haykin ([30]) proposes several heuristics to improve the performance of the BP
algorithm:

e Heuristic 1: Each parameter of the error function that can be tuned through the
learning phase must have its own learning rate. For example, each weight must have
its own learning rate.
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e Heuristic 2: Each learning rate should be able to vary from one iteration to another.

o Heuristic 3: When the derivative of the error function with respect to a given weight
has the same algebraic sign for several consecutive iterations, the learning rate should
be increased.

o Heuristic 4: When the derivative of the error function with respect to a given weight
alternates during several consecutive iterations, the learning rate should be reduced.

It is worth to have in mind that the use of variable learning rates modifies the back-
propagation algorithm, and the weight update is no more with a gradient search, but based
on a) the partial derivatives of the error function with respect to the weights, and b) esti-
mations for the curvature of the error surface at the current point of operation, with respect
to some of the weights. Even though, the heuristics and the corresponding modifications to
the algorithm have proved to be useful [30].

Now we will go through general concerns over other aspects that can affect the behavior of
the algorithm.

2.1.6.1 Owutput function

The calculations can be greatly simplified when the logistic or hyperbolic tangent functions
are used, mainly because their derivatives f’ can be expressed in terms of the function f :

for the logistic:
f(Net) = (1+ e‘ANet)_l
f'(Net) = Af(Net)[1 — f(Net)]

and for the hyperbolic tangent:

f(Net) = Tanh(BNet)
f'(Net) = B[1 — f*(Net)]

being Net the input for the respective neuron:

P
N@t]’: E Wi T5
i=1

2.1.6.2 Convergence

Normally the current weights that reach the output layer are used for the calculus of the
variation of weights that reach the hidden layer, though generally a better correction is
performed if the values of the updated weights from the output layer itself wie = wf]””’e"t+
Awy; are used instead. From a computational viewpoint, it should be taken into account

that it means an additional cost coming from the re-calculation of y; and f/(Net,).

If a solution from the current parameters can no longer be found (there is no convergence),
we can try again changing some of them, taking a new initial weight set and/or use more
hidden neurons, because this number plays its role in the learning effectiveness. What is
more, if the learning is fast enough, the number of hidden neurons can be reduced, in order
to optimize the computational resources. A trade-off between stability, training performance
and number of hidden neurons should be met. Rumelhart (cited by [29]) developed a pruning
method to delete hidden neurons with scarce activity during the learning process (neurons
which their weights change little or nothing during the learning process, see 2.8 on page 85).
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Bear in mind that the surface error should be explored with small increments in the weights,
because we only have local information of this surface and we are not aware whether the local
minimum is near or not. Using big increments can lead us to “skip” that point, oscillating
around it without reaching the target. On the other hand, an extremely small increment
can lead us to a very slow convergence. Normally the learning rate p is within 0.05 and 0.5.
A good practice is to let p increase when the network error is reduced during the learning
stage, having in mind the variation should not be big enough [33].

Although the artificial unit input to all neurons was not represented, the activation threshold
0 also plays its role during the learning process, and its weight will be adjusted accordingly

2.1.6.3 The training set

There is no general rule to predict the number of training pairs (x, d) to achieve a satisfactory
result with an arbitrary network topology with sigmoid transfer functions. For that reason, it
is better to have as many pairs as possible. Recall that a subset could be used for verification
(e.g. in cross-validation, see 2.2 on page 45), what makes the number of necessary pairs
for training to be increased. Baum and Haussler [5] found that in feedforward multilayer
networks with Heaviside input (unit step from a certain instant) and desired binary values
in —1,41, the relation dyc < 2Wlogs(eM) holds, being dy ¢ the Vapnik-Chernovenkis
dimension ([10], [30]), W the number of weights in the network, M the number of neurons
and e the base of natural logarithm. They derived as corollary that if a network is trained
with N > Wlogy(41) patterns with a correct classification of 100(1 — £/2) percent of them,
there is high probability that the network correctly classifies 100(1 — €) percent of the
remaining future observations, generated with the same probability density function [10].
They also conjectured that similar bounds hold for other transfer functions commonly used.
In fact, some authors use these bounds with no more theoretical considerations [81]. For
example, if If we wish to have an error classification of 0.1, we should consider around 10x W
training pairs [81].

The additive noise at the input helps to speed-up the convergence, even though the network
will not operate finally with input noise [29].

Additionally, the number of necessary input patterns is constrained by certain characteristics
of the modeled data [81] :

e The intrinsic dimensionality of the data, which is the number of independent
variables at the input (whose values do not depend each other). A possible heuristic is
to increment the size of the training set in a factor of 10 for each independent variable.
In a time series, the intrinsic dimension is given by the embedding dimension [81].

e The resolution or granularity of the data, which is the number of divisions in each
dimension (input variable). For example, if we wish to have a measure of a distance
in cm. or mm. If the division scale is higher (less granularity), we will need less
observations for that variable, and it will be less likely to model data noise [22].

e The probability distribution/probability density of the data: we must be sure of
having enough data to cover each possible state that the system to be modeled can
reach. Therefore, if we know the network input x (corresponding to a system state)
occurs with probability P(x), we should have at least 1/P(x) training patterns to be
relatively sure that the input includes some sample of x.

e The noise and the quality of the data: if the data is mixed with very high noise or
has a bad quality (for example for being scarce in number or it not representing all
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the possible inputs), a much higher volume of data could be required, since a big part
of the data will be discarded.

2.1.6.4 Network dimension

In general, three layers (input, hidden, output) are enough. In fact, it can be proved that
no more than one hidden layer with an adequate number of neurons is needed to solve any
interpolation or classification problem (see 2.10 on page 108).

The sizes of the input and output layers are given by the nature of the problem (application).

The size of the hidden layer(s) should be carefully studied because:

1. The number of hidden layers should be such that the information available in the train-
ing set could be stored, and at the same time not as high as to loose the generalization
capacity of the network.

2. The number of neurons in the hidden layer must be lower than the ones in the in-
put, if any compression is going to be done (“feature extraction” or reduction of the
dimensionality) of the input data.

3. In [81] the number of hidden neurons is suggested not to be more than twice the
number of the input. The support of this rule can be found in Kolmogorov’s theorem
on function approximations (see 2.10).

4. Each hidden neuron consumes computational resources when the network is simulated,
and a trade-off between learning performance and number of hidden neurons should
be met.

2.1.6.5 Weights and learning parameters

It is recommended to choose the initial weights as small values uniformly picked at random,
for instance within the open interval (—1,41); the same is applied for 6; [81]. On the other
hand, in [20] suggest to have the weights within (—0.5,+0.5). Another heuristic suggested
in the literature (for instance, in [29]) is to choose the initial weights within the interval
(—=1/vf,+1/\/f), being f the number of connections that enter neuron i (or “fan-in”).

Kolen and Pollac [39] discovered, for feedforward networks learning the XOR function, that
there exists a structure representing convergence as function of the initial weights, similar
to fractals, where there are regions with high sensibility in the weight space, so a small
difference in the initial weights can lead to very different learning curves. That shows how
sensitive is the retro-propagation to the choice of the initial weights, displaying a chaotic
behavior. This fact could be explained by the existence of several minima of the error
function, the non-zero learning parameters (rates and weights) or non-linear deterministic
nature of the gradient descent approach.

The choice of the learning rate is important: in general within the interval (0.05,0.25),
possibly varying with time [20] (see 2.1.2 on page 24).

Network Paralysis: if a sigmoid transfer function is used (such as the hyperbolic tangent

or the logistic), we should be careful that the magnitude of the weights do not increase
beyond a bound because otherwise the neurons will operate with high input values, and in
that case, since the derivative of the output function is close to 0, no weight updates are
produced, and the network halts its learning phase (it gets paralyzed).
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2.2 Advanced techniques

2.2.1 Improvements and variations to the basic BP algorithm

Here some variations for the basic BP algorithm are covered, for both the modifications of
its learning parameters and the selection of the error function.

2.2.2 Second-order methods and moments

Moments This technique consists of adding a moment term in the right part of the
weights update equations

Awyj = po(dy — yl)f;(Netl)zj (output layer)

Awji = pr[Xr, (di — wi) £ (Netr)wiy) fr,(Net;)s; (hidden layer)

In this way we speed-up the gradient descent when the derivatives of the error function have

the same sign in two consecutive steps, avoiding an oscillation of it with each change in the

sign of % [30]. The corresponding equations are”:

{ Aw;(t) = —pEE + alw;(t — 1)

sz(t) = ’U)l(t) — wi(t _ 1) (Eq. 2.9)

where « is the moment rate, generally 0 < a < 1 (in the general case, 0 < |a| < 1, though
it is not usual to take negative values).

The moments method is a way to increase the effective learning rate in regions in which the
error surface is nearly plain, while the learning rate is close to p (with 0 < p < 1) in regions
with high fluctuations. Indeed, if we use a recurrence in N steps (N arbitrarily chosen) we
can re-write Eq. 2.9:

N-1
oF
A P = — " NA T —
w an:Oa 8wi(t—n)+a w;(t — N)

If the search point is taken in a nearly plain region, then g f will be approximately constant

in each step, and the previous equation can be approximated by

N-1

oF n p OFE
dw; (1) HZ::O T T aow(t)

Aw; = —p

when 0 < a < 1 and the number of steps NNV is high enough.

As a consequence, for plain regions, the moment term leads to increase the variation rate of
the weights in a factor 1/(1 — «).

Static and dynamic moment The added moment is said to be static if its rate « does
not depend on the stage of the learning phase in which one is. The moment is adaptive or
dynamic whenever the moment rate changes with the time.

"Here we consider the weights as components of a vector, without regarding the connected neurons.
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Newton’s method The second-order searches (such as Newton’s method) are based on
a quadratic approximation Eo(w) of the function E(w), that is, in Eo(w) are used the first
three terms from the Taylor’s series of E(w) [29]:

1
E2 (Wcurrent 4 QW) _ E(Wcurrent) + v E(wcurrent)T AW 4 5 QWTII(WCUTTent) AW
. . . o _ 9°E
being H the Hessian matrix H = {Hij = Buiow; }

Minimize E will be roughly the same to minimize Es(w). Particularly if we wish to minimize
Ey(weurrent 4 Aw), we must solve

VEQ (Wcirrent 4 AW) =0
which is achieved making [29]
Aw = — [H(Wcurrent)]_l VE(Wcurrent) (Eq. 210)

The iterative weight updating process obtained using Eq. 2.10 is called Newton’s method.

The computation of H~1! is computationally intensive (it needs O(W?) operations, being W
the number of weights), so some researchers (Le Cun and Becker, cited by [29]) proposed
an approximation that discards the elements outside the diagonal of H, and calculates

2 -1

2.2.3 Other stopping criteria

“Cross validation” This alternative (or complementary strategy) to improve the gener-
alization capacity of the network is based on empirical results ([50], Wieigend, Hergert and
others, cited by [29]) and it is basically a criterion to stop training. In training simulation of
feedforwawith an additional termwith an additional termrd networks using back-propagation
with noisy data, it has been found that the generalization error monotonically decreased
towards a minimum, and then started to increase even if the training error still went on
decreasing.

Graphically:

Error

Falidation

Training

Epochs

Figure 2.12
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To summarize, when the training is performed with noisy data, the excessive training leads
to overfitting, whereas a partial training can lead to a better approximation of the func-
tion in the sense of a better interpolation, and possibly, better extrapolation. Wang and
others (cited by [29]) gave a formal justification of the generalization improvement when
the learning stage is stopped before reaching the global minimum. They proved that there
exists a critical moment in the training process where the network generalizes in the best
possible way, and after which the generalization error is increased. Therefore, a feasible
strategy to improve the network generalization capability for networks of sub-optimal size®
is to avoid the overfitting by means of a careful control of the validation error during the
training process, and stopping the training just before the error starts to grow. This strategy
is known as “ecross wvalidation”. In this method, the whole available data set is divided
into two parts: a training set and a validation set. The training set is used to determine the
network weights. The validation set is used to decide when to finish the training process.
The training proceeds while the performance in the validation set is still improving. When
there is no further improvement, the training is stopped®.

This criterion requires an extensive data set, being inappropriate for applications where
data are scarce [29]. In those cases, there are variants of it, such as the “multi-fold cross
validation”, where the N available patterns are divided into K > 1 subsets and the model
is trained for all subsets but one, being the excluded subset used for the error validation.
The process is repeated for the K subsets, using in each turn a different subset for validation.
The model performance is evaluated averaging the error validation of the K tests [30].

Finally, the cross validation criterion permits to choose the network model that fits better
with the data and provides a better generalization capacity, and in that is related with
the MDL and the AIC. It can be proved that the use of cross validation is asymptotically
equivalent (when the data set is increased without bound) to the Akaike’s index [69].

Other error functions [criteria] An error function should respect the conditions that
define a distance: the resulting error from an output value i obtained instead of a desired
output j, d(i,j), should be such that

1) d(i,j)>0 V(@Ej)  1#]
2) d(i,i)=0

3) d(i,j) = d(j,i)

4) d(i,j) < d(i,h) +d(h,j)

withi=1i(w), weR" 1ije€ R™ and also, if a derivative-based training will be employed

as in the case of a gradient descent), the gradient Vd = |24 24 ... _9d | pyst be defined,
g & Dy Dws w

and continuous with respect to w. Conditions 3) and 4) are not mandatory for some error
functions, such as the relative entropy.

Minkowsky error functions They are a family of parametric functions with a parameter

r > 1, that can be seen as a possible generalization for the MSE. Its general form is':

n m

BE(w)=> > |(di); — (:);]"

j=1i=1

81t is proved that stopping the training via CV has the same effect in the network generalization capacity
than changing the network size, for a given training set[84].

9Software tools help us to determine a stopping rule for the training stage once the error exceeds a certain
threshold.

10[11]and [4] define it in this way, whereas [29] considers E(w) = LE(w)
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being n the number of input data, m the number of output neurons and meaning (d;); the
i —th element of d; = [(d1);,(d2)j, ... (dm);]”, or in its instantaneous version:

Er(w) =Y _[(di); — (wi);|"
i=1
These error functions are associated with the so called L-r distances:

m 1/r
L7(y;,dy) = [Z (dy); - m»—r] = [Br(w)]""

The use of these functions can lead us to a maximum likelihood estimation of the weights
for arbitrary input patterns, choosing r appropriately [4].

If r = 2 we have the euclidean distance (and E is the sum of squares error).

Some properties of this distance for » = 1 (called Manhattan norm) are mentioned in
what follows.

When r — oo the associated L-r distance is ([4]):

L = Maz |(d;); = (yi);]

A value for r such that 1 <r < 2 gives lower weights to higher (d — y) deviations (because
the difference |d; — ;] is raised to a power between 0 and 1).

For the Minkowsky error functions the weight modification is [10]:

Awy; = po Yoy sign[(d)r — ()i 1(d)r — WOkl" ™ fo'[(Net)i] (2
(output layer)

a = fa'[(Netj)r](zi)x
Awyj = po Sp_y i [signl(d)s — (o)) 1(d)w — ()l fo'[(Netl)k](Zj)k} a

(hidden layer)

From a statistical viewpoint, the case r = 1 corresponds to minimize the conditional median
of the error whereas r = 2 is the minimization of the conditional mean error of obtaining
the network outputs conditioned to the inputs [10].

Special case: learning using the Manhattan norm The network training (including
the Langevin training, see 2.1.1.3 on page 20), can be formulated in general as

w(n+1)=w(n)+pn)H [w(n),x(n)] (Eq. 2.11)

where p(n) is the learning rate and H the learning rule.

For each value of the input x(n), assumed random, independent and identically distributed,
we will obtain a new w(n) from certain starting input w(0) and using Eq. 2.11. That
sequence of values w = {w;;} is a Markov chain whose states have transition probabilities:
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P(w;j,n+1) — P(w;;,n) = [ [P(w’- n)W (w;; |w;]) — P(w;j,n)W(w

i lwij )] dw'

/
j
(Eq. 2.12)

where the integration is over the whole variation set of w and being W the transition
probabilities in a step:
W (wij [wi;) = (6(wij — wi; — pH (wj;,%)))
where (...), means the average with respect to (or over all the values of) x and ¢ the
Kronecker delta function.

Equation 2.12 does not have an exact theoretical solution, so approximations are used. The
equation can be re-written in a power series with basep , obtaining the Kramers-Moyal’s
series [32]:

oo —1)" "
Plwyjn+1) = Plwg.n) = 272, G0 (527) lon(wi) Py 0] (g 513
a(wij) = p" (H™ (wij, X))
Additionally, if we only take the two first terms from Eq. 2.13, we obtain the Fokker-Plank
approximation.

In the case of the Manhattan rule, the Kramers-Moyal’s series can be exactly summed, in
other words, Equation 2.12 has exact solution [32], and can be found as a sum of a finite
number of terms (of course different from the Kramers-Moyal’s series).

In this case, we would get

Aw;j = Hij(w,x) = —sign { B
i

where

w represents the component that corresponds to weight w;; of the instantaneous
ij

gradient (that is, for the pattern x) of E.

Relative entropy The relative entropy (or Kullback-Leibler distance) can be as well used
as an error function (see 2.1.3 on page 28).
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2.3 Global optimum search techniques

We will describe a technique that can be implemented together with the back-propagation
algorithm in order to reach the global optimum of the error function. Another common
technique is represented by genetic algorithms, discussed in Subsection 2.2.5. Finally, other
methods produce searches starting with the minimum of auxiliary functions, in a process
known as “tunneling” (see [15]).

2.3.1 Langevin learning rule

Random descent gradient methods employ noise in order to perturb the function E(w) to be
minimized, hence avoiding local minima and “bad” solutions, trying to get a “good” global
solution. During the search process the modifications for E are gradually deleted so the
function to be minimized is effectively F(w) when the final solution is reached.

Langevin’s learning rule adds noise to the weights during the training phase, which corre-
sponds to produce a gradient descent of a distorted function E(w,N):

E(w,N) = E(w) + c(t)w'N

being E(w) the target error function to be minimized, N = [Ny, N5...N,]” an array of

additive white independent Gaussian noise and ¢(t) a parameter that controls the noise

magnitude [72]. The noise should be gradually reduced, so tlim c(t) = 0. A possible choice
—00

is c(t) = Be @ with 8 # 0 and « > 0. The gradient of the perturbed function is
VE(w,N) = VE(w) 4 ¢(t)N(¢), and since in the general case it is w(t + 1) = w(t) —

PV g(W)|y () so when replace with the distorted case (replacing the function g(w) by E)
we get that:

w(t+1) = w(t) = p |V Bl () + c()N(1)|

or
Aw = —p [V B(W)|y ) + (N

Observe that if the noise N has zero mean, the search will in average follow the gradient
for E:

(VE(xN)) = (VE))y +c(t) (N(1) y = VE(x)

where the sub-index N means “the expected value is taken over all possible noises”.

The probability to produce a global optimum in this way critically depends on the noise
magnitude c¢(t). For example, when c(t) = Be~*!, the coefficient 3 controls the noise
magnitude and « the vanishing rate. It is necessary to choose § big enough to explore
the search space profusely. Choosing « big should dissipate the random effect rapidly so
the search is prematurely translated into a deterministic one, increasing the probability of
producing a local minimum. Small values for « are desirable since they allow a high number
of points to be explored from the search surface, a basic element for a global optimization.
However, if « is too small, the convergence will be very slow. Therefore, @ must be chosen to
reach a trade-off between an adequate speed of convergence and the production of a global
optimum (or close to global).

This stochastic gradient rule can be used for all the gradient-based learning rules for feedfor-
ward networks, and it is called Langevin’s learning rule. In the case of back-propagation
the Langevin’s learning rule leads to
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Awyj = po(dy — i) fo' (Netr)zj + poco(t)Ni;(t)
L

Awji = pn | Y (di = wi) fo (Netywg | fu’ (net;)a; + puen(t)Nys(t)
=1

for output and hidden neurons respectively (the sub-index o and h for ¢ mean we might use
different noise magnitudes for the hidden and the output neurons)*®.

Training using Langevin’s rule is usually computationally more effective than a deterministic
back-propagation in order to escape from local minimum (Hoptroff and Hall, cited by [29]),
giving better results in both speed of convergence and quality of the results when comparing
Lavengin’s rule with high-order methods when the Hessian matrix is ill-conditioned (which
is common in the feed-forward networks with hidden layers [72]).

Last, it is worth to note that incremental back-propagation can be seen as a random gra-
dient search, but randomness is in that case intrinsic to the gradient, given the nature of
the “instantaneous” error minimization (when training vectors are randomly presented, as
opposed with an artificially introduced randomness) used here. The noise here introduced is
homogeneous, in the sense it is the same on each minimum for E, whereas the one for incre-
mental BP is not, because it is related with intrinsic fluctuations given by the randomness of
presented patterns. In incremental BP, the grater the error, the longer the learning phase,
the higher the weight fluctuations as well as the greater noise and the possibilities to es-
cape from local minima. This non-homogeneous noise gives it an advantage over Langevin’s
learning rule referred to escaping from local minima, which has been tested in simulations
by Heskes and Kappen (cited by [29]). However, the incremental BP does not succeeds to
escape from the flat spots problem while Langevin’s rule does.

2.3.2 Non-gradient-based training methods

An exposition of non-derivative based training methods is presented, such as Genetic Al-
gorithms combined with Neural Networks. A hybrid method is described, trying to exploit
the best from both worlds: genetic algorithms and gradient descent searches.

2.3.2.1 Evolutionary artificial neural networks

Evolutionary artificial neural networks represent a special kind of neural networks where
evolution, as well as learning, is another adaptation method. This evolution is commonly
simulated by genetic algorithms or other evolutionary algorithms'?. Some applications
of evolutionary algorithms are the training itself (weight adaptation), selection of start-
ing weights, architecture design (network structure and transfer functions), learning of the
learning rule, etc. [72].

Evolutionary search procedures Evolutionary algorithms are based on the evolution of
a population of competitive individuals that exchange information between each other, being
specially suited when dealing with high-dimensional functions with several local optimum
points [72]. In particular, genetic algorithms represent a sub-class of these algorithms,
where their implementations depend on the way to encode the genetic information of the
individuals, the selection process through generations and the genetic operators.

1With the standard convention, when w is considered a vector, N is taken as a vector with equal dimen-
sion. Therefore, when w = {w;;} is considered, N = {N;;} will have the same structure.

12We understand evolutionary algorithms by genetic algorithms, evolutionary programming and evolu-
tionary strategies[90].
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The general structure of a genetic algorithm can be schematically represented by the fol-
lowing template:

Step 1 - Generate the starting population G(0) at random and let i = 0.
Step 2 - Repeat until the stopping criterion holds:

e Score each individual in the population
e Choose ancestors from G(i), using the fitness function

o Apply the genetic operators to the ancestors and use the results to get a new population
set G(i+1)

e Update i=i+1

Evolutionary neural networks The evolution of these networks take place roughly

at three levels: weight evolution, architectural evolution and learning rates evolution. The
weight evolution introduces an adaptive approach of the training, specially in the learning of
recurrent networks and by reinforcement ' where the gradient descent algorithms commonly

present difficulties [72].

Weight evolution Even if BP has had a successful application in several cases, it has some
deficiencies coming from its gradient descent use: it produces local minima very often, mainly
for multi-modal error functions; additionally, it requires to work with differentiable error
functions. An alternative approach is to implement the training stage with an evolutionary
approach. Genetic algorithms could be applied to try a global optimization in the weight
space. The fitness function for the evolutionary network can be defined in accordance to
the different needs. The network complexity can be included in it, as well as the difference
between the real and the desired outputs. On the other hand, the fitness function is not
required to be differentiable: GA are not gradient-based methods.

The training phase seen as a weighting evolution has two stages:
1. decide the genotype (individual) representation for the connections weights
(for instance, they could be represented by binary strings) and
2. the evolution itself, simulated by GAs or other evolutionary algorithm.
Different representation schemes and genetic operators can lead to very different training
performances.

A typical cyclic control for the weight evolution could be this one:

L3Reinforcement learning is a special kind of learning where the exact desired output is unknown, and is
based only on the fact that the real output is either correct or not [90].
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1. Encode each genotype (individual) from the current generation as a weight set, and
construct the respective network with these weights.

2. Score each so constructed network finding the mean square error between the real and
the desired outputs®. The fitness function for each individual is determined by this
error: a higher error means a lower fitness.

3. Cross the individuals to have offsprings, choosing the number of descendants according
to the “fitness” of the current generation

4. Apply the “crossover” and “mutation” genetic operators to every descendant from Step
3, obtaining a new generation.

%or to use other error function.

The weights could be represented by binary digits: each weight would be represented with a

binary number of specific length, and the network itself is represented by the concatenation
of all those weights. For instance, the network

Figure 2.13

could be represented by 0100 1010 0010 0000 0111 0011. An alternative way to represent
the network is by means of a set of real numbers representing its weights. For the previous
network we would write (4.10.2.0.7.3).

Each representation has its own genetic operators: we cannot use a genetic operator that
works on binary words wit a real number representation of the weights. In this case, the
mutation operator (as bit permutation) could be replaced by the addition of a random
number to the corresponding weight.

In the software used, many operators exist implementing these algorithms. For example,
there are four different mutation operators (types) available: -

e Uniform - Replaces the value of the chosen gene with a uniform random value selected
between the user-specified upper and lower bounds for that gene. -

e Boundary - Replaces the value of the chosen gene with either the upper or lower bound
for that gene (chosen randomly). -

e Gaussian - Adds a unit Gaussian distributed random value to the chosen gene. The
new gene value is clipped if it falls outside of the user-specified lower or upper bounds
for that gene. -
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e Non-Uniform - Increases the probability that the amount of the mutation will be close
to 0 as the generation number increases. This mutation operator keeps the population
from stagnating in the early stages of the evolution, then allows the genetic algorithm
to fine tune the solution in the later stages of evolution. The chosen gene is mutated
according to the following equations:

gene + A(generation Number, upperbound — gene) for 1 =0

gene — A(generation Number, gene — lower Bound) for 1l =1

mutatedGene = {

where [ is a random binary value and

_ ¢ b
A(t7 y) - y?“(l - mam{GenerationNumber})
being

— r a random number between 0 and 1 and

— b is a system parameter that controls the degree of non-uniformity [68].

There are also five operators related to crossover, that we won’t comment here (see [68]).

Architectural evolution and learning rules The optimal architectural design for an
evolutionary network can be formulated as a search problem over the architectures space,
where each point represents a possible architecture. For a given “performance” criterion
(faster training stage, lower complexity, etc.), a surface is obtained where each point cor-
responds with the “performance” of a certain architecture; the desired design will be the
“highest” point (with better performance) in the surface.

The use of evolution to determine the optimal architecture is based on some works that
show the search of that structure using evolutionary algorithms returns better results than
the “growing” or “pruning” methods, given the characteristics of the architectures space:

e the surface is infinite, because the number of neurons and possible connections is
unbounded

e the surface is non-differentiable, because the changes in the nodes or connections are
naturally discrete and can have a non-continuous effect over the network performance

e the “mapping” between an architecture and its performance is not direct, and depends
on the chosen evaluation method

e similar architectures could have very different network performances

e different architectures could have similar performances

The used transfer functions can evolve together with the network topology. The learning
rule can evolve as well. White and Ligomenides made evolve the learning rule in a network
(cited by [72]) and after 1000 generations, starting with a population with randomly chosen
rules, obtained the delta-rule.
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Gradient-based vs. Evolutionary training Evolutionary training is attractive when
the gradient information is not available or is computationally expensive. This training
has been used during the learning stage of recurrent networks and reinforcement learning.
It is interesting to observe that the same evolutionary algorithm can be used for different
networks, no matter whether they are recurrent or not, saving human effort to develop
training algorithms for different network types. Regularization terms or other constraints
(such as “weight sharing”) can be added to the fitness function, even if it is not continuous.

Evolutionary algorithms are, in general, slower than the fastest back-propagation techniques,
but can work in networks where the gradient is not available. Comparisons of the conver-
gence speeds strongly depends on the chosen back-propagation technique ( a fast BP vs. a
standard GA or a standard BP vs. fast GA) [72].

Hybrid training One of the major drawbacks of genetic algorithms is its inefficiency to
find a local optimum, although they are good to look for the global optimum with enough
computational time. The training efficiency of the evolutionary algorithms can be greatly
improved adding local search procedures during its evolution, that is, combining the local
search inherited from other algorithms (for instance, BP). Experimental results show that
these hybrid searches are more efficient than GAs or BP alone, even though the BP technique
should be trained several times to reach a competitive solution given its sensibility to the
initial conditions.

A special hybrid method Hassoum [29] describes a hybrid algorithm for feedforward
networks with one hidden layer. This method is based on the fact that feedforward networks
with one hidden layer are universal approximators (and classifiers): this network family is
rich enough to get as closer as desired to every target function or to classify every target
set of patterns, provided the necessary amount of neurons can be used in the hidden layer
(see 2.10 on page 108). Based on that, we divide the original network into two sub-networks
working in cascade, and a genetic algorithm will be implemented over the space of feasible
output values for the hidden layer combined with a gradient search (delta rule) in both
networks.

Consider the network from Figure 2.8. If we had a set of output vectors from the hidden
layer {hy, hs, ...h,,}'* such that the corresponding “mappings” are respected: {x,} —
{h;} and {h;} — {dx} for k = 1.2,...m, we could apply a descent gradient search to learn
both fast and independently the weights for both the output and hidden layers. However, at
the beginning we do not know the adequate set of output values for the hidden layer {hj}
that solves the problem. Therefore, we will use a genetic algorithm to let evolve that set of
output values from the hidden layer, to get that {x, } — {h} and {hy} — {dx}.

We will encode those values with strings s = [s;,s...s,,] where s; is obtained taking the
binary representation for the output h;. Additionally, each search point can be represented
by a matrix H =[h; hy---h,,] of size J x m .

My is the number of available training patterns.
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Figure 2.14

As an initial population of search points, we will generate m randomly chosen binary ma-
trices {H;} j = 1,2,..m. The matrix H; has an associated network that possesses the
same topology than the original network, being the m networks initialized with he same set
of random weights.

The fitness value of the search point j (that is,the fitness of the matrix H;) will be propor-
tional to the sum of squares errors over the output of the hidden/output networks:

>3 [ )]

k=11=1

E; =

N | —

where(y;) ; is understood as the output of the neuron I of the hidden/output network j
when the input pattern x;, is presented. The fitness function can have different expressions.

Some options are:

f(H;) = —E;

FHy) =1~ <mf;E)
{H;}

f(H;) =1/ (E; +¢)

being ¢ a small positive real. It should be taken into account the fact that different fitness
functions will lead to different overall performances of the algorithm.

A template for the algorithm is:



2.3. GLOBAL OPTIMUM SEARCH TECHNIQUES 57

o Initialization:

— Starting from random weights and outputs for the hidden neurons, the weights
of all m networks are adapted with respect to the training set {xy,h,} k =
1,2,...m, using the delta rule®. Similarly, the weights of the connections that
reach the neurons from the hidden layer are adapted according to the training set
{hg,d,} k=1,2,..m, independently of the first network.

e Repeat until (at least one out of the m generated input-output networks have an error
E; lower than a specified value)®

— Fitness test: after the weights are updated, every network is tested executing
feedforward calculations, and the fitness is evaluated. During these calculations,
the outputs from the first network are used as inputs of the second one (the one
that contains the output neurons).

— Evolution: Genetic operators are introduced to get the next generation {H;}.
Regarding the crossover, the best m/2 H,; (with the highest fitness values) are
duplicated and temporally kept for crossover. Crossings are produced with prob-
ability P. (close to 1): a pair {Hi,Hj} is chosen without replacement over the
mentioned set. If a training set {Xy,dy} is poorly trained for the network i during
the previous training stage, that is, the output error of this pair is substantially
higher than the average error over the whole training set, then the corresponding
column hy, from H; is replaced by the column number k of H;. Crossovers can
affect several column pairs of the matrices H.

o End repeat

*Other learning rules can be used as well.
b1In [29] additional stopping conditions are proposed in order to avoid endless loops.

Non-derivative based methods This topic is thoroughly covered in [65].

ALOPEX. This algorithm updates the network weights by small perturbations of its values,
in accordance with the correlation between the perturbation direction and resulting change
in the error regarding the whole training set. This algorithm is interesting because of its
independence of the network topology and of the error function used. As a consequence, it
can be used for other optimization applications different from neural networks.

Cauwenberghs’ algorithm. Its learning rule is close to the one used in Alopex. A random
perturbation z is added to the current weight vector w, and the resulting error E(z + w) is
found. This number is used to update the weight vector by:

w"=w — az[E(w + z) — E(w)]

where « is the learning rate.
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2.4 Dynamic networks

In this section, networks where their outputs are not only function of the “instantaneous”
inputs are presented. Additionally, some design issues as well as training algorithms for
these networks are revisited.

2.4.1 Training

A dynamic network is a network that behaves like a dynamical system with respect to
its outputs and inputs. We will see how to apply this definition directly to the (predictive)
network training.

Given the observed values of the output y of a discrete-time dynamical system previous
to the current instant ¢, we will try to predict exactly y(¢ 4+ p), being p > 0. As long as
the quantity p is increased, the quality of the prediction will be degraded for any predictive
method. Here we will try to keep the prediction accuracy for a wide range of values p. Given
a dynamic neural network with input x and output y, we can write:

yit+1)=gly®), yt—-1),.., yit —n), x(t), x(t —1),..., x(t —m)]

being n > m and g a non-linear function [29]. In order to train the network, back-
propagation can be used from “static” pairs

{{Y(t)vy(t - 1)7 y(t - TL)7X(t),X(t - 1) X(t - m)}a y(t + 1)}

If the training phase is successful, it is expected to have the real output y(¢ + 1) as close as
the desired one, d(t 4+ 1). This technique is called “windowing”. As we will see, there are
also other training methods for dynamic networks.

2.4.2 Back-propagation through time (BPTT) and RTRL

Unfolding the network through time Consider the network in Figure 2.15:

(1)

d(t)

Figure 2.15
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where d(t) is the desired output value, y2(t) the real output for the network input z(t), at
instant .

A network that behaves identically for times ¢ = 1,2, 3,4 is obtained unfolding the network
through time, in such a way that only “feedforward” layers result:

%S

e

%@

Figure 2.16

The number of resulting layers equals the unfolding (expanding) time interval T. This con-
cept is applicable whenever T is small, since all neurons are replicated T times and hence the
maximum sequence length that can be processed is constrained. Note that the connections
wj; from neuron j towards neuron ¢ are identical in all the layers from the expanded network.
The BP algorithm adaptation to train an unfolded network is known as “ back-propagation
through time”, BPTT) [30].

The training of the unfolded network can be done by epochs or in an incremental way,
deriving two possible implementations for the temporal BP: the training by epochs and the
real-time training.

Training an unfolded network by epochs Let us divide the training set in independent
epochs, where each epoch represents a temporal training pattern'®. Let ng and n; be
respectively the beginning and ending of a certain epoch. We can define the error function

15The meaning of epoch is local to this section, and differs from the meaning given when referring for
example to the training of MLPs.
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Eno,m Z Z

n=ng jEA

where A is the set of all indexes j corresponding to those neurons for which the desired
outputs is specified, and e;(n) is the output error from those neurons, with respect to the
desired output. We wish to find VE, that is, the partial derivatives of E with respect to the
network weights w. For that purpose, we will use the following algorithm based on batch
back-propagation:

1. Forward pass: all input data within the interval (ng,n1) are presented to the network.
Those data are stored, as well as the desired outputs and network weights

2. Backward pass: the local gradients are found using the previously stored information:

_ 0E(ng,n1)
%(n) == aNe;j (n)

This can be calculated in the following way [30]:

VieA ng<n<mn

oo [ PINety)es(n) if n=m
& )_{ F'INet;j(n)]le;(n) + Ypen wird(n +1)] if ng<n<mn (Eq. 2.14)

where f’(e) is the derivative of the output function and e;(n) = y,;(n) — d;(n) means that
y;(n) is the component number j for the output at time n. It is assumed that all neurons
within the network have the same output function. Equation 2.14 is iteratively used starting
at time n; and going back, step by step, until ng is reached. The number of steps here stated
equals the number of time steps of the time interval (epoch).

3. Once performed the BP calculations until step ng+ 1, the following weight adjustment
for neuron j takes place:

6E ’I’Lo,’l’Ll
iji = —p—F awjz Z ijz — =P Z 6 .'I}l n— 1)
n=ng+1 n=nop+1

being x;(n — 1) the input applied to the synapse i of neuron j at time n-1 [30].
When this technique is compared with the ordinary BP batch we can see that the main

difference is that the desired neuron outputs are specified at different network levels, because
the real output layer is replicated several times when the network is unfolded.

The term BPTT comes from the fact that we do not only back-propagate the calculations
from the output towards the input, but we employ this technique through time (from the
last time towards the starting one).

This algorithm is not local with time, but it is in the topology: to find § values corresponding
to different instants are needed, but not their values over other neurons.

For practical reasons, truncated versions of the BPTT are implemented, as the next one:

Truncated back-propagation:

e The instantaneous error is used E(n) = 33,5 €3(n)
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e The weight adjustments are performed considering —V FE at step n. The weight update
is “on line”, while the network is working.

e The term “truncated” comes from the fact that inputs, weights and desired outputs
are stored (step 1 of the previous algorithm) for a finite number of steps in each epoch.
This fixed number is called truncation depth. All the historical information older
than this depth is ignored. This truncation is mandatory; otherwise, the computa-
tional time and storage needs could increase linearly with time, turning the process
impracticable (see [30]).

BPTT is not widely used because of its limitation to work with short trajectories of length
= T, so in some cases recurrent back-propagation is preferred instead [29].

Training an unfolded network in real time: RTRL The real time recurrent learning
(RTRL) method was proposed by Williams and Zipser ([85] cited by [29]), and allows us
to train the network while it works (that is the reason for the term “real time”), though
it is computationally expensive. All in all, this method has the generality of the back-
propagation approach through time without suffering the problem of the increasing of the
needed memory when T augments.

BPTT has been derived assuming the weights were fixed during the whole variation of
n within [ng,n1]. Given that we pretend to perform a real-time training working with
(possible) unbounded time intervals, we can try a less-restrictive condition, increasing each
weight a value Aw;;(n — 1) without summing the variations, but summing and applying all
of them together afterward. A potential drawback from this procedure is that the negative
gradient of the total error is no longer followed along the whole trajectory. Nevertheless, it is
totally analogous to the incremental batch back-propagation: while the resulting algorithm
cannot ensure that the negative gradient is followed, the practical differences between the
two versions are small in general, with both versions turning almost identical when the
learning rate is small [85]. The real-time recurrent learning is hence obtained.

2.4.3 Other variations of the back-propagation algorithm

We continue describing two variants of back-propagation, for the case in which time varies
in a continuous way.

Recurrent Back-propagation This algorithm is used in totally recurrent networks in
which the time varies in a continuous domain, and allows us to train a recurrent network
to learn static associations I — O [29]. Consider a network with N output functions y;,
weights w;; and output function f(Net;). We say that a neuron ¢ is within the input layer
if it receives an element ¥ of the input pattern x;. We will also say that non-input neurons
have associated an input z¥ = 0. The output neurons are those (by definition) which have
desired output values df. In general, a neuron can be simultaneously in the the input and
the output sets, or can be hidden in the sense it is neither an input nor output neuron.

From now on, we will omit the supra-index k£ that recalls the pattern, to simplify the
notation.

When the network is in equilibrium, this is, with no output variations y* whenever the
input is held constant, the following relation holds [29]:

JEA
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where y* = [y¥ v5 v5.... yN]

Assume the network has converged towards an equilibrium state y* as response to a| fixed
input x. Therefore, if the output neuron ¢ answers with y; but the desired output d; was
expected, an error F; is produced.

We will try to adjust the weights in order to minimize

1 *\2 1 *2
E:§Z(di—yi) 52131
=1 =1
being EY = 0 if neuron ¢ is not an output neuron.
The weight update rule will be
N
. Oyf
Awy, = —p :
8 Wpq 2 Wpq

It can be proved that [29]

N
Awy, = pf' (Nety)yy > B (L")

i=1

where the element ¢ j of the matrix L is L;; = §;; — f/(Net})w;; and ;5 is the Kronecker’s
delta function (1 provided 7 = j, 0 otherwise).

Since L is square with size N and the computation of its inverse requires O(N?) operations,
an indirect method is applied instead to find the weight variations. The justification of the
algorithm can be found in [29].

The learning algorithm for the recurrent back-propagation will be then (recall we will omit
the supra-index that denote the pattern):

1. An input pattern x is chosen and presented to the network®. A solution y* is found by
iteratively solving the equations

y; = f(Net;) Zwl]yj—i—xl i=1,2,---N
JEA

2. The solutions yx are used to compute the error
Ef =y; —di
3. The vectors z = {z]} are found by solving the equations
Ef =—zi+ Y f(Net)wjiz; i=1,2...N
jeA
4. Weights are adjusted using the formula
Awy, = pf'(Nety)y:z,
5. Another pattern is presented in the input, and all previous steps are repeated, until an
acceptable error is produced.

¢ To the original network, not to the adjoint.

Observations:
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e It can be proved that the incremental back-propagation algorithm is a special case of
this, for feedforward networks.

e The algorithmic derivation assumed the equilibrium y* does exist. Simard and others
(cited by [29]) proved that for any recurrent network, we can always find cases where
such stability is not achieved. Nevertheless, in practice it suffices to choose starting
weights small enough to reach an equilibrium state.

e Instead of solving the system of equations form Step 3, another way to compute
the vector z* = [z],...z}] is by means of a recurrent network topologically similar
to the original, called adjoint network, in which the weights w;; are replaced by
f/(Net})w;;, the output functions for all neurons are linear, all inputs are replaced by
0 and E} is taken as input for neuron i. For example, the adjoint network from the
original network in Figure 2.15 is depicted in Figure 2.17:

f(Net;)w,,

f7(Nety)w,,

Figure 2.17

In this network the time also varies continuously.

2.4.4 DMemory elements

Here we will describe some of the key aspects of the memory structures, and the networks
that use them.

Types of memory elements In order to exploit the temporal structure of the input
data, the network must have access to the time dimension. A possible way to achieve this is
having structures that store the past of such data, called memory structures (“short term
memories” or memory neurons). As a counterpart, we use the term long-term memory when
we refer to the information stored at the network weights. Basically, a memory structure
translates a sequence of samples in a point of the reconstruction space (see 2.9 on page 88).
To add memory structures within the network, we use neurons specifically dedicated to
store both the history of data and their respective outputs. Other way to manage temporal
data is to employ the data inputs as windows (“windowing”), assigning windows (small
sequences) of the time series and the respective outputs as network inputs. However, the
introduction of memory structures has several benefits because the network is able to:

1. choose the temporal window size that better fits to the task

2. choose the ponderation weight of the data samples in the window that better reduces
the output error
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3. receive only the current observation from the world outside (the input data), such as
a the biological archetype'®does and keep the history of them

Recurrent networks can encode the temporal information, but they are complex. There are
less complex topologies such as TLFNs that can store historical information as well, but
they are still more complex than the static ones.

In its most general way, a memory element has the structure shown in Figure 2.18:

% (n)
MEMORY ELEMENT

x|

-, i:: y(n)
LINEAR MEMORY

Xp(n) A\ v Y
¥o()  yi(n) Yo(N)
Figure 2.18

It is composed of a node that sums the inputs, plus a linear memory, described below. The
output of a general memory element is multidimensional. The different types of memory
elements are obtained by using distinct kinds of linear memories. We will see now two
particular cases of them.

Delay line memories In these memory elements the linear memory is a “delay line”.

The delay line can be schematically shown as follows:

16Biological systems have notion of time and learn based on sequential observations in steps, but in
multiple time-steps (windows).
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y(n)
, Yo(n) =
o | y(n)
Z
v y,(n) =
y(n-1)
Z—l
y s 3
Yo =
y(n-D) X
y(n)
Figure 2.19

where 27! represents a delay function'” and the triangle the multiplication of the input signal
by the value written inside it. So, given the inputs z(n) the output is y(n) = [y(n), - y(n—
D).

The points marked with big arrows

=

are called “taps”. The meaning of the shaded area and y(n) are described below.

At step n, the output of a memory element of this kind, with D taps, only stores samples
that occurred during the interval [n—D+1,n), this is D—1 samples from the past. This kind
of memory implements a sliding window with capacity D. This constant is called memory
depth (see 2.4.4 on page 69). This kind of memory is employed by the TDNNs.

Feedback memories These memories are obtained from linear ones, in the way illustrated
in Figure 2.20:

17In fact, the z-transform is used in the blocks. Therefore, z—! is the z-transform for the unit impulse.
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‘FEEDBACK” MEMORY

y(n)

y,(n)

Figure 2.20

These memory elements are called context elements (or context neurons) and are used
for instance in the Jordan/Elman “s networks.

Memory traces In a “feed back” memory, the past samples are not exactly preserved,
since the outputs are the sum of the current input and a weighted version of the recently
past output:

y1(n) = (1 = wyi(n — 1) + pyo(n)

so the historical information is progressively degraded, and that is why we term memory
trace: a modified version of the input data. The idea of the trace is generalized to other
memory structures, where previous samples are stored in a modified way. In the case of feed
back memories the trace is y;(n). It also can be proved that in that case, the x(n) projected
over the trace space is [69]:

Observe that the context memory has a single trace y;(n), whereas the “delay line” has D:
y1(n),...yp(n), each one corresponding with the outputs y(n — 1), y(n —2),...y(n — D).

Generalized “feedforward” memory element The previous memory can be further
generalized into a generalized feedforward memory element, which uses a linear mem-
ory. This linear memory is such that the memory traces yx(n) are recursively found from
the previous trace yi_1(n). It can be proved that a linear memory has the following output
whenever y(n) is injected at the input:

yo(n) =y(n) Yn
y1(n) = go(n) * yo(n)
yr(n) = g(n) *yr—1(n) k=2

where the symbol * here represents the convolution operation of sequences, g(n) is a causal
time function, normalized and time-invariant 1%, called memory kernel and k represents
the tap number. According to the selection of go(n) and g, different types of linear memories
are obtained, and as a consequence, different memory elements.

Schematically:

18 A function g(n) is causal when g(n) =0 Vn < 0, and normalized when Y §° |g(n)| =1 .
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LINEAR MEMORY

y(n)
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Figure 2.21

where the triangle represents the multiplication of the signal times the factor indicated inside
it, and the circle represents the input sums. The number D-1 is called memory order. In
order to avoid confusion, we will assume that the input to the linear memory is u(n).
Consider the input vectors u(n) = [u(n),u(n —1),...u(n — D)]. The projection of u(n) over
the trace subspace (called memory trace subspace) is u(n) = [u(n),u(n—1),...u(n—D)]
where u(n) = ZkD:O wryk(n), with wg = 0. Different selections for g(n) and go(n) provide
different memory models. For example,

{ g(n) = 6(n — 1)
go(n) = 3(n)

(6 represents Kronecker’s function) retrieves the “delay line memory”. For the case of feed

back memories it is
{ yo(n) = y(n) Yn
yi(n) = (1= pyi(n —1) + pyo(n)

being the number of taps D = 2 and go(n) = u(1 — u)™ (see [69]).

The most appropriate “kernel” selection for a specific application is a current research field
[69].

Gamma memory type I When

{ gn)=pl—p)™ n>1
go(n) = d(n)

we get the gamma memory type L. In this case it can be proved that,

—1 _
gk(n)=<zl )u’“(l—u)” Foa>k o k>1

being ( Z ) = —"("’1)"1;!("*”“).

The name of this memory comes form the fact that these functions are discrete versions of
the gamma function integrand. This memory is stable (in the sense that the outputs are
bounded over time) provided 0 < p < 2 (see [69][69]). It is schematically represented in
Figure 2.22:
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GAMM LINEAR MEMORY
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Figure 2.22

From Figure 2.22 it can be observed that the gamma memory unifies the delay and the
context memories in a single model. Analytically:

Properties of the gamma memories

The depth M for gamma memory (see below) is M = D/u. This memory has the property
(which the delay lines do not have) of to separate the depth from the memory order. Consider
for example a particular application that needs a memory with 100 samples but the memory
traces can be modeled with three weights (free parameters). A delay line would require 100
taps and as a consequence 100 parameters (weights) from which 97 would be null. In fact,
they could not be null because of the noise, with a consequent performance degradation. In
a gamma memory it suffices to choose M=100, D=3 and p = D/M=0.03. These memory
can represent N past samples in D taps (D < N) [69].

There exists a variant, called gamma type II memory that is not described here but fully
covered in [69]. This memory type I is used by the neural network simulator chosen here.

Gamma type memories have been widely used ([68], [76]).

On the other hand, when in our case study we consider these memory types, the number of
“taps” is associated with the dimension of the signal subspace.

Laguerre’s memory This memory is obtained choosing

{ go(n) = (1 — p)"/1— (1 — p)?

gn) =1 —p)"+ 1 —p)"*?

The main advantage of this memory is that it leads to faster learning than gamma types,
specially when p is either close to 0 or 2 [69]. In this case

yo(n) =y(n) Vn

yi(n) = (1= pyi(n —1) +yo(n)y/1 — (1 — p)?
ye(n) = (1 —pwye(n —1) +yp—1(n —1) = (L = pyg-1(n) k=2,...D
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Memory filters Whenever a memory element is used within a network, its outputs are
connected with (common) adjacent neurons by means of serial connections with correspond-
ing weights (shaded in previous schemes, sometimes seen as a linear combiner). The set
of the memory elements together with the linear combiner is called a memory filter ([69]),
which is what is finally implemented in the simulator.

A fine overview of the links between gamma memories, Laguerre memory and filter theory
can be found in [69].

These memories have also been widely used (e.g. [67][70][76]).

Depth and memory resolution For a certain generalized memory element we define
the memory depth denoted with M, by

{ M =3 nyp(n)

yr(n) = g(n) * yx-1(n)

The memory resolution R is the number of taps in the structure per sample or time unit.
A memory with small depth just stores its content by a relatively short period, whereas
a big depth allow to hold the content for long periods. A memory with high resolution is
capable to store information over the sequence with high granularity, whereas low resolution
corresponds to less detailed information. It holds that R.M = D [69]. As a consequence, if
we wish to increase the resolution, we will necessary reduce the depth. For example, in a
context neuron the depth is 1/u and resolution is p.

The following table summarized the depths and resolutions for the different described mem-
ories:

Depth vs. Resolution ‘ Depth ‘ Resolution
“Delay line” D 1
Context 1/ I

Gamma type I D/u I
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2.5 Alternatives to avoid the “vanishing gradient”

2.5.1 Training with Kalman filters

Filtering an input signal it to apply a transformation to it in such a way that certain
characteristic of the signal are eliminated, in order to get a desired output. Therefore, the
term “filter” will be equivalent in this context to “algorithm”.

The linear Kalman filter helps to estimate the state of a linear dynamic system whose
model is not completely known but accessed through a measure process with a certain level
of noise. The filter uses incomplete information from that model to recursively improve the
estimation of the system’s state given by these measurements. The prediction is recursively
found regarding the estimations from previous iterations. This is not the case of a gradient
descent: normally, the derivatives of the error function only take into account the distance
between the current and the desired output without regarding historical training data.

The extended Kalman filter is an adaptation of the linear case for non-linear systems.

The decoupled Kalman filter is based on the extended Kalman filter and is intended to
manage the computational complexity corresponding to networks of considerable size. The
whole available information provided to the network until the current instant is used every
time, including the computed derivatives from the first iteration of the learning process.
However, the algorithm works in such a way that just the last iteration results need to be
explicitly stored (see [86] and [11]).

To summarize, the Kalman filter problem can be stated in the following manner: using all
the observations, consistent with a set of vectors d; i = 1,...n, find for each n > 1 the
state estimation w; that minimizes the mean square error between the observed data and
desired outputs of a system with state w; ([30]).

In order to apply the Kalman filter to a neural network, the idea is to see the network as a
non-linear discrete-time deterministic dynamic system whose states are given by the weights
w(n).

2.5.2 Linear Kalman filter

The linear Kalman filter tries to estimate the state w(n) € R™ of a linear discrete-time
dynamical system in which the following expression holds:

w(n+1) = A(n)w(n) + B(n)u(n) + w(n) (Eq. 2.15)
where u(n) is the input function of the system at time n, from which we get d(n) € R™ that
d(n) = H(n)w(n) +v(n) (Eq. 2.16)
being A(n), B(n) and H(n) known matrices, and w(n) and v(n) represent the noises of the

process and measurements respectively. It is assumed they are white noises with zero mean,
and diagonal covariance matrices Q(n) and R(n):

Q(n) = (w(n)w’(n))
R(n) = (v(n)v’(n))

In each iteration the filter uses the estimation of the current state and of the current covari-
ance to find an a priori estimation of the next iteration (it “projects forward in time” the
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variance and covariance of the state estimation). In the next step, the real measurements
are used to improve the estimation and get an a posteriori estimator. This process can also
be seen as a prediction-correction cycle.

Let w—(n) be an a priori estimator of the state for the current step n considering the
previous historical knowledge:

w-(n) = A(n)w(n —1) + B(n)u(n — 1) (Eq. 2.17)

The posteriori state estimation, w(n), is obtained as a linear combination of both the a
priori estimation W—(n) and the weighted difference between the real measurement d(n)
and a prediction of the measure , H(n)w-(n):

w(n) = w-(n) + K(n)[d(n) — H(n)w-(n)]

The expression d(n) —H(n)w—(n) is called residual or measure innovation, and reflects
the discrepancy between the predicted measurement and the real one. K is called the gain
matriz for the Kalman filter.

Let us consider now the a priori and posteriori estimation errors:

e—(n) =w(n) —w-(n)
e(n) =w(n) —w(n)

The covariances of the a priori and posteriori estimation errors are respectively:

P—(n) = (e-(n)e-(n)")
P(n) = (e(n)e(n)")

The gain matrix K is here chosen to minimize the posteriori covariance error. A possible
choice is

K(n) = P- (n)H(n)” [H(n)P-(n)H(n) + R(n)] " (Eq. 2.19)
The covariance of the a priori estimation error is:
P-(n)=A(n)P(n—1)An)T +Q(n) (Eq. 2.20)
whereas the covariance of the a posteriori estimation error is:
P(n)=[I-K((n)H(n)]P-(n) (Eq. 2.21)

The resulting algorithm for the linear case is then:

Initialize the diagonal elements of P(0), Q(1), R(1)
Repeat for n= 1.2...

e Calculate (Eq 2.17)
e Calculate (Eq. 2.20)
e Calculate (Eq. 2.19)
e Calculate (Eq. 2.18)
o Calculate (Eq. 2.21)

End repeat
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The recursive nature of the filter makes the estimation of the system’s state to depend of
all historical measurements, but without an explicit consideration.

The filter’s “performance” can be further improved by means of the matrices Q(n) and R(n).
These matrices can be either chosen before the filter operation or modified dynamically.
Hence, R(n) will be adjusted according to our confidence in the mechanism responsible of
the measurements. On the other hand, Q(n) can be interpreted as the uncertainty in our
model w(n + 1) = A(n)w(n) + B(n)u(n) + w(n).

Since this algorithm propagates the covariance matrix, it is called covariance Kalman’s
filter. The a posteriori estimation for P might not be definite non-negative, because of
the accumulated calculation errors (an unacceptable fact since it is a covariance matrix).
Therefore, the “square root Kalman filter” has been suggested in order to propagate P (this
is to use another equation instead of Eq. 2.21, see [30]).

2.5.2.1 Extended Kalman filter

Normally, the process to estimate or the measurement equation (corresponding to Eq. 2.15
and Eq. 2.16) are non-linear. In this case it is mandatory to include an approximation
provided the linear Kalman filter is chosen. A Kalman filter that linearizes around the
current mean and variance is called extended Kalman filter. There are several proposals
to apply a Kalman filter to non-linear systems. Here we will develop one of them.

Consider a system whose vector state w(n) € R™ respects the following equation:
w(n+1) = flw(n),u(n)] +w(n) (Eq. 2.22)
with a measurement d € R that is
d(n) = hlw(n),u(n)] +v(n) (Eq. 2.23)

where the variables w(n), v(n) represent, as before additive white noises with zero mean,
of the process and of the measurement, respectively and Q(n) and R(n) their covariance
matrices. Functions f and h are non-linear, and relate the state at step n with the next one
through the respective measurement d(n).

Through a linearization of the current estimation using the derivatives of the state and mea-
surement functions we get a set of equations equivalent to the linear case. Such linearization
is similar to a Taylor series around the current estimation using partial derivatives of the
process equation Eq. 2.22 and of the measurement equation Eq. 2.23:

w(n+1) =W (n+1)+ Alw(n) — w(n)] + Wuw(n)
d(n) ~d (n) + Hw(n) — w~(n)] + Vu(n)

(see [65] and [66] for further details). Hence, the a priori state estimation, W—(n) is now
approximated making

w—(n)=fw(n—1),u(n—-1)] (Eq. 2.24)
and the a priori covariance of the error is found with

P-(n)=An—1)Pn—1DAn-1)T+Wn-1)Q(n—-1)W(n-1)T (Eq. 2.25)
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being A the Jacobian of f with respect to the state
_ 0fi[w(n),u(n)]

g =1,2...

A(n) = {aij
and W is the matrix with partial derivatives of f respect to the noise w:

W(n) = {bijzafi[v?z(n),u(n)] i,j=1,2...m}

Bwj
The gain matrix K(n) can be obtained in this case from the following expression
K(n) = P-(n)H(n)” [H(n)P- (n)H(n)” + V()R(n)V(n)T]"' (Eq. 2.26)

where H is here the Jacobian with the partial derivatives of h with respect to the state,
and V the one with partial derivatives of h with respect to'® v:

H(n) = {hy; = 2Bl — 10 N j=1,2..m]

awj'

V(n) = {viy = 2Bl G, N j=1,2.m)

dvj

& (n) + K(n){d(n) — h[¥-(n),u(n)]} (Eq. 2.27)

%
S
I

Finally, the covariance P for the a posteriori error has a similar form that the linear case
(Eq. 2.21):

P(n)=[I-K(n)H(n)P (n) (Eq. 2.28)

though it should be taken into account that H(n) is found in a different way than in the
linear case.

The basic operation of the extended Kalman filter can be summarized through the following
steps:

o Initialize the elements of P(0), Q(1), R(1)
e Repeat forn=1,2...

— The state estimations are projected (predicted) and the covariance error from step
n to n+ 1 using Eq. 2.24 and Eq. 2.25

— The new a priori estimations are used to obtain the corrected estimations for
the measurement d(n). Equations Eq. 2.27 and Eq. 2.28, in that order, give a
posteriori state estimations and a posteriori covariance error.

— Analogously to the linear case, R(n) and Q(n) are parameters of the algorithm
that should be carefully adjusted in each step to get good results ([65] and [66]).

e End repeat

90bservation: while the elements v;; are scalars, they should be denoted with italics to keep coherence
with the rest of the work. In this equation they were written how they look to avoid confusion with the
Greek letter v.
The a posteriori state estimation also uses K to weight the difference between the real measurement and
the prediction:
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2.5.2.2 The Global extended Kalman filter

When the Kalman filter is used to train neural networks (recurrent or not), the learning
is regarded as a filtering problem, in which the optimal network parameters are estimated
recursively from the filter equations [30]. The algorithm is specially useful for online learning
situations, where the weights are continuously adjusted, though it can be employed in an
off-line process as well (Feldkamp and Puskorius, 1994, cited by [65]).

The network state, denoted by w(n), for a certain input u(n), is precisely given by the weight
values. The algorithm assumes the optimal weight value is stationary: w(n + 1) = w(n)
after a minimum (either local or global) is reached . If we consider the network as a dynamic
system, it can be seen that the equation describing the weight behavior is linear and respects
the following expression:

w(n+1)=A(n)w(n)+ B(n)u(n) +w(n)
with A(n) =1, B(n) = 0 and w(n) = 0 Vn (we will consider this equality shortly). By

“weights” we also refer to the neuron activation thresholds, such as previously agreed in the
paragraph 2.1.1.1.

Therefore, this equation assumes the system is found in a stable optimum. The state
corresponds with a local (or global) minimum of the error surface.

The measurement d(n) corresponds to the desired output of the neural network. This is the
case of a non-linear equation, of the form:

d(n) = hjw(n),u(n)] + v(n) (Eq. 2.29)
but with the shape
d(n) =y(n)+v(n) (Eq. 2.30)

being y(n) the network output when u(n) is injected in the input.

Since the state equation is linear, the Kalman filter will use Equations (Eq. 2.17) and (Eq.
2.20) with A(n) =1, B(n) = 0 and Q(n) = 0 for all n. The non-linearity from Equation
(Eq. 2.29) adds the remaining equations of the filter: the non-linear filter equations can be
interpreted replacing h(n) by y(n) in (Eq. 30) when the network uses weights w(n).

The Jacobian V (n) used to find the matrix K normally equals the identity matrix, V(n) =1,
as a result of the difficulty to correctly estimate its value. It is assumed, then, that its
influence is in some way “hidden” inside R(n) (see [65]).

The partial derivatives that are within H(n) are normally found in an analogous way to
that of BPTT or RTRL ([65] and [59]).

Summing up all the previous elements, we would get a full version of the so called global
extended Kalman filter. Nevertheless, for its real use as a training algorithm it is rec-
ommended to introduce some modifications. A justification for the denomination “global”
is given next.

2.5.2.3 Decoupled extended Kalman filter

When we work with networks of certain size, the state vector w(n) can have a considerable
number of components. That produces that the required calculations with matrices such as
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H(n) requires a high quantity of computational resources, even for networks of modest size.
The “decoupled extended Kalman filter” or deKf, reduces this complexity [30].

To achieve that the problem has a computationally tractable size, the dKef divides the
network weights in g groups, obtaining corresponding state vectors w; ¢ =1,2...9. We
will have so many groups as neurons within the network 29 and two weights will be in
the same group whenever they are input of the same neuron. The decoupled version, as
a consequence, applies the extended Kalman filter to each neuron independently in order
to estimate the optimal value of the weights that reach it. In this manner, only the local
inter-dependences are considered during the training process.

The main difference between the decoupled version and the global one is the substitution of
the matrix H by g matrices with the following shape:

H(n) = {hj _ow) oy N j1,2...m}

B (9w](-k)

where w§-k) is the j-th weight from group £, and N is the number of neurons. We assumed m
is the number of weights from group k. The matrix H(n) is then simply the concatenation
of the matrices H;(n):

H(n) = (H, (n), Ha(n), .. Hy(n))

It can be observed that the deKf can be reduced to the global one when g = 1.

The corresponding decoupled algorithm is then:

1. Let g=N, the number of neurons of the network
2. Initialize the network weights, w;(0) i=1,2...¢g
3. Initialize the diagonal elements from R(1) and P;(0) i =1.2...g.

4. For n =1.2....i = 1.2...g compute the following vectors:

Wi (n) =w; (n—1)

P;(n) = Pr(n—1) B
Ki(n) = P (n)H(n)T (S4_, H; ()P} (n)H;(n)” + R(n))
#i(n) = Wi (n) + K (n)[d(n) - y(n)

P;(n) = I Ki(n)Hy(n)]P7 (n)

where d(n) is the desired network output at step n and y(n) the real output for the corre-
sponding input u(n). It is worth to notice that the two first equations are not necessarily the
algorithm implementation, and we can work with the a posteriori estimations of the previous
steps directly.

5. Update R(n).
20This is not true for the case of LSTM networks. See [56]
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2.5.2.4 Convergence

The non-linear structure of the deKf produces several numerical implementation difficulties,
that make the iterations diverge from the correct solution. A way to avoid this divergence
[30] is to add noise to the process equation, making w(n) # 0. The only change with respect
to the previously described way for the deKf is the equation P;(n) = [I-K;(n)H;(n)|P; (n)
from Step 4 of the algorithm, that turns into

Pi(n) = [I - Ki(n)Hi(n)|P7 (1) + Qi(n)

Additionally, to avoid divergence, the introduction of Q;(n) has the secondary effect in the
probability reduction of being clamped in local minima. Normally the same matrix is used
for all groups, so we will simply refer to Q(n). The initial values for R(1) and Q(1) are
discussed next.

2.5.2.5 Initial parameters for the algorithm

The parameters to be adjusted at the beginning of the deKf are:

1. the initial value of the covariance matrix of the a posteriori error P;(0); usually taken
as P;(0) = 01, where 0 is a positive real constant and I the identity matrix.

2. the diagonal element of the initial covariance matrix of the noise of the measurement
R(1); these elements are generally adjusted from a certain initial value and are grad-
ually reduced when the training advances.

3. the diagonal elements of the covariance matrix of the error at the beginning of the
process Q(1); also gradually reduced when the training is developed.

The elements adjustment for the covariance matrices consists of giving a certain value and
then gradually reduce them according to a certain reduction rate 7. For example, the values
of the diagonal of R(0) are updated with a value R,,., adjusted with a rate T until a
terminal value R,,;, is reached.

A possible equation to apply this evolution is [65]:

Rmaz - Rmin
R(?’L) = 767’/,11 + Rmin

2.5.2.6 Computational cost

Since the deKf is based on the computation of the error derivative, which can be imple-
mented both with BPTT or RTRL, the deKf computational cost is at least equal to the
algorithm employed to find such derivatives. In [30] a comparison of storage use and neces-
sary operations for RTRL, BPTT and deKf is given.

Finally, for MLPs networks it can be noticed that the global extended Kalman filter tends
to converge in less iterations than the standard BP [59].
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2.6 LSTM networks

In the case of recurrent networks formed only by non-linear neurons the meaningful events
of the input sequence cannot be very distant from each other, because the errors flowing
back with time either decay exponentially or grow up without bound (the “vanishing gradient
problem”, see 2.1.5 on page 34 and [34]). This limits recurrent networks to problems that only
present jump with short time jumps (less than 10 time-steps) between the relevant inputs
and the desired signals. Long short-term memory (LSTM) networks solve this problem by
forcing a constant error flow, allowing LSTM networks to learn tasks that require to store
information from relevant events for more than 1000 time-steps . These networks can be
trained either with a gradient descent or a decoupled extended Kalman filter.

We will describe their architecture and general operation [34].

2.6.1 Architecture

The basic unit in a hidden layer of an LSTM network is the memory block, that contains
one or more memory cells and a pair of neurons that work as input and output gates for
all the cells within the block. Each memory cell has in its core a linear neuron connected to
itself called “Constant Error Carrousel” (CEC). This recurrent connection forces the error
flow to be constant with time. Only that CEC carries the error trace when it flows back
with time. The errors from other neurons behave as in other recurrent networks. In the
absence of new inputs to the cell, the local error within a CEC flows back with time with
no variation [23].

The scheme for a cell ¢ is:

CEC that memorizes and

forgets
~ CELL
S C
— (Nac) 9-¥in h(sc) h'yout Ye
>
/V
/1
WC
yin y¢ yom

e —_—
[S—
Win W Wout
@ E
INPUT GATE ¥~ OUTPUT GATE

FORGETTING PART

Figure 2.23

where the S means that the transfer function is sigmoid, with rank [—1,1] in the case of
function h, and with rank [—2,2] in the case of g, whereas the diagonal line (/) represents a
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linear transfer function. The gates use logistic sigmoid functions within the rank [0,1]. The
cell is represented by the box in the solid line. The dotted box does not exist in cells that do
not possess the capacity to forget (see below), and it is replaced by a recurrent connection
in the linear neuron with unit weight (this is the case of a standard LSTM cell).

The input gate can be used to decide if a certain information is stored in the cell or not.
Simultaneously, the output gate is placed to protect other neurons from the perturbations
produced by irrelevant memory contents stored at the cell.

The error signals stored at the CEC cannot change, but can be superimposed with different
error signals flowing within the cell (at different moments) by its output gate. Essentially,
the gates open and close (for example, they close with a value y;, and y,.: close to 0) and
the access to the error flow is constant through the CEC.

These cells are grouped into memory blocks, and share the gates.

2.6.2 Training

LSTM networks can be trained either with gradient descend based algorithms or the deKf.
In the first case, the algorithm proposed by Hochreiter is linear in both space and time, with
less than ten operations in each step and neuron. On the other hand, the deKf allow us to
speed-up convergence, though the long-term memory capacities are reduced (the length of
the periods between correlated events tends to reduce) [70].

2.6.3 LSTM networks with reset

Sometimes the input values at a CEC, s, tend to increase linearly during the presentation
of the time series, resulting in the neuron saturation with output function h. This makes a)
the derivative of h to be practically null, blocking the new coming errors, and b) the output
of a cell equals the “output gate”, this is, the cell of the whole memory will degenerate in
a common neuron (trainable with BPTT), leaving its memory role. The solution to this
problem is given in [23] using “forget gates” (showed in dotted line in the Figure 2.21) that
learn to “reset” memory blocks once it happens.
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2.6.4 An example

An example of how to use a three-layer LSTM network with a memory block with two cells
and recurrence limited to the hidden layer could be the one is shown in Figure 2.24:

Q Q ......... QOUTPUT
LAYER

MEMORY | MEMORY
BLACK 1-| BLOCK1-— (=
CELL 1 CELL 2

INPUT
LAYER

Figure 2.24
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2.7 Model selection criteria: AIC and MDL

Different criteria can be employed to choose between several models. To start, a possible
one is to select the model that produces the lowest average error over the training set, under
equal conditions (the same number of epochs, percentage of patterns used for CV, etc.).
However, the use of this criterion does not necessarily result in the lowest prediction error.
We might instead use a subset of patterns for the training and use the remaining subset
for “testing”, to determine how well the model works for prediction, and choose the model
with the lowest average error for this process. Even though this criterion is better than the
first (takes into account the prediction error) it is completely empirical and does not have
any theoretical foundation. It is also interesting to consider the linear correlation between
the real and the desired outputs. When that correlation is high and positive, we know that
the model will produce outputs with a similar behavior than the real ones. Furthermore,
even if the “testing” error criterion makes a model preferable than other, the model with the
highest correlation coefficient could be better. The prediction error, as well as the correlation
coefficient and “testing” error, are provided by the chosen simulator.

Given that the prediction task of a time series is intended, an alternative criterion could
be to choose the model whose error varies less in a long-term, this is, a robust model. In
other words, if the model was trained with the patterns corresponding to the steps 1....p,
and predictions for steps p+ 1, p+ 2,...p + k are performed (where k is variable), we choose
the model for which £ is maximum, respecting an error bound predetermined.

Given that the generalization capacity (prediction) of a model will depend on its com-
plexity?!, we can summarize the previous criteria in two indicators directly provided by the
simulator: the Akaike’s information criterion (AIC) and the Rissanen’s Minimun Description
Length (MDL). More specifically, these indicators have into account the model complexity,
the training performance (error) and the number of available patterns. There are several
other criteria like the Moody’s GPE ([49]), the BIC, etc. that are not detailed here for the
sake of brevity, and because its discussion is out of our scope.

2.7.1 Akaike’s Information Criterion (AIC)

Index deduction A quantification of the “distance” between two probability density func-
tions can be their asymmetric divergence, relative entropy or Kullback-Leibler distance. The
idea in the Akatke’s criterion is to minimize this distance between the adjusted model
and the true one [8].

Suppose we have a data set yi1,ys ... generated according to a certain “true” probability
density function f(y|6p) where 6 is a k-dimensional parameter. Let ®(k) be a family
of parametric (empirical) densities, ®(k) = {f(y|0x)|0r € Q(k) C R*}, 6; the parametric
estimation obtained maximizing the likelihood f(y| 6) over Q(k) and f(y| 65) the resulting
empirical density. Our goal is to find over the family set F= {®(k;), P(kz),... P(kr)} the
model f(y| 0r) k€ {ki...kr} that better fits f(y| 6o).

In order to determine which of the adjusted models f(y|0}, ), f(y|0y,) - f(y]0;,) is the
closest to f(y| 6o), we need a dissimilarity metric between the real model f(y| 6y) and an
“approximator” f(y| 6.).

This metric will be the relative entropy between them: d(o,0.) = (Log[f(y|00)/f(y]0:)])
If we denote §(fo, ) = (—2log f(y|0.)), we can write

2d(0o,0+) = 6(60,0+) — 6(6o, 0o)

21The generalization capacity is monotonically decreasing with complexity, probably because of overfitting.
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Since (6, 6p) does not depend on 6., any classification of a models set based on (6o, 0.)
will be identical to the classification corresponding with d(6p,6.). Therefore, in order to
choose the model we can use 6(6y, 0,) instead of d(fy,0.).

Now, for a maximum likelihood estimator 6; the exact divergence between the adjusted
and the real model is given by (o, 65), but to find §(6y, 65) we would need to know the
correct density f(y| o), which is obviously not possible. That is why Akaike proposed to
use —2log f(y|05) as a biased estimator of §(fy, 8;), where the bias can be approximated
by 2k. This approximation is valid provided

1. f(ylfo) € ®; for some family P,

2. a set of regularity conditions holds, to assure the asymptotic properties for the maxi-
mum likelihood estimator 8} (see [8]).

This approximation for 6(6o, 6;) is called Akaike’s Information Criterion (AIC):

AIC = —2log f(y|6;) + 2k

asymptotically

If these two conditions holds, then (AIC) (6(6o, 05)),, so, for big

samples (data sets), the AIC-based model selection criterion should asymptotically conduct
to the closest model of f(y| ) in the Kullback-Leibler sense. As a consequence, the use of
AIC for small data sets is limited. For that reason the second-order AIC (or corrected
AIC) is used instead:

sample size tends to inifinite

_ 2k(k+1

Where N is the number of data points and k the number of model parameters. This
approximation holds only when N > 2 + k [51].

Particularly, if we assume that the errors (differences between the model output and the
real values) are normally distributed, then the AIC can be approximated by

L a*)2
AIC = Nlog (Z’ZLNE\% i) ) +2(k+1)

where N is the number of data points, the logarithms are natural and y; represent the
real values corresponding to the values y; estimated by the model [51]. With this formula,
the AIC depends on the chosen values to express the data, so an isolated AIC cannot have
interpretation. Instead, the difference of the results obtained for different models over the
same data is relevant. Finally, it can be proved that the probability to choose the correct

model is
6—0.504

) —
1+ 670.504

being a the AICc differences [51]
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Use In our application, the neural network simulator computes:

MSE = Zi=0 Zi})}fdij*yu)
AIC(k) = Nlog(MSE) + 2k

where N is the number of input patterns, p the number of output neurons k the weights in
the network.

Sub-models and AIC application Consider two parametric models 9 (y|x,61) and
Mo (y|x,02) with 6 € R™ 0y € R™2  my < mg, being y the output data for the input
x. We say that 9 (y|x,61) is a sub-model of M5 (y|x,02), and we denote it with

My (y[x,01) C Ma(ylx, O2)

if by restricting some components of 62 (or relations of its components) we get the model
My (y|x,0;). For example, in the case of multilayer networks, the number of input and
output neurons are the same in both models, but if the number of units in the hidden layer
is bigger in the second model (Ms(y|x,062)), taking the weights that arrive/reach to the
additional neurons as zero we obtain the model 9 (y|x, 61).

It can be proved that the AIC index and its generalizations (such as the NIC - Network
Information Criterion) are only applicable in hierarchical models (where an inclusion relation
holds) such as the previous case [53].

2.7.2 Minimun Description Length (MDL)
2.7.2.1 Introduction

The complexity of a model is determined by two independent causes: the number of free
parameters and the functional way in which those parameters are combined. For example,
intuitively the models y = Az and y = x% have different complexities. When these dimensions
vary, different improvements in the fit of the model to the data are achieved, not necessarily
meaning an enhance of the generalization capacity. The chosen model should be complex
enough to describe the data accurately, but without reaching an overfitting, hence loosing
its generalization capacity. The MDL was defined by Rissanen (1978), associated with the
data encoding, and it allows us to choose between several models, considering its parameters
and functional way which they are related.

Suppose we want to transmit a message D from a source to a destination, with minimum
length (where the length could be, for example, the number of encoding bits). A possible
approach is to try a static encoding for the message D, assuming the source and destination
are independent. However, if there are aspects in the data that are repeated systematically
and that are not previously known by the receiver, we could expect to transmit a shorter
message if we first detail a model specification 9t that captures those aspects, using a
message with length L(9%) and afterward a second message explaining how the real data
differ from the one predicted by the model 9t. We could see L(90) as a model complexity
metric, since a more complex model would need more information to describe it. The
necessary message to send the information of the discrepancy has a length given by L(D|9),
and can be considered as an error term. Therefore, the total message length is

Description length = L(D|9M) + L(9MN)
——— ~——

error complexity
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The objective of choosing the minimum description length (MDL) leads naturally to an
instance of the Occam’s razor: a very simple model will be a poor predictor, so the errors
will be big, leading to a big additive error term on the right hand. If we use instead a
much more complex model a lower error term will be produced, but if it is too complex an
extremely high amount of information will be needed to describe it, making the complexity
term high in the right hand side again. Intuitively we hope the minimum description length
will occur when the model 9t gives an exact representation for the process that generated
the data, and also hope this model to have the best generalization properties, in average.

2.7.2.2 Formal definition

Given the vector with parameters 6 and the observed data y represented by the random
variable Y, the Fisher matrix Z(0) is defined by

7(0) = {L-j(e) = <8Lo%gi(y|9) aLO%é;(y'e) >y}

being P(y|6) the probability density function for Y (see [19]).

Let ® = {&(y,0) 6 € R*¥ y € R™} be a family of parametric models with parameter § € R*
such that each one has an associated likelihood function ¢(y|6) for a set of observed data
y. For this family, we have by definition [54]:

MDL = — Logp(y|0*) + gLog <N) —|—Log/d0\/det(l(0))
A

2T

B C

where

Log is the natural logarithm

0* is the maximum likelihood estimation for 6
k is the number of parameters for the model
N is the sample size

1(0) is the Fisher information matrix

Interpretation

The term A gives, from the Log likelihood, the model goodness of fit of the model respect to
the data. The terms B and C give us the intrinsic model complexity: B measures the size of
the problem whereas C gives a complexity idea associated with its functional form by means
of the Fisher matrix Z(0) [54]. Additionally, these terms have a geometric interpretation
related with Riemann’s spaces [54].

It can be proved that to minimize the MDL is the same to maximize the Bayesian probability
P, = P(yply), this is, maximize the probability that the “real” model @, (that corresponds
with the density where the observed data y is generated) is inside the family ® [54].

When we refer to the calculus of the MDL, the chosen neural network simulator estimates
it by

MDL(k) = NLogM SE + gLogN

where:
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N is the number of pattern

N
e MSE = Nip b0 Ximo(dij — vis)?

yi; the network output for pattern ¢ from neuron j

d;; the desired output for pattern ¢ from neuron j

p the number of output neurons

The reader can find valuable connections between MDL, information theory and statistics
in [28].
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2.8 Reduction of the network “s degrees of freedom

In order to address problems that require large networks it is necessary to minimize the net-
work size. Additionally, it is less probable that a network of minimum size fall in overfitting
(that learns the noise or the idiosyncrasy of the data) and hence it will generalize better.
The optimum size can be achieved by several manners:

e choosing the number of weights (no matter their values) and the neurons the network
has

e letting the network grow (“network growing”): we start with a small network and
include neurons in the hidden layer, progressively, until the desired performance is
achieved. Marchand, Lebiere and others developed this kind of algorithms ([29]). We
will not cover this methodology here.

e pruning the network (“network pruning”): we start here with a big network (typi-
cally, a multilayer perceptron) with an adequate level of performance for the problem
to be solved, and the network is pruned by means of weight deletion through a selective
and ordered manner.

e imposing certain restrictions to the weights so they are related and the network degrees
of freedom are reduced (such as in “weight sharing”).

In the following paragraphs we will revisit pruning and weight sharing methods.

2.8.1 Pruning techniques

Weight decay One of the most simple pruning algorithms is through weight decay. Each
weight decays to O within a rate proportional to its magnitude so some connections disap-
pear?? unless they are reinforced (used in the learning stage).

The weight decay in the weight update equations can be implemented adding a regular-
ization term to the function E that penalizes big weights:

J(w)=E(w)+ %Zw?

where 0 < A < 1 and n the number of weights. If a gradient descent search is performed to
look for the minimum of J(w) we get the update rule:

Aw; = — =— — pAw;

wl pawz pawz p w’L
showing an exponential decay for w; if there is no learning stage (that is, if before the
application of the degradation Aw; = —ng ~ 0 we replace and get Aw; = —piw;(t)

showing the mentioned variation).

The function J(w) discourages the use of big weights, since a single weight with big value
“costs” much more than several small weights: if two connections reach a neuron with
possible weights w and 0 or w/2 and w/2, it will be desirable the second case with two

equal weights since (%)2 + (%)2 < w? 4 0%. This leads to delete big weights, even though

they are needed to model the data.

22The weight turns so small that it can be taken as zero, so the connection associated with it disappears.
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Other technique to delete weights was proposed by Weigend (cited by [29] and [30]) is based
on taking

I = B + 3 Y <1+w§)1w§

w w
i=1 0

being n the number of weights and 0 < A < 1, in which the penalty term helps to regulate
the weight magnitudes, and wy is a free positive parameter that should be determined. For
big values of wg this technique is equivalent to the previous weight decay, so its tends to
have several small weights. On the other hand, if wq is small, less big weights are favored.

—1
) tends to 1 (so its

contribution in J(w) tends to \/2), justifying the interpretation of this term as a penalty to
use big weights. in practice wq is close to unit. The weight deletion is highly sensible to the
penalty factor A. Some authors look for the best factor A by means of statistical methods
(Wahba, cited by [69]).

w

2
It is worth to notice that when |w;| >> wy, the term cost —% (1 +

wq

2
UJiZ
wq

Last, an alternative function can be considered [69]

J=E+A)_ |w

The previous ideas have been applied to the concept of neurons elimination. It would start
with an excess of hidden neurons and tsome of them would be dynamically discarded (the
redundant ones, with all null weights).

Pruning techniques based on the Hessian matrix These techniques are based on
the second-order partial derivatives of the error function to simplify the network. They
start with a trained network, and try to identify the parameters (weights) such that if
they are deleted from the network, the error function is increased minimally. There are two
algorithms inspired in this idea: “optimal brain damage” (OBD) of Le Cun, that assumes
that the Hessian matrix is diagonal, and the “optimal brain surgeon” (OBS) that does
not require the Hessian to be diagonal. A thorough description of OBS can be found in [30].

2.8.2 Regularization theory

Given the relation F(x) = y where F and y are known but x must be found, the problem is
said to be “ill posed” when a small change in the dependant variables produces an enormous
change in the solution. The regularization theory was proposed by Tikhonov and Arsenin in
order to face ill-posed problems. For example, when we try to determine the correct number
of neurons the network should have and we only have information restricted to the training
set, we have an ill-posed problem, since we do not have access to the performance in the
testing set [69]. The basic idea of the regularization theory is to modify the optimization
problem turning it more restrictive so its solution has less variability. A regularization
term is then added to the error function. The obtained error function is then

Enew = E+ \E,

where F is the original error function, F, is the regularization and X\ the regularization
constant) that regulates the influence of the regularization versus the original error E, and
is experimentally determined. Tikhonov regulators (E,) try to find more regular solutions
for the optimization problem, hence they penalize the curvature of the original solution (see
[48]). When these techniques are introduced in a training algorithm, it is used to choose
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regularization functions which allow an efficient computation of its derivatives with respect
to the different weights, for example:

n
E, = E w?
i=1

where n is the number of weights. A first-order regularization term can be useful as well
[69].

The regularization is closely related with the weight decay and the optimal brain damage.
Indeed, as we recently saw, weight decay is equivalent to add a regularization term that is

a function of the weights:
N

Epew=E+\> w}.
i=1

2.8.3 Weight sharing and Soft Weight Sharing

Weight sharing is a method where several weights are controlled by a single parameter
(this is p = wx = w,. = ...), which helps to improve the generalization, reducing the number
of free weights in the network [29]. Normally, it is very hard to decide which weights should
be equal unless the network topology for the specific application is known beforehand.

Another way to reduce the number of independent weights is grouping them into “clusters”
of values, where each weight is normally distributed with unknown mean and variance, but
they will be adjusted when the training process is performed. Nowlan and Hinton [56] found
that this returns better results than using as a regularization term the sum of its squares.
This is equivalent to add an adequate regularization term to the error function to obtain an
automatic weight sharing method. The regularization term is in this case

ER = 7ZII1 Zaij(wi)
i J

where each P;(w;) is a normal density with mean p; and variance o, the factors «; represent
mixture proportions of normal densities P;(w;) with Zj o; = 1, and w; represents an
arbitrary network weight. It is assumed that the parameters «;, u; and o; are adapted
while the network learns. The use of multiple adaptive normal distributions allows the
implementation of a soft weight sharing, where the learning algorithm decides by itself
which weights should be linked together in the same cluster. If all distributions begin with
high variance, the starting weight grouping in subsets will be very weak (or soft). The
groupings turn dissimilar when the network progressively learns and simultaneously the
variances are decreased. Therefore, the groupings converge to certain subsets which depend
on the particular task that is being learned.[29].

To summarize, the correction term leads to a non-supervised weight clustering (weight
sharing) that will be regulated according to the characteristics of the training set ([56] and
[29]).
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2.9 Introduction to dynamical systems

We present here an overview of the theoretical foundations of dynamical systems, which will
help us to have an interpretation of the dynamic networks as well as to train networks with a
reduced input dimensionality, thanks to the application of the Takens-Mané’s theorem. The
bibliography of this section is based on [30] and [31] in this case for deterministic systems,
while in several publications timely mentioned in the stochastic case [38].

2.9.1 State-space model

A system will be called dynamic if its outputs are not only function of its current inputs,
but the previous ones [43]. Formally (and more restrictively) Boccara defines: “Consider
a system with a state-space S whose elements represent possible states of the system, a
time t (that can be either discrete or continuous) and an evolution law (a rule that gives
the state of the system at time ¢ from the knowledge of the history). A system like this,
where the evolution can be described in terms of a non-linear set of differential equations
is a dynamical system” [12]. Some authors ([9]) define a dynamical system as a pair (S, F)
where S is a non-empty set (the “state-space”) and F' a function (called the evolution law):
F:S — S. Therefore, if x, is the system state at time ¢, then 23

Ti41 :F(.’L‘t)

is the system state at time ¢ 4+ 1 [9]. Generally S is a metric space. Using this state-space
model we can represent a system as a set of N state variables that, given their values in
any instant, permit to predict the future evolution of the system. The number of variables
involved is called the order of the system. Using this model we can say, formally, that
a dynamical system is a model where its state variables vary with time for a certain input
[30].

A system is either autonomous if its evolution law does not depend explicitly on time, or
non-autonomous otherwise. A non-autonomous system can always be described by an
autonomous system with higher dimensionality [12].

If time is a continuous variable, the dynamical system will be described by means of differ-
ential equations of the form

& = F(a(1)

whereas in the discrete-time case it will be
Tiy1 = F(:ct)

as previously defined.

In our case study we are concerned with discrete-time autonomous systems.

23In the next paragraphs we will be using the italics notation for x, F, etc., even though they are vectors,
in order to be coherent with the notation used in the bibliography
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2.9.1.1 State-space

Given an instant ¢, the system state can be represented by a single point P(¢) in an N-
dimensional space. This space can be either euclidean or not, even though our interest is
focused here on the euclidean case. Such space is called state-space. The curve described
by those points P(t) is called the system’s trajectory (or orbit).

The mathematical expression for the state change with time can assume several forms, de-
pending on the system to be modeled, but a basic classification is deterministic or stochastic.

Deterministic approach A dynamical system can be either deterministic or stochastic.
In the present context, we will refer to a deterministic system when the past observations
can lead to determine the current state with no error, this is, we refer to “operationally
deterministic”, so it can be modeled reasonably well deterministically given the past knowl-
edge without regarding its ultimate deterministic or stochastic nature. In this case the
states change deterministically from the current ones and possibly some exogenous vari-
ables. These systems are called deterministic dynamical systems. For example, if the
system is not influenced by any exogenous inputs, we will write:

zj(n+1) = Fjlz(n)] j=1,2...N

being

e N the system order
e z(n) = [x1,...2y] the system state

e Fj(e) a non-linear function that does not explicitly depend on n and is non-zero for
some n. This characteristic of the functions F}; holds for all dynamical systems that
are considered in this work.

This equation can be written in its vectorial form:
z(n+1) = Flz(n)]

If instead the system is influenced by a set of exogenous factors u(n) = [ui(n),us(n) ... up(n)]
it will then be:
z(n+1) = Flz(n), u(n)]

Stochastic approach “A stochastic (or random) dynamical system is described by a tern
(S,T, Q) where S is the state-space, I a family of operators in S (interpreted as the whole
admissible movement laws) and Q a probability distribution on I'. The system evolution is
informally described in the following manner: initially, the system is in some state zy € S;
an element «; is randomly chosen (by Fortune) according to the distribution Q and the
system turns to a state 1 = a;(z). Again, independently of «y, Fortune chooses as from
T using the same distribution Q and the system state at step 2 is xo = ao(x1), and this
process is repeated. The initial state xy can be a random variable Xy chosen independently
of the operators «;” [9]. In other words, when the system states change in such a way that
the next state depends on the current one, the inputs and a random vector:

z(n +1) = Flz(n), u(n), w(n)]
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being w(n) a random vector (called dynamic noise) and F a vector with non-linear func-
tions, we have a dynamical stochastic (or random) system **. The general approach
includes systems with exogenous inputs that though here were explicitly stated, can be con-
sidered assuming unpredictable values and hence be included in w(n), and systems that are
sampled in irregular time intervals [80]. The variation space for w(n) is called shift space
and the noise is said to be a shift. In its most general case that noise varies over a compact
manifold (see below).

In the case of stochastic dynamical systems, we can only make a statistical prediction of the
following system states.

Stochastic dynamical systems are interesting for several reasons. For example, if we wish
to model a deterministic system with high order, we can model it by means of a stochastic
dynamical system then gaining robustness. Additionally, in some economical, financial (or
even physical) applications it is sometimes necessary to model systems that tend to have both
a deterministic component and a stochastic one. When w(n) can only have a finite number
of results, this is, where in each instant, F is chosen within certain finite set {Fy, F5 ... Fz}
an iterated functions system (IFS) is obtained. In this case, shift space dimension equals
0.

Additionally, what we do know from the system (whatever its type) is a series of observations
of a variable z such as

z(n+1)=plzn),z(n—-1),...2(n —=T)] + d(n)

being ¢ a certain function and § noise, called observational noise.

2.9.1.2 Equilibrium states

In the deterministic case, a state vector X is called of equilibrium (or steady state) provided
F(X) = X. Observe the trajectory degenerates in the equilibrium point itself whenever it is
reached. If the system has inputs u(n) the steady state must verify that

F(X,u(n)) =%x.

2.9.1.3 Stability

For a deterministic dynamical system, there are several definitions of stability. An equilib-
rium point X is

1. uniformly stable if Ve >0 35 >0 : [|x(0) —X|| <d=||x(n) —X||<e Vn>0

The trajectory for the system rests eventually close to the equilibrium point after some finite
time with any desired proximity, provided the starting point x(0) is close enough to X.

2. asymptotically stable if both condition 1) holds and 3§ > 0 : ||x(0) —X|| < 0 =

lim x(n) = X . That is, if the starting point x(0) is close enough to X, then the
n—oo

trajectory x(n) will converge to the equilibrium point X.

24When the evolution of the system is non-deterministic and only the transition probabilities to change
from one state to another is known for each instant ¢ instead, we have a random process: a family of
measurable mappings over the space Q of possible outcomes, in the state-space X. As a consequence, this
state-space must be measurable. Formally we can say that a dynamical system is stochastic if its state-space
is a metric measurable space, whereas it is deterministic if the state-space is just a metric space [12].
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3. Globally asymptotically stable provided conditions 1) and 2) hold for all the pos-
sible starting point x(0).

This definition implies in particular that the system cannot have other equilibrium points,
and needs that all the trajectories are bounded. In other words, global asymptotic stability
implies the system will reach the equilibrium point no matter the starting point [30].

These definitions do not take into consideration the system inputs (external stimuli) so they
are applicable when those stimuli are kept (almost) constant in time.

2.9.1.4 Dissipative Systems

A deterministic dynamical system is dissipative provided
/[F(x)~n]d$ <0 vxeS
s

being S an oriented, compact and closed surface contained in the state-space and n the
normal vector in each point of S (pointing outside).

In dissipative systems, the volumes for starting conditions tend to contract with time.

2.9.1.5 Reconstruction space

Consider a deterministic dynamical system where the time series x(n) of observations is
known here and we always know the N-1 previous values z(n-1),...z(n-N+1), being N not
necessarily the system order, and let x(n) = [z(n — 1),...x(n — N + 1)]. The space whose
dimensions are 1 = x(n — 1),22 = x(n —2)...2xy_1 = x(n — N + 1)? is by definition
the reconstruction space [69]. The points determined by each one of those coordinated
vectors over the reconstruction space follow a curve called reconstructed trajectory for
the series®®. The vectors z(p) = [x(p — 1), ...x(p — N + 1)] and [z(p),...x(p — N + 2)] that
are obtained in the reconstruction space when we move p are correlated by the structure of
the time series z(n). Figure 2.25 shows an example for the case N =3 .

25 21 is not the same as z(1): the idea is that there is one dimension for each component of the vector x.

The azis x1 can be regarded as the x, the x2 as the y, etc.
261n fact it is the trajectory reconstructed from the system using the available data from the series, but,
as in other cases, we refer to the reconstructed trajectory for the series, with an abuse of language.
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Figure 2.25

The structure of the time series will restrict the possible placements for the mentioned
vectors x(p), restricting the trajectory for the series to a much lower dimension than the
reconstruction one. This subspace is called the signal subspace®”. A great dimension-
ality reduction can be obtained in this way: for example, if z(n) is periodic the number
of necessary dimensions of the reconstruction space equals the period (in samples), mean
while, given this trajectory will be a closed curve (because z(n) is periodic), much less
dimensions will be required to represent this trajectory. For example, if z(n) is a sinusoid
it is associated with an elliptic trajectory. No matter the length of the period, the ellipse
can be represented with two dimensions. On the other hand, a random noise does not have
any temporal structure and fills any space of arbitrary dimension. The same happens with
static data patterns: we need a reconstruction space of maximum dimension (the dimen-
sion of x(n)), since we do not know a priori any relation between the data components.
If the dimensions of the reconstruction space are well chosen, the reconstructed trajectory
does not cut itself, and there exists a one-to-one correspondence between the real trajectory
z(n), and the reconstructed one. The dimension of the reconstruction space depends on the
particular application of the reconstructed trajectory. For example, in the previous case, if
we reconstruct the signal trajectory only from the axis x and y, we would obtain a curve
(trajectory) B (see Figure 2.26), with other properties. This signal subspace (so called by
[69]) corresponds to the embedding mentioned throughout the rest of this work. We sticked
to the most common denomination in the literature about this topic.

27The term signal is here inherited from digital signal processing applications. In the current context we
could call it “series subspace”, but we prefer to stick to the terminology used in the related literature.
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Y-axis

v

Figure 2.26

We will see later that this reduction in the dimension of the reconstruction space can be used
to reduce the input dimensionality of the neural network to be implemented. In the case
of a stochastic dynamical system it is proved that the situation is basically the same, and
there is a bijective correspondence between the series and the points of the reconstructed
trajectory, for each possible value of w (excepting, perhaps for a finite values then w) [80].

2.9.2 Attractors and manifolds
2.9.2.1 Manifolds

The concept of manifold is commonly used in the descriptions of dynamical systems. In sim-
ple terms, a manifold is a k-dimensional surface embedded?® in the state-space. A manifold

is a non-euclidean space that generalizes the notion of curves and surface representation in
R™ [12].

Definition: A map f: X — Y is called a diffeomorfism if f carries X homeomorfically
into Y and if both f and f~! have continuous partial derivatives of any order [46].

Definition: 9 is a n-dimensional manifold if, for all point x in 997 there is some neigh-
borhood N(z) C 9t that contains x and exists a diffeomorphism h : N(x) — R™ that maps
N(z) in a open subset of R™ [78][46].

In dissipative systems?’ it is common to find “manifolds” of states that attract the tra-
jectories that pass through a neighborhood of it, called attractors. These attractors are
bounded sets of the state-space where the volume starting points converge®®. The attractor
can be either a single point and is therefore a point attractor , a periodic trajectory or
limit cycle that is stable in the sense that closed trajectories asymptotically approximate
to it, or a strange attractor.

28In what follows we will see "The notion of embedding"

29The theory is developed assuming the system will keep the same inputs, whenever it has anyone (or
they have non-significant variation) during the time we let the system evolve towards a stable state.

30The starting conditions here include the possible inputs in the starting point.
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The idea of attractor can be generalized for stochastic dynamical systems. In this case, for
an attractor we can think that trajectories will eventually enter a neighborhood of it with
unit probability when ¢ — oo.

Each attractor has an associated region, called attraction domain, such that every starting
point inside it makes the evolution convergent towards that attractor.

Let A be the Jacobian of F evaluated at X. If all the eigenvalues of A are lower than one
in magnitude, X is called hyperbolic. We will see the meaning of these attractors to study
training problems associated with recurrent neural networks.

A dynamical system can have several attractors. Starting from a certain point, the system
trajectory will either converge to one of them or not. The conditions for a dynamical system
to have convergence are called Lyapunov’s conditions [42].

In general, we have a set of observations (measurements) of a certain system variable, that
have evolved through time towards one attractor, so the problem focuses on the study of
“the” attractor, this is, the attractor to which the observations are getting closer to.

2.9.2.2 Strange Attractors and chaos

Strange attractors are characteristic in deterministic dynamical systems of order higher
than 2. A system with a strange attractor exhibits a chaotic behavior: for starting points
inside the attraction domain of that attractor, the behavior is deterministic (it behavior is
governed by fixed rules) but that behavior is so complex that is seems random. We define
a strange attractor as an attractor such that the orbits that visit the attraction domain
and have similar starting conditions tend to separate with time. A system with a strange
attractor is said to be chaotic. An alternative definition is to say that the system is chaotic
if it has some positive Lyapunov exponent [30].

In deterministic chaotic systems the observed randomness does not disappear with the more
data gathering in time, so, the prediction for the next system state will have the same
expected error, no matter the number of previously known observations. What is more:
there is an extremely high sensibility to starting conditions: if two realizations start with
very similar starting points x and x + £ their trajectories will diverge between each other
and their separation will exponentially increase with time.

In the case of stochastic systems, we do not find in the related literature a definition for
“chaotic”, specially referred with the Lyapunov coefficients, even though in [50] it is men-
tioned a system can be simultaneously chaotic and stochastic. On the other hand, we could
not find a definition of “general” or “average” Lyapunov exponent either, that has into ac-
count all the realizations of the random process that would correspond with the idea of
trajectory of a deterministic system.

Example: the Lorenz’s attractor The Lorenz’s system?®' is a three-dimensional system
described by the following differential equations:

% = olz(t) — y(t)]

ar = x®)[r —z(0)] —y(@)

ar = x(t)y(t) — bz(t)
where b, r, and o are parameters. Starting with an arbitrary point [z, Yo, z0] and using
certain values for the parameters r and b we can obtain three time series (one for each
variable). The described trajectory for the typical case r = 28, o = 10 and b = 8/3 can be
seen from different perspective angles in the following illustration:

31Tn the literature this author sometimes appears as Lorentz.
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Figure 2.27

A dynamical system can be both chaotic and stochastic. For instance, if we add a random
noise to the z coordinate to the Lorenz’s attractor, we obtain a stochastic and chaotic
dynamical system. In this case, the aspect of the Lorenz’s attractor is translated from the
one in Figure 2.27 to a set of fuzzy points, in some way related with the original one: for
instance the dimension of the new attractor equals the dimension of the original attractor
plus the dimension of the noise space (in this case, 1) [52].

2.9.3 Invariant characteristics

The invariant characteristics of an attractor of a dynamical system (or simply ‘nvariants)
are those properties that are preserved after a non-linear “smooth” and invertible transforma-
tion®? to the states of the system. Formally, a measure  is invariant under a transformation
F: S — Sifit holds that

u(F~rA) = u(A) VAeB

where B is a o—algebra in the ground set S.

Example of invariants are the optimum delay and the embedding dimension 32. Other char-
acteristic properties of a dynamic system are the generalized dimensions, the Kolmogorov’s
entropy, the Lyapunov’s exponents, the Kaplan-Yorke’s dimension and the predictability
horizon 4. These invariant characteristics lead to a full characterization of a system, and
hence permit to determine how similar behaviors two systems have. This comparison cri-
terion is very useful for a dynamic system reconstruction since we can discern how well a
model reproduces the dynamics of the system.

32This is, a homeomorphism: a continuous one-to-one mapping, with continuous inverse.

33When the embedding dimension is mentioned, it is the minimum dimension of the reconstruction space
such that the reconstructed trajectory does not cut itself.

34All these invariants are estimated by numerical methods that use a finite data set, in contrast with
the definitions of dimensions for infinite data sets. Extrapolations are applied, and they can fail for several
reasons, giving low reliable estimations [25]. Here we will not discuss the quality (robustness) for each
estimation, and we will focus to use the ones provided by the most known software packages.
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In the stochastic case, we get a probability density function (or probability distribution
in the discrete case) for each of the invariants®® and the problem is then to compare the
densities/distributions for each one of the invariants generated by the model and the original
system. Up to date, few works have been published concerning this issue [79].

2.9.3.1 Generalized dimensions and entropy

The attractors of a dissipative deterministic dynamical system generally have a fractal struc-
ture (in the sense they are similar to parts of themselves). The generalized dimensions
are a class of quantities that characterize this “fractability” and they are invariants. Some
of those dimensions are the information dimension and the correlation dimension, defined
in what follows.

Generalized dimensions The study of the generalized dimensions of an attractor pro-
vides us information on its structure. For systems with high degrees of freedom (even
deterministic) a trajectory in the state-space presents a rather irregular shape. The study
of the generalized dimensions allows us to discover certain features of that shape. Let us
divide the state-space (assuming it is bounded) into N(g) hypercubes of side ¢ and we will
study the probability distributions p; through the attractor when ¢ — 0. The distribution
p; is defined by the probability to find a point of the trajectory inside hypercube i:

being N the total number of points in the trajectory and IV; the points inside hypercube 4
with size €.

The generalized dimensions (or Renyi’s dimensions) of an attractor are defined by

_ 1 g Log NG pe
D, = = Eh_r)r%) 7L0g; (Eq. 2.31)

When ¢ = 0, 1 and 2, the respective dimensions are called Hausdorff-Besicovitch’s or fractal
dimension Dy, information dimension D, and correlation dimension D; [63]. The
dimension Dy is used in Chapter 3 to estimate the dimension the signal subspace should
have. On the other hand, D5 can be approximated by

. LogC
Dy = lim =522 (e)
e—0 0ge

being

0(E) = wmmny S 2% ule — i — )
i#

with u(e) the Heaviside function and z; and z; two points of the trajectory. The correlation

dimension is one of the invariants provided by many tools of time series standard analysis
(for example, DATAPLORE and TISEAN).

Alternatively, some authors [30] define the generalized dimensions as follows. Consider an
attractor for a deterministic dynamical system, the probability measure C'(¢,r) that returns

35In the case of Lyapunov exponents we could consider the distribution of the biggest exponent.
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the probability that two points in the state-space x(n) and x(k) 3% (placed in the attraction
domain) are separated a distance r is, by definition, the correlation function ([30] Chap.
14):

1 1 N
C(q,r)ZNn; N1 kz_jl u(r — [|x(n) — x(k)||)
k#n

being N the number of data points (observed values of the series), ¢ a real non-negative
parameter and u(e) the Heaviside function.

This correlation function is an invariant attractor. Additionally, for practical purposes, it is
usually considered its behavior for small values of r . In that case, when r—0 , if the limit
exists it is [30]

C(q,r) =~ rl@a=DPq (Eq. 2.32)

The value D, is defined as the fractal dimension ®" of the attractor. Taking natural
logarithms on both sides of Eq. 2.32 and regarding that the approximation holds when r is
sufficiently small, we get that

Log [C
D, = lim 0g[C(g,7)]
r=0 (¢ —1)Log(r)
When ¢ = 0 the Hausdorff-Besicovitch is obtained, when ¢ — 1 the information dimension
is, and the attractor correlation dimension Ds is retrieved if ¢ = 2.

Interpretation for the generalized dimensions The difference among the different
dimensions is mainly what is considered in each one: once ¢ is increased, “dense” regions of
the attractor are taken into account (density regarding number of points) [63]. It can be

proved from the definition of D, that Dy = lim fogN(E) being N () the minimum number of
e—0 og(1/e)

hypercubes of side € needed to cover the whole set of points of the attractor. The dimension
Dy would give us an idea of how “irregular” the attractor is. For example, for a square
we have Dg—2 while for the Lorenz attractor it is within 2 and 3. This dimension also
provides the degrees of freedom for the system. In order to have a predictable system (in
the deterministic case) that value should be small. For systems with a high value of Dy it
may be more appropriate a stochastic model rather a deterministic one. On the other hand,
D, is a lower bound for Dy, and these dimensions tend to have similar values [63].

Generalized entropies The Kolmogorov-Sinai’s entropy can be defined as the av-
erage rate of information loss about the initial conditions through time. The temporal
predictability of a deterministic system is inversely proportional to its Kolmogorov’s en-
tropy, so, no reliable predictions are feasible indefinitely because of the information loss
associated with this entropy. Formally it is defined in the following manner. Consider the
state-space divided in hypercubes (boxes) with size 7¢ and let P;, ;, ,be the joint proba-
bility that the state x(t = 0) is in box ig, x(t = 1) in box 41,...and x(¢ = (d — 1)A¢) in box
iq_1, being At the sampling time. The Kolmogorov-Sinai’s entropy® is [63]

36These points are equivalent to P(t)from Subsection 2.8.1.

37Haykin calls fractal dimension to the family of generalized dimensions, even though the term fractal
dimension of an object is reserved to its Hausdorff-Besicovitch dimension, Dg

38 Also known as Kolmogorov’s entropy.
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K=— Athmo dAt Z Pi.iy Log(Py. iy )
% Z

r—0
d— oo

~ld—1

where the sum is over all feasible boxes g, 1, ...74—1. This entropy can be used to classify
dynamical systems, since it is infinite for stochastic systems, positive and finite for chaotic
systems and null otherwise [58]. Furthermore, it can be computed as the sum of the Lya-
punov positive exponents[40]. In a general way, the generalized entropies are defined by
[63]

K,=—- i
q Atlio dAtq—l glzlil i0 zd1

r—0
d — oo

2.9.3.2 Exponents and Lyapunov’s spectrum

Lyapunov 's exponents can be defined as the average (rate) at which diverge (or converge)
two initially neighboring trajectories in the attraction domain of an attractor, and charac-
terize the sensibility of a deterministic system to the initial conditions. To visualize this
notion imagine the evolution of a spheroid with starting radius ¢(0) in an n-dimensional
space. As the points move along the attractor trajectory, the spheroid will evolve to an
ellipsoid, since each dimension (axis) has associated a different variation rate. Assume the
length of the main axis of that ellipsoid over direction ¢ is €;(n). In that case, the Lyapunov
exponent 7 is defined as:

n—oo

o]

where n represents time. It is measured in bits/s (note we use logarithm in base 2). If we
used natural logarithm instead, it would be measured in nats/s. [53].

1
Ai = lim sup [ log,
n

The sign of Lyapunov exponents has a special meaning. A positive exponent represents di-
vergence of the trajectories of a deterministic dynamical system in the considered dimension
(\; > 0 implies there is divergence in direction i), whereas a negative exponents represents
convergence. For a system to be considered chaotic it should have at least one positive
Lyapunov exponent. If the system has more than one positive exponent, the biggest one
typically presents more influence. A null exponent means there are no changes (there are
no variations in the dimension of the spheroid) in that direction.

Real physical systems (those that exist in Nature), are dissipative, and their sum of Lya-
punov exponents is non-positive [30].

As we previously defined, Lyapunov exponents are global quantities, since they are a limit,
and hence they do not provide information on the local divergence rate for initially close
trajectories, that can have different signs, depending on the attractor’s region. In terms of
prediction, there are areas where predictions can be feasible in the short-term (some steps
in the future) and others where it is impossible because of the exponential increase in the
errors. This phenomenon of change in the local divergence rates has been called effective
(or local) Lyapunov exponents phenomenon [77].

The Lyapunov spectrum is formed by \; ¢ = 1,...dg where each \; is a Lyapunov
global exponent.

In our case we find the global Lyapunov spectrum, using routines of TISEAN though cspX
tool finds it locally. DATAPLORE also finds it globally.



2.9. INTRODUCTION TO DYNAMICAL SYSTEMS 99

Stochastic case In the case of stochastic dynamical systems a probability density func-
tion/probability distribution would be obtained for each invariant (see 2.9.3 on page 95), for
example, the global Lyapunov exponents. Nevertheless, the both theoretical and practical
interpretation of the exponents (global and local ones as well) is difficult in this case[77],
even more if the same algorithms to find Lyapunov exponents in deterministic systems are
directly applied (such as the one of Sano and Sawada, used by TISEAN) to a time series
coming from a stochastic dynamical system. In this case, fake positive exponents can be
obtained [Tanaka, Aihara and others, cited by [77]]. A partial solution to avoid fake pos-
itive exponents is to find the maximum Lyapunov exponent based on confidence intervals,
as proposed by Gengay (cited by [77]). Moreover, since for each starting point we have a
probability density function over all the possible states for the system at time n, the sys-
tem sensibility with respect to initial points can be thought as the distance (in the sense
of Kullback-Leibler) between probability distributions at time n the one corresponding to
initial states z and x +¢. In contrast with Lyapunov exponents, this sensibility is local, and
depends on the initial states [77]. In this case, taking the distance:

K(pllq) = D(pllq) + D(q|lp)

being D the Kullback-Leibler distance between p and ¢ we obtain a function that satisfy
the properties stated in 2.2.3. K was so defined to be symmetric.

The distance K (pl|| ¢) can be approximated by [77]:
K (2, xn +¢) = el 1(T7)e

where

e I(7,) is the Fisher information matrix:

= ) — . _ [ 9Logp(zn41|Tn) 0Logp(Tnt1[Tn)
I(l'n) = {Ilj - < 0T, oT; P

e m is the order of the system
en—m+1<ij5<n

o p(zp41|Tn) is the conditional distribution of the system to be in state n-+1 provided
it wasin @, Tp_1,-.- Tn—m-+1-

This approximation has the inconvenient that the conditional distributions of the states
should be known; a practical alternative appears in [77] where a sensibility analysis for the
starting conditions with a mixture distribution network is presented (MDN, see [10] Chap.
2) to represent the conditional distributions p(x,4+1 [Tr ).

2.9.3.3 Kaplan-Yorke’s dimension

Given the Lyapunov spectrum, Kaplan and Yorke suggested the dimension (called of Kaplan-
Yorke or of Lyapunov):

Zfil Ai

Dgy = K +
ey N1l

where K is an integer that verifies

K
Z%:ll)\i >0
Zi:—"l_ )\1' <0
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For a chaotic deterministic system generally is Dxy = D5 [30]. However, depending on the
method used to estimate Dgy, we can have Dgy and Dy very close or not, depending on
whether the noise in the data was is taken into account or not (some estimations for Dy
considers it but others do not) [59].

2.9.3.4 Predictability horizon

As we said, due to the sensibility to the initial conditions in a deterministic chaotic system,
the orbits starting from two near points separates exponentially with time (the greater
the exponent, the lesser quantity of values that can be predicted). This is the reason
why deterministic chaotic systems are predictable in the short-term but in not the long-
term. Sort-term predictability?® is defined as the predictability horizon and is mainly
determined by the biggest Lyapunov exponent. Moreover, we estimate the length of the
predictability by [30]:
1

HOP =~
AMAX

for chaotic processes. For deterministic non-chaotic systems, the horizon is not defined,
or it would be theoretically infinite, even though the prediction errors accumulate and
make the trajectories (the real versus the predicted one) diverge. For stochastic dynamical
systems, the horizon cannot be thought as the number of steps we can predict without
having high errors, since the randomness of the states makes that can be predicted only the
expected value of the random variable with law P(x,11 |z, ) even though the observed value
is far away from it. Anyway, since the predictability horizon is associated with long-term
predictions, usually found via an iteration of short-term predictions, some improvements
can be introduced to this prediction types, such as the ones proposed by Judd and Small
with the ¥® method [79]. In this method the key is to correct systematic prediction errors
that could commit the predictor ®. In other words, a number of values are predicted by
means of predictor ® and then the correction parameters ¥ are determined in order to
minimize the mean square error between the desired and corrected values, and finally use
that corrector to correct the predicted values in the future. For example, if f, represent the
desired values to be predicted, z, are the predicted values for the instant n, and if we take
W(z,) = Az, for a certain matrix A, then the estimation of A such that ||f, — Az,||%s
minimized is N
A=(z2"2)"'Z"F

being Z a matrix such that the i-th column is the prediction for time n and F the matrix
such that column n is the desired value for time n[79].

2.9.4 Embeddings and the the Takens-Mané’s theorem
2.9.4.1 Formal statement

We will give here both a formal statement and an intuitive interpretation. The formal
statement is:

39Better, the number of steps in the future that can be predicted.
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Theorem:
Consider a compact m-dimensional manifold M. For pairs (¢, y) such that ¢ € Dif f2(M)
and y € C?(M,R) is a generic property that the mapping

(p(%y) M — R2m+1
defined by

Q) = (U(2), y(p(2)), . y(*" (x)))

is an embedding, where
e “generic” here means open and dense

e Diff%(M) is the set of functions C" : M — M with inverses

An equivalent statement was formulated by Takens [35]:

Theorem:

Consider a compact m-dimensional manifold M, and ¢ : M — M a diffeomorphism with two
properties: the generic points of ¢ with periods not higher than 2m are finite, and if x is
an arbitrary periodic point with period k& < 2m then the eigenvalues of the derivative of ¢*
are all different in M.

Then, for a generic y such that y € C?(M, R), the mapping

@(@,y) M — R2m+1

(defined as in the previous theorem) is an embedding.

The attractor of a deterministic system is obtained drawing the evolution of the state vari-
ables in the state-space. This is only possible when we have access to all the variables of
the system, which rarely occurs in practice. Instead, it is common to have some function M
defined over the possible system states, whose values form a single time series (of measures)

Takens and Mané*® proved, independently, that for a time series the original attractor can
be reconstructed, using the delayed coordinate method. Afterward, it was proved that
this holds also for the stochastic case ([80]). The dynamic reconstruction of the system from
a time series of observations, both in deterministic and stochastic scenarios, are “ill-posed”
inverse problems. The direct problem is to describe the trajectories given the dynamics, and
in the inverse version we are given the trajectories and the dynamics must be described. The
inverse problem is “ill-posed” since (depending on the data quality) the found solution can
be either stable or unstable, be only one or even may not exist. Some previous knowledge
about the input/output mapping is sometimes included in the predictive model in order to
deal with those “ill-posed” problems [30]. A way to do it is to use embedding parameters:
dimension and optimal delay computed from the observed data s(n) in the deterministic
system. We will see that this idea can also be used in the stochastic case.

40Mané, Ricardo: Uruguayan mathematician that simultaneously with Takens, proved the theorem. The
literature usually refers to this theorem as of Takens or “of the embedding”.
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2.9.4.2 Delays method

From the series x,, we get the vectors

X(n) = [Tn, Tnr .. Tp_(dg—1)r]
where

o dp is the “embedding dimension” 4!

e 7 is the “embedding delay”, chosen as a multiple of the sampling time (the inter-
sampling time is considered as 1).

2.9.4.3 The notion of embedding

A set X is embedded in another set Y when the properties of Y (connectivity, algebraic
or others) restricted to X are the same. For example, the rational set is embedded in reals
and integers embedded in rationals. We say there is an embedding from X to Y. In the
geometric case, a sphere is embedded in R3. Formally:

Definition: Given two manifolds X,Y and a mapping f : X — Y we say that f is an
embedding if f is a diffeomorfism of X onto its image f(X) |78]

By an abuse of language we write “embedding dimension” to refer the dimension of the
co-domain (Y) of the embedding.

2.9.4.4 The Takens-Mané’s theorem

The theorem assumes the existence of both dz and 7, and in that case*?, the vector function
x(t) = [v4, T4—7...24_(ay—1)7] is an embedding from the attractor over the set of points
x(t). Exploiting the continuity properties of embeddings **, we can predict x;,, from x(t),
provided the parameters dgp and 7 are adequate, even though the theorem does not give
further details of them, stating that it is enough that dg > 2D + 1 there D is the fractal
dimension of the attractor. This means that, from almost any observations set (time series)
of the system, we can answer a wide range of questions concerning the dynamics of the
original system by only studying the dynamics in the space defined by the delayed values of
the time series.

In general, again with an abuse of terminology, we talk about the “dimension of the attrac-
tor”, to refer the dimension of the signal subspace, dg.

2.9.4.5 Determination of the parameters of the embedding

According to the Takens-Mané’s theorem, the parameters dg and 7 must be determined
such that dg > 2D + 1, but afterward it was proved that it suffices that dg > D + 1 holds,
and 7 can be arbitrarily chosen provided the data have no noise and present infinite size.
Given that these assumptions are not realistic, we must determine both dg and 7 using
methods based on the data. The first to be determined is the optimal delay, since it is
necessary to find then the embedding dimension.

41Tn the reconstruction space we take 7 = 1 so we have dg = N and have an intuitive notion for the
dimension of the signal subspace.

42The theorem needs additional (little restrictive) conditions, and the related literature usually ignores
them. For example, a requirement is that the system must not contain periodic trajectories with period <
or 21, and it must contain a finite number of rest points.

43Gince they are continuous mapping by definition.
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Deterministic case

Optimal delay The optimal delay 7 for the embedding is defined as the needed value
to obtain z(n),z(n — 7),z(n — 27)... independent enough as to have a base for the signal
subspace ([30] Chap. 14). If the delay is too small, then the elements of the vector x(n)
are too similar (they are too correlated) and are vulnerable to noise effects (it is said there
is a redundancy problem). On the other hand, if it is chosen big enough, the elements are
extremely dissimilar and the vectors s are sparsely distributed in the state-space (there is a
problem of irrelevance). Both situations make difficult to reconstruct the attractor. In the
method of mAMI (“minimum average mutual information”) the average mutual information
I(n) between the series z,, and its delayed version x,,1; is found for ¢t = 1,2 ...by

[ P2, Tnit) }

I(t) = Z P(2y, Tpt)log, Plan)Planis)

n=1,2...

where P(e) is the probability law and P(e, ) denotes the joint probability. The value for ¢
where the first minimum for (e) occurs is suggested as a good estimation for the optimal
delay 7 of the embedding. Additionally, the AMI shows non-linear correlations that could
not be clearly seen if only linear correlations were used instead.

An alternative option is to choose 7 as the time correlation for the time series: it is the
number 7 such the autocorrelation C(e) falls at its half of its first value [63]:

{ C(r) = §C(0)

Clk) =30 T

Global and local embedding dimension The dimension of the signal subspace (em-
bedding) is not necessarily the same than the one of the attractor, D, and its suffices to
find a case where dg > D + 1. Such dimension dg is called the global dimension of
the embedding. The procedure to find it is based on geometrical considerations, and was
established by Kennel and others (cited by [31]). The method finds the nearest neighbor
of each point in a given dimension, and it is checked whether those points are still close
neighbors in a higher dimension or not. This method has as its main advantage that it does
not need very large data sets. Essentially, it determines when the points at the dimension
d are neighbors of other by virtue of the projection for the attractor in a sufficient small
dimension:

A C B
Figure 2.28
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Observe how the points A and B appear as the nearest neighbors for C when they are
projected over a line in a uni-dimensional space, but they appear much far away when they
are projected over a disk of two dimensions. By contrast, the points A and B are near in
the two-dimensional space and they still be near in the three-dimensional space. By a close
examination of the situation in successive dimensions one, two, three,... until there are no
incorrect (or false) neighbors, we could establish, by geometrical considerations, a value for
the embedding dimension. If we plot the percentage of false nearest neighbors as a function
of the embedding dimension, the curve should vanish when the adequate dimension for the
embedding is achieved.

The algorithm can be sketched as follows (see [31] for a justification):

1. For each vector x(i) = [x;,@Ti—1,Ti—2...Ti—p] in the time series, find the mearest
neighbor y(j) = [y, ¥j—1,Yj—2 - . - Yj—n] in an n-dimensional space.

2. Find the distance ||z(i) —y(j)]|.

3. Take the following values for the time series, x;1+1 and y;j41 and find

R |Tir1 — Yjs]

F @) =y DI

4. If R;exceeds a threshold heuristically obtained beforehand R, this point is marked as
it has a false nearest neighbor.

5. If the percentage of points for which R; > Ry is below a certain value, n equals the
embedding dimension. Else, increase n in 1 and the process (all the previous steps) is
repeated.

While this method is quite intuitive and easy to implement, it cannot be directly used, since
(among other aspects) it needs a heuristic estimation for the thresholds (R, determines
whether a point is a false nearest neighbor or not, and the percentage Ry of false nearest
neighbors that are accepted to determine the correct dimension is found). The chosen tool
(VRA) is a slightly modified implementation, where there are no free parameters. Since Y
is the nearest neighbor of X;, we can think it is an approximation to it, or z, 11 is predicted
by yn+1, so R is the prediction error. The idea is that when the attractor is completely
unfolded in n dimensions, the distance R between the (n+ 1)-th components from X and Y
will be small. In order to detect whether the nearest neighbor recently found is false or not,
we compare R with the error that would have produced using the trivial predictor (the one
that uses x,, as a predictor of x,11). Formally, if |2,,41 — yn+1| = |Tnt+1 — Tn| the following
neighbor is entitled as false.

Since the algorithm is intended to find the global dimension for the embedding, it is called
global FNN method.

As an additional tool some products (like cspX) find the local dimension of the embedding,
dp, such that dy < dg, which represents the active degrees of freedom that govern the local
evolution of the system. For instance, suppose we have a periodic orbit or limit cycle as
the system’s steady state. Then, the movement of the points over the state-space is in a
uni dimensional object, but it needs dg = 2 or 3 to develop an attractor an see this, even
though the dynamics over the limit cycle is uni-dimensional. So, cspX uses the Local FNN
method, that adds some information over the geometry of the attractor when compared
with the Global FNN method.
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Stochastic case In the stochastic case, to find the dimension with the FNN method is
no longer useful since it is based on the continuity of the deterministic case

(if )x(]) is the nearest neighbor to y(j) then ;41 must be close to y;; for a certain dimension
dg).

Therefore, some considerations on probability theory are mandatory. Fueda and Yanagawa
([21]), for the case where the time series complies that

e =F(X4_r,X4—2r,.. . Tt_qgr) +e¢ t=1,2...
being
e F a non-linear field (vectorial function) with a vector as its argument

e £; is dynamic noise

7 is the optimal delay

d the dimension of the signal subspace

and the following relations are respected:

F(xt—rv T or, .. Ti—dr) = (Tt [Te—7, Tt 27y Ti_dr >wt
<€t ‘xtf'ral'tf?ra co o Tp—dr >5t =0
(22) < 00

plus certain conditions for the dynamic noise (see [21]), define the embedding dimension dgy
with an optimal delay 7y if an only if the following conditions simultaneously hold:

e There exist two natural numbers dy and 7

 PF(Tt—ry@t2ry-- Ti—dr) Z F(Ttorgs Tt—2ry- - Ti—dgro)] = Lforalld < dy and 7 >
0

® PF(Zt—ryTt—2ry.  Ti—dr) = F(Tt—ry, Tt—2rgs - - - Tt—dgry)] = 1 for all pairs (d,7) €

P
B(dy, 70) being
B(dy, 1) = {(d,7) |{70,2 70, - - - doT0} C {7,27,...d7}}

They also proposed a statistical estimation for the optimal delay and dimension for that
case [21].

2.9.5 Recurrence analysis and recurrence plots

Recurrence analysis is a graphical method designed to locate hidden pattern that are
repeated in time (in the sense of repetitive behaviors that are not easily detected), non-
stationarity and changes in the structure of a time series. Let z, be the series under
study and z}" = [2;, Titd, ... Tit(m—1)a] the vectors where m is the embedding dimension
and d the optimal delay. From the vectors z]" a symmetric matrix is obtained with the
euclidean distance among all the possible pairs, and these distances are visualized by means
of a graphic called recurrence plot, where each distance of that matrix is associated with
a color (for example, the color is “colder” for longer distances; this is the way that the
VRA proceeds: longer distances are bluish, whereas the shorter ones are represented with
reddish). A recurrence plot is a solid square plot that has pixels whose color corresponds to
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the magnitude for the values of a two-dimensional matrix and whose coordinates correspond
to the place for the values of the data in the matrix. It is rather usual to establish a critical
radius € and to mark a point as dark only if the resulting distance is not higher than £ (as
in the case of TISEAN). A black and white plot is hence obtained. The vectors compared
with themselves give a null distance, explaining the presence of the diagonal from the lower
left to the upper right cornet (identity line) and it appears in all recurrence plots.

If the series analyzed is periodic then the recurrence plot shows line segments parallel to
the identity line that correspond to the sequences of pairs (4,5), (i+1,j+1)...(i+k,j+k) such
that 27", 7%, ... 27}, are close to «7", 7% ... a7, for some j given i. These segments a
certain attractor region is re-visited. On the other hand, if the series is white noise, the
recurrence plot does not show structure but is formed by uniformly distributed points. The
non-stationarity is expressed by a tendency of all points to be close to the identity line [7].

This visual analysis helps us to state in Chapter 3 the stationarity of the process. On the
other hand, several indicators complement well the recurrence plot, so the conclusions are not
merely extracted from visual appreciations (these indicators are for example of determinism,
for recurrence, etc.). These indicators numerically represent the graphical features from the
RP, and that technique is called Recurrence Quantification Analysis (RQA).

TISEAN produces the RP of Figure 2.29:
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white noise chaotic series (Rossler’s system)

Figure 2.29

On the other hand, by means of VRA tool the recurrence plots obtained for different series
are presented in Figure 2.30:
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sin(x) white noise chaotic series

Figure 2.30
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2.9.6 Prediction and dynamic reconstruction

The prediction of a time series, as a way to predict the future behavior of the subjacent
system, has been one of the key areas in science and engineering. Given some observations
of the system behavior in the past, it is desired to make certain predictions over its future
behavior and to determine how exact they are beforehand. In our case, we wish to predict
weekly sales of propane gas in bottles, given the historical information of sales.

The other approach is dynamic reconstruction. Dynamic reconstruction and prediction
of time series are two areas with several common aspects, but differ in the way the final
results are evaluated. The goal of time series prediction from a classical viewpoint is to ob-
tain the closest possible values to the real data. On the other hand, dynamic reconstruction
tries to dynamically capture the time series by means of a model. In other words, predic-
tion is related with short-term evolution, whereas dynamic reconstruction with a long-term
behavior [53]. This does not mean that it is impossible to predict in the long-term. In-
deed, dynamic reconstruction tries to have those predictions to be the best possible ones in
the long-term. In order to check whether the model captures the dynamics of the system,
invariant characteristics can be used (see 2.9.3 on page 95).

Prediction may be thought as it were associated to a local or global model . When the model
is local, the attractor is partitioned in smaller regions, and several models are constructed
for each region. Local models, as a consequence, vary from region to region, and given
the discontinuities that exist in the attractor zone where the models overlap, undesirable
behavior can be produced in the long-term, so the local models are poor for a dynamic
reconstruction [59]. However, when a global model is considered, the dynamics of each
region determined by the attractor is considered jointly. A global model can be obtained for
example with a MLP using all the available data. On the other hand, local models might
be obtained from local AR-MA models, be based on SOMs (Self Organizing Maps) or even
polynomials that approximate a time series locally.

Dynamic reconstruction allows us to obtain a model of the dynamic system, making feasi-
ble to carry out test (experiments) over the system behavior under special circumstances.
Observe that both in prediction or reconstruction using neural networks, we did not limit
to an only network, but we can use even several networks simultaneously: for example,
one network for prediction could be chosen, and another for error prediction (under the
deterministic case). This approach is applied in [24].

The data impose some limitations to the model from the point of departure, since a model
will be good in those attractor regions for which enough data is available. By this reason,
the quality of a model, specially a global one, is limited by the best quality obtained for the
less represented attractor regions over the training set.
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2.10 MLPs as universal approximators

We will comment in this section two fundamental theorems about MLPs as universal ap-
proximators of every continuous function with domain in R™. As a corollary of Kolmogorov’s
theorem, it is possible to approximate an arbitrary continuous function by means of several
perceptrons working in parallel. Cybenko’s theorem states that feedforward networks with
a single hidden layer and one linear output neuron are able to approximate every continuous
function f : R™ — R with any desired level of accuracy. The bibliography for this section is
basically [29].

2.10.1 Kolmogorov’s theorem

This classical theorem can be stated in this way:

Kolmogorov’s Theorem:

Consider an arbitrary continuous function f with real arguments f(x1,z2...2,) where
x=[z1...2,] €[0,1]" n>2. Then, f can be represented by

Flar o) =00 gy [ @i ()]

where the functions g; have a single real-valued argument and ¢;; are monotonically increas-
ing continuous non-differentiable functions independent of f [29].

The theorem states any continuous function with multiple real arguments can be expressed

as a finite sum of single argument functions. The direct application of this theorem to justify
that feedforward networks are universal approximators has been widely discussed, mainly
for two reasons:

1. The functions ¢;; are non-differentiable. The use of this kind of functions in a network
would produce problems of extreme sensibility with respect to input values [10]

2. the functions g depend on the function f itself to be represented, in opposition with
the practical operation of a neural network: in general, fixed output functions are
considered and then the number of hidden neurons, weights and activation thresholds
are adjusted until a satisfactory output is produced. To illustrate the idea, a graph-
ical scheme for Kolmogorov’s theorem is shown in Figure 2.31, with a network that
implements the proposed decomposition:
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INPUTS
Figure 2.31

The number of hidden neurons is fixed in Kolmogorov’s theorem and the output functions
depend on the function that is being approximated. Anyway, although its poor practical
application, the theorem points out the feasibility to use multilayer feedforward networks
working in parallel (the boxes would be working in parallel) in order to approximate a
desired function.

2.10.2 The Cybenko’s theorem

The mathematical proof that MLPs that use sigmoid output functions are universal approx-
imators was independently given by Cybenko, Hornik and Funahashi (cited by [29]), even
though the credits are usually given to Cybenko because his neat and elegant proof.

The theorem can be stated as follows:
Cybenko’s Theorem:

Consider a continuous sigmoid function p(e). Given an arbitrary continuous function f :
[0,1]" — R and & > 0, there exist vectors wi,ws...wy, 0 and a parametrized function
G(z,w,a,0): [0,1]" — R such that

|G(z,w,a,0) — f(z)| <e Vzel0,1]"
G('T’a w, &, 9) = 27{11 Oéjgﬁ(ijx + 93)

being w; € R, «;,0; € R, w=[w,...wy] a=][a,...an] 0=1[01,...0,]

The theorem states that a MLP network with one hidden layer is able to approximate every
continuous multivalued function with an arbitrary level of accuracy. Additionally, Hornik
et al. (cited by [29]) proved the network can also approximate the derivatives of f, even
though f is piecewise differentiable only.
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2.10.3 Generalization

Hornik (cited by [29]) proved that a sufficient condition for an universal approximator is
that the output functions of the hidden layer are continuous, bounded and non-constant.
Non-sigmoid functions can also be used, such a Bernstein’s polynomials (bell-shaped).

MLP networks with a single hidden layer are also universal classifiers: it suffices to define a
function f over the input pattern set f(z) =j < x € P; with f: A" — {1,2...k} A" C
R™ compact and P; ... Py a partition of A™.
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2.11 Outliers determination

Given a set of points in an N-dimensional space, an outlier is a point that is “extremely far
away” from the others. More formally,

Definition a): “An outlier is an observation that is at an abnormal distance of the other
values in a random sample of a population” [55].

Other definition takes into account statistical properties of populations:

Definition b): “An outlier is a case (an instance) that does not follow the same model of
the rest of the data and seems to come from another probability distribution” [14].

We will adopt definition a). This definition leaves the opportunity to the analyst to decide
what is considered “abnormal”. On the other hand, the outliers processing (that is, to see
how they will be considered) is necessary: in accordance with [81] “the values that are
abnormally far away from the mean value of the random variable (outliers) can have an
effect when training the network that is out of proportion. This effect can be even worse
if those values are produced by noises. For that reason, it is recommended to remove the
outliers before training”. The determination of outliers from only a single dimension of the
data points (in our case, sales), without regarding the logical relations that the dimensions
have, can lead to poor results, so in this work the Mahalanobis’s distance is suggested.

2.11.1 The Mahalanobis’s distance
2.11.1.1 Introduction

This distance is more adequate than the euclidean one when the spatial distribution of
points are not spherically symmetric, and no special distribution (in a statistical sense) for
the points is required. Intuitively, if the shaded set is the set of available data (see Fig.
2.32), and A and B two points in it, with barycenter u, it is not appropriate to say that,
even if A and B are at the same euclidean distance from g, that they have “equivalent”
positions, because A is in a region with high points density whereas B is not**:

ACCESS

Xog A and B at same
Euclidian distance from center

Figure 2.32

The euclidean distance that is

44Taken from [55]
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d(A, 1) = SN (a; — )

is then replaced by the Mahalanobis’s distance, in such a way that A and B are considered
“equivalents” in the following case:

X, \ A and B at same

-4
Mahalanobis distance from center

B
A

'

V...

X

Figure 2.33

2.11.1.2 Formal definition

Formally, the Mahalanobis’s distance of a vector x = [z, ...z ] to a set of points with mean
= [u1,....,un] and covariance matrix S is defined by

Du(x) = v/ (x = p)"S71(x — p)

If the covariance matrix equals the identity, the Mahalanobis’s distance reduces to the
euclidean one.

Intuitively, this distance is the “normalized” one between the point in question and and the
rest of the points.

Mahalanobis used it for the first time to identify similarities in skulls from certain charac-
teristics measurements [57].

Application

In this work we will apply the previous concept of outlier to the distance values Dj,; ob-
tained for each point: we replace the values {Vi, Vs, ...} by {Dp(V1), Dpr(V)...} for the
determination of outliers, using all the dimensions (temperature, relative humidity, etc.).
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2.12 Used tools

Different software products were used. Therefore, a study of the state of the art of the
software tools needed in order to execute all the tasks of this project was performed. Some
common requirements to all of them were to be:

1. Adequate to work in stand alone Intel (PC) platforms, under Windows 7 operating
system (optionally Linux), 32 bits.

2. Stable products: not beta versions or prototypes. It was pretended to have contact
with mature tools within the market.

3. Updated software: that the latest version was as updated as possible, and the product
should have support/updates

4. Commonly used products in the industry

5. Available for its use as a licenced copy, at least of an earlier version, and to have demos
of its last updates; this requirement was excluding

6. For the neural network software further characteristics were required:

(a) present features that drive us to study in depth the theory of artificial neural
networks
(b) present a graphical interface with a network design assistance or help (optional)

(c) be designed by well known research teams in the field (the underlying algorithms
hence have a solid theoretical background)

(d) allow the largest variety of topologies and learning rules, mainly those appropriate
for time series prediction.

Here we did not address considerations that usually are made when software is acquired:

1. licensing costs

2. number of previous installations: we only consider the product maturity, possibly
related with the number of installations (a product in its fifth release is probable to
have been installed more times than other with the same purpose but in its second
version released).

3. company ‘s/organization’s size (relevance) that released the software, giving an idea
of the support in a future (if the company /organization will eventually exist or not)

4. portability to other hardware and software platforms
5. language of the user interface (English or Spanish)
6. issues related with security and product access

7. ability to cope with unexpected failures (blackouts, etc.)

We classified the used software in auxiliary tools (all the accessory software such as text
processors and others) and the neural network software itself.
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2.12.1 Auxiliary tools

Regarding the previous considerations, we chose:

1. Microsoft Excel 2010 for handling and processing spreadsheets.

2. IyX 2.0.50 and Jabref 2.8.10for the writing of this document and the bibliography
management.

3. SPSS ver. 11.0 and Statistica ver. 6.0 for the management of statistical data and
simulation analysis. After some tests, Statistica was chosen regarding its additional
functionalities and graphic interface.

4. TISEAN, VRA, TSTOOL and DATAPLORE to handle the time series. The first three
product are free-ware, and the last provides a demo version. TSTOOL is command line
oriented and operates in Matlab. VRA and DATAPLORE provide very good graphical
interfaces, while TISEAN has a command line interface and has no graphics. Some of
these tools are described in [7].

2.12.2 Neural networks software

We distinguish between simulators and development frameworks.

2.12.2.1 Simulators

They are software applications that simulate the behavior of artificial or natural neural
networks (that is, there are pre-set network models within the tool). They can be classified
into research simulators, data analysis simulators or simulators oriented to teaching the
theory of neural networks.

e Research simulators

These programs allow us to research the properties of neural networks through simula-
tion. Among the most common simulators we have the Stuttgart Neural Network Simulator
(SNNS), Emergent, JavaNNS and Neural Lab. Sometimes, simulation is the only possibility:
in the case of biological neural networks, the only possible approach is this one. In that case
physical, chemical or biological properties of neural tissues are simulated by means of tools
like Neuron, GENESIS, NEST and Brian. Other simulators are XNBC and BNN Toolbox
for MATLAB.

e Simulators for data analysis

A key difference with the previously mentioned simulators is that data analysis simulators
primarily focus on data mining and prediction; they tend to have preprocessing functional-
ities. Most of these simulators use either back-propagation networks or self-organized maps
as main topologies. They present the advantage that they are relatively easy to use, and
have in contrast their limited capacities. Some of these simulators can be integrated with
other computational environments such as Microsoft Excel.

e Simulators for teaching neural networks
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The first simulators that did not require programming skills for its use was the Parallel
Distributed Processing (PDP), that appeared in 1986-1987, fact that encouraged several
researchers from different fields to use it. This simulator evolved and currently is known
as Emergent. By 1997 the tLearn package was released, with the idea of to return to a
small and simple simulator for novice users. This tool has not been updated since 1999.
Last, Basic Prop, launched in 2011, is a simulator distributed as a neutral platform (.JAR)
providing most of the functionalities offered by tLearn.

2.12.2.2 Development environments

The development environments for neural networks differentiate from the previously men-
tioned software in the sense that a) they help to develop own user networks and b) they
support neural networks deployment out of the development environment (for instance, gen-
erating a .dll module that reads a file and performs a classification or prediction from the
read data). We can find two types of such environments:

e Component-based environments

In this kind of environment the neural network is built by connecting adaptive filters which
allows a great flexibility, since network and user components can be built as well. In some
cases this allows to work with both adaptive and non-adaptive filters simultaneously. The
data flow is controlled by a control system that is exchangeable, as well as the learning
algorithms. These environments allow the development in environments such as .NET and
Java, even in other platforms such as embedded systems. Examples of such environments
are Peltarion’s Synapse, NeuroSolutions from NeuroDimension and Neuro Laboratory of
Scientific Software. As free and open source instances Encog and Neuroph can be cited.

A drawback of these environments is that they are much more complex than simulators,
hence require higher learning effort.

e Customizable environments

These environments are based on programming libraries of different languages (typically
Java and C++) that contain the neural network functionalities and that must be used
through the adequate programming.

2.12.2.3 Standards

In order to share network models between distinct applications an XML-based language has
been developed, called Predictive Model Markup Language (PMML). It provides a way to
define and share neural models from different applications (obviously, PMML compliant).
Its users may develop models within a certain platform and then use it in another one to
view, evaluate or analyze it. Some of the products that use it are:

e R: produces PMML for neural networks and other "machine learning” models

e SAS Enterprise Miner: produces PMML for several data mining models, including
neural networks.

e SPSS: produces PMML for neural networks.

e STATISTICA: produces PMML for neural networks, traditional statistical models and
data mining.
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2.12.2.4 Tools analyzed

Concretely, we evaluated several tools for network simulation from the multiple existent in
the market and chose NeuroSolutions ver. 6.0. We will describe the main features found on
each one of them:

ECANSE (Environment for Computer Aided Neural Software Engineering).

Developed by Siemens (Austria). Its most relevant features include:

1. ISO9001 certified
2. Uses chaos theory for non-linear analysis
3. Includes genetic algorithms and fuzzy logic

4. Supports several topologies, such as MLPs, Hopfield networks and others.

While it is an industrially interesting product, it has been discarded since its demo version
(the only available) stores only 15 objects, and the latest product version was released in
march /98, for Windows NT. Furthermore, the user’s interface is not appealing.

EXPO/NeuralNet

Developed by Leading Market Technologies Inc., this product is highly oriented to time
series, including a special interface for different sources of online information (Reuters,
Bloomberg, etc.). This product has a free version for students. We have tested the free
version and determined that even though it is fully dedicated to time series it practically
does not allow to specify the network design to be used.

Matlab and its Neural Network Toolbozx.

Its design interface is poor. Furthermore, the only available error functions are derived
from the MSE, not being able to choose L-r norms. The non-stochastic recurrent networks
supported include only the Elman’s and no other option. It supports feedforward networks,
RBF networks, self-organized maps and dynamic networks as well.

NeuroShell

A product from Ward Systems Group Inc. developed for prediction. It uses two basic meth-
ods: neural networks and a combination of genetic algorithms and statistical estimation. It
can provide a diagnostic of the importance of each input element (sensibility analysis). It
has been discarded, since we could not access even to a demo version.

Adaptive Logic Network

It permits to develop supervised learning (in that case the only error function is the L2
distance) or hebbian. An ALN network is a special kind designed for a basic high-speed
classification (assign to a pattern class).

Attrasoft

Developed by Attrasoft, Attrasoft Boltzmann Machine (ABM) is a product that permits to
simulate Hopfield and Boltzmann networks. It was thought for pattern determination and
classification®®. Its design is not prediction-oriented and the number of possible topologies
is limited as well. Last, a demo was not available. Other prediction-oriented products are
Predictor and PredictorPro, but they are discontinued.

PREVia

45Given a portion of the pattern and a class where it is, determine the rest of it.
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Developed by Elseware S.A., this product was designed for time series prediction. It pro-
vides an interactive environment for model development. Even though the company still
(theoretically) supports this product, we found the documentation of the evaluated version
dates from 1996 and its web page inside the company (Elseware) does not exist any more,
so we suspect this product has been discontinued.

NeuroSolutions

Developed by Neuro Dimensions Inc., its interface is based on icons, from which the network
can be modularly constructed. Additionally, it has an available trial version. The devel-
opment credits are in part for José Principe and Kurt Lefebvre, known researchers in the
field of neural networks. It presents a nice graphical interface and generates C++ code (not
in all versions), and permits a wide variety of topologies: MLPs, RBFs, Jordan and Elman
networks, Hopfield, Kohonen, and others. This product is currently in its version number
6, and it is stable. Furthermore, there is a free version for students, distributed with the
book entitled “Adaptive Neural Systems: Fundamentals through simulations”. Regarding
all these elements, NeuroSolutions was the simulation tool here chosen.

2.12.2.5 Free software tools

In this paragraph we would like to point-out there is a wide variety of free software tools
in the market, that cannot be classified into the previous categories. We will mention here
some of them [1]:

e Neuroph is a Java-based framework that can be used to develop standard neural
network architectures.

e Fast Artificial Neural Network Library (FANN) implements multilayer neural
networks in C. It is multi-platform, versatile and easy to use. It has adaptations for
C++, PHP, PERL, etc.

o ffnet es a neural network solution for Python. it has some interesting features such as
arbitrary connectivity, automatic data normalization and network export to Fortran,
among others.

e Scene is a visual framework that use neural networks and fuzzy classification rules.
e FACON is a package designed for optimization and neural networks based on Scilab.

e Java Data Mining Package (JDMP) is alibrary that provides methods to analyze
data via machine learning algorithms (e.g. clustering, classification, graphical models,
neural networks, Bayesian networks, etc.).

e Icon Sciengy RPF! is a Windows application for data mining with self-organized
networks. It also allows time series prediction.

e OpenAIL [Open Artificial Intelligence Library]. is a library that provides a
toolbox with algorithms used in artificial intelligence (for neural networks, genetic
algorithms and others).

e OpenNN [Open Neural Networks Library]. OpenNN is an open source class
library written in C++ that implements neural networks.

e Recognic Is a project that tries to construct high-scale distributed neural networks,
used for pattern recognition of time series (such as the ones found in natural language,
music and video).
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e Calamari is a collection of Java APIs created to implement genetic algorithms, neural
networks and vehicle simulation.

e jJFANZ2 Is a project (jJFAN successor) that tries to develop a Java API to use a neuro-
fuzzy network called FAN (Free Associative Neurons).

e Amanda Neural Network Project

e Soft-Comuting Library is a set of libraries written in C that include neural net-
works, evolutionary programming, fuzzy systems, etc.

To conclude, the box in the APPENDIX (based on another similar from Colorado University
[18]) shows additional features.



Chapter 3

Case study: Gas sales prediction

In this chapter some studies and experiments performed using the time series of the weekly
bottled liquefied propane gas' sales, and the models designed to predict and dynamically
reconstruct this time series are described. Firstly, preliminary experiments are detailed in
order to determine some underlying characteristics, such as autocorrelation, stationarity
and others. Then, the results obtained with the network models mentioned in the literature
as the most adequate for time series prediction (such as TLFNs and recurrent networks)
are presented and they are compared with the ones derived from classical architectures such
as the multilayer perceptrons (MLPs). Finally, the results produced by different networks
committees are presented [55], closing the chapter with an analysis and discussion of the
results.

3.1 Data analysis

3.1.1 Statistical study

Since the network design will be highly affected by the underlying relationships of the data,
we performed several statistical tests in order to understand them.

Intuitively it is known that:

1. bottled gas is primarily used as a fuel for heat generation (that is, for heating).

2. gas sales depend on the atmospheric temperature (when it is hot, sales go down, and
the clients not only stop buying but also try to minimize the usage of heat sources;
when it is cold, sales increase), as well as other climatic variables (wind, rain, aspect
of the sky, etc.).

3. the sales in a week depends on the sales of previous weeks.

4. in certain weeks of a month, there is a tendency to sell less (the last week) and in
others more (in the second, where people generally receive their salaries).

5. the gas price increases directly impact the sales in the previous and following weeks.

n the rest of this work we will refer to the “bottled liquefied propane gas” more briefly as “gas”
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The available data is a set of n-tuples (date, minimum daily temperature, peak daily tem-
perature, relative daily humidity, daily rains, daily average of the wind velocity, heliophany?,
gas sales (in liters) for the day), where the temperatures are registered at the INIA’s station
Las Brujas®. There were daily gas sales records from February 1996 until week number
23/2012, even though for an adequate model determination we used the data until week
45/2011 and from weeks 46/2011 to 23/2012 for validation. Due to the dispersion of some
data during several years (in 1996 there were only 100 days with information), we decided to
work with the available data provided by a corporate data-warehouse, which is considered
reliable and did not present discontinuities over the time, so the information was available
at the level of days (daily sales) and at level of weeks, months and years, from may 1999 to
the date. The determination of the data set to be used (the ones from the data-warehouse
or the others with daily sales since February/96) required to develop special tests with
different networks (tests omitted here) to analyze the resulting errors. These tests were
time-consuming and the decision was by no means immediate. The data were used at the
level of weeks trying to smooth the variations present in the daily sales. From the daily
data the weekly averages were determined. Additionally, the information of the dates where
occurs an increase in the price of gas cylinder was available as well.

In the following paragraphs we describe tests in order to complete the knowledge about the
set of existent inter-dependencies.

2Heliophany represents the hours of sunlight, and it is related with the fact that the instrument to measure
it, the heliophanograph, records the time between dawn and dusk in which receives direct sun radiation.
The presence of clouds determines whether the radiation perceived by the instrument will be diffuse or not,
possibly cutting the register in the affirmative case. Therefore, although there is enough available energy,
its density is not enough to be registered. In other words, it is an indicator of the number of clouds in the
sky. A day with poor daylight seems to encourage the use of heating, when other variables are the same.
3INTA is the acronym of : “Instituto Nacional de Investigaciones Agrarias”,
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3.1.1.1 Periodicity

Weekly gas sales (in liters) from September/2000 are shown in Figure 3.10(the z axis rep-
resents weeks), being in blue (light grey) the linear tendency.
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Fig. 3.1 Weekly sales of bottled gas (in m?)

The graphic with moving averages of 27 weeks (black line) shows a periodicity of about 52
weeks in the series.

Additionally, it seems to exist a mild tendency to consume more gas, if the slope of the
linear regression for week sales is considered, shown in Figure 3.1.

If we study the linear correlations between monthly sales from different years, we will confirm
there is stationarity in the data, and the period is around 52 weeks (this is, one year). For
example, the linear correlation betweenweekly sales gives us:

Years | Correlation
2001-2002 0.51
2002-2003 0.65
2003-2004 0.77

whereas the correlations between monthly sales (comparing one month with respect to the
same month of the previous year) it yields:

2000-2001  0.90
2001-2002  0.88
2000-2002  0.87

In order to check this periodicity and find others, we studied the autocorrelation for weekly
sales during the period, and we obtained the results from Table 3.1.1.

Both in Table 3.1.10and Figure 3.20 we have distinct lags () in the vertical axis, and the
horizontal the correlation between the series and the delayed series with a delay of i weeks.
Again, we can appreciate a periodicity of around 50 weeks.
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Table 3.1.1: Correlations between the series and the lagged series

Lags Autocorrel. Lags Autocorrel. Lags Autocorrel.
1 0.752879 76 0.049008 151 -0.278802
2 0.634452 77 0.049008 152 -0.263451
3 0.634452 78 0.097857 153 -0.263451
4 0.600686 79 0.097857 154 -0.25766
5 0.600686 80 0.122335 155 -0.25766
6 0.586435 81 0.122335 156 -0.25201
7 0.586435 82 0.212874 157 -0.25201
8 0.550584 83 0.212874 158 -0.263028
9 0.550584 84 0.277901 159 -0.263028

10 0.45983 85 0.277901 160 -0.260536
11 0.45983 86 0.314865 161 -0.260536
12 0.398416 87 0.314865 162 -0.230249
13 0.398416 88 0.334148 163 -0.230249
14 0.386852 89 0.334148 164 -0.226067
15 0.386852 90 0.378154 165 -0.226067
16 0.324083 91 0.378154 166 -0.251682
17 0.324083 92 0.463978 167 -0.251682
18 0.243134 93 0.463978 168 -0.232207
19 0.243134 94 0.50147 169 -0.232207
20 0.162037 95 0.50147 170 -0.182431
21 0.162037 96 0.511494 171 -0.182431
22 0.127499 97 0.511494 172 -0.142942
23 0.127499 98 0.526375 173 -0.142942
24 0.079797 99 0.526375 174 -0.120443
25 0.079797 100 0.551903 175 -0.120443
26 0.005726 101 0.551903 176 -0.120591
27 0.005726 102 0.595384 177 -0.120591
28 -0.076934 103 0.595384 178 -0.059243
29 -0.076934 104 0.559504 179 -0.059243
30 -0.135389 105 0.559504 180 0.006193
31 -0.135389 106 0.506891 181 0.006193
32 -0.151108 107 0.506891 182 0.048404
33 -0.151108 108 0.523388 183 0.048404
34 -0.177557 109 0.523388 184 0.051851
35 -0.177557 110 0.485985 185 0.051851
36 -0.212317 111 0.485985 186 0.097884
37 -0.212317 112 0.475039 187 0.097884
38 -0.22673 113 0.475039 188 0.156828
39 -0.22673 114 0.390929 189 0.156828
40 -0.242474 115 0.390929 190 0.211243
41 -0.242474 116 0.345113 191 0.211243
42 -0.244379 117 0.345113 192 0.241186
43 -0.244379 118 0.315587 193 0.241186
44 -0.274942 119 0.315587 194 0.264273
45 -0.274942 120 0.263605 195 0.264273
46 -0.305592 121 0.263605 196 0.331158
47 -0.305592 122 0.188816 197 0.331158
48 -0.297054 123 0.188816 198 0.368145
49 -0.297054 124 0.11152 199 0.368145
50 -0.281425 125 0.11152 200 0.38142
51 -0.281425 126 0.050646 201 0.38142
52 -0.280846 127 0.050646 202 0.415255
53 -0.280846 128 0.02346 203 0.415255
54 -0.2919 129 0.02346 204 0.420624
55 -0.2919 130 -0.029474 205 0.420624
56 -0.28612 131 -0.029474 206 0.426533
57 -0.28612 132 -0.070272 207 0.426533
58 -0.255216 133 -0.070272 208 0.421202
59 -0.255216 134 -0.124083 209 0.421202
60 -0.245878 135 -0.124083 210 0.394999
61 -0.245878 136 -0.130937 211 0.394999
62 -0.242029 137 -0.130937 212 0.374965
63 -0.242029 138 -0.158848 213 0.374965
64 -0.209794 139 -0.158848 214 0.353318
65 -0.209794 140 -0.198008 215 0.353318
66 -0.15582 141 -0.198008 216 0.321105
67 -0.15582 142 -0.232962 217 0.321105
68 -0.09715 143 -0.232962 218 0.286001
69 -0.09715 144 -0.227006 219 0.286001
70 -0.096469 145 -0.227006 220 0.237502
71 -0.096469 146 -0.235363 221 0.237502
72 -0.075632 147 -0.235363

73 -0.075632 148 -0.25569

74 -0.015313 149 -0.25569

75 -0.015313 150 -0.278802
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Figure 3.2

We can notice that beyond 3 to 5 weeks back in time, the influence of the weekly sales in
the current week’s ones is extremely small. This hypothesis will be confirmed in 2.9.4.5.

3.1.1.2 Specific correlations of the weekly sales

Based on the daily sales provided by the data-warehouse, we grouped the information (sales,
temperature and corresponding data) into 7 consecutive days. We obtained the following
correlations between the sum of the sales and the Maximum-Minimum temperatures:

p(V,T) p(V,t — Min) p(V, T —1) p(V,t—Min—1) p(V, T —2) p(V,t — Min — 2)
-0.68 -0.38 -0.66 -0.34 -0.57 -0.27
where:

e V is the sum of the sales in the group of 7 days
e t-Min is the minimum temperature averaged in the group of 7 days

e T is the maximum temperature averaged over the group of 7 days
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e t-Min-1 is the minimum temperature averaged in the group of 7 prevoius days to the
group of 7 days at hand

e T-1 is the maximum temperature averaged over the group of 7 previous to the group
of 7 days at hand

e T-2 maximum temperature averaged over the group of 7 previous days before the
previous group

e t-Min-2 is the minimum temperature averaged over the group of 7 previous days
before the previous group

Studying these correlations we decided to use the maximum averaged temperature as our
temperature of reference.

3.1.1.3 Detrending (tendency deletion)

The literature (for instance, [15]) points-out the importance of to perform the “detrending”
(tendency deletion) of the time series in order to improve the performance of a MLP. Such a
tendency can be linear, in the general case, or given by another function type (a polynomial
with degree higher than two [15]). We will consider from now on only the linear trend.
Since the slope of a linear tendency in our data is quite soft*, the mismatches® between
training data and testing will be small, so, as a first stage, we tried to train the networks
without deleting such data tendency. Other reasons that explain why detrending was not
implemented include:

1. we tried to evaluate the learning capacities from different topologies, taking the original
series or a sub-series from it (as when the Takens-Mané theorem is applied), performing
the least preprocessing possible to the data.

2. the network is used by a user, and, if a detrending was introduced (using even a
function as simple as the linear one), the reconstruction of the prediction (this is, to
undo the calculations made for the tendency deletion to get the final prediction) would
be something tricky

We trained an MLP with inputs V-3 to predict V, 20 hidden neurons and the original
training series, as an empirical checkup for the irrelevance of detrending. The obtained
results produced an error %Error CV of around 45%. The same happened when the number
of hidden neurons was genetically determined. The we tried with the detrended series
(subtracting the straight line to the series, found solving minimum squares) with remarkably
worse results (errors higher than 90%), even selecting genetically the number of neurons from
the hidden layer. This suggests that perhaps the periodic components for the series should
be discarded more than its tendency.

3.1.2 Model Discussion

Some questions concerning the system model to be adopted were:

4However, the data seem to have a double periodicity (one is with a period of one year, and the other
with period of 12 years), so a more sophisticated method avoiding cyclic components should be used (for
instance, the Fast Fourier Transform), that for extension reasons we do not include it here.

5In the sense that the testing data have a linear tendency clearly different than the training data,
essentially because the different times considered and the respective changes in the market.
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e Deterministic or stochastic?

The reality to model is parially governed by physical laws and relationships that are deter-
ministic (for instance, “in winter it “s cold”) but there are another factors involved that due
to their complexity can be only modeled by stochastic processes (for example, the customers
reaction when the gas price is increased). Therefore, the model should include a stochastic
component.

e The real system is completely random as a whole or as a stochastic dynamical system?

If we consider the evolution of the weekly gas sales we see its seems to correspond to a
process with a deterministic component and another stochastic one. The randomness is
constrained (in the sense that not all transitions are possible). Therefore, the system will be
either random (with constraints in the possible transitions) or stochastic dynamical. That
real system gives rise to a discrete random process of weekly sales P = {v(n), n=1,2...}

e How can we model the system and the process P = {v(n) n=1,2...} ?

We know, from the study of the series autocorrelation and the AMI, that there is no signifi-
cant correlation in the sales from weeks 7 and j provided 5 > i+ 3. Besides, there is a strong
dependence between a certain week and the next one (intuitive by our empirical knowledge
of the reality: if someone buys a gas cylinder, it is uncommon that he/she buys another one
in the next week). These observations lead us to think about a third-order Markov chain,
whose states would be represented by couples (sales, weeks), or terns (sales, weeks, price
increase). Other approach could be a third-order discrete Hidden Markov Model (HMM,
see [45]), with constraints, whose states are (temperature, week) or (temperature, week,
price increase) and outputs (observations) the sales. Since we take the sales as a non-
negative integer, that cannot be higher than the maximum storage of the selling company,
the number of states is finite. The same consideration holds for temperature, for example,
with a decimal digit of accuracy. However, these alternatives require to define the transition
probabilities between the states, which is impossible using the scarce information available.
The same conclusion holds when we consider a stochastic network model. Finally, the most
important consideration is that, even in the case we had enough information, in this work
we intend to use the neural networks approach, so the model of the reality could be repre-
sented by a neural network, hence discarding HMMs and Markov chains. Having in mind
the previous comments concerning stochastic networks, our network will be non-stochastic.
As a consequence, given that intuitively we should include the randomness in the model
because the real systems has it, and considering the previously mentioned data scarcity, we
model the real system as a stochastic dynamical system.

More specifically, the chosen model for the real system is:

or (temperature, rain, heliophany,..., week)
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The system state in step n + 1, x(n + 1) is given by
x(n+1) =Flz(n),x(n —1),..x(n —T),u(n + 1),u(n)..u(n — T)]+e(n)

being F and € defined as in 2.9.4.5 (both with integer components) and u(n) the inputs

(average week temperatures and other atmospheric variables) at step (week) n.

The states are represented by the tern (sales, week, temperature) or quadruple (sales, week,
temperature, price increase). In some cases (for certain network models) we will consider the
system such that the states are represented by n-tuples with higher dimension: (sales, week,
temperature, Rel. humidity, heliophany...) or (sales, week, price increase, Rel. humidity,
heliophany...).

The output variable from which we have measurements are the sales, v, so:

v(n+1) = plvg—r(n), to-7(n),a-1-5(n), s 1-7(n)] + 6(n)

with

- v, t, a, s, n the sales, mazximum week temperatures, averaged mazximum temperature,
price increase and week number respectively. This generalizes to the case of using the other
atmospheric variables.

-Vp_r =[v(n—z),v(n —x —1),...v(n — 7)] and analogously for a,_, and s,_,

- 8(n) aninteger random variable.

We assume that there is no noise in the temperature values, so the whole randomness is
attributed to the “shift” e(n) that takes a finite number of different integer values, and makes
the system to be an IFS (see 2.9.1 on page 88).

This IFS will have a signal subspace from which we must determine its dimension and we
also need to find the optimal 7.

On the other hand, this dynamical system will be represented by means of a neural network
[10]. We will use several neural network topologies: all of them non-stochastic. Among
these networks, the dynamical ones will be those such that each one will have in turn an
associated state-space model. Let us consider for example the Jordan network, in Figure
3.3. In such network we assume the input layer does not perform any process over the
data U and that Fc¢, F1, F2 and F3 are (multivalued) output functions represented by the
context layer, the first hidden layer, second hidden layer and output layer respectively and
7 is the time constant, as described in 2.4 on page 58. This network, once trained, will have
a state-space defined by states X* = Xc and its dynamics will be governed by:

Xi(n) = U(n)

X1(n) = F1[WcXe(n) + WiXi(n)]

X2(n) = F2[X1(n)] (Eq. 3.1)
Y (n) = F3[X2(n)]

Xe(n —I_— 1) = Fe[rXe(n) + Y (n)]



3.1. DATA ANALYSIS 127

CONTEXT
NEURONS :

O 4O O

FIRST

OUTPUT
HIDDEN SECOND LAYER
LAYER HIDDEN

::> : LAYER

INPUT
NEURONS

Figure 3.3

Additionally, the weights are modified during the training stage, in accordance with the
pairs (U, d), so in this case the weights for training step n , W(n), together with Xx, would
represent the system state at step n and the system dynamics given by Eq 3.10plus the
associated with a weight update rule. The system order will then be dimX% = dimXc +
dimW.

3.1.3 Other studies
3.1.3.1 Optimal delay

In order to find the optimal delay of a time series we used the “Average Mutual Information”
(AMI) of the series respect to itself. This method can be used for both the series coming
from deterministic or stochastic systems, since its proposal does not make any reference to
the nature of the system, even though in the stochastic case the obtained results are only
valid for the random process realization under study. We performed a study of AMI for the
series using VRA tool, and we obtained the results from Figure 3.4:



128 CHAPTER 3. CASE STUDY

Average Mutual Information =]
Options
First data point 1 4 L Max time lag 33 < »
Last data point 582 4 C Detail U
ess more
Results
~2
251
w11
£
o5/
5
2 L
12345678 9101112131415161718 192021 222324 25262728 293031 3233
Time Lag (units)
The first AMI minimum was found attime lag 2
|§ & Calculate mutual information H I Save Chart | B Save Data | & Print Chart | x Cancel ‘ ? Help ‘
Figure 3.4

We can observe that the tools defines a parameter called “detail” that refers to the resolution
to draw the AMI, and hence the accuracy to express the first minimum (and therefore, the
accuracy of the optimal delay). In products such as TISEAN or DATAPLORE, instead
of giving the detail, it is required to make an explicit enumeration of the used parameters
in the respective algorithms, e. g. for the case of TISEAN, the number of boxes to use.
The optimal delay is 3 for all but some detail levels. Indeed, when the detail is reduced,
the optimal delay is turned to 2 (the VRA tool suggests that when the minimum detail
is chosen, the optimal delay can change). These values agree with the statistical studies
previously performed: the correlation for sales is no further than three weeks.

3.1.3.2 Embedding dimension

Since the data is considered to come from a dynamical system, in order to minimize the
network input we studied certain parameters, such as the embedding dimension (see 2.9 on
page 88).

Based on the fact that the series is nearly periodic with a period of 52 weeks, the signal
subspace dimension should be 2 < m < 52 (see 2.9 on page 88). Provided there exist
a dynamic noise, that dimension must be added to the shift space dimension, and since
the possible values for the noise is finite (so it has null dimension), we conclude that the
possible dimensions for the embedding are the same that if the system were deterministic.
Therefore, we can find the embedding dimension m with the FNN method, as if the system
were deterministic.

DATAPLORE, in its demo version, produced a value of m = 2 with a percentage of false
nearest neighbors very close to 0% when d = 2 and 3.

For d = 2, the resulting FNN plot was:
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For d = 3 the same plot was obtained. The parameters introduced were: maximum embed-
ding dimension = 15, distance tolerance (RTOL) = 10.0 and Loneliness tolerance (ATOL)
= 2.0.

It is worth to point-out that in the present work we only consider the global embedding
dimension since:

e we do not have a software that finds the local dimension dj,

e the results with the global dimension m = dg are valid (we do not loose information
about the embedding when we work with higher dimensions than dj,

e the value for dp was dg < 3, so we do not have many choices for d; and hence using
drinstead of dg would not imply, in absolute terms, a great dimensional reduction.

We carried-out tests with m = 2 and m = 3 training a MLP network of 11 hidden neurons
in a single layer, with d = 2 and d = 3. The best results were obtained for m = 2, so we
considered this is the correct dimension:

e m = 3,d = 2 Inputs V(i), V(i-2), V(i-4) predicting V(i+1), with 20 trainings. The
minimum %Error CV was 38%.

e m = 3,d = 3 Inputs V(i), V(i-3), V(i-6) predicting V(i+1), with 20 trainings. The
minimum %Error CV was 40%.

e m = 2,d = 3 Inputs V(i), V(i-3) predicting V(i+1), with 20 trainings. The minimum
%Error CV was 45%.

e m =2,d =2 Inputs V(i), V(i-2) predicting V(i+1), with 20 trainings. The minimum
%Error CV was 29%.

As a consequence, applying the Takens-Maifié’s theorem (for the stochastic case), we can
predict ;41 from {x;,2;_q4,...%;_(m—-1)a}. Replacing with m = 2, we conclude an MLP
that predicts the time series for a single step (x;41) should have as inputs
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{Zl?i, ZL‘i_3} ford =3
{JJ,’,JJ,'_Q} for d =2

being x; the gas sales for week number ¢, and as an output, an estimation for x;41.

This approximation can always be implemented by a MLP network, due to the universal
approximation property of these networks.

3.1.3.3 “Recurrence plot” (RP) of the time series

The tool VRA finds the euclidean distances between the vectors (the distance between all
pairs of vectors {z;, x;_4}) and express them with a color scale (shown in the upper right
side of the graphic). In the axis the corresponding index i is represented. The obtained
graphic is called a “recurrence plot”. The color distribution and pattern give us an idea
that there exists a certain determinism in the series generator.

We performed a RP of the series by means of the VRA tool for the optimal delay values
d =2 and d = 3 and embedding dimension m = 2, yielding the results shown in Figure 3.6:
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Considering the points distribution in the plane (graphic), that are uniformly disperse in
patterns in regions that escape from the identity line, we can conclude the process is sta-
tionary.

3.1.3.4 Entropies and problem resolvability

Following the approach from [81] we try to determine whether the problem has solution or
not, precisely, whether there exists a network able to learn the relation Inputs — Outputs,
from the input and output entropies.

The relation can be learned by a network whenever

T outputs) iscloseto 0

I(inputs, outputs)

H (outputs)

H (outputs|inputs)
iscloseto 1

being H () the entropy, H (e |e) the conditional entropy and I(e, e) the mutual information.

Although these conditions are simple, we could not determine any software able to estimate
the mutual information directly, unless we manually calculate it (through an ad hoc proce-
dure) from the available data. Additionally, we faced the same problem as we encountered
when we intended to use a Markov chain: we need a quantity of data that is not available.
Therefore, these aspect of the problem could not be directly elucidated, remaining the pos-
sibility to prove the resolvability in a constructive way, this is, finding an adequate network
model.

3.1.3.5 Predictability of the gas sales sequence

Regarding the volumes of gas sales as a time series, we wonder whether the corresponding
dynamical system is either chaotic or not. For that purpose we used the routines of the
TISEAN package, specially the Lyap spec, from which we could find the spectrum of Lya-
punov exponents (see 2.9 on page 88). We obtained for embedding dimensions of m = 2
and 3:

(A1, A2]

—1.591010e — 001  —8.755421e — 001

In all cases the maximum Lyapunov exponent Ay 4x was negative (see 2.9 on page 88). This
means we are not facing the problems mentioned in 2.9.3.2 on page 98 when the Sano and
Sawada s algorithm is used (by TISEAN) with the stochastic system and that the dynamical
system is non-chaotic (at least according to the realization of the process P under study)
but stochastic. Additionally, given that it is close to zero, it evidences a cyclic behavior of
the system. We must point-out that while the dynamical system is chaotic, it is usually
said that the series of observations for the system is chaotic. Briefly, that the time series is
chaotic. The fact that the sum of Lyapunov exponents yields a negative value is consistent
with the fact that it is a real system.

It is worth to notice that in order to determine the Lyapunov exponents we have applied
the algorithms corresponding to a deterministic dynamical system, with no regards of the
stochastic part of it. This has been done previously by other researchers ([37][75][88]) even
though it is not completely correct due to the random component. Another suggested idea
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is to estimate the Kullback-Leibler distance between the probability density functions for
the system values obtained from two initially close states x(¢) and y(¢). This distance has
a similar meaning to that of the obtained Lyapunov exponents (in the sense of convergence
or divergence of two trajectories) [77].

3.2 Tests and Experimental results

Tests were carried out for different network models and an analysis of the prediction quality
was developed in the open loop mode (by means of the error evaluation in one-step predic-
tions, averaging over the cross validation set and over the weeks called “production weeks”
32 to 45/2011) and of stability (long-term validation) in the closed loop mode, by means
of the synthetic series generated by iterated predictions with each model. The data was
divided into three sets:

e training set = weeks until 31/2011. From that set the cross validation samples were
automatically extracted.

e production set = weeks 32 to 45/2011 from which the weighting coefficients for the
networks committees were computed.

e final set = weeks 46/2011 to 23/2012 from which the final tests were carried out
comparing the models.

Additionally, since BP algorithm develops a gradient-based search starting from a random
point on the error surface, the training stage for each network was performed at least seven
times, and the weights and learning rates were chosen as the ones that produced the best
results (lowest percentage error). The training mode was always incremental, justified by
its advantages over the batch one.

Tests were carried out with total and partially recurrent networks, Jordan networks, TLFNs
and MLPs networks. The networks committees were essayed as well (“ensembles” [55]) with
different weights. By reasons of extension, we do not included experiments with radial base
functions, even though they have also used for time series prediction (for example, [26], [89],
[47]).

3.2.1 Data processing

For training purposes, the data must be encoded adequately. This process is called prepro-
cessing. Analogously, it can be necessary some data transformation to the network output
data before it can be useful: this constitutes the post-processing. During a preprocessing
stage, many authors distinguish between encoding and re-encoding. In the encoding process,
the data is converted into a representation such that can be useful to train the network,
whereas in re-encoding we just work with the raw encoded data or we try to highlight im-
portant features of them or reduce their dimensionality. The Fourier transform of a time
series is an example of re-encoding [81]. In our case study, since nearly all the data are
numerical, the encoding is rather obvious. Additionally, since one of the goals of this work
is to test the power of the most sophisticated topologies (TLFNs and recurrent networks)
in order to learn the main characteristics of a time series, the preprocessing (related with a
transformation of its values) was minimum.
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3.2.1.1 Preprocessing

Classification of data types The network inputs can be either discrete or intrinsically
continuous. The continuous are:

1. Temperatures (denoted by T+1, T, T-1, ...), winds, precipitations, relative humidity
and heliophany.

2. Volume of sales: denoted by V+1, V, V-1...
On the other hand, the discrete inputs are:

1. Week number (S).

2. Indicator of the existence of a price increase in the current, previous or next week.
However, we encode in such a way that some continuous variables are translated into integers:

1. the gas sales volume in liters as an integer number.

2. the weeks with a number form 1 to 53, to highlight the periodic characteristic of the
series.

3. the indicator of price increase in the gas sales:

if in the current week occurred a price increase, we choose increase = 0
if the current week is previous to one with increase we choose increase = -1

if there is an increase in two weeks, we choose increase — -2

if the week is exactly after one with increase, we choose increase = 1

(d) if there is an increase in more than two weeks, we choose increase = -3
) if the current week is two weeks after an increase, we choose increase = 2

if the current week is more than two weeks after an increase, we choose increase
=3

Observe that the same value is assigned when the price increase occurs three or more
weeks after or before the current week: this means there is no influence of the increases
in the sales (speculative influence with increase of sales before a price increase or sales
reduction after it) in the long-term.

Data representation

Physical representation The training and test data sets were represented in adequate
formats for the chosen simulator (NEUROSOLUTIONS). ASCII files were considered to
work with, formatted in columns, where each variable represents a channel (in the tool
terminology) be either input or output.
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Data normalization The input data were normalized automatically by the software tool
in the following manner:

- for each input variable ¢ it is computed

Amp(i) = [UpBound(i) — LowBound(i)]/[M ax (i) — Min(i)]
Shift(i) = UpBound(i) — Amp(i) * Max(i)

where

e Max(i) is the maximum value found for variable i

e Min(i) is the minimum value found for variable ¢

UpBound(t) is a constant, by default 0.9

LowBound(i) is a constant, by default —0.9

- the jht value of variable 4 is normalized by:

Value(i, j) = Ampl(i) * Value(i, j) + Shift(i)

With this normalization, all values from variable i are now within the range [LowBound(i), UpBound(%)]
which helps avoid neuron saturation during the training phase.

This is a linear scaling, which keeps the original structure of the data: if the values were
uniformly distributed in the universe, the linear scale would be uniformly distributed as
well. If a non-linear transformation were implemented, the "mis-balance" in the training
data would have been magnified, grouping them in more sparse sets [81]. Besides, when
the output data must be presented, the normalized data are denormalized, undoing the
transformation and hence obtaining the output. Due to these denormalizations, in some
experimental results the desired values for the series appear as a decimal number, when
they were originally integer. For instance, 1821053.88 instead of 1821054, as a product of
the propagation of the errors in the normalization-denormalization process.

Finally, LowBound and UpBound should be adequate to the output function to be used. In
the case of hyperbolic tangent the previous values are adequate, but when the logistic curve
is used, we should work with a LowBound positive and close to zero.

Outliers deletion Clasically, outliers are removed in order to “smooth” the data behavior.
However, their removal means a loss of information that can be signaling a fact that is ignored
due to the scarce data about it. In fact, it might be that the information provided by these
outliers were of a paramount importance for the user. If outliers were numerous, a deeper
study of their respective circumstances and of the outliers determination criterion could be
done, in order to understand their subjacent generating causes, and a model specialized in
the processing of the “extreme data” (outliers and neighbors) could be developed.

Two different approaches can be used to determine an outlier.

1) Consider the sales only and define an outlier as sales that “escape” from the “data mass":
we performed a “box and whiskers” plot, retrieving the graphic from Figure 3.7:
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this means that outliers would be sales values greater than 5.0064E6 or smaller than
8.6746E5

The box and whiskers plot is a useful tool to describe the data behavior around the median;
it uses the median, upper and lower quartiles (75th and 25th percentile respectively).

More formally, a value is an outlier if
value > UBV + o.c. * (UBV — LBV) or value < LBV — o.c. x (UBV — LBYV)
where

e UBYV is the upper bound value for the box shown in the previous diagram, in this case
the 75th percentile.

e LBV is the lower bound value, in this case the 25th percentile.

e o.c. is the outlier coefficient. In this case we used 1.5 (the default value for outlier
calculations in STATISTICA). With other coefficients different number of outliers are
obtained; for example with o.c. = 2 a single outlier is obtained, whereas an o.c. < 1.5
would produce more than two outliers. We chose 1.5 since 2 outliers seem an adequate
number of outliers for the available volume of data. Some authors define “moderate
outliers” and “extreme outliers” according whether the factor o.c. used to determine
the outlier is 1.5 or 3 [55]. We are working then with moderate outliers.

To summarize, taking the median as the center and an outlier coefficient o.c. = 1.5 we
can see the outliers as the values above 3.3986FE6 + 1.5  (3.3986E6 — 2.2499E6) or below
2.2499F6 —1.5%(3.3986 £6 — 2.2499F6). Many outliers were detected. Since data are scarce,
we might replace that value for an average of the sales in the contiguous weeks [81].

2) An alternative is to consider the other dimensions that determine the sales (tempera-
ture, heliophany, precipitations, wind velocity, relative humidity) and use the Mahalanobis
distance between each vector (sales, temperature, heliophany, wind, precipitations, relative
humidity) and the respective mean (barycenter):
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(sales, temperature, heliophany, wind, precipitations, relative humidity)

Figure 3.8 presents the graphic with the so-obtained distances, the horizontal line represent-
ing the limit for the distance of a point in order to be considered an outlier:
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= (-1,0791ES6, 4,4794E6)

so the distances such that distance > 3.1182FE6 + 1.5 % (3.1182E6 — 2.822E5) = 7372200
would mean extremely rare combination of sales, temperatures... that might be ignored.
That threshold distance is marked with a solid horizontal line in the previous graphic. The
outliers would be in this case the ones for weeks 99, 513, 516, 564. Specifically:

Week 27/2002 : 7481043
Week 28/2010: 6531135

Week 31/2010: 6636083
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Week 27/2011: 6532075

In a first stage we decided not to remove the outliers and observe the results. Then, for the
best networks, we tried using a deletion of outliers from the series (being replaced by an
average of their adjacent values, in all dimensions). We did not consider for that deletion
the “final values” nor "production values".

Data construction for training and testing The available data about the sales come
from two sources: reports generated by a data-warehouse with the daily billings summarized
at week and month levels, and reports of the the gas sales from the Accounting Department
of the company. In the epochs of higher gas demand, there may be some discrepancies
between these sources (for example because some sales are dispatched at the first time of
the next day, before office hours), while in the rest of the year they match. Additionally,
the data-warehouse is available only since may/1999. Here we decided to use only the data-
warehouse data, since we considered that its information was reliable, because it is used
by the whole Accounting Management Area of the company and ignored the other source.
About the weather information, the data were provided by a meteorological station (“Las
Brujas”). The average temperatures were found taking the temperatures from Monday to
Sunday. This element introduced a difference of around 2.8% in average with respect to
the average of the days on which the company bills gas (Monday-Saturday). This difference
is considered as a noise in the temperature measurement and we ignored it (see 4.2 on
page 171).

Dimensionality reduction Given that the feasible inputs of a MLP might be V, V-1,...
T+1, T, T-1...in order to predict V+1, we decided to apply the Takens-Mané’s theorem to
try to determine the necessary inputs to reconstruct (predict) V+1. Additionally, as a part
of the preprocessing we could wonder which are the most meaningful network inputs, using
for instance principal component analysis (PCA) or a feature extraction technique (see [10],
[36], [81]). Here we did not employ these techniques here. Instead, genetic algorithms were
used for an optimal network design.

3.2.1.2 Post-processing

The only post-processing applied was the data denormalization, which is an automatic
process in our case (as the data normalization is).

3.2.2 Tests for different topologies
3.2.2.1 Architectures and models considered
- We define a sample as a consecutive set of values of the time series, as long as the

trajectory to be learned. An epoch is the presentation of all samples to the network input.

- In all tests carried out we considered the MSE over a set of patterns (for example the sets
from cross validation set) defined as:

YN (di —yi)?
MSE = N

being N the number of samples in the set, d;, y; the desired and output values for the sample
1 respectively.
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- The averaged percentage error was found by

N
100 i — d;
%ET’TOT = W i:E - le‘

where N, i , d and y have the same meaning that for the MSE.

- The MDL was estimated using the following formula:
1
MDL = NLog(MSE) + §kL0g(N)

being k the number of network weights (see 2.7 on page 80) and the logarithms are natural.

- Additionally, in the chosen networks simulator we could not determine, from the existent
documentation and carried out tests, if the same sample set for CV was considered each
time the network was trained, once the CV set is specified a percentage of the training set.
Due to that fact, the MDL over the CV set is not only one MDL into account, but the
network was trained at least seven times and the best MDL was selected (since the model is
the same with the exception of its weights, it is equivalent to choose the one with the lowest
MSE) as the reference for that model.

We always trained using as a stopping criterion the following:

“of after 50 consecutive epochs there is no MSE reduction over the CV set, the
learning phase is stopped”.

Basically, three big classes of networks were tested: multilayer perceptrons, TLFNs (includ-
ing TLRNs) and recurrent networks (such as Jordan/Elman networks). The best model of
each one was determined in terms of %Error in the production set (weeks 32 to 45/2011).
All models were validated according to the rules stated in 3.3 on page 158. Besides, a vot-
ing scheme (“ensemble method”) was defined, in order to get a better prediction from the
individual networks.

The short-term validation criterion was to check whether the averaged prediction error over
the production was higher than 10% or not. The long-term validation was not performed
exhaustively, since the final object of this work is the prediction of the time series and not
the underlying model. By that reason the long-term validation was done, as an illustration
for the perceptron which had produced optimal results. Finally, after the best models were
determined the predictions for the weeks 46/2011 to 23/2012 were performed as the final
evaluation of the prediction quality.

Best results As a first attempt it sounds adequate to choose the network according
to the MDL"(choosing the minimum MDL, see 2.7 on page 80). However, since we are
concerned with the sales predictions at least for one week in the future, no matter the
model complexity, we will choose first counting the number of time-steps with admissible
error predictions (v. g. not higher than 10%) and then using the estimated MDL8. The
best models found were then (for each one of the network classes):

a) for MLPs: the best MLP network is the one with inputs V(i) , V(i-2) that predicts
V(i+1), 25 hidden neurons with two layers (25/2), with no additive noise in the inputs.

"In fact an estimation for the MDL is used instead, automatically found by the simulator, as described
in 3.2.2 on the previous page
8This does not mean the model is considered as valid for prediction, see 3.3 on page 158.
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b) for TLFNs: a TDNN network corresponding with an optimal delay for the series d = 2,
non-focused memory, only V as input and output V+1, with 16 hidden neurons in a single
layer.

¢) for recurrent networks: a Jordan/Elman network with inputs V,S,S-1,V-1, T-1 and output
V-1, with time constant 7 = 0.15 (see 2.1.4.2 on page 32) two hidden layers with 4 and 2
neurons respectively.

d) for voting schemes the best combination is the one that produces the lowest error over
the final data, and is obtained with a = 0.5 using weights computed from the production
data. Specifically, in Table “ERRORS WITH FINAL DATA AND ENSEMBLES" is:

d.a) Ensemble of networks b) and ¢), weighted according to the optimal coefficients suggested
by Bishop [11].

d.b) Idem but the coefficients found using the error variances and o = 0.5 (see 3.2.3.1 on
page 141).

Observe that for a networks ensemble we have no definition for the MDL (at least from the
consulted literature).

The resulting values for these models are summarized in Table “ERRORS SUMMARY”
and “ERRORS WITH FINAL DATA AND ENSEMBLES” (for the meaning of model d),
see 2.1.2 on page 24):

ERRORS SUMMARY

a) b) <)

MDL computed 64.09 81.08 -68.79

over the CV set

% Error over 30.22% 23.35% 20.63%

the CV set

Model d=2, 25/2 25 d—2, memory 4/2 hidden neurons,
hidden neurons in no-focused, 16 Jordan/ Elman as
two layers hidden neurons in described

one layer

Time-steps with 1 2 7

error < 10%

Prediction error | 0.30% 4.40% 8.85%

in a time-step

for week

32/2011

Averaged Error 13.95% 23.12% 13.02%

from week 32 to

45/2011

Maximum Error | 30.64% 28.53% 29.20%

Minimum Error 0.30% 0.26% 1.64%
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ERRORS WITH FINAL DATA AND ENSEMBLES
a) b) c) d)
d.a) | d.b)
MDL found N/A N/A N/A Non- defined Non- de-
over the CV fined
set
% Error over | N/A N/A N/A Non- defined  Non- de-
the CV set fined
Model d=2,25/225 d=2, 4/2 hidden b)+c) and b)+c) con-
hidden no-focused neurons, optimal sidering the
neurons in memory, 16 Jordan/ weighting error vari-
two layers hidden Elman as ance
neurons described
Time-steps 0 1 7 0 2
with
prediction
error < 10%
Time-step 25.40% 5.19% 24.55% 13.01% 7.04%
prediction
error for
week
46/2011
Average 28.17% 27.05% 29.28% 27.95% 17.56%
Error from
week
46/2011 to
23/2012
Maximum 219.07% 213.71% 223.52% 217.68% 104.64%
Error
Minimum 1.09% 0.73% 7.83% 4.84% 3.87%
Error

N/A: Non-applicable.

Although the %Error in production seems to be the ideal indicator to choose the model to
be used, the choice only based on this indicator can lead to very poor predictions, as it is

discussed in 3.3 on page 158, so it is pertinent to wonder the circumstances where a model
is valid and hence eligible.

Observation:

A reason of why the MDL estimation is sometimes negative can be that the MSE is calculated
from the normalized inputs and not from the original values (which real magnitudes are in
the order of millions). In this way, the MSE is found using numbers in (—1,1), and the
estimation would give negative values.
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3.2.3 Valid models

3.2.3.1 Short-term valid models

We can consider the networks (models) valid in the short-term as locally valid, since they
approximate the series a few steps in the future from 7" known steps in the past. The goal
of this work is the prediction using a neural network that will be periodically re-trained
(where the period should be determined). Three models were detected to be possibly valid®
in the short-term (see Table “ERRORS SUMMARY”) so they are useful for this time series
forecast since they produced a one time-step prediction error (in week 32/2011) not higher
than 10%. We assumed that 10% is a reasonable limit for the prediction error, even though
this value should be discussed with the user (precisely, the person who uses the neural model
as a tool in their routine tasks). Additionally, it should be agreed with the user what is
an acceptable error variance. In this work we did not include any selection based on that
value, but we used it to weight the values in a committee. It would be also interesting to
choose the models whose production errors have an acceptable variance and that predict
acceptably good the series in one time-step..

These models might use a fixed number of historical data (for example, the sales of the last
300 weeks) and not all the available data. The Jordan/Elman network (the network g) in the
Table “SUMMARY RECURRENT NETWORKS” might be added to the short-term valid
networks, as well as the models obtained by a combination (ensemble) of these networks.

In all the cases the transfer function was the hyperbolic tangent, using the gradient-based
method (BPTT) modified with a first-order term (moment) with constant moment rate.

Among the elementary models the best one according to the MDL was a Jor-
dan/Elman network with inputs V,S,5-1,V-1, T-1 and output V, with time con-
stant 7 = 0.15 with two hidden layers of 4 and 2 neurons respectively)

Model selection for prediction The model obtained as two-networks ensemble pro-
duced the best result in the sense of the lowest prediction error: it gave the best approxi-
mation, regarding both

1. the average percentage error to predict for the weeks 46/2011 to 23/2012, and
2. the maximum prediction error
and it was obtained weighting the predicted values for the two valid networks b) and c) from

Table “ERRORS WITH FINAL DATA AND ENSEMBLES” according to the coefficients
derived using the following weights:

1
o HEP;+Var(%HEP;)®
- 1
Z %EP;+Var(%EP;)~
J

Dj

9Since we additionally want to have an acceptable error in the final data set, it is required to study the
averaged error over those data.
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being %EP the average error percentage produced using the production data and taking
a = 0.5, called model d.b) in Table “ERRORS WITH FINAL DATA AND ENSEMBLES”.

When four networks were intended to be used in the same committee the coefficients em-
ployed were (some values for a are omitted):

COEFFICIENTS FOR COMMITTEES

Coefficient
Model “optimum”a = 1 a=0.5 a=0.2
MLP a) from Table “ERRORS SUMMARY” 0.110 0.210 0.220 0.235
TDNN b) from Table “ERRORS SUMMARY” 0.137 0.238 0.243 0.248
TLFN f) from Table “SUMMARY FOR TLFNs” 0.020 0.326 0.301 0.273
Jordan/Elman network c) from Table “ERRORS | -0.167 0.226 0.235 0.244
SUMMARY”

By optimum we understand the ones suggested by [11] and detailed in 2.1.2 on page 24.
On the other hand, since working with four network can be hard (the predictions should
be performed for each one, and sometimes it means to train them again), we reduced the
number of networks to two. The values so obtained with a Jordan/Elman network with a
TDNN committee were satisfactory (see 3.3.0.12 on page 163). This model is called d.b)
from the same table.

The chosen model to predict will be the average of the values predicted
by a Jordan/Elman network and a TDNN (see 3.3 on page 158)

In the following figures we can observe the errors improvements obtained when a network
committee is implemented, using different weights:
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Mean errors and errors in one step , for the commitee TDNN+Jordan , with a) equal weights and b)
for different a, using the final data set and weights computed using the production dataset
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Figure 3.10

Errors of the commitee TDNN+Jordan using equal weights and with a = 0.5 for the
final dataset with weights computed using the production dataset
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Figure 3.11

Long-term valid models In the case of deterministic systems the study of long-term
validation is usually made to check that the model can reproduce the dynamic behavior
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of the original system, usually considering the invariants of the original system and of
the predicted series in a closed loop mode. We will not focus on the discussion of what
means “similar” for those invariants. For stochastic dynamical systems a probability density
function corresponds to each invariant. Moreover, in some works comparisons between the
probability densities of some invariants (the correlation dimension and Kolmogorov-Sinai’s
entropy) between the original system and the series generated by the model [79]) as a long-
term validation criterion. In the stochastic case, we further know that the most we are able
to predict is a mean value (associated with the conditional probability that the system visits
a certain state in step n+1 knowing the past states n, n-1,...n-T'), while the real value for
the series will be the value associated to this mean, plus a random variable. A long-term
model could then be constituted by a network that predicts that mean (that implements
function ¢ mentioned in 2.9.1.1 on page 89 ) and optionally other model for the prediction
of the random variable (the ¢ in 2.9.1.1 on page 89). That second model could be non-
parametric (for instance a density adjustment), a networks mixture model, a feed-forward
network or even another statistical model. Since we have only 14 (32 a 45/2011) values
to adjust the resulting errors, we will not try to determine such error prediction model,
nor discard solutions based on the long-term validation. The long-term validation checking
could be replaced by an iterated calculation for the production weeks'® and their respective
errors. In that case, we prefer those network with the lowest average error, and in that
sense we would say the network has a good long-term behavior. Simultaneously, among
those models with good behavior in the long-term with respect to the iterated errors, we
will choose those models with "similar" invariants compared with the original series.

Another criterion could have been, given the final application for the model, to say for
instance that we have a valid long-term model whenever it is able to predict a time-step
ahead at least, without re-training, with an acceptable error upper-bounded error, for data
that is non-adjacent to the training data. In this case, the model would have been the d.b)
from Table “ERROR SUMMARY WITH FINAL DATA AND ENSEMBLES”.

The networks that presented a good behavior in the long-term, in the sense of the lowest
iterated averaged percentage error, were (in increasing average error order):

1. The Jordan network from c) previously mentioned
2. TDNN b) from Table “ERRORS SUMMARY”
3. MLP a) from Table “ERRORS SUMMARY”
being the network 1 the most advisable. In Table 5.4.10the resulting errors are shown,

obtained via an iteration of the values for each network, for the weeks 32 to 45/2011 and
are graphically illustrated in Figure 3.12.

10The denomination that appears in the literature for the network performance testing data is just “testing
data”. However, here we stick to the denomination used by the simulator for the data set that the network
never received as input and from which the performance is calculated.
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Predictions in closed loop mode for different models vs. real values for the weeks
32-45 of 2011
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Figure 3.12

Models with valid short and long-term behavior With respect to the models valid
for both long and short-terms, this is, that could be potentially employed for both prediction
and dynamic reconstruction, they will be the ones with the lowest iterated error (ordered
by increasing error):

e a Jordan network with additional inputs, two hidden layers with 4 and 2 neurons
(see 2.1.4 on page 30)

e a totally recurrent network with inputs S, T, V-1, output V, 7 hidden neurons in a
single hidden layer

e a TLFN with gamma memory, inputs S, A, V-1, T-1, S-2, V-2, T-2 output V , 17
hidden neurons

(in that order of preference). If we ignore the constraint that the one-step prediction error
(or average error) be lower than 10%, these models might be recommended to users that
intend to predict the time series using only one network. If the constraint is not relaxed,
there would not exist elementary models valid in the long-term, even though an ensemble
between a TDNN and a Jordan or between a MLP and Jordan networks would achieve the
long-term condition.

We can appreciate that the ensemble method with optimal coefficients applied to the iterated
values does not imply any improvement (see Tables 5.3.10and 5.3.2) comparing the average
and one-step prediction errors, even though it reduces its variance. The variance is reduced
even more with a = 0.05, but the error is increased in the three-networks ensemble (Table
5.3.4). Finally, for the MLP+Jordan (the committee obtained with the best MLP and
the best Jordan/Elman network) with optimal weights found from the production set and
using @ = 0.5 an acceptable value yields (see Table 5.3.60 "Errors for different alphas,
MLP+Jordan, closed loop, prod. weights") . The same happens with the TDNN+Jordan
ensemble.
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3.2.4 Best results classified by architecture

Here we detail the best results for each one of the architectures and its variants.

3.2.4.1 Multi-layer perceptrons
3.2.4.2 Perceptrons based-on the time series only
MLPs were one of the models under study, representing a classical topology used as point

of departure in works similar in nature to ours ([71], [64], [2], [17]).

From the obtained results for the determination of the optimal delay and embedding dimen-
sion, tests were carried out with a perceptron with

Delay Inputs Outputs
d=3 A{zi, vi3} {Tip1}
d=2 Az, zi2} A{xiq1}

where x; represents the weekly sales for the week i, i = 1.2,...53.

We always used networks with a single hidden layer or two hidden layers at most, because 1)
in theory, one layer is enough to approximate any smooth function and 2) we have no interest
to speed-up the training phase, since it consumes few minutes of computational effort. The
number of neurons in within the hidden layer were genetically determined through 1500
generations.

The best network was one with inputs V, V-2, 25/2 hidden neurons, with no additive noise
in its inputs (Network a) from Table MLP SUMMARY).

3.2.4.3 Perceptrons with additional inputs

We tried to improve the overall performance of the MLPs using networks with inputs genet-
ically determined from the set T, S, A, V-1, A-1, S-1, T-1, V-2, A-2, S-2, T-2, V-3, A-3, S-3,
T-3 and also the average wind, precipitations and heliophany for that week. The obtained
model was b) from Table “MLPs SUMMARY”.
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MLPs SUMMARY

a) b) c)
MDL found over the 64.09 21.79 -60.21
CV set
% Error over the CV | 30.22% 23.31% 16.50%
set
Model d=2, 25 24 hidden 4/5 hidden
hidden neurons in one
neurons in layer
the first layer
and 2 in the
second
Time-steps with 1 0 0
prediction error <
10%
Time-step error 0.30% 28.50% 34.16%
prediction for week
32/2011
Average error from 13.95% 27.99% 21.47%
week 32 to 45/2011
Maximum error 30.64% 53.81% 34.16%
Minimum error 0.30% 27.99% 1.94%

a) MLP with inputs V, V-2, 25/2 hidden neurons, and no additive noise in the inputs.

b)MLP with inputs S,V,V-1,V-2, Aver T Max, Aver T min, Aver precip, Aver wind, Aver

heliophany and 24 hidden neurons'!.

¢) MLP with inputs: S,V,V-1,V-2, Aver T max, Aver T max previous, Aver T min, Aver
precip, 4 neurons in the first hidden layer and 5 in the second one.

Observe that even if the estimated MDL allows to choose between models of similar com-
plexity, the intuitive choice (Network a) here does not match with the minimum MDL choice,
perhaps because the complexities of networks a) and c) are completely dissimilar.

To summarize, although the best MLP from the MDL perspective was that with
inputs S,V,V-1,V-2, Aver T maxz, Aver T max previous, Aver T min, Aver
precip, that predicts V(i+1) with 4/5 hidden neurons, with no additive noise in
its inputs, it is preferred a network with inputs V, V-2 predicting V+1, with
25/2 hidden neurons for which (see Table 5.1.6):

MDL found over the CV set: 64.09

% Error over the CV set: 30.22%

25/2 hidden neurons in two layers

Time-steps with prediction error < 10% — 1
Prediction error for week 32/2011 = 0.30%
Average error from week 32 to 45/2011 = 13.95%
Max. error: 30.64%

Min. error: 0.30%

We tested with other MLP as well, as can be seen in 5 on page 175.

HUsing the notation explained at the beginning of this chapter, it would suffice to speak about T and t,
but we prefer here to denote in a most descriptive way: "Aver T Max".
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Remarkable improvements were observed in the prediction errors when a MLP network is
trained with the time series altered with an additive noise, see 5 on page 175.

Results with preprocessing (outliers removed)

In some cases valuable improvements were obtained by treating the outliers of the series
(determined using the Mahalanobis’s distance) and then using the modified series to train

the network:

Table 3.2.1: Results obtained by treating the outliers in the series

Network a)

Maz. Error
Min. Error
Awver. Error

Prediction steps

Network b)
Maz. Error
Min. Error
Awver.Error

Prediccion steps
Network c)
Mazx. Error
Min. Error

Aver.Error

Prediccion steps

W /original series

30.64%
0.30%
13.95%

1
53.81%
6.01%
27.99%
0
49.09%
3.33%
26.78%

0

W /treated outliers

21.00%
2.85%
10.42%

4
57.40%
6.21%
33.42%
0
34.16%

1.94%
21.48%

It can be appreciated that the outliers processing significantly reduces the pre-
diction error (maximum and average) in a time-step for networks a) and c¢) but

worsens the results for b).
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Time lagged feed-forward networks (TLFNs)

Another network class considered here was the “time lagged feedforward networks” (includ-
ing TLRNs). In a first attempt, we exploited the results obtained by the study of the
embedding’s dimension and optimal delay, so we performed tests “remembering” using delay
= 3 or delay = 2 past elements.

We studied both focused and non-focused memories (see 2.4 on page 58). We used a single
hidden layer, finding the number of hidden neurons by means of genetic selection with more
than 1500 generations of 50 to 60 individuals each. The training was always on-line, using a
moment term with a non-adaptive moment rate. The percentage of data used data for cross-
validation was 15% of the training data set. The memory elements under consideration were
delay memories and gamma (type I), the formers because they represent memory structures
as classical as perceptrons are respect the neural networks, and the former because several
experiments can be performed with them (such as to change the memory depth with no
need of changing the topology), even though some tests were also carried with Laguerre’s
memories. As in the remaining of this work, all trajectories to be learned had length 4.
For both memory types, we tried as a first approximation to predict the next value of the
series using Takens’s theorem, this is, presenting only sales to the network inputs (a “pure”
network) and using the memory parameters (taps and delays) to implement the delayed
inputs {x;, x;—q} being d = 2 or 3. As a second approach, we added averaged maximum
temperatures, the increase indicator, other meteorological data and a week number, for the
current week and two previous weeks as well as previous sales. These inputs were genetically
determined, as justified in 2.3.2.1 on page 57 and [27].

With respect to the genetic algorithms employed and its parameters, we can remark that:

1. In order to keep the terminology consistent with the one used by the network simulator
chosen here, each feasible solution (in our case, a network) is called a chromosome.
A chromosome is composed by a collection of genes, that are precisely the network
parameters that we want to optimize genetically.

2. The genetic algorithm creates an initial population (a collection of chromosomes) and
then scores it training networks that correspond with every chromosome. Then the
population is evolved through multiple generations, trying to find the best network
parameters. If the issue is to optimize a certain network parameter, the population
is evolved (changing that parameter) looking for the network with the highest fitness.
When the parameters define the own network structure (for example when the number
of neurons within a layer must be determined), the evolution searches the network with
the best structure, rather than an optimal parameter.

3. The evolution is performed via generations: the whole population is replaced after
each iteration. This method has shown good results in a great variety of cases, and
tends to avoid local minima in a better way than when the members with lowest fitness
are discarded during each iteration [68].

4. Each generation had 50 or 60 individuals. In some preliminary tests performed with
populations of 100 individuals, better results were not found, and the process turned
out to be unnecessarily long and slow.

5. We tried to minimize the one-step prediction error percentage over the cross validation
set, in order to find a network with good generalization capacities. The percentage
error is significant, since the magnitude of the resulting errors is always higher than
1, and minimize it is equivalent to minimize the MSE given a fixed number of CV
exemplars (see 3.3.0.8 on page 158).
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6. The chromosomes that still exist in the next generation (that passes to the next
generation) were chosen with a probability proportional to their fitness.

7. The crossover probability between two chromosomes was 0.9. This crossover is pro-
duced in a single point (randomly chosen) from the genes of the chromosome. For
example, given the parents A and B:

A 11001/010
B 00100/111

After a gen exchange from the parents in the cross point randomly chosen (marked with a
), the following successors are obtained:

A1 11001]111
B1 00100|010

No test were made with other crossover operators (see 2.3.2.1 on page 51)

8. The mutation probability of a chromosome is 0.01. The uniform mutation operator
was chosen.

9. The population was evolved for at least 1500 generations, and it can evolve even more,
and the stopping criterion was the absence of improvement in the fitness in more than
500 consecutive generations.

10. In all networks the hyperbolic tangent output function was chosen (recommended
by [68]) in all its neurons, a single hidden layer, on-line training, percentage for the
CV set= 15%, improved gradient descent with a fixed moment rate (non-adaptive).
One-step predictions were always considered.

It could be appreciated that

e The final quality of a genetic method strongly depends on the number of generations.

e Asa general rule, the training phase rapidly augments when the number of generations
is increased: when the number of hidden neurons is chosen with 1500 generations, the
execution takes more than 10 minutes in an ordinary desktop PC (core 2 duo, with 4
GB of RAM), versus 15 seconds that takes to train'? a network with fixed topology
(with 7 hidden neurons). For the case of 5000 generations with a population of 100
individuals, it takes more than 1.50 hours.

e Perhaps, better results could be obtained with a careful adjustment of the optimization
parameters in the genetic algorithm. This adjustement would exceed the scope of this
work.

12This means to train the network from the training data and using the corresponding stopping criterion.
We do not consider the time required to to perform several training phases and select the one with the best
results.
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3.2.4.4 TDNNs

We used for training the weeks 35/2000 to 31/2011 and the weeks 32/2011-45/2011 for
testing. In a first attempt, we tried to use “pure” TDNNs, such as described in the Takens-
Mané s theorem: using the delay and embedding dimension previously obtained and as
inputs only the weekly sales in order to predict the sales for the next week. A single hidden
layer was considered, with a number of neurons genetically determined, a “cross validation”
percentage of 15%, an on-line training.

The best result was given by TDNNs with the sales as the only input and V as the output
prediction, which is called Model b) from Table “TLFNs SUMMARY”,

3.2.4.5 TDNNSs with additional inputs

In order to improve the prediction, we added explanatory variables to the input. Working
with d = 3 and d = 2, the best results were obtained with a TDNN with d = 3, focused
memory, inputs S, A, T-1 (genetically determined among the possible inputs: S, A, T, S-1-
A-1, V-1, T-1, S-2, A-2)V-2, T-2) output V and 8 hidden neurons which constitutes the
Model ¢) from Table “TLFNs SUMMARY”.

We can appreciate the introduction of explanatory variables seems to improve the MDL
but the one-step prediction, even though the average percentage prediction error (over the
“testing” set or CV set) is better in the “pure” TDNN.

Results with preprocessing (outliers)

The best TDNN was trained with the series with the outliers treated. An improvement of
more than 50% in the maximum, minimum and average errors was achieved, with a variance
reduction in magnitude of one order. See Table 5.1.18 from 5 on page 175.

3.2.4.6 TLFNs with gamma memory (TLRNs)

Analogously to TDNNs, we tried to apply the Takens-Mané’s theorem using gamma memory
type structures. Tests were carried out under the same scenarios of TDNNs, but with gamma
memory types'® of depth = 15, even though we tried other depths as well. In both cases the
length for the trajectory to be learned was 4. For the focused case with d = 3, 25 hidden
neurons were determined, for d = 2, 22 neurons, whereas for the “non-focused”, 19 and 21
for d = 3 and d = 2 respectively. The best TLFN network was obtained with a non-focused
gamma memory with d = 2, 21 hidden neurons with inputs V, V-2 and output V+1, that
we Model e) in Table “TLFNs SUMMARY”.

Analogously for TDNNs we tried to improve the one-step prediction performance adding
the price increase indicator variable and some previous weeks data explicitly, explained in
what follows.

TLFNs with gamma memory and additional inputs

Taking the MDL into account, the best network had inputs S, V-1, T-1, S-2, V-2, T-2,
precipitations, winds, heliophany, output V and 17 hidden neurons with focused memory,
called Model h).

13Gamma type 1
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TLFNs SUMMARY

a) b) c) d) e) f) g8) h)
MDL found 84.41 81.08 - 547.74 335.22 1428 357.02 618.59
over the CV 373.29
set
% Error over 25.82% 23.85% 18.08% 24.63% 19.18% 22.58% 20.12% 25.63%
the CV set
Time-steps 0 2 0 0 0 0 0 0
with prediction
error< 10%
Prediction 29.45% 4.40% 49.73% 24.48% 21.78% 14.04% 21.79% 24.48%
error in week
32/2011
Average error 23.12% 23.12% 31.58% 12.15% 13.06% 12.15% 13.06% 12.15%
for weeks 32 to
45/2011
Maximum 40.81% 28.53% 40.41% 25.61% 29.63% 35.45% 29.63% 25.61%
Error
Minimum 2.58% 0.26% 2.75% 0.68% 2.49% 35% 2.49% 0.68%
Error
Architectures:
a) TDNN pure non-focused, input V, d = 3, 16 hidden neurons.
b) Idem a) and d = 2.

TDNN with d = 2, focused memory, inputs S, A, T-1, 8 hidden neurons and
depth = 10.

Idem c) depth = 3.

TLFN, gamma memory type with depth = 15, trajectory = 4, non-focused,
d = 2, 15 hidden neurons with inputs V, V-2 output V+1.

TLFN genetically constructed. Inputs: T, T-1, Aver. precipitations, Aver. wind,
gamma memory with depth = 10 and trajectory = 4, focused, 18 hidden neurons.

TLFN with gamma memory, predicts V, Inputs: V-1, T-1, 8 hidden neurons.

TLFN Inputs: S, T,V-1, V-2, T-1, Aver. precipitations, Aver. wind, predicts
V+1, taps = 3, delay =1

In summary, the best TLFN network was the b).

Tests changing the memory type

For networks e) and f) we replaced their memories by Laguerre’s ones, with no improvements.
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Predictions for the final data set

TDNN b) produced an acceptable one-step prediction, whereas no TLFN output any ac-
ceptable prediction.
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Recurrent networks

The recurrent architectures tested here were

a) Totally recurrent:

1. Inputs S, T, V-1 and output V
2. Inputs S, T, V-1, V-2 and output V
3. Inputs S, T, V-2 and output V

b) Partially recurrent The same inputs and output than the totally recurrent ones

¢) Jordan and Elman’s networks

Cases a) and b) (Totally or partially recurrent networks):

The hyperbolic tangent transfer function was used in all the cases, and 7 hidden neurons,
in a single layer.

In one of the tests performed we used the logistic as the output function, since its range (pos-
itive integer values) seemed to be more adequate and would return a lower error. However,
we obtained a worse approximation than using hyperbolic tangent.

The training phase employed an incremental weight updating, using BPTT.
The CV set contained a 15% of the training set.

The prediction was always for one-step ahead.

The best results from totally and partially recurrent networks were obtained with
a partially recurrent network, with inputs S, T, V-1 output V and 4/2 neurons
in two hidden layers (Network c), where:

MDL found over the CV set: -97.28

% Error over the CV set: 21.01%

4/2 hidden neurons, partially recurrent
Time-steps with prediction error < 10% = 0
Prediction error in week 32/2011= 20.77%
Average error from week 32 to 45/2011 =10.72%
Max. Error: 22.29%

Min. Error: 1.36%

Case c¢) (Jordan and Elman’s networks):

As a particular case of recurrent networks we tried Jordan and Elman’s networks. The
network simulator provides several possible topologies for Jordan’s networks, depending
whether the context neurons reach the first or second hidden layers (referred here by one-
step or two-step links, respectively, see [68]).

The chosen network had the topology described in Figure 3.13:
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In order to simplify the diagram, the wide arrows represent all possible connections. The
inputs are V, S, S-1,V-1, T-1 and output V+1. Percentage of CV data=15%, two hidden
layers, four neurons in the first hidden layer and four in the second (denoted by 4/2), all
output functions are hyperbolic tangent and on-line training. several values for the time
constant were tested 7 =: 0.5,0.3,0.7,.0.15,0.07.

The time constant 7 has the following meaning: given a context neuron Z, we have that

where y(n)

memory.

T y(n)

X(n)

Figure 3.14

= > ox(i)7" " holds. The time constant 7 controls the exponential decay
by which the past data impacts the current outputs, in other words, it controls the neuron

For different values of the time constant 7 different networks were obtained,
where the network with the best results had 7 = 0.15 (Network b), with the
following performance:

MDL found over the CV set: -69.78
% Error over the CV set: 20.63%
4/2 hidden, described topology

Time-steps with prediction error < 10% =7
Prediction error in week 32/2011= 8.85%
Average error from week 32 to 45/2011 =13.02%
Max. Error: 29.20%

Min. Error: 1.64%
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Results with the treated series

When the chosen Jordan/Elman was trained with the outliers previously treated, both the
maximum error and error variance improved, even though the one-step prediction was not
acceptable any more (see Table 1.38).

3.2.4.7 Adding the price increases to the model

One of the causes of fluctuation of the time series is the presence of increments in the
price of gas sales. In previous weeks of an increase there is usually a higher demand, by
speculative reasons, whereas in the following week there is a slight reduction triggered by
the increase. We intended to reflect this adding a descriptive variable, INCREASE, that
can assume different values:

e -2 if the current week is before two weeks to that were an increase occurs,
e -1 Idem, but one week,

e (0 if the increase occurs in the current week,

1 if the current week is exactly after the increase,

2 if the current week occurs exactly two weeks after the increase, or

3 otherwise.

In a conflicting case, we give priority to the fact of being previous rather than following
the increase (for instance, if the current week that is just after an increase and two weeks
before another increase, the current week is assigned -2). In the case of Jordan networks, we
trained a network with inputs S, A, A-1, V-1, T-1 and output V. We used time 7 = 0.07 and
the remaining variables are identical to these previously mentioned networks. The network
obtained, Model g) in the Table “RECURRENT NETWORK SUMMARY”, was:

MDL found over the CV set: -59.15

% Error over the CV set: 20.97%

4/2 hidden, described topology

Time-steps with prediction error < 10% =6
Prediction error in week 32/2011= 9.94%
Average error from week 32 to 45/2011 =16.84%
Max. Error: 34.66%

Min. Error: 2.19%

In summary, the Jordan network that produced the best results had inputs V,S,S-
1,V-1,T-1:

MDL found over the CV set: -69.78 %

%Error over the CV set: 20.63%

4/2 hidden neurons, described topology
Time-steps with prediction error < 10% — 7
Prediction error in week 32/2011= 8.85%
Average error from week 32 to 45/2011 = 13.02%
Max. Error: 29.20%

Min. Error: 1.64%
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Summary for recurrent networks:
SUMMARY RECURRENT NETWORKS
a) b) o) d) £) 8) h)
MDL 175.97 -70.54 133.43 -0.70 -69.78 -59.15 -15.09
found over
the CV set
% Error 27.13% 25.22 28.15% 19.78% 20.65% 20.97% 21.94
over the
CV set
Model 9 hidden 9 hidden 4/2 4/2 hidden, 4/2 4/2 7
hidden totally hidden, hidden
partially  recurrent with links  neurons
recur- in context  topology
rent neurons described,
na tie
single constant
forward = 0.07, 2
step, steps
time= forward
0.15
Time-steps 0 0 0 0 7 6 0
with
prediction
error <
10%
Prediction 34.85% 25.06% 20.77% 25.94% 8.85% 9.94 25.06%
error with
for week
32
Average 16.34% 11.34% 10.72% 13.82% 13.02% 16.84% 19.28%
error for
weeks 32
to 45
Maximum 34.85% 25.06% 1% 25.94% 29.20% 34.66% 131.17%
Error
Minimum 5.29% 0.52% 1.36% 3.05% 1.64% 2.19% 0.52%
Error

a) Totally recurrent with inputs S,T, V-2 and output V, 9 hidden neurons.
b) Idem, partially recurrent.
c¢) Partially recurrent, inputs S, T, V-1 output V and 4/2 hidden neurons.
d) Idem but totally recurrent.
f) Jordan network with inputs V, S, S-1,V-1, T-1 and output V, two hidden layers, four
neurons in the first and two in the second, all output function hyperbolic tangent, time

constant: 0.15.

g) Idem f) but with inputs S, A, A-1, V-1, T-1 and output V, time constant = 0.07 and
context links two steps forward.
h) Totally recurrent network with inputs S,T,V-1, V-2 and output V, 7 hidden layers.

Some tests were not included in this box. For more details, see 5 on page 175.
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3.3 Model validation

Generally in the literature (for example in [30]), in order to study networks for time series
prediction, specially chaotic and deterministic, short-term from long-term validities of the
models are distinguished.

A way to validate a model in the short-term could be to train the network for a fix number n
of consecutive weeks (a “cluster”), and to predict the time series for week n+1, the next week
under study. Repeating the process several times for different clusters of adjacent weeks,
the average percentage error for those predictions can be found checking hence whether the
model, regarding its topology and parameters that define it, is valid ( if the the averaged
prediction error is lower than a certain threshold) or not. This short-term validation method
has at least two drawbacks:

e it just tells us whether the topology and some parameters that define the network (for
instance, the time constant in Jordan/Elman’s networks) are adequate to the problem,
since the weights of the model change in each case (when training with each set of
weeks)

e it is sensitive to the selection (composition) of the clusters

On the other hand, if we wish both to predict and perform a dynamic reconstruction of the
system, we will add some constraint to consider a short-term model valid as a long-term
model as well: a model constructed for time series prediction is valid in both senses if the
following conditions are met ([59] and [30]):

1. the model has a good short-term behavior: the model predicts “sufficiently well” at
least for one time-step in the future (week 32/2011) and satisfactorily for the final
data set.

2. the model captures both the structure and properties of the underlying system dynam-
ics that generates the time series, this is, it presents a well behavior in the long-term.

As a consequence, we will use valid models for the short-term in order to predict, and
among them, some to reconstruct the system behavior. Additionally, after the valid short-
term models are determined, the selection of them will be performed by means of the MDL
criterion. The model selection based only on a MDL estimation is not feasible, since low
values for the MDL can be obtained not implying that the model has an acceptable short-
term behavior, for example, a high prediction error can be compensated by the model
simplicity, producing a very low MDL estimation.

3.3.0.8 Short-term validation

The short-term validation is associated with tests in “open loop” mode. Under this mode,
the trained network receives the real values of the time series as an input, and the goal is
to predict it a step further, given these past values.

The easiest way to evaluate the prediction success is to compute the averaged MSE over a
set of N data samples (exemplars), being N the number of CV exemplars:
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N

where d;, y; represent respectively the real value and the predicted one for the time series
in the next time-step, respectively . It is clear we wish low values for the MSE, and further,
we want to have the prediction error to be small in relation with the magnitude for the
predicted value. On the other hand, if we wish to have an error bounded between 0 and 1,

the root-mean-square (RMS) could be used instead:

RMS = | XX (g = di?| /[N (i — P
d= # Zf\il d;

being N’ the number of different desired values.

Patel [59] recommends to use the signal-to-error ratio, defined by

MSS

SER =10 logw W

being MSS = % Zf\il d?. The idea is to have big values for the SER, meaning the predicted
value is meaningful (high in magnitude) in relation with its respective prediction error [59].

Another way to measure the prediction quality is to consider the resulting prediction error
for a time-step, averaging over the CV set (denoted by %Error CV). Since the values of the
time series under study are always above the unit, this percentage is a significant measure
of the absolute error produced.

Additionally, to minimize the %Error CV is equivalent that to minimize the MSE over the
CV set, since if we find the partial derivatives in each case and equal to zero, the same
extreme points are obtained:

0%FErrorCV 100 1 |
—— = — sign(di — y;)

y; N4
and
OMSE 2
=——(di— v
i v (di = i)

We will use a variation for this distance to decide the short-term validity of a model: since
we have no certainty that the simulator always uses the same CV set, we slightly modify
the definition replacing the CV set by the final data (final weeks):

A model will be valid in the short-term provided the following conditions are
met:

e its prediction error (as a relative error) is less than 10% at least in one
time-step (for week 32/2011 and the next ones) and

e its average error over the final data is less than 10%.

The choice of 10% is arbitrary and should be verified with the model user. Additionally,
since the error percentage is a significant indicator for the MSE, to minimize this percentage
is equivalent to maximize the SER.
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3.3.0.9 Long-term validation

In order to know whether the model captured the whole structure and properties of the
system that generates the original series, a “closed loop” mode test is performed. In this
test, used in the related literature in the modeling of deterministic systems, the network
operates depending on its proper previous outputs (instead of the previous real series values)
in each time-step, and on a copy of the inputs the system had in the past. In this mode
the evaluation cannot be started without a previous “priming phase”, in which from the
real (known) values the necessary inputs for future steps are predicted, taking in each step
another additional prediction as an input, until it is predicted considering the network ’s
outputs only'#, obtaining finally the reconstructed signal from the original one.

The network outputs will accumulate errors in such a way that even an optimal model will
produce divergent trajectories with respect to the original series due to the dependence to
the initial conditions and the noises included in the vector with witch the priming phase
starts. Observe that in the stochastic case the possible divergence caused by dynamic noises
is also present. In order to compare quantitatively the dynamic structure for the two series,
when the original corresponds to a deterministic system, we would find the following values
(tnwvariants) for both the original and reconstructed series [59]:

e embedding dimension m

e complete Lyapunov spectrum, A;, = 1...m

e correlation dimension D

e Kaplan-Yorke’s dimension, expected to be close to D

e Kolmogorov entropy, found summing the positive Lyapunov exponents

e predictability horizon

A satisfactory model, in the deterministic case, would be the one in which the reconstructed
series has very close invariants (ideally, the same) to that of the original series. It is worth
to note that it is not a trivial task to decide whether the sets of invariants is similar or not.
As previously mentioned, in the stochastic case we could compare the probability density
functions of the invariants with the respective ones of the original system. Another choices
could be:

e Statistically study the original versus generated series (by “closed loop”) and check
whether they come from the same probability density functions or not (using Mann-
Whitney’s U test) and use the Lavene’s test to determine whether they have the same
variance or not [76].

e Invariants generalization: see which is the meaning of the different invariants and
try to find a correspondence in the case of stochastic systems. For example, since
the Lyapunov exponents determine the convergence of the obtained trajectories from
two given states, we can generalize this concept to the stochastic case and determine
the distance between the probability density functions of the states obtained from
two starting points, using the Kullback-Leibler distance. The negative Lyapunov
exponents for the deterministic case would be translated into “close” density functions.
Besides, it should be studied which is the analogy of other invariants under a stochastic
scenario.

Mplus the necessary inputs that are not generated by the network (such as the temperature)
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Considering the small size and high dimensionality of our time series, we will instead chose
those models with the lowest averaged error error when the predictions are iterated for the
weeks 32-45/2011 and we will say a model is valid in the long-term if that error
is below 10%.
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3.3.0.10 Determination of the valid models
3.3.0.11 Valid models for dynamic reconstruction

Having the one-step prediction error-bounded condition in mind, the only models feasible of
a long-term analysis are shown in the Table “ERRORS SUMMARY” and some of the shown
in the Table “ERRORS WITH FINAL DATA AND ENSEMBLES” and additionally several
networks committees as we will see (we include the networks committees in our discussion
in what follows). Adding the condition that the average error in “closed loop” < 10% only
the ensembles remain.

To verify the condition that the model captures both the structure and underlying system
properties generated by the time series, it could be predicted in a closed loop mode for
weeks 32-45 for the chosen models and get the iterated prediction errors. To make a closed
loop prediction in the cases where additional inputs are required (increments, temperatures,
etc.) the procedure here developed was to repeat the inputs of the original data.

We took the reconstructed values only for weeks 32-45/2011, since they represent the whole
available data (for further tests the last weeks were included), and it does not mean we
cannot reconstruct a longer period with those models.

The following table shows the results. As an illustration'® we include some invariants for
the optimal MLP (in which it was iterated more than 30 times):

’ Invariant Opt. MLP ‘
Opt. delay: 3
Embedding dimension: 2
Lyapunov spectrum: -3.64 E-1
-1.61E0
%FNN if m=2 0% if e < 0.0001
Kaplan-Yorke’s estimated 0.0
dimension
% Average iterated Error 20.74%
(over 40 predictions)

All AMIs were found using maximum delay=99 and maximum graphical detail for the
mutual information, using the VRA.

According to the second condition from 3.3 on page 158 (considered as a similarity of
invariants), this optimal MLP would be a valid system representation, since its Lyapunov
exponents are negative and it has the same optimal delay and embedding dimension. If we
choose the condition that average prediction error over the testing data set must be less
than 10%, we have

The valid model preferred for dynamic reconstruction of the system is the
committee TDNN-+Jordan using o = 0.5, even though the MLP-+Jordan one
might be used

15We do not develop here the calculation of the invariants for other networks since a) we want to have a
model that predicts satisfactorily, no matter whether it models well the original system, and b) we do not
know how to compare invariants and decide if a model is valid or not.
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Considering the number of time-steps that could be predicted with an acceptable error in
closed loop, we see it is mandatory to repeat the training phase every one or two weeks.
This week period should be empirically adjusted as long the predictions are produced.

On the other hand, if we use the Mann-Whitney’s U-test to both the series generated by
the MLP and the original one to check whether they come from the same probability law,
we get that:

Range Average Rang Range sum

Var 1 40 67.4 2696.00
Var 2 144 99.47 14324
Total 184

Contrast statistics

Var 1
Mann-Whitney’s U 1876.000
Wilcoxon’s W 2696.000

y/ -3.369

Sig. asymptotically (bi-lateral) .001

Grouping Variable Var 2

where Var 1 corresponds to the sales values and Var 2 indicated the group where the value
is (1 - real series, 2 - synthetic series). A total of 144 randomly chosen consecutive values
from the real series were chosen such as they included the corresponding 40 weeks of the
generated series.

We can see that, with level « = 0.05, the series present different distribution, and this
network could be discarded as a non-reliable model for the real system.

Observation: a discarded network from condition 1) of 3.3 on page 158 might be used if that
network is considered in a committee. This idea was considered with the TLFN.

3.3.0.12 Valid models for prediction

In the case of prediction, since it is not intended to provide a recursive sales prediction and
the period between the different runs of the model (needed for new predictions) is equal a
week at least, we can train again every time we decide to have a prediction (if we needed to
predict online, with only three seconds between runs, it should be required a model valid in
the sense it must predict correctly several steps in the future, since it would not be possible
to train between predictions). Then, we only need to design a model for the short-term
prediction. Since all the tests were carried out based on one-step prediction in the future,
the network used should be trained weekly (see [30]).

If we wanted to use a voting method, it should be done with two or three networks only;
otherwise, the training time (including the data processing and handling needed) would be
excessive.

If the model selection is done using the averaged percentage of error prediction over the
production set in a single step, the best two networks would be the Jordan’s and the MLP.
As a consequence, the averaged outputs of the Jordan’s network with additional inputs and
the MLP might be a good sales estimator in a single step even though we are not taking
into account the results for the final weeks. We will conclude the same option if we just
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based on the MDL. To Exploit the properties of error smoothing that voting schemes have,
we will also include here the best TDNN.

The estimations that would have been obtained with equal weighting, and using optimal
weights suggested by [10] for the weeks 32-45/2011 can be found in 5 on page 175.
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3.4 Ensemble Method

This estimation of week sales is constructed using an average of the ones given by different
models (topologies). Each one of those models was trained using CV (15% of the training
patterns were for CV), so we do not use the smoothing property of the ensemble process.
The employed error criterion was the same for all networks. Perrone supports the training
might be done with distinct data sets for different topologies, to get sure a high independence
among the different estimators. Due to the scarce data available, we could not do this, hence
we trained all the models with the same data, which will be translated into an reduction in
the error prediction not as meaningful. We performed two works using this method:

1. we predicted the series from weeks 32/2003 to 45/2011 (“open-loop” mode). These
values and the respective errors were used to construct the weights (called production
weights in Chapter 5) from which the prediction are averaged for weeks 46/2011 a
23/2012).

2. we studied the behavior of the generated values for the ensemble for the closed loop
mode. In this case we averaged the obtained values from different models and checked
whether the long-term validation requirements hold. In the tables from 5 on page 175
several variants for the ensemble method can be found (averaging for equal weights,
weights found using the error variances and the optimal Bishop coefficients for groups
of two, three and four networks).

3.4.0.13 Committees used for prediction

We weighted the prediction in accordance with the three previously mentioned ways. We
started with open loop predictions and averaged using four, three and two networks. The
case with four networks included a TLFN essentially to use the smoothness property of the
ensembles, then a test was carried-out with the three networks which presented a prediction
error for one step lower than 10%, and finally with the different network pairs with this
characteristic.

Committees used for dynamic reconstruction

We took the predictions in a “closed loop” mode for the weeks 32 to 45/2011. By taking
averages (the one obtained by means of four networks, the one of TDNN and Jordan network)
and comparing them with the values predicted by individual networks we obtained a series
whose errors can be seen in Figure 3.15:
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Chapter 4

Concluding remarks and Future
work

4.1 Remarks and experimental conclusions

The proposed modeling for this work has used both TLFNs and recurrent networks (see 2.3
on page 50) as preferred topologies chosen beforehand, and the obtained results are com-
pared with multilayer perceptrons (MLP). Additionally, by using networks committees, we
intended to get an improvement in the prediction performance. The implementation of re-
current networks and TLFNs is not only justified by the related literature ([30] and [69])
but also as an alternative to be explored with respect to the use of a static MLP trained via
back-propagation, a solution given by [2] to a similar problem ( prediction of the electrical
demand), and that constitutes a paradigmatic network class inside artificial neural networks.
We used back-propagation as the training algorithm, in one of its flavors - “back-propagation
through time” (BPTT) - essentially because these algorithms are provided by the software
tool here chosen for neural networks simulation. Other possible alternatives to MLPs as
universal approximators such as the usage of radial basis function networks (or "RBF
networks”) and support vector machines were not further explored in the present work
mainly by reasons of extension. The reader can find an overview of these topics in the
bibliography ([10], [30], [69] , [73] ,[89], [16] ).

Due to the intrinsic weaknesses of gradient descent-based learning algorithms for recurrent
networks ([30], [65]), other training rules are visited in the state of the art included here,
such as the Kalman filters ([30], [66], [86], [11]) and Genetic Algorithms ([90], [29]), even
though further experiments were not developed with them. Genetic algorithms were used
to determine the structure of some networks (the number of neurons at both the input and
hidden layers).

Once the neural model was constructed, a validation process took place. Several open-loop
and closed-loop tests were carried-out [59]. In the open-loop mode, the real values of the
time series (signal) is introduced, and the issue is to predict the real value of the series one
step ahead in time. In the closed-loop mode, the network operated according to both its own
output in each time-step and a copy of its exogenous inputs related with previous steps. In
order to predict several steps in the future it is mandatory to feedback the network with its
outputs. Such predictions could have great errors provided the output errors are amplified
in each step. In this mode we expect than when the exogenous inputs are the same, the
network outputs follow the real signal closely, at least during few time-steps, and then they
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can have considerable deviation'. In the open-loop mode, the models were chosen trying
to minimize the MSE for each architecture (which is equivalent to minimize the resulting
percentage error, see 3.3.0.8 on page 158) and when similar percentage errors were produced,
according to the MDL estimated. In the closed-loop mode, the search model was guided
regarding both the minimization of the iterated average percentage error and the similarity
of the invariants with the ones of the original time series. The best MLP was considered
to study the invariants of the obtained time series, as well as the Mann-Whitney’s U test
was performed to check whether both series (original and synthetic) presented the same
probability density function or not.

Some of the most remarkable conclusions from the experimental development are:

1. A valid model for a satisfactory prediction of the time series was found. We proved the
existence of the solution to the Input— Output learning problem proposed in Section
“Entropy and problem resolvability”.

2. Provided we found the stochastic realization for sales was non-chaotic (its Lyapunov
exponents are non-negative), the greater possible data set will help us to produce
more accurate predictions for the mean of the conditional probability for the series to
assume a certain outcome given a historical knowledge. However, the stochastic nature
of the system makes the probability to produce high prediction errors will always be
non-zero [30].

3. Even though we could have trained and predicted by using averages not only from daily
temperatures corresponding to days in which sales occurs instead of weekly averages,
we considered the best chosen option was the one that best reflects reality. In fact,
there is an extra-day in the sum used to find the weekly average temperature (Sunday),
that is taken as noise in the temperature measurement (2.8% average), and if we did
not include Sundays’ temperatures for the weekly average, we would had be discarding
real retail sales (from distributors to end consumers) on Sundays (mainly the ones with
low temperature), that are then translated into wholesales (from ANCAP to wholesale
buyers) on Monday.

4. Additionally to the datey of the price increase, it would be interesting to know whether
it was correspondingly announced in the press. This would mean the increase could
either have had more or less real impact to the population (end users). In this way,
when increases are announced, a speculation effect can appears that does not exist
when an increase is not announced. The corresponding types of the increases (an-
nounced or not) could not be determined neither from the records in the company
industry nor through Internet press, since no newspaper have more than one year’s
issues online.

5. When we consider networks committees: we mixture the values from several models
(sometimes four, others three or two) using the optimal mixture from "Network com-
mittees", others using the error variance and finally with equal weighting. In the first
case, when the three best networks were used, the average error for the iterated pre-
dictions was improved in nearly 50% as well as the variance error. When it was used
for the final data set valuable improvements were obtained as well (see 5 on page 175).
The error variance is important since it gives an idea of how “reliable” the prediction
is.

1 Passing fro open to closed-loop takes certain amount of time: the “priming mode” is defined as a mode
in which for each one of the pr consecutive steps, an input is replaced by its respective prediction. The
constant py, is called “priming” period length. For example, if the network will process two steps back, it
will be p;, = 2. The closed-loop evaluation cannot be started without starting the network inputs with the
corresponding real signal values (not seen during the training stage) and then operate in its priming mode
during pj, steps.
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6. We confirmed that the addition of noise to both inputs and outputs in the training
data improves the obtained results (at least, in the case of a MLP).T

7. In the estimation for the MDL produced using the formula

1
MDL = NLog(MSE) + ikLog(N)

being:

e k the number of weights
e N the number of CV samples
e MSE over the CV samples

the first term N Log(MSE) can have higher weight, depending on the combination of values

at hand. It is possibly due to:

e in the networks set there are similar topologies, with similar values for k, or

e dissimilar topologies are implemented with a similar number of weights.

Therefore, since we take into account the number of weights and MSE, this estimation for
the MDL does not reflect certain complexities of the model: for instance, a network with
gamma memories seems more complex than a MLP, even though both are implemented

using the same number of weights

8. The recurrent network model did not face the vanishing gradient problem for one-step
predictions. This is in part due to the fact that weekly sales does not impact more
than three weeks in the near future. It can be observed from Figure 4.10that the linear
tendency (considered as a long-term dependency) is learned by the Jordan network. On
the contrary, if daily sales had been predicted, more probably the vanishing gradient

problem would had arisen.

the vanishing gradient problem
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Figure 4.1

9. To summarize the results for the obtained models:
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(a) On the possible evaluation criteria:

e We consider two short-term evaluation criteria: a) MDL. This criterion
proved not to be enough to be implemented alone, and b) the error percent-
age to predict in a step averaged over the whole final data (weeks 46,/2011-
23/2012).

(b) Analogously, there exist several long-term evaluation criteria:

i. iterated averaged error over the weeks 32-45/2011 to be lower than 10%.

ii. similarity between invariants of the synthetic and of the original time se-
ries. This similarity cannot constitute a selection criterion per se, due to the
stochastic nature of the system and the vagueness for the term “similarity”.
A precise notion for an acceptable quantification of the similarity is out of
our scope.

iii. statistical similarity between the synthetic and original series (probability
density functions, variances, etc.).

Regarding the topologies, we tried:

(¢) individual networks

(d) networks committees

Not all selection criteria are applicable to all topologies. For instance, the MDL is not
practicable for an ensemble.

From the tests here performed it is concluded that an adequate prediction model is the
ensemble of the optimal TDNN and the optimal Jordan/Elman network with weights
obtained from errors calculated using the productions weeks and o = 0.5, with a
predictability of two weeks in the near future.

The re-training period depends on the period of the year where the prediction is
performed: if the period is of high-demand (June - July - August) it is convenient to
re-train every week, since the ensemble chart with the final data (weeks 46/2011 to
23/2012) shows a successful prediction for only one week. If the period represents a
low-demand, even twelve weeks can be predicted advance with no re-training, as can
be seen in the ensemble using production data (weeks 32nd. to 45th. correspond to
spring/summer, explaining the low demand).

The weight decay rule provided by the network simulator was attempted to use in
some recurrent networks, but their results were not enlightening: clear evidences for
neuron deletions were not offered by the resulting weight matrix after training. Con-
nections were not handled individually (from neuron to neuron), but rather from layer
to layer, being the layers totally interconnected each other. Apart from the fact that
the weight decay rule did not perform clear changes in the weights matrix, for a tested
set of parameters A (see 2.8 on page 85); if it had it would had meant to construct the
network from its most elementary components (individually handled neurons, connec-
tions, control elements for back-propagation, etc.) with the need of additional network
design and expert tool managing. Since that tool expertise was out of the scope of
this work and we had other elements for the optimization of the network structure
(for example, genetic algorithms), the weight decay rule was not further tested.

Judd’s methods as the “U — ®” might have been tested here to improve long-term
predictions. One of the main causes from which these methods were not carried-out
is that the primary goal if this work did not required iterated predictions (in order
to perform a dynamic reconstruction): when weekly sales should be predicted, all
previous sales have perfectly determined, with no need to use the predictions produced
by the model.
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4.2 General conclusions

In this thesis different methodologies for predictions for time series have been explored by
means of neural networks. This implied the study of the state of the art covering different
areas: from software analysis of time series and neural network simulators to the theory of
dynamic systems.

Here we remark the main results and its corollaries:

1. On the selection of neural network tools and data processing:

(a)

(b)

A full framework based on mature software products: DATAPLORE, VRA, STA-
TISTICA, TISEAN, NeuroSolutions and Microsoft Office 2010/ Windows 7 was
set and is now available as part of this thesis.

The use of an industrial neural network simulator lead us to an in-depth ex-
ploration of several aspects of both neural networks itself (for example, network
memory structures) and the theory of dynamical systems.

In order to work with such dynamical systems, software intended specifically for
the analysis and processing of time series was employed, and then chaotic series
was part of our focus. Since not all “randomness” was attributable to chaos,
in order to characterize the dynamical system generating the time series, an
exploration of chaotic-stochastic systems was required, as well as network models
to predict a time series associated to one of them. Here we pretended to show how
the knowledge of the domain, something extensively treated in the bibliography,
can be someway sophisticated (such as the Lyapunov’s spectrum for a series or
the embedding dimension). It is worth to note that a great deal of the topics
on dynamic networks (and dynamic systems) would be simply omitted if another
general software tool nor related to such networks to perform simulations. In this
way, given that a real problem is faced, the part of the professional practice and
technology use is added when dealing with issues such as the state of the art in
time series processing techniques and tools for neural networks.

2. On network models (topologies) and the modeling of dynamical systems:

(a)

Regarding the employed network models, the network topologies suggested from
the literature as adequate for the prediction task were used (TLFNs and recur-
rent networks) together with MLPs (a classic of artificial neural networks) and
networks committees. The effectiveness of each method could be confirmed for
the proposed prediction problem.

It was proved that the Input — Output relation in our case study can be learned,
this is, the problem has solution. Furthermore, we conjecture that the system is
non-chaotic but also dynamic-stochastic (since we could only determine the Lya-
punov’s exponents of a realization of the sales random process), so the prediction
quality should improve with time and the corresponding increase of the size of
the training set, even though it will always exist a non-zero probability of a big
deviation between the real and predicted values, due to the randomness of the
original system and others factors that affect consumption not studied here.

In order to model the dynamical system generated by the time series we used the
state-space model, so the time series prediction was translated in the prediction
of the next system state. This state-space model, together with the delay method
(delayed coordinates) had practical importance for the development of this work,
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specifically, the design of the input layer in some networks (MLPs) and other pa-
rameters (taps and delays in the TFLNs), and showed something already known:
the data handling is essential for the prediction performance. Additionally, the
rest of the network components where determined in many cases through pro-
cedures traditionally used in neural networks: genetic algorithms. Even though
there are several studies to determine network inputs (PCA, feature extraction
and others, see [10]), the case is not the same for the rest of the network layers
design, more specifically, the hidden layers.

We found that a multilayer perceptron might predict the value of the time series,
when the predicted one is just after the training data set (it’s adjacent to it).
We say it might predict because we should further test this with more training
sets and predictions, since here we predicted only once and a good result was
produced. In that case, a MLP, even its simple topology, would show to be fit to
solve the problem here addressed. This is possible in virtue of the study made of
the data set, that helped us to determine meaningful features such as the ones

used in Takens-Mané’s theorem.

3. On the numerical results:

(a)

Two tasks were developed: the development of a time series prediction model
and the analysis of a feasible model for the dynamic reconstruction of the sys-
tem. With the best predictive model, obtained by an ensemble of two networks,
an average error of 17.56% was obtained when the weeks 46,/2012 - 23 /2012 were
predicted, with a 7.04% for the week 46/2011. This ensemble of a Jordan net-
work and a TDNN used o« = 0.5 and weights found from the resulting errors
in the series prediction for the weeks 32-45/2011. We believe that these results
are acceptable provided the quantity of information available, and represent an
additional validation that neural networks are useful for time series prediction
coming from dynamical systems, no matter whether they are stochastic or not.

The data gathering and debugging was a long process that finally gave us a set of
scarce observations given their dimensionality and, in the case of the increases of
price, poor quality. Here it is worth to recall a previously stated in the literature:
a major concern before starting a neural network project is to make sure the
existence of an adequate data set that supports and makes it feasible. “It is a
capital mistake to theorize before having data” (Sherlock Holmes to Watson, in
“A scandal in Bohemia”, from Arthur Conan Doyle).

4. On the criteria of model selection:

(a)

In order to choose, at least theoretically, from the valid models the more desirable
ones, several theoretic model selection criteria were analyzed, and the MDL was
initially chosen. We noticed that choosing the model only from the tool estimation
of the MDL would not conduct to better results, so we decided first to select
the models with valid results (%Error < 10%) and among them, choose one
according to the MDL. Afterward, regarding the MDL estimation provided by
the simulator, we determined that it was poor since it did not reflect intrinsic
model complexities, but only the weights number and the MSE.

5. On the bibliographical survey:

(a)

The survey of the related literature tried to be extensive, for both printed material
and electronic format, in order to have a landscape of the main aspects for the
state of the art in time series prediction using neural networks. The material
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found was sometimes extremely redundant (as in the case of the BP algorithm
and its improvements) and scarce in others (memory structures or estimation of
the signal subspace dimension in the stochastic case). The surveyed literature
includes classical research works ([27], [50], [52]) as well as more recent ones (|79]
, [16] or [82]), which pretends to be another contribution of this thesis.

4.3 Future work

There are several possible areas where the present work could be extended or further ana-

lyzed:

1. From a practical viewpoint,

(a)

try a daily sales prediction, with the consequent associated research on the nec-
essary descriptive variables, input dimensionality reduction, among many others.

we performed a visual interpretation of the RP. An alternative choice could be
the usage of the quantitative measurements given by RQA.

generate executable code, so the end-user just loads a small data file and executes
an application in order to have a prediction.

automate the training and model generation (committee), since it should be used
every two weeks.

go on with the experimentation and look for other memory structures and try
the training of recurrent neural networks using deKf, since in the daily sales it
will probably appear the vanishing gradient problem when using BP.

determine a confidence interval for the error prediction, also, for dg and 7 and
study the sensibility of the results respect these values.

use neuro-fuzzy systems (the vagueness that models the fuzzy parts would include
unknown randomnesses, though vagueness and randomness are distinct concepts).

2. From a theoretical viewpoint,

(a)

analyze how to find the MDL of an ensemble, in order to choose the “best”
ensemble. What is more, a related question is the following: given a network
with a known MDL, how can we decompose it such that the resulting network
committee has better MDL than the original network? Is it possible?

go on with the study of stochastic dynamical systems, covering more extensively
the generalization of the distinct invariant characteristics used to characterize a
deterministic system, translated into the stochastic case.
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Chapter 5

Numerical results

We detail here the numerical results obtained when the different studied architectures were
simulated.

5.1 Results for different networks

5.1.1 Perceptrons
5.1.1.1 Perceptrons based on the sales only
We trained with the available data until the first week of 2003 and tried to predict the next

weeks. We obtained:

For a delay = 3 and a single hidden layer, hidden neurons genetically determined in 1500
generations, networks with 5, 8 and 11 hidden neurons in different executions were found,
with the values from Tables 1.10to 1.3.

For a delay = 2, 23 neurons were genetically determined in a single hidden layer, obtaining
the values from Table 1.4.

Even though the results for a delay = 2 produced the lowest maximum error, the error that
is obtained beyond the second week is unacceptable, so we choose the one with 25/2 hidden
neurons.
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Table 5.1.1: MLP d=3, IN=[V, V-3],0UT=[V+1], 5 hidden layers

Desired Real %Error
538559  2622025.05 51.31%
4595666 2829096.39 38.44%
5222869 2435064.98 53.38%
4870710 2538441.79 47.88%
4096739 2721694.49 33.56%
3398617 2433936.24 28.38%
3266710 2425071.57 25.76%
2595111 2557350.61 1.46%
3185410 2642169.38 17.05%
3311189 2845542.79 14.06%
2706442 3299803.35 21.92%
2950426 2747326.01 6.88%
2524455 2757714.93 9.24%
2831359  2923698.8 3.16%
Min. 1.46%
Max. 53.38%
Var 0.029190315
Mean 25.18%

Table 5.1.2: MLP d= 3, IN=[V, V-3],0UT=[V+1], 8 hidden neurons

Desired Real

%Error

5385591
4595666
5222869
4870710

2545322.78
2751808.46
2324529.38
2456917.18

4096739  2662072.71
3398617  2318370.11
3266710  2300191.92

2595111

2510092.96

3185410 2668133.35
3311189  2901146.88
2706442  3381922.10
2950426 2811186.04
2524455  2807675.50
2923698.8  3048061.87

52.74%
40.12%
55.49%
49.56%
35.02%
31.78%
29.59%

3.28%
16.24%
12.38%
24.96%

4.72%
11.22%

4.25%

Min.
Max.
Var.
Mean

3.28%
55.49%
0.031466608
26.53%
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Table 5.1.3: MLP d=3, IN=[V, V-3],0UT=[V+1], 11 hidden neurons

Desired Real %Error
5385591  2544790.79 52.75%
4595666 2783529 39.43%
5222869 2299002.45 55.98%
4870710 2445947.8 49.78%
4096739  2694405.55 34.23%
3398617 2307474.20 32.11%
3266710 2303710.50 29.48%
2595111  2549924.75 1.74%
3185410 2713362.69 14.82%
3311189 2938233.48 11.26%
2706442 3383395.76 25.01%
2950426 2850735.34 3.38%
2524455  2848847.77 12.85%

2923698.8 3068787.44 4.96%
Min. 1.74%

Max. 55.98%

Var. 0.032395909

Mean 26.27%
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Table 5.1.4: MLP d=2, IN=[V, V-2],0UT=[V+1], 23 hidden neurons

Desired Real %Error
5385591  3380695.60 37.23%
4595666  3412203.30 25.75%
5222869 3356184.8 35.74%
4870710 3353750 31.14%
4096739  3365627.54 17.85%
3398617 3287489.48 3.27%
3266710 3166704.47 3.06%
2595111  3092196.26 19.15%
3185410 3023961.92 5.07%
3311189 3015429.45 8.93%
2706442 3076840.79 13.69%
2950426 3037039.66 2.94%
2524455  3005896.13 19.07%

2923698.8 2991817.88 2.33%
Min. 2.33%

Max. 37.23%

Var. 0.014636008

Mean 16.09%

Table 5.1.5: MLP d=2, IN=[V, V-2],0UT=[V+1], 11 hidden neurons

Desired Real %Error
5385591  2987823.86 44.52%
4595666 2810752.65 38.84%
5222869 2765960.68 47.04%
4870710 2972951.8 38.96%
4096739 2816072.1 31.26%
3398617 2807653.2 17.39%
3266710 2878188.58 11.89%
2595111 3001438.62 15.66%
3185410 2951389.22 7.35%
3311189 3164537.1 4.43%
2706442 3051822.55 12.76%
2950426  2955065.72 0.16%
2524455 3111184.4 23.24%

2923698.8 3007307.88 2.86%
Min. 0.16%

Max. 47.04%

Var. 0.024276261

Mean 21.17%
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Table 5.1.6: MLP d=2, IN=[V, V-2],0UT=[V+1], 25/2 hidden neurons

Desired Real %Error
5.385.591  5.369.625 0.30%
4.595.666  6.003.580 30.64%
5.222.869 4.162.727 20.30%
4.870.710 5.214.485 7.06%
4.096.739  5.048.485 23.23%
3.398.617 3.584.121 5.46%
3.266.710  3.189.445 2.37%
2.595.111 3.046.616 17.40%
3.185.410 2.325.407 27.00%
3.311.189  2.844.855 14.08%
2.706.442 2.799.341 3.43%
2.950.426 2.381.773 19.27%
2.524.455 2.621.688 3.85%
2.831.359  2.240.779 20.86%

Max. 30.64%
Min. 0.30%

Var. 0.009399434
Mean 13.95%
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Table 5.1.7: MLP d=2 hidden layer genetically determined, IN=[V, V-
2],0UT=[V+1], 24/19 hidden neurons

Desired Real %Error

5385591  5432890.71 0.88%
4595666 5223643.12 13.66%
5222869 4201601.55 19.55%
4870710 5205019.98 6.86%
4096739 4620936.68 12.80%
3398617 3732458.68 9.82%
3266710 3261112.75 0.17%
2595111 3129181.19 20.58%
3185410 2632957.59 17.34%
3311189  2959952.06 10.61%
2706442 3138001.61 15.95%
2950426  2723236.46 7.70%
2524455  2789542.75 10.50%
2923698.8 2516186.05 13.94%
Min. 0.17%

Max. 20.58%

Var. 0.00353696
Mean 11.45%
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5.1.1.2 Perceptrons with additional inputs

Table 5.1.8: MLP IN=|[S,V,V-1,V-2, Aver T max, Aver T min, Aver precip, Aver
wind and Aver heliophany] OUT=[V] and 24 h. n.

Desired Real %Error

5385591  3850550.78 28.50%
4595666 2453265.29 46.62%
5222869 2412499.12 53.81%
4870710 3850550.78 20.94%
4096739  3850550.78 6.01%
3398617 3911953.74 15.10%
3266710 1952965.27 40.22%
2595111  1952965.27 24.74%
3185410 2412499.12 24.26%
3311189  3911953.74 18.14%
2706442  3850550.78 42.27%
2950426  2453265.29 16.85%
2524455  1952965.27 22.64%
2923698.8  3850550.78 31.70%
Min. 6.01%

Max. 53.81%

Var. 0.016817568
Mean 27.99%
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Table 5.1.9: MLP IN=|[S,V,V-1,V-2, Aver T max, Aver T min, Aver precip, Aver
wind and Aver heliophany] OUT=[V] and 24 h. n. with averaged outliers

—Real— —Desired— %Error %Error c/series
‘raw’

6396654.06 5385591 18.77% 28.50%
6396654.04 5304230 20.59% 46.62%
6396654.02 5222869 22.47% 53.81%
6396654.06 4870710 31.33% 20.94%
2454284.37 4096739 40.09% 6.01%
2431019.43 3398617 28.47% 15.10%
1391519.4 3266710 57.40% 40.22%
1210138.49 2595111 53.37% 24.74%
1441023.32 3185410 54.76% 24.26%
2515808.8 3311189 24.02% 18.14%
2538243.27 2706442 6.21% 42.27%
1660754.31 2950426 43.71% 16.85%
2104717.09 2524455 16.63% 22.64%
1940898.01 2831359 31.45% 31.70%
Max. 57.40% 53.81%
Min. 6.21% 6.01%
Var. 0.02283291 0.01811123
Mean 32.09% 27.99%

Table 5.1.10: MLP, 25/2 h. n. with averaged outliers

—Real— —Desired— %Error %Error w/’raw’
series
5010062.38 5385591 6.97% 0.30%
5009859.72 4595666 9.01% 30.64%
4964788.64 5222869 4.94% 20.30%
5009405.86 4870710 2.85% 7.06%
4957009.09 4096739 21.00% 23.23%
3266391.53 3398617 3.89% 5.46%
3104308.41 3266710 4.97% 2.37%
3094606.41 2595111 19.25% 17.40%
2698098.9 3185410 15.30% 27.00%
3078110.04 3311189 7.04% 14.08%
3073879.12 2706442 13.58% 3.43%
2789227.49 2950426 5.46% 19.27%
3004107.31 2524455 19.00% 3.85%
2475868.68 2831359 12.56% 20.86%
Max. 21.00% 30.64%
Min. 2.85% 0.30%
Var. 0.00393321 0.00101

Mean 10.42% 13.95%
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Table 5.1.11: MLP IN=[S,V,V-1,V-2, Aver T max, Aver T max ant, Aver T min,
Aver precip], OUT=[V], 4/5 h. n.

Desired Real %Error

5385591  3546135.16 34.16%
4595666 4684982.27 1.94%
5222869  4390901.55 15.93%
4870710 4362510.24 10.43%
4096739 2812792.45 31.34%
3398617  2319103.05 31.76%
3266710 2583629.15 20.91%
2595111  2257849.76 13.00%
3185410 2297732.07 27.87T%
3311189 2375374.35 28.26%
2706442 2190424.87 19.07%
2950426  2237717.05 24.16%
2524455 2151973.65 14.75%
2923698.8 2131353.16 27.10%
Min. 1.94%

Max. 34.16%

Var. 0.008195003

Mean 21.48%

Table 5.1.12: MLP IN=[S,V,V-1,V-2, Aver T max, Aver T max ant, Aver T min,
Aver precip], OUT=[V], 4/5 h. n. and averaged outliers

—Real— —Desired— %Error %Error w/the ’raw’
series

6396654.06 4322848.16 47.97% 34.16%
6396654.06  4704700.49 35.96% 1.94%
6396654.02 4615842.33 38.58% 15.93%
6396654.06 4533067.62 41.11% 10.43%
2454284.37  2760189.93 11.08% 31.34%
2431019.43  2352757.43 3.33% 31.76%
1391519.4  2733201.01 49.09% 20.91%
1210138.49  2328879.92 48.04% 13.00%
1441023.32  2303584.75 37.44% 27.87%
2515808.8  2408480.43 4.46% 28.26%
2538243.27  2210639.97 14.82% 19.07%
1660754.31  2269354.32 26.82% 24.16%
2104717.09  2253164.99 6.59% 14.75%
1940898.01  2147712.62 9.63% 27.10%
Max. 49.09% 34.16%

Min. 3.33% 1.94%

Var. 0.03139309 0.00882539
Mean 26.78% 21.48%
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5.1.1.3 Perceptrons with noise in their inputs

In order to improve the prediction performance, we tried to train many MLPs adding white
Gaussian noise with zero mean and different variances (here denoted with V) to their inputs
{vi,v;—2}. We worked with a MLP of 25/2 hidden neurons trying to improve the obtained
values . The desired training values had the same noise. The production values had no
noise.

The following results were obtained:

Table 5.1.13: MLP with noise in the inputs

Real V=0.1 %Error V=0.7 %Error V=5 %Error

5385591  5270791.79 2.13%  4999080.45 7.18%  5306477.74 1.47%
4595666  5097101.01 10.91%  4989490.61 8.57% 5063299.83 10.18%
5222869  3947577.74 24.42%  4933516.50 5.54% 3967021.46 24.05%
4870710  5086722.23 4.43%  4987691.01 2.40% 5068747.25 4.07%
4096739  4476781.61 9.28%  4968133.28 21.27%  4440368.44 8.39%
3398617  3430242.97 0.93% 3412186.28 0.40% 3411060.54 0.37%
3266710 3137937.44 3.94% 3159124.13 3.29% 3143618.15 3.77%
2595111 3017414.09 16.27% 3160763.77 21.80% 3048998.66 17.49%
3185410 2554761.74 19.80% 2738723.52 14.02% 2592861.77 18.60%
3311189 2880651.03 13.00% 3102371.07 6.31% 2924746.23 11.67%
2706442 3025008.53 11.77% 3175407.93 17.33%  3046206.61 12.55%
2950426 2635176.42 10.68%  2903701.38 1.58% 2668106.11 9.57%
2524455 2733256.9 8.27% 2935130.86 16.27%  2759503.52 9.31%
2831359 2473645.65 12.63%  2541098.59 10.25% 2506370.55 11.48%

Max. 24.42% Max. 21.80% Max. 24.05%
Min. 0.93% Min. 0.40% Min. 0.37%
Mean 10.61% Mean 9.73% Mean 10.21%
Var. 0.0044 Var. 0.0053 Var. 0.0045

If these values are compared with the ones obtained with the series without noise (Table
5.1.6), it can be observed a remarkable improvement.

The noise at the input improves the number of time-steps to be predicted with an error
lower than 10% (four steps), reduces the averaged mean error (in less than 20%) as well as
the maximum error, although the error is increased in the first step nearly in 100%. Anyway,
for the other experiments, we still prefer the a MLP with 25/2 h. n. trained without noise.
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Table 5.1.14: MLP with noise in the inputs
Real V=10 %Error V=15 %Error V=25 %Error V=50 %Error
5385591 4971361.77 7.69%  4587776.57 14.81% 5300530.07 1.58% 5015379.92 6.87%
4595666  4962473.89 7.98%  4530527.83 1.42% 5129171.41 11.61% 5016193.09 9.15%
5222869 4888843.55 6.40% 4026728.43 22.90% 4069921.03 22.07%  4929103.36 5.62%
4870710 4955746.41 1.75%  4469369.72 8.24% 5115149.85 5.02%  4963044.58 1.90%
4096739  4936530.99 20.50% 4257730.15 3.93% 4582538.70 11.86%  4963750.32 21.16%
3398617 3404526.25 0.17% 3554383.88 4.58% 3531621.27 3.91% 3494764.84 2.83%
3266710 3119253.35 4.51% 2871880.15 12.09% 3160783.50 3.24% 3230581.45 1.11%
2595111  3118858.83 20.18%  2771253.61 6.79%  3024744.76 16.56%  3206853.18 23.57%
3185410 2707867.70 14.99%  2400491.70 24.64%  2540721.24 20.24%  2704436.06 15.10%
3311189  3054923.63 7.74%  2684863.85 18.92%  2842373.74 14.16% 3066556.83 7.39%
2706442 3142066.86 16.10%  2806102.19 3.68% 3009465.34 11.20%  3200740.70 18.26%
2950426  2871670.60 2.67% 2451025.85 16.93%  2620236.06 11.19%  2895743.39 1.85%
2524455 2900147.17 14.88%  2545099.35 0.82% 2692732.98 6.67% 2931820.22 16.14%
2831359  2496854.07 11.81%  2375881.26 16.09%  2465179.22 12.93% 2511263.34 11.31%
Max. 20.50% Max. 24.64% Max. 22.07% Max. 23.57%
Min. 0.17% Min. 0.82% Min. 1.58% Min. 1.11%
Mean 9.81% Mean 11.13% Mean 10.87% Mean 10.16%
Var. 0.0045 Var. 0.0064 Var. 0.0039 Var. 0.0057
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5.1.2 Time lagged feed-forward networks (TLFNs)
5.1.2.1 TDNNs

Table 5.1.15: TDNN IN=[V], non-focused, d=3/d=2 and 16 h. n.

Real Desired %Error Real %Error

3799405.75 5385591 29.45%  5.148.473 4.40%
4079347.10 4595666 11.23%  4.670.389 1.63%
4127097.87 5222869 20.98%  4.380.066 16.14%
3646733.10 4870710 25.13%  4.549.058 6.60%
3208287.79 4096739 21.69% 3.786.131 7.58%
3770845.24 3398617 10.95%  3.389.907 0.26%
3182323.74 3266710 2.58%  3.107.519 4.87%
2311872.85 2595111 10.91%  2.839.890 9.43%
2260900.61 3185410 29.02% 2.472.319 22.39%
2056515.98 3311189 37.89% 2.366.377 28.53%
2014541.25 2706442 25.56%  2.460.661 9.08%
2140712.10 2950426 27.44%  2.248.732 23.78%
1767209.15 2524455 30.00% 2.226.246 11.81%
1675857.14 2831359 40.81%  2.099.799 25.84%
Mean 23.12% Mean 23.12%

Max. 40.81% Max. 28.53%

Min. 2.58% Min. 0.26%

Var. 0.01191569 Var. 0.00880866
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Table 5.1.16: TDNN, d = 2, IN=|[S,A,T-1], depth = 3, focused, 8 n.o.

Real Desired %Error

4067209.27 5385591 24.48%
4329889.74 4595666 5.78%
3885165.75 5222869 25.61%
3967233.83 4870710 18.55%
4233890.78 4096739 3.35%
3375568.49 3398617 0.68%
3445484.53 3266710 5.47%
2702415.87 2595111 4.13%
2661346.25 3185410 16.45%
2856301.34 3311189 13.74%
2601172.70 2706442 3.89%
3671938.79 2950426 24.45%
2440305.53 2524455 3.33%
2261918.02 2831359 20.11%
Mean 12.15%

Min. 0.68%

Max. 25.61%

Var. 0.0086%
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Table 5.1.17: TDNN IN=[V], d = 2, 8 n.o., non-focused, depths 10 and 3

Real depth = 10 Desired %Error Real depth =3 %Error

2706919.00 5385591 49.74%  3070786.56 42.98%
2548499.00 4595666 44.55%  3094480.78 32.67%
2805003.00 5222869 46.29% 3751714.91 28.17%
3102691.86 4870710 36.30%  3454092.88 29.08%
3256292.40 4096739 20.52%  3355358.31 18.10%
3048952.56 3398617 10.29%  2872302.55 15.49%
2935446.85 3266710 10.14%  2585331.29 20.86%
2693865.33 2595111 3.81% 2418317.13 6.81%
2544763.74 3185410 20.11% 2272311.82 28.67%
2390895.63 3311189 27.79%  2380599.72 28.10%
2126422.76 2706442 21.43%  2304077.48 14.87%
2054803.34 2950426 30.36% 2262917.70 23.30%
2089660.87 2524455 17.22%  2245843.56 11.04%
1999752.89 2831359 29.37% 2091471.88 26.13%
Max. 49.74% Max. 42.98%

Min. 3.81% Min. 6.81%

Var. 0.018652663 Var. 0.008424231

Mean 10.42% Mean 23.31%
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Table 5.1.18: TDNN IN=[V], non-focused, d=2, 8 h. n., mem. depth =10

Desired %Error

Real %Error

‘Raw’

5385591 49.74%  4896442.58 9.99%
4595666 44.55%  4525929.81 1.54%
5222869 46.29%  4311756.92 21.13%
4870710 36.30% 4533113.94 7.45%
4096739 20.52%  4522433.60 9.41%
3398617 10.29%  3926118.09 13.44%
3266710 10.14%  3031274.12 7.77%
2595111 3.81% 3230834.15 19.68%
3185410 20.11%  2881314.32 10.55%
3311189 27.79%  2804121.71 18.08%
2706442 21.43%  3269879.35 17.23%
2950426 30.36% 2819818.96 4.63%
2524455 17.22%  2715954.95 7.05%
2831359 29.37%  2566478.18 10.32%
Mean 26.28% 11.30%
Max. 49.74% 21.13%
Min. 3.81% 1.54%
Var. 0.02008748 0.003174
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5.1.2.2 TLFNs

Table 5.1.19: TLFN IN=[V, V-1],0UT=[V+1], 15 h. n., mem. gamma focused,
depth = 15

—~Real- —Desired— —%Error—

4212190.66 5385591 21.79%
4368849.18 4595666 4.94%
4427442.41 5222869 15.23%
4644067.36 4870710 4.65%
3368218.01 4096739 17.78%
3056515.42 3398617 10.07%
2421923.85 3266710 25.86%
2481071.85 2595111 4.39%
2512210.49 3185410 21.13%

3413040.8 3311189 3.08%
3132387.38 2706442 15.74%
3129872.42 2950426 6.08%
2587303.76 2524455 2.49%
1992388.59 2831359  29.63%

Mean 13.06%
Min. 2.49%
Max. 29.63%

Var. 0.0084
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Table 5.1.20: TLFN IN=[V,V-1],0UT=[V+1], focused, depth = 10, 4 h. n.

~Real- —Desired— —%Error—

4265433.83 5385591  20.80%
3905378.67 4595666 15.02%

37257279 5222869 28.67%
4294161.11 4870710 11.84%
3686130.51 4096739 10.02%
3135993.41 3398617 7.73%
2753895.48 3266710 15.70%
2775329.82 2595111 6.94%
2079445.04 3185410 34.72%
1919878.44 3311189  42.02%
2108143.61 2706442 22.11%
1863600.12 2950426  36.84%
1732740.41 2524455  31.36%
1797692.37 2831359  36.51%

Mean 22.88%

Min. 6.94%
Max. 42.02%
Var. 0.0145

Table 5.1.21: TLFN with IN=[V,V-1] OUT=[V+1], focused, 8 h. n., depth = 10

—Real- —Desired— %Error

4212190.66 5385591 21.79%
4368849.18 4595666 4.94%
4427442.41 5222869 15.23%
4644067.36 4870710 4.65%
3368218.01 4096739 17.78%
3056515.42 3398617 10.07%
2421923.85 3266710 25.86%
2481071.85 2595111 4.39%
2512210.49 3185410 21.13%

3413040.8 3311189 3.08%
3132387.38 2706442 15.74%
3129872.42 2950426 6.08%
2587303.76 2524455 2.49%
1992388.59 2831359 29.63%

Mean 13.06%
Max. 29.63%
Min. 2.49%
Var. 0.008421
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Table 5.1.22: TLFN with IN=[V,V-1], OUT=[V+1], focused, 4 h. n., depth = 10

—Real- —Desired— %Error

4265433.83 5385591 20.80%
3905378.67 4595666 15.02%
3725727.9 5222869 28.67%
4294161.11 4870710 11.84%
3686130.51 4096739 10.02%
3135993.41 3398617 7.73%
2753895.48 3266710 15.70%
2775329.82 2595111 6.94%
2079445.04 3185410 34.72%
1919878.44 3311189 42.02%
2108143.61 2706442 22.11%
1863600.12 2950426 36.84%
1732740.41 2524455 31.36%
1797692.37 2831359 36.51%
Min. 6.94%

Max. 42.02%

Var. 0.01344097

Mean 22.88%

Table 5.1.23: TLFN d=2, focused, IN=[S,T,V-1,V-2,T-1, Aver. rains, Aver.
winds], OUT=[V], "delay" =1 taps =3

—Real- —Desired— %Error

4067209.27 5385591 24.48%
4329889.74 4595666 5.78%
3885165.75 5222869 25.61%
3967233.83 4870710 18.55%
4233890.78 4096739 3.35%
3375568.49 3398617 0.68%
3445484.53 3266710 5.47%
2702415.87 2595111 4.13%
2661346.25 3185410 16.45%
2856301.34 3311189 13.74%
2601172.70 2706442 3.89%
3671938.79 2950426 24.45%
2440305.53 2524455 3.33%
2261918.02 2831359 20.11%
Mean 12.15%

Max. 25.61%

Min. 0.68%

Var. 0.00792079
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Table 5.1.24: TLFN IN=[T,T-1,Aver. rains, Aver. winds], Laguerre mem.

—~Real- -Desired~ %Error

3439409.99 5385591 36.14%
3597115.19 4595666 21.73%
4304683.09 5222869 17.58%
4005499.8 4870710 17.76%
3185782.49 4096739 22.24%
2770620.89 3398617 18.48%
2976354.91 3266710 8.89%
2724329.09 2595111 4.98%
2731410.85 3185410 14.25%
2792854.9 3311189 15.65%
2620308.39 2706442 3.18%
2713044.37 2950426 8.05%
2492539.72 2524455 1.26%
2274217.62 2831359 19.68%
Mean 14.99%

Max. 36.14%

Min. 1.26%

Var 0.007917255

Table 5.1.25: TLFN IN=[V,V-2] OUT=[V-+1], non-focused, d=2, traj. = 4 depth
= 15, 15 h. n., Laguerre mem

—Real- —Desired— —%Error—

3431501.21 5385591 36.28%
3459194.07 4595666 24.73%
4245208.95 5222869 18.72%
4150950.48 4870710 14.78%

4465854.03 4096739 9.01%
3182226.87 3398617 6.37%
3100878.97 3266710 5.08%

2906852.50 2595111 12.01%
2757917.49 3185410 13.42%
2814461.84 3311189 15.00%
2340551.89 2706442 13.52%
2529519.93 2950426 14.27%
2406396.66 2524455 4.68%
1875004.36 2831359 33.78%

Mean 12.15%
Max. 36.28%
Min. 4.68%

Var. 0.0065295
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Table 5.1.26: TLFN genetically determined inputs, IN=[T,T-1,Aver week precip,

Aver week wind],gamma mem depth = 10, traj. = 4, focused, 18 h. n.)

Table 5.1.27: TLFN d= 2, non-focused, IN=[V].16 h. n., Laguerre mem. traj.

4 depth = 15

—~Real- -Desired~ %Error
4629682.73 5385591 14.04%
4424991.9 4595666 3.71%
4587028.99 5222869 12.17%
4425043.17 4870710 9.15%
3940091.10 4096739 3.82%
3557357.99 3398617 4.67%
3383543.67 3266710 3.58%
2936739.74 2595111 13.16%
3044483 3185410 4.42%
2983662.60 3311189 9.89%
2645666.60 2706442 2.25%
2801464.65 2950426 5.05%
2596599.74 2524455 2.86%
1827594.38 2831359 35.45%
Mean 12.15%
Max. 35.45%
Min. 2.25%
Var. 0.00789147

Real Desired %Error
4631178.46 5385591 14.01%
4291083.30 4595666 6.63%
3845678.46 5222869 26.37%
4147868.58 4870710 14.84%
3994048.38 4096739 2.51%
3319743.79 3398617 2.32%
3039956.49 3266710 6.94%
2559644.35 2595111 1.37%
2569840.56 3185410 19.32%
2372675.58 3311189 28.34%
2151710.25 2706442 20.50%
2216310.25 2950426 24.88%
2125683.84 2524455 15.80%
1943785.19 2831359 31.35%

Mean 15.37%
Max. 31.35%
Min. 1.37%

Var.

0.009702791
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5.1.3 Recurrent networks

5.1.3.1 Totally and partially recurrent networks

Table 5.1.28: Totally recurrent, IN=[S,T,V-2] and OUT=[V], 9 h. n.

Real Desired %Error

3508947.36 5385591 34.85%
3470358.03 4595666 24.49%
3487748.81 5222869 33.22%
3384714.39 4870710 30.51%
3392335.27 4096739 17.19%
2997767.22 3398617 11.79%
2990242.8 3266710 8.46%
2751853.39 2595111 6.04%
2743128.86 3185410 13.88%
2724732.24 3311189 17.71%
2849719.36 2706442 5.29%
2697677.25 2950426 8.57%
2677456.20 2524455 6.06%
2528242.87 2831359 10.71%
Mean 16.34%

Max. 34.85%

Min. 5.29%

Var. 0.010086
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Table 5.1.29: Partially recurrent, IN=[S,T,V-2], OUT=[V], 9 h. n.

Real Desired %Error

4035700.46 5385591 25.06%
4375097.04 4595666 4.80%
4039548.36 5222869 22.66%
4013737.28 4870710 17.59%
3680771.19 4096739 10.15%
3380942.89 3398617 0.52%
3094850.04 3266710 5.26%
2734810.43 2595111 5.38%
2666281.51 3185410 16.30%
2718473.41 3311189 17.90%
2685091.23 2706442 0.79%
2665050.21 2950426 9.67%
2454387.21 2524455 2.78%
2269644.54 2831359 19.84%
Mean 11.34%

Max. 25.06%

Min. 0.52%

Var. 0.00594664

Table 5.1.30: Partially recurrent IN=[S,T,V-1], OUT=[V], 4/2 h. n.

Real Desired %Error

4266846.79 5385591 20.77%
4530596.67 4595666 1.42%
4321543.9 5222869 17.26%
4157797.11 4870710 14.64%
4152276.9 4096739 1.36%
3684612.18 3398617 8.42%
3437375.73 3266710 5.22%
3173625.91 2595111 22.29%
3040158.82 3185410 4.56%
2776118.24 3311189 16.16%
2824970.75 2706442 4.38%
2685730.33 2950426 8.97%
2331847.49 2524455 7.63%
2348906.30 2831359 17.04%
Mean 10.72%

Max. 22.29%

Min. 1.36%

Var. 0.00461852
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Table 5.1.31: Totally recurrent IN=[S,T,V-1], OUT=[V], 4/2 h. n.

Table 5.1.32: Totally

Real Desired %Error
3988787.52 5385591 25.94%
4121912.28 4595666 10.31%
4424381.50 5222869 15.29%
4100939.44 4870710 15.80%
3815312.52 4096739 6.87%
3557906.21 3398617 4.69%
3675816.47 3266710 12.52%
3246851.06 2595111 25.11%
2852422.13 3185410 10.45%
2949399.56 3311189 10.93%
2623949.91 2706442 3.05%
2478495.35 2950426 16.00%
2233029.83 2524455 11.54%
2120387.76 2831359 25.11%

Mean 13.82%
Max. 25.94%
Min. 3.05%

Var. 0.00451061

recurrent IN=[S,T,V-1,V-2],

OUT=[V], 4/2 n.o.

Real Desired %Error
3591264.69 5385591 33.32%
4394579.61 4595666 4.38%
4271784.91 5222869 18.21%
3811672.20 4870710 21.74%
3615269.10 4096739 11.75%
3576227.99 3398617 5.23%

3054037.8 3266710 6.51%
2748575.65 2595111 5.91%
2629334.46 3185410 17.46%
2506132.36 3311189 24.31%
2688247.87 2706442 0.67%
2711887.66 2950426 8.08%
2467136.88 2524455 2.27%
2371997.03 2831359 16.22%

Mean 12.58%
Max. 33.32%
Min. 0.67%
Var. 0.00607216
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Table 5.1.33: Partially recurrent IN=[S,T,V-1,V-2], OUT=[V], 4/2 n.o.

Real Desired %Error

3417188.18 5385591 36.55%
4254813.62 4595666 7.42%
4275128.20 5222869 18.15%

3809178.4 4870710 21.79%
3324703.76 4096739 18.85%
3389733.49 3398617 0.26%
3225629.02 3266710 1.26%
2632569.12 2595111 1.44%

2813228.8 3185410 11.68%
2551772.44 3311189 22.93%
2474051.53 2706442 8.59%
2804165.51 2950426 4.96%
2242462.66 2524455 11.17%
2184932.36 2831359 22.83%

Mean 13.42%
Max. 36.55%
Min. 0.26%

Var. 0.010281
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5.1.3.2 Jordan and Elman networks

Table 5.1.34: Jordan Network IN=[V,S,S-1,V-1,T-1], OUT=[V+1], 4/2 h. n. and
t =0.5

Real Desired %Error

4222608.35 5385591 21.59%
3489409.44 4595666 24.07%
3784060.46 5222869 27.55%
3461227.50 4870710 28.94%
2908412.36 4096739 29.01%
2634581.84 3398617 22.48%
2594637.11 3266710 20.57%
2394885.24 2595111 7.72%
2548000.39 3185410 20.01%
2458880.77 3311189 25.74%
2319273.62 2706442 14.31%
2382911.65 2950426 19.23%
2253661.23 2524455 10.73%
2009807.93 2831359 29.02%
Mean 21.50%

Max. 29.02%

Min. 7.72%

Var. 0.004586714
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Table 5.1.35: Jordan Network IN=[V,S,S-1,V-1,T-1], OUT=[V+1], 4/2 hidden
neurons and t = 0.7

Real Desired %Error

4279007.42 5385591 20.55%
3470667.71 4595666 24.48%
4049518.61 5222869 22.47%
3867396 4870710 20.60%
3257518.05 4096739 20.49%
2711083.14 3398617 20.23%
2588234.18 3266710 20.77%
2470570.83 2595111 4.80%
2447492.04 3185410 23.17%
2511474.29 3311189 24.15%
2337763.18 2706442 13.62%
2321220.04 2950426 21.33%
2278765.99 2524455 9.73%
2049861.93 2831359 27.60%
Mean 19.57%

Max. 27.60%

Min. 4.80%

Var. 0.003762748

Table 5.1.36: Jordan Network IN=[V,S,S-1,V-1,T-1], OUT=[V+1], 4/2 hidden

neurons and t=0.15

Real Desired %Error

4909197.61 5385591 8.85%
4671036.35 4595666 1.64%
4756557.78 5222869 8.93%
4650881.91 4870710 4.51%
4193070.91 4096739 2.35%
3184838.61 3398617 6.29%
3338036.9 3266710 2.18%
3134288.19 2595111 20.78%
2790258.46 3185410 12.41%
2615972.81 3311189 21.00%
2160622.10 2706442 20.17%
2088978.97 2950426 29.20%
2084272.8 2524455 17.44%
2079475.60 2831359 26.56%
Mean 13.02%

Max. 29.20%

Min. 1.64%

Var. 0.008867245
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Table 5.1.37: Jordan Network IN=[V,S,S-1,V-1,T-1], OUT=[V+1], 4/2 hidden

neurons and t=0.15 with averaged outliers

Real Desired %Error

%Error with raw

3816204.17 3350217.72 13.91% 8.85%
3430731.45 3438128.62 0.22% 1.64%
4551299.84  4007572.32 13.57% 8.93%
3964113.01 3641926.99 8.85% 4.51%
3017542.43 2635434.41 14.50% 2.35%
2821100.80 2281052.17 23.68% 6.29%
2761331.36  2392399.05 15.42% 2.18%
2350775.01  2217238.94 6.02% 20.78%
2335365.26  2294538.47 1.78% 12.41%
2281026.77  2275009.71 0.26% 21.00%
2240502.47  2190907.00 2.26% 20.17%
2297207.19  2235658.90 2.75% 29.20%
2160023.31 2161358.57 0.06% 17.44%
2111803.43 1941485.53 8.77% 26.56%
Max. 23.68% 29.20%

Min. 0.06% 1.64%

Var. 0.00535965 0.00886724

Mean 8.00% 13.02%

Table 5.1.38: Jordan Network IN=[S,A,A-1,V-1,T-1], OUT=[V], 4/2 h.

steps forward, t—= 0.15

Real Desired %Error
4737864.23 5385591 12.03%
4102870.72 4595666 10.72%
4639510.64 5222869 11.17%
4457937.76 4870710 8.47%
3725618.32 4096739 9.06%
3090968.42 3398617 9.05%
2958100.53 3266710 9.45%
2846920.561 2595111 9.70%
2729482.64 3185410 14.31%
2801609.91 3311189 15.39%
2562996.12 2706442 5.30%
2347144.01 2950426 20.45%
2250263.26 2524455 10.86%
2169104.31 2831359 23.39%

Mean 12.10%
Max. 23.39%
Min. 5.30%

Var.

0.002368846

n.,

2
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Table 5.1.39: Jordan Network IN=[S,A,A-1,V-1,T-1], OUT=[V], 4/2 hidden neu-
rons, 2 steps forward, t= 0.07

Real Desired %Error

4850337.27 5385591 9.94%
4262774.81 4595666 7.24%
4925139.4 5222869 5.70%
4511722.08 4870710 7.37%
4251453.68 4096739 3.78%
3472899.51 3398617 2.19%
2572386.86 3266710 21.25%
2117394.48 2595111 18.41%
2125275.60 3185410 33.28%
2163597.31 3311189 34.66%
2118643.94 2706442 21.72%
2116931.33 2950426 28.25%
2113055.94 2524455 16.30%
2105492.33 2831359 25.64%
Mean 16.84%

Max. 34.66%

Min. 2.19%

Var. 0.012155459
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5.1.4 Output values of the different models for the final weeks
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Table 5.1.41: MLP+Jordan committee,final weeks, production weights and dif-

ferent alphas

a= 1.5 1 0.5 0.2 0.1 0.05 Equal-weights
24.11% 24.07% 11.37% 11.97% 12.16% 12.24% 24.98%

10.75% 10.73% 5.01% 5.31% 5.40% 5.44% 11.14%

111.90%  111.71% 52.30% 55.30% 56.26% 56.71% 115.93%

23.51% 23.47% 11.16% 11.72% 11.89% 11.96% 24.36%

25.85% 25.80% 12.22% 12.85% 13.05% 13.14% 26.78%

21.41% 21.38% 10.22% 10.70% 10.84% 10.90% 22.19%

10.67% 10.65% 5.07% 5.32% 5.40% 5.43% 11.06%

15.79% 15.76% 7.50% 7.87% 7.98% 8.03% 16.36%

5.57% 5.56% 2.69% 2.80% 2.83% 2.85% 5.77%

6.41% 6.40% 3.09% 3.22% 3.26% 3.27% 6.65%

6.77% 6.75% 3.25% 3.39% 3.43% 3.45% 7.01%

34.95% 34.89% 16.40% 17.31% 17.60% 17.73% 36.21%

24.19% 24.15% 11.46% 12.05% 12.22% 12.30% 25.07%

9.18% 9.16% 4.34% 4.57% 4.63% 4.67% 9.51%

11.15% 11.13% 5.25% 5.53% 5.62% 5.66% 11.55%

16.67% 16.65% 7.92% 8.31% 8.43% 8.48% 17.28%

11.68% 11.66% 5.57% 5.83% 5.91% 5.95% 12.11%

20.26% 20.23% 9.64% 10.11% 10.25% 10.31% 20.99%

21.04% 21.00% 9.97% 10.48% 10.63% 10.70% 21.80%

14.71% 14.69% 7.04% 7.36% 7.45% 7.50% 15.24%

23.04% 23.00% 10.97% 11.50% 11.66% 11.73% 23.87%

7.60% 7.58% 3.69% 3.83% 3.87% 3.88% 7.87%

28.78% 28.73% 13.72% 14.38% 14.57% 14.65% 29.82%

19.00% 18.96% 8.80% 9.34% 9.52% 9.61% 19.68%

13.04% 13.01% 6.12% 6.46% 6.56% 6.61% 13.51%

10.27% 10.25% 4.84% 5.10% 5.18% 5.22% 10.64%

11.76% 11.74% 5.49% 5.81% 5.91% 5.96% 12.18%

213.60% 213.24% 100.82% 106.13% 107.76%  108.51% 221.30%

50.37% 50.28% 23.68% 24.97% 25.38% 25.56% 52.19%

Mean 27.73% 27.68% 13.09% 13.78% 13.99% 14.08% 28.72%
Var. 0.167650 0.167074 0.037164 0.041274 0.042594 0.043212 0.179940
Max. 213.60% 213.24% 100.82% 106.13% 107.76%  108.51% 221.30%
Min. 5.57% 5.56% 2.69% 2.80% 2.83% 2.85% 5.77%
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Table 5.1.42: TDNN-+Jordan committee, final weeks, prod. weights/calc. weights

%Error
Prod. weights Calc. weights

13.01% 35.69%
19.93% -4.83%
119.15% 49.45%
27.28% 30.56%
21.43% 34.97%
17.15% 41.30%
11.85% 15.00%
10.64% 28.29%
14.55% 5.58%
6.99% 14.34%
10.00% 11.26%
35.77% 25.90%
28.87% 27.42%
8.25% 12.32%
4.84% 16.77%
17.92% 22.91%
7.37% 23.35%
17.84% 34.66%
17.43% 32.27%
16.26% 26.33%
20.40% 40.00%
11.21% 17.98%
31.24% 45.65%
11.34% 7.58%
11.69% 11.36%
7.64% 13.46%
16.62% 0.20%
217.68% 229.16%
56.24% 37.49%
Mean 27.95% 30.57%
Var. 0.17980964 0.1644907
Max. 217.68% 229.16%

Min. 4.84% -4.83%
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Table 5.1.43: TDNN-+Jordan committee, final weeks, prod. weights/calc. weights

%Error
prod. weights Calc. weights

24.83% 23.84%
9.84% 0.98%
104.99% 29.88%
25.92% 36.61%
27.30% 30.89%
24.65% 41.55%
11.87% 17.45%
17.46% 25.07%
7.20% 17.03%
8.03% 17.55%
8.24% 16.70%
34.35% 21.64%
26.11% 33.25%
9.78% 11.67%
11.33% 9.84%
18.36% 25.78%
13.26% 21.17%
22.83% 35.43%
22.88% 30.30%
17.32% 31.63%
26.08% 41.22%
10.17% 25.97%
32.79% 53.18%
16.20% 7.68%
12.83% 8.21%
10.63% 10.53%
10.85% 1.74%
222.05% 227.23%
50.32% 37.54%
Mean 28.91% 30.21%
Var. 0.1670551 0.16213871

Max. 222.05% 227.23%
Min. 7.20% 0.98%
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Table 5.1.44: Committee of the three best networks, final weeks, prod. weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights.
17.81% 17.82% 17.90% 18.03% 18.22% 18.10% 18.38%

18.59% 18.57% 18.41% 18.21% 18.33% 18.13% 16.91%

118.91% 118.93% 119.32%  119.91% 121.00% 120.22% 125.02%

30.57% 30.53% 30.10% 29.59% 29.77% 29.36% 24.96%

23.13% 23.13% 23.18% 23.24% 23.44% 23.26% 23.44%

17.95% 17.96% 17.97% 17.97% 18.11% 17.96% 17.73%

8.00% 8.02% 8.25% 8.50% 8.58% 8.59% 10.96%

8.90% 8.94% 9.23% 9.56% 9.68% 9.70% 12.42%

13.86% 13.83% 13.50% 13.07% 13.12% 12.87% 9.73%

7.66% 7.65% 7.52% 7.36% 7.40% 7.28% 5.92%

6.23% 6.25% 6.37% 6.48% 6.53% 6.52% 7.86%

38.99% 38.97% 38.82% 38.68% 39.00% 38.64% 37.20%

26.73% 26.73% 26.70% 26.65% 26.85% 26.62% 26.50%

8.33% 8.33% 8.36% 8.39% 8.47% 8.41% 8.62%

5.30% 5.32% 5.54% 5.82% 5.91% 5.94% 7.94%

14.99% 15.01% 15.16% 15.32% 15.45% 15.38% 16.92%

7.04% 7.06% 7.21% 7.37% 7.45% 7.44% 8.69%

15.31% 15.34% 15.56% 15.80% 15.95% 15.90% 18.01%

15.41% 15.44% 15.71% 16.01% 16.17% 16.13% 18.63%

13.90% 13.91% 13.96% 13.98% 14.08% 13.98% 14.42%

17.59% 17.62% 17.87% 18.12% 18.29% 18.22% 20.46%

8.72% 8.72% 8.68% 8.60% 8.64% 8.55% 8.20%

27.44% 27.46% 27.56% 27.63% 27.85% 27.65% 28.64%

14.65% 14.66% 14.88% 15.19% 15.38% 15.35% 17.33%

12.69% 12.69% 12.71% 12.75% 12.86% 12.77% 12.94%

6.52% 6.54% 6.74% 6.97% 7.05% 7.07% 8.97%

17.75% 17.73% 17.54% 17.33% 17.45% 17.24% 15.55%

220.34% 220.33% 220.22%  220.10% 221.92% 220.05% 218.77%

57.711% 57.69% 57.51% 57.33% 57.79% 57.25% 55.69%

Mean 27.62% 27.63% 27.67% 27.72% 27.96% 27.74% 28.17%
Var. 0.185444767 0.1854107 0.185258702 0.185209 0.188328673 0.1852376 0.18472053
Max. 220.34% 220.33% 220.22%  220.10% 221.92% 220.05% 218.77%
Min. 5.30% 5.32% 5.54% 5.82% 5.91% 5.94% 5.92%



5.1. RESULTS FOR DIFFERENT NETWORKS

Table 5.1.45: Committee errors for different alphas and four networks, final weeks,

prod. weight

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights
18.09% 18.14% 18.16% 18.14% 18.18% 18.12% 18.15%

18.10% 18.02% 18.01% 18.05% 18.09% 18.09% 18.06%

120.01% 119.79% 119.93% 120.25% 120.57% 120.47% 120.30%

29.36% 29.34% 29.29% 29.23% 29.27% 29.20% 29.25%

23.27% 23.31% 23.31% 23.29% 23.34% 23.27% 23.30%

18.00% 18.08% 18.06% 17.99% 18.01% 17.93% 18.00%

8.63% 8.67% 8.68% 8.67% 8.69% 8.66% 8.68%

9.74% 9.82% 9.84% 9.81% 9.84% 9.79% 9.82%

12.89% 12.85% 12.80% 12.77% 12.78% 12.75% 12.77%

7.30% 7.32% 7.29% 7.25% 7.26% 7.22% 7.26%

6.56% 6.59% 6.58% 6.56% 6.57% 6.55% 6.57%

38.58% 38.53% 38.53% 38.58% 38.66% 38.61% 38.60%

26.65% 26.65% 26.64% 26.61% 26.67% 26.60% 26.63%

8.41% 8.43% 8.43% 8.42% 8.44% 8.41% 8.42%

5.95% 5.99% 6.02% 6.02% 6.04% 6.01% 6.02%

15.41% 15.45% 15.45% 15.43% 15.46% 15.41% 15.44%

7.47% 7.53% 7.54% 7.50% 7.52% 7.47% 7.51%

15.95% 16.03% 16.04% 15.99% 16.02% 15.95% 16.00%

16.17% 16.24% 16.26% 16.23% 16.27% 16.20% 16.24%

14.03% 14.07% 14.06% 14.01% 14.03% 13.97% 14.02%

18.28% 18.37% 18.37% 18.32% 18.35% 18.27% 18.33%

8.60% 8.63% 8.61% 8.55% 8.56% 8.51% 8.56%

27.72% 27.79% 27.77% 27.70% 27.75% 27.65% 27.72%

15.28% 15.26% 15.31% 15.40% 15.45% 15.45% 15.41%

12.75% 12.75% 12.76% 12.77% 12.80% 12.78% 12.78%

7.08% 7.11% 7.13% 7.14% 7.16% 7.13% 7.14%

17.20% 17.14% 17.13% 17.16% 17.20% 17.19% 17.17%

220.06% 220.08% 220.07% 220.03% 220.49% 220.01% 220.15%

57.20% 57.13% 57.12% 57.18% 57.30% 57.22% 57.20%

Mean 27.75% 27.76% 27.77% 27.76% 27.82% 27.76% 27.78%
Var. 0.18504417 0.18484475 0.18490537 0.18512727 0.18594995 0.18528731 0.18531708
Max, 220.06% 220.08% 220.07% 220.03% 220.49% 220.01% 220.15%
Min. 5.95% 5.99% 6.02% 6.02% 6.04% 6.01% 6.02%
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Table 5.1.46: Error variation for TDNN-+Jordan committee, final weeks, prod.
weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights
15.28% 15.26% 7.04% 7.28% 7.34% 7.36% 14.87%

18.40% 18.37% 8.66% 8.85% 8.89% 8.90% 17.90%

116.61% 116.44% 54.56% 55.93% 56.22% 56.34% 113.45%

28.32% 28.28% 13.18% 13.55% 13.63% 13.67% 27.55%

23.17% 23.14% 10.75% 11.07% 11.14% 11.17% 22.54%

19.66% 19.64% 9.08% 9.38% 9.44% 9.47% 19.13%

12.44% 12.42% 5.79% 5.95% 5.99% 6.00% 12.11%

12.42% 12.40% 5.73% 5.92% 5.96% 5.98% 12.09%

14.21% 14.18% 6.65% 6.81% 6.85% 6.86% 13.82%

7.81% 7.80% 3.61% 3.73% 3.75% 3.76% 7.60%

10.38% 10.37% 4.83% 4.97% 5.00% 5.01% 10.10%

35.94% 35.89% 16.78% 17.22% 17.32% 17.35% 34.97%

29.55% 29.51% 13.77% 14.15% 14.23% 14.26% 28.75%

8.82% 8.81% 4.09% 4.22% 4.24% 4.25% 8.58%

5.98% 5.97% 2.75% 2.85% 2.87% 2.88% 5.82%

18.84% 18.81% 8.76% 9.01% 9.07% 9.09% 18.33%

8.92% 8.90% 4.10% 4.24% 4.28% 4.29% 8.68%

19.76% 19.73% 9.15% 9.43% 9.50% 9.52% 19.22%

19.16% 19.14% 8.88% 9.15% 9.21% 9.24% 18.65%

17.56% 17.53% 8.14% 8.39% 8.44% 8.47% 17.08%

22.62% 22.59% 10.47% 10.80% 10.87% 10.90% 22.01%

12.09% 12.07% 5.61% 5.78% 5.81% 5.83% 11.76%

33.32% 33.28% 15.47% 15.93% 16.03% 16.07% 32.42%

11.34% 11.33% 5.30% 5.44% 5.47% 5.48% 11.04%

11.99% 11.97% 5.58% 5.74% 5.77% 5.78% 11.66%

8.34% 8.33% 3.87% 3.98% 4.01% 4.02% 8.12%

15.71% 15.68% 7.37% 7.54% 7.58% 7.59% 15.28%

224.71% 224.39% 104.64% 107.55% 108.19% 108.45% 218.62%

56.23% 56.15% 26.26% 26.95% 27.10% 27.16% 54.71%

Mean 37.73% 37.68% 17.56% 18.06% 18.17% 18.21% 36.71%
Var. 0.363556382 0.36251442 0.078877908 0.08329992 0.084295592 0.0846875 0.344105463
Max. 224.71% 224.39% 104.64% 107.55% 108.19% 108.45% 218.62%

Min. 8.34% 8.33% 3.87% 3.98% 4.01% 4.02% 8.12%
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Table 5.1.47: Optimun ensemble’s errors, final weeks, calc. weights, four networks

%Error

2.56%
19.69%
67.99%
34.95%
19.84%
25.66%
18.26%
13.44%
27.23%
13.61%
19.74%
24.85%
37.35%

8.77%
-0.53%
25.08%
10.25%
26.16%
21.07%
28.23%
30.46%
25.71%
48.51%

-12.36%

6.79%

6.32%
12.30%

217.78%
48.90%

Mean 28.57%
Max. 217.78%
Min. -12.36%

Var. 0.15837759
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These errors are found as a linear combination of the individual errors using “optimal”
coefficients. If the previously negative errors are considered, in magnitude we get that:

Mean 29.46%
Max. 217.78%
Min. 0.53%
Var. 1477.5722
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5.2 Results for networks committees

Table 5.2.1: Optimal committee. Errors found without iterations

%Error

12.07%
4.74%
14.15%
9.35%
6.72%
3.88%
3.85%
11.85%
8.03%
11.05%
0.31%
5.14%
1.75%
34.02%

Mean 9.21%
Max. 34.02%
min. 0.31%
Var. 0.0062904
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Table 5.2.2: Ensemble of the three best networks, final weeks, production weights

Error obtained with

prod. weights

calc. weights

11.41% 15.50%

24.37% 24.07%

145.20% 120.21%

24.12% 39.34%

19.34% 21.35%

10.59% 15.06%

10.08% 1.89%

7.13% 0.68%

12.64% 20.81%

3.82% 9.32%

7.61% 2.33%

40.02% 44.17%

27.06% 26.47%

7.40% 7.36%

4.26% -0.04%

15.50% 10.44%

3.91% 2.26%

13.05% 8.08%

14.20% 7.91%

11.56% 10.82%

14.69% 9.62%

6.38% 7.55%

24.54% 22.23%

18.10% 12.59%

12.96% 12.75%

7.18% 1.76%

20.44% 23.68%

215.33% 221.90%

61.24% 63.86%

Mean 27.38% 26.34%
Var. 0.2022145 0.199333973
Max. 215.33% 221.90%
min. 3.82% -0.04%
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Table 5.2.3: Errors of the MLP+Jordan committee, production data and different
alphas (calc. weights)

o= 1.50 1 0.5 0.20 0.10 0.05 Equal weights
4.41% 4.40% 2.15% 2.23% 2.25% 2.26% 13.48%

15.58% 15.55% 7.13% 7.61% 7.78% 7.86% 14.12%

14.11% 14.08% 6.57% 6.96% 7.08% 7.14% 13.03%

5.58% 5.57% 2.62% 2.76% 2.81% 2.83% 12.91%

12.35% 12.33% 5.66% 6.04% 6.17% 6.23% 13.41%

5.67% 5.66% 2.68% 2.82% 2.86% 2.88% 12.20%

2.20% 2.19% 1.03% 1.09% 1.11% 1.11% 16.22%

18.42% 18.39% 8.72% 9.17% 9.30% 9.36% 17.38%

19.02% 18.98% 8.86% 9.38% 9.55% 9.63% 17.21%

16.93% 16.90% 8.04% 8.44% 8.56% 8.61% 16.93%

11.39% 11.37% 5.50% 5.73% 5.79% 5.82% 16.85%

23.39% 23.35% 11.11% 11.66% 11.83% 11.90% 17.57%

10.27% 10.26% 4.95% 5.16% 5.22% 5.24% 16.46%

22.88% 22.84% 10.84% 11.39% 11.56% 11.63% 17.93%

Mean 13.01% 12.99% 6.13% 6.46% 6.56% 6.61% 15.41%
Var. 0.004648 0.004632 0.001031 0.001144 0.001181 0.001198 0.000429
Max. 23.39% 23.35% 11.11% 11.66% 11.83% 11.90% 17.93%

min. 2.20% 2.19% 1.03% 1.09% 1.11% 1.11% 12.20%
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Table 5.2.4: Errors for different alphas and four networks, production data, cal-

culated weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights
17.81% 17.82% 17.90% 18.03% 18.07% 18.10% 18.16%

18.59% 18.57% 18.41% 18.21% 18.13% 18.13% 18.05%

11891% 118.93%  119.32%  119.91% 119.99%  120.22% 120.47%

30.57% 30.53% 30.10% 29.59% 29.41% 29.36% 29.16%

23.13% 23.13% 23.18% 23.24% 23.24% 23.26% 23.29%

17.95% 17.96% 17.97% 17.97% 17.95% 17.96% 17.95%

8.00% 8.02% 8.25% 8.50% 8.55% 8.59% 8.68%

8.90% 8.94% 9.23% 9.56% 9.66% 9.70% 9.83%

13.86% 13.83% 13.50% 13.07% 12.92% 12.87% 12.70%

7.66% 7.65% 7.52% 7.36% 7.30% 7.28% 7.22%

6.23% 6.25% 6.37% 6.48% 6.50% 6.52% 6.56%

38.99% 38.97% 38.82% 38.68% 38.62% 38.64% 38.59%

26.73% 26.73% 26.70% 26.65% 26.60% 26.62% 26.59%

8.33% 8.33% 8.36% 8.39% 8.39% 8.41% 8.42%

5.30% 5.32% 5.54% 5.82% 5.90% 5.94% 6.05%

14.99% 15.01% 15.16% 15.32% 15.34% 15.38% 15.43%

7.04% 7.06% 7.21% 7.37% 7.42% 7.44% 7.51%

15.31% 15.34% 15.56% 15.80% 15.86% 15.90% 15.99%

15.41% 15.44% 15.71% 16.01% 16.08% 16.13% 16.25%

13.90% 13.91% 13.96% 13.98% 13.97% 13.98% 13.98%

17.59% 17.62% 17.87% 18.12% 18.18% 18.22% 18.31%

8.72% 8.72% 8.68% 8.60% 8.56% 8.55% 8.51%

27.44% 27.46% 27.56% 27.63% 27.62% 27.65% 27.66%

14.65% 14.66% 14.88% 15.19% 15.28% 15.35% 15.49%

12.69% 12.69% 12.711% 12.75% 12.75% 12.77% 12.79%

6.52% 6.54% 6.74% 6.97% 7.03% 7.07% 7.16%

17.75% 17.73% 17.54% 17.33% 17.25% 17.24% 17.16%

220.34%  220.33%  220.22%  220.10%  219.88%  220.05% 220.01%

57.711% 57.69% 57.51% 57.33% 57.22% 57.25% 57.18%

Mean 27.62% 27.63% 27.67% 27.72% 27.711% 27.74% 27.76%
Var. 0.185444 0.185410 0.185258 0.185208 0.184886 0.185237 0.185245
Max. 220.34% 220.33%  220.22%  220.10%  219.88%  220.05% 220.01%
min. 5.30% 5.32% 5.54% 5.82% 5.90% 5.94% 6.05%



5.2. RESULTS FOR NETWORKS COMMITTEES 217

Table 5.2.5: MLP+Jordan committee, production data, calculated weights

Errors

6.02%
11.22%
12.68%

5.35%

9.25%

6.02%

2.24%
19.66%
17.23%
18.71%
14.64%
25.92%
12.95%
24.67%

Mean 13.33%
Var. 0.005294256
Max. 25.92%
min. 2.24%

Table 5.2.6: TDNN+Jordan committee, production data, calculated weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights
6.81% 6.80% 3.15% 3.25% 3.27% 3.28% 6.62%

1.68% 1.68% 0.78% 0.80% 0.81% 0.81% 1.63%

12.88% 12.86% 6.03% 6.18% 6.21% 6.22% 12.53%

5.71% 5.711% 2.67% 2.74% 2.75% 2.76% 5.56%

5.11% 5.10% 2.40% 2.45% 2.46% 2.47% 4.97%

3.36% 3.36% 1.54% 1.60% 1.61% 1.62% 3.27%

3.63% 3.62% 1.70% 1.74% 1.75% 1.75% 3.53%

15.53% 15.50% 7.19% 7.41% 7.46% 7.48% 15.10%

17.88% 17.85% 8.37% 8.58% 8.62% 8.64% 17.40%

25.46% 25.42% 11.89% 12.20% 12.27% 12.29% 24.76%

15.03% 15.01% 6.96% 7.18% 7.22% 7.24% 14.62%

27.23% 27.19% 12.66% 13.02% 13.11% 13.14% 26.49%

15.03% 15.01% 6.98% 7.19% 7.23% 7.25% 14.62%

26.93% 26.89% 12.54% 12.89% 12.97% 13.00% 26.20%

Mean 13.02% 13.00% 6.06% 6.23% 6.27% 6.28% 12.67%
Var. 0.008097 0.008074 0.001757 0.001855 0.001877 0.001886 0.007664
Max. 27.23% 27.19% 12.66% 13.02% 13.11% 13.14% 26.49%

min. 1.68% 1.68% 0.78% 0.80% 0.81% 0.81% 1.63%
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Table 5.2.7: committee with 4 networks, production data, calculated weights.

a = 1.5 1.0 0.5 0.2 0.1 0.05 Equal weights
7.711% 7.69% 7.45% 7.15% 7.05% 7.01% 6.90%

8.39% 8.40% 8.64% 9.02% 9.16% 9.23% 9.40%

14.09% 14.09% 14.16% 14.27% 14.30% 14.34% 14.38%

7.07% 7.06% 6.98% 6.89% 6.87% 6.86% 6.83%

8.45% 8.46% 8.66% 8.96% 9.06% 9.12% 9.25%

4.15% 4.15% 4.15% 4.16% 4.16% 4.16% 4.17%

3.32% 3.32% 3.30% 3.27% 3.26% 3.26% 3.25%

14.87% 14.88% 14.98% 15.09% 15.12% 15.15% 15.19%

15.20% 15.24% 15.64% 16.14% 16.27% 16.36% 16.55%

17.68% 17.72% 17.97% 18.21% 18.25% 18.30% 18.38%

8.14% 8.17% 8.39% 8.60% 8.64% 8.66% 8.73%

17.89% 17.95% 18.42% 18.94% 19.06% 19.14% 19.33%

8.46% 8.49% 8.69% 8.87% 8.90% 8.93% 8.99%

28.12% 28.09% 27.81% 27.46% 27.34% 27.31% 27.18%

Mean 11.68% 11.69% 11.80% 11.93% 11.96% 11.99% 12.04%
Var. 0.004470 0.004472 0.004482 0.004494 0.004488 0.004500 0.004507
Max. 28.12% 28.09% 27.81% 27.46% 27.34% 27.31% 27.18%
Min. 3.32% 3.32% 3.30% 3.27% 3.26% 3.26% 3.25%

Table 5.2.8: TDNN+Jordan committee, production data, calculated weights

%Error

6.20%
1.63%
13.22%
5.76%
5.47%
2.70%
3.79%%
14.02%
18.35%
25.49%
13.56%
25.97%
14.09%
26.13%

Mean 12.60%
Var. 0.007701835
Max. 26.13%
min. 1.63%
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5.3 Iterated predictions for each model

Table 5.3.1: Iterated predictions (’closed loop’) for each model

Week Real =MLP= %Error =TDNN= %Error =Jordan= %Error
32/2011 5385591 5646154.44 4.84%  4689340.60 12.93% 4250138.91 21.08%
33/2011 4595666  4840941.73 5.34%  4162812.52 9.42%  3679669.71 19.93%
34/2011 5222869 4159463.73 20.36% 3761387.81 27.98% 3665198.06 29.82%
35/2011 4870710 3399105.99 30.21%  3488404.93 28.38%  3663092.32 24.79%
36/2011 4096739 3079483.62 24.83%  3327994.57 18.76%  3545097.89 13.47%
37/2011 3398617 2940344.58 13.48%  3241489.84 4.62%  3295762.67 3.03%
38/2011 3266710 2829340.70 13.39% 3196553.49 2.15%  3140578.69 3.86%
39/2011 2595111 2719539.43 4.79%  3173566.00 22.29% 3168777.74 22.11%
40/2011 3185410 2602746.81 18.29% 3161883.64 0.74%  2977822.02 6.52%
41/2011 3311189 2477129.17 25.19%  3155964.34 4.69%  3004659.83 9.26%
42/2011 2706442 2352101.9 13.09% 3152969.36 16.50%  2949781.58 8.99%
43/2011 2950426 2247517.88 23.82%  3151455.06 6.81% 2861529.70 3.01%
44/2011 2524455 2178816.65 13.69% 3150689.67 24.81% 2896076.23 14.72%
45/2011 2831359 2143040.98 24.31% 3150302.88 11.26%  2730897.15 3.55%
Max 30.21% 28.38% 29.82%
min 4.79% 0.74% 3.01%
Var. 0.00692363 0.00913421 0.00819588
Mean 16.83% 13.67% 13.15%
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Table 5.3.2: Errors of the opt. committee of the best three nets, ’closed loop’,
prod. weights

%Error

10.87%
14.21%
28.90%
31.80%
21.24%

6.29%

4.63%
15.33%

5.07%
10.07%
12.41%
10.78%
17.12%
14.24%

Mean 14.50%
Var. 0.006175759
Max. 31.80%
min. 4.63%

Table 5.3.3: Errors of the best three nets for different alphas ,’closed loop’, cal-
culated weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weights
14.21% 13.97% 13.35% 13.77% 14.16% 14.39% 14.68%

19.46% 19.53% 19.72% 19.62% 19.52% 19.46% 19.38%

28.75% 28.32% 27.16% 27.91% 28.62% 29.03% 29.56%

28.57% 28.29% 27.53% 28.01% 28.47% 28.73% 29.07%

18.53% 18.50% 18.42% 18.46% 18.51% 18.53% 18.56%

5.92% 5.99% 6.18% 6.05% 5.94% 5.87% 5.79%

5.56% 5.65% 5.89% 5.74% 5.59% 5.51% 5.40%

14.90% 14.78% 14.47% 14.67% 14.86% 14.98% 15.12%

7.68% 7.82% 8.20% 7.97% 7.74% 7.61% 7.45%

12.48% 12.66% 13.15% 12.85% 12.55% 12.38% 12.17%

10.25% 10.21% 10.11% 10.17% 10.22% 10.26% 10.29%

10.30% 10.50% 11.04% 10.69% 10.36% 10.17% 9.92%

14.46% 14.38% 14.19% 14.30% 14.42% 14.48% 14.56%

12.69% 12.90% 13.45% 13.08% 12.74% 12.54% 12.28%

Mean 14.55% 14.54% 14.49% 14.52% 14.55% 14.57% 14.59%
Var. 0.005269 0.005063 0.004549 0.004873 0.005204 0.005404 0.005668
Max. 28.75% 28.32% 27.53% 28.01% 28.62% 29.03% 29.56%

min. 5.56% 5.65% 5.89% 5.74% 5.59% 5.51% 5.40%



5.3. ITERATED PREDICTIONS FOR EACH MODEL 221

Table 5.3.4: Errors for different alphas of the best three nets,’closed loop’, prod.
weights

o = 1.50 1 0.50 0.20 0.10 0.05 Equal weight.
14.96% 14.97% 14.95% 14.83% 14.78% 14.75% 14.68%

19.13% 19.14% 19.20% 19.30% 19.33% 19.34% 19.38%

30.23% 30.25% 30.15% 29.88% 29.76% 29.70% 29.56%

29.59% 29.60% 29.51% 29.30% 29.21% 29.17% 29.07%

18.68% 18.68% 18.65% 18.60% 18.59% 18.58% 18.56%

5.69% 5.68% 5.70% 5.74% 5.76% 5.76% 5.79%

5.24% 5.23% 5.26% 5.33% 5.35% 5.37% 5.40%

15.32% 15.32% 15.29% 15.21% 15.18% 15.16% 15.12%

7.16% 7.16% 7.21% 7.33% 7.37% 7.39% 7.45%

11.83% 11.82% 11.89% 12.02% 12.08% 12.10% 12.17%

10.41% 10.41% 10.38% 10.34% 10.32% 10.31% 10.29%

9.62% 9.61% 9.65% 9.78% 9.83% 9.86% 9.92%

14.74% 14.74% 14.70% 14.63% 14.60% 14.59% 14.56%

12.00% 11.99% 12.02% 12.14% 12.19% 12.22% 12.28%

Mean 14.61% 14.61% 14.61% 14.60% 14.60% 14.59% 14.59%
Var. 0.006049 0.006056 0.005997 0.005841 0.005777 0.005744 0.005668
Max. 30.23% 30.25% 30.15% 29.88% 29.76% 29.70% 29.56%
min. 5.24% 5.23% 5.26% 5.33% 5.35% 5.37% 5.40%

Table 5.3.5: MLP-+Jordan committee’s errors, ’closed loop’ and calculated
weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weight.
15.45%  15.85% 8.90% 9.17% 9.41% 9.55% 14.60%

25.27%  25.93% 16.61% 16.40% 16.19% 16.06% 23.88%

26.36%  27.04% 15.51% 15.87% 16.18% 16.36% 24.91%

25.17%  25.83% 15.65% 15.73% 15.78% 15.81% 23.78%

17.24%  17.69% 11.49% 11.30% 11.11% 11.00% 16.29%

6.62% 6.79% 4.72% 4.55% 4.39% 4.29% 6.26%

7.41% 7.60% 5.23% 5.06% 4.89% 4.79% 7.00%

14.35%  14.73% 9.00% 9.02% 9.03% 9.03% 13.56%

11.43% 11.72% 7.98% 7.74% 7.50% 7.37% 10.80%

16.72%  17.15% 11.67% 11.32% 10.98% 10.78% 15.80%

8.85% 9.08% 5.87% 5.78% 5.69% 5.64% 8.36%

12.37%  12.70% 9.13% 8.711% 8.31% 8.09% 11.69%

12.59%  12.92% 8.23% 8.14% 8.05% 8.00% 11.90%

14.14%  14.51% 10.42% 9.95% 9.50% 9.24% 13.36%

% Mean 15.28%  15.68% 10.03% 9.91% 9.79% 9.711% 14.44%
Var. 0.004131 0.00435 0.001453 0.001502 0.001554 0.001588 0.003689
Max. 26.36%  27.04% 16.61% 16.40% 16.19% 16.36% 24.91%

min. 6.62% 6.79% 4.72% 4.55% 4.39% 4.29% 6.26%
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Table 5.3.6: MLP+Jordan committee’s errors, ’closed loop’ and prod. weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weight
14.09% 14.07% 9.78% 9.78% 9.76% 9.75% 22.47%

23.05% 23.01% 15.58% 15.75% 15.81% 15.84% 22.70%

24.04% 24.00% 16.62% 16.64% 16.62% 16.61% 22.66%

22.96% 22.92% 15.70% 15.79% 15.81% 15.82% 22.59%

15.73% 15.70% 10.60% 10.73% 10.78% 10.80% 22.56%

6.04% 6.03% 4.01% 4.09% 4.12% 4.13% 22.76%

6.76% 6.75% 4.50% 4.58% 4.61% 4.63% 23.30%

13.09% 13.07% 8.94% 9.00% 9.01% 9.02% 23.85%

10.42% 10.40% 6.95% 7.07% 7.12% 7.14% 24.21%

15.25% 15.22% 10.17% 10.35% 10.41% 10.45% 24.70%

8.07% 8.06% 5.45% 5.51% 5.53% 5.54% 25.03%

11.29% 11.27% 7.43% 7.60% 7.67% 7.711% 25.69%

11.49% 11.47% 7.78% 7.86% 7.88% 7.90% 26.26%

12.90% 12.88% 8.49% 8.69% 8.77% 8.81% 26.87%

Mean 13.94% 13.92% 9.43% 9.53% 9.57% 9.58% 23.97%
Var. 0.003437 0.003425 0.001649 0.001649 0.001644 0.001641 0.000228
Max. 24.04% 24.00% 16.62% 16.64% 16.62% 16.61% 26.87%

min. 6.04% 6.03% 4.01% 4.09% 4.12% 4.13% 22.47%
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Table 5.3.7: Errors ensemble opt. ’closed loop’s MLP-+Jordan, prod.
weights/calculated weights

Errors
Calculated weights Prod. weights

7.39% 18.71%

23.27% 24.22%

14.43% 30.88%

18.32% 26.90%

16.73% 16.05%

8.12% 5.19%

8.78% 5.99%

10.86% 15.11%

13.08% 9.50%

19.13% 13.90%

8.43% 8.32%

16.81% 8.78%

11.35% 12.22%

19.13% 10.08%

Mean 13.99% 14.70%
Var 0.00251553 0.006281167
Max. 23.27% 30.88%

min. 7.39% 5.19%
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Table 5.3.8: TDNN+Jordan committee,’closed loop’, prod. weights

%Error

22.80%
20.11%
41.30%
35.17%
18.05%
3.69%
3.41%
18.14%
4.91%
8.46%
10.20%
4.19%
15.16%
5.81%

Mean
Var.
Max.

min.

15.10%
0.014116371
41.30%
3.41%
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Table 5.3.9: TDNN+Jordan committee,’closed loop’, prod. weights

a = 1.5 1 0.5 0.2 0.1 0.05 Equal weight
21.36% 21.33% 9.90% 10.20% 10.27% 10.30% 20.78%

18.14% 18.11% 8.39% 8.66% 8.72% 8.74% 17.65%

41.81% 41.75% 19.46% 20.01% 20.13% 20.18% 40.68%

37.31% 37.25% 17.41% 17.87% 17.97% 18.01% 36.30%

19.87% 19.84% 9.29% 9.52% 9.58% 9.60% 19.33%

4.10% 4.09% 1.91% 1.96% 1.97% 1.98% 3.98%

3.19% 3.19% 1.48% 1.52% 1.53% 1.54% 3.11%

18.67% 18.65% 8.70% 8.94% 8.99% 9.01% 18.17%

3.97% 3.96% 1.82% 1.89% 1.90% 1.91% 3.86%

7.77% 7.76% 3.60% 3.711% 3.74% 3.75% 7.56%

11.52% 11.50% 5.39% 5.52% 5.55% 5.57% 11.21%

4.87% 4.87% 2.28% 2.34% 2.35% 2.36% 4.74%

16.81% 16.79% 7.86% 8.06% 8.10% 8.12% 16.35%

7.09% 7.08% 3.33% 3.41% 3.42% 3.43% 6.90%

Mean 15.46% 15.44% 7.20% 7.40% 7.45% 7.46% 15.04%
Var. 0.014721 0.014679 0.003194 0.003373 0.003413 0.003429 0.013933
Max. 41.81% 41.75% 19.46% 20.01% 20.13% 20.18% 40.68%

min. 3.19% 3.19% 1.48% 1.52% 1.53% 1.54% 3.11%
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Table 5.3.10: Results, via iteration, of a MLP used to find the invariants

Sales

5646154.44
4840941.73
4159463.73
3399105.99
3079483.62
2940344.58
2829340.70
2719539.43
2602746.81
2477129.17
2352101.90
2247517.88
2178816.65
2143040.98
2326947.25
2381064.25
2426377.25
2395783.75
2446592.25
2294147.25
2312018.25
2214266.75
2050533.25
2447648.50
2567263.75
2489502.50
2457000.50
2343001
2312216.25
2351420.50
2382318.75
2374639.75
204224.50
2355913.25
2364289.25
2501101
2777317.25
2942121
3431798
3759009.75
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5.4 Data set

5.4.1 Data set for validation
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5.4.2 Values of the real series

Table 5.4.2: Data set for sales used to construct the networks

Week

Sales

Week

Sales

Week 35/2000
Week 36/2000
Week 37/2000
Week 38/2000
Week 39/2000
Week 40/2000
Week 41/2000
Week 42/2000
Week 43/2000
Week 44,/2000
Week 44,/2000
Week 45/2000
Week 46/2000
Week 47/2000
Week 48/2000
Week 49/2000
Week 50/2000
Week 51/2000
Week 52/2000
Week 53/2000
Week 1/2001

Week 2/2001

Week 3/2001

Week 4/2001

Week 5/2001

Week 6/2001

Week 7/2001

Week 8/2001

Week 9/2001

Week 10/2001
Week 11/2001
Week 12/2001
Week 13/2001
Week 14/2001
Week 15/2001
Week 16/2001
Week 17/2001
Week 18/2001
Week 19/2001
Week 20/2001
Week 21/2001
Week 22/2001
Week 23/2001
Week 24/2001
Week 25/2001
Week 26/2001

926755

4179261
4706674
2627357
3416080
3315804
2946162
2587267
2314257
2709274
2709274
2572616
2933942
2359168
2473501
2463478
2634574
3034834
2539880
2019749
2291729
2714202
2174609
2432859
2540535
2775286
2502048
2196746
2473843
2654655
2390933
2436329
3090102
2829358
2820350
3448604
3931186
4691133
4803830
3882958
2796097
3864962
3408514
6063085
5774657
4415792

Week 10/2006
Week 11/2006
Week 12/2006
Week 13/2006
Week 14/2006
Week 15/2006
Week 16/2006
Week 17/2006
Week 18/2006
Week 19/2006
Week 20/2006
Week 21/2006
Week 22/2006
Week 23 /2006
Week 24/2006
Week 25/2006
Week 26/2006
Week 27/2006
Week 28 /2006
Week 29/2006
Week 30/2006
Week 31/2006
Week 32/2006
Week 33 /2006
Week 34/2006
Week 35/2006
Week 36,/2006
Week 37/2006
Week 38 /2006
Week 39/2006
Week 40/2006
Week 44/2006
Week 45/2006
Week 46/2006
Week 47/2006
Week 48/2006
Week 49/2006
Week 50/2006
Week 51/2006
Week 52/2006
Week 53/2006
Week 1/2007
Week 2/2007
Week 3/2007
Week 4/2007
Week 5/2007

Continues in the next page...

2126979
2164678
1816436
1951619
2041524
2038337
2693360
2435101
2061311
2747744
2497153
3246319
2622512
3208380
3357450
3111614
3284742
2853060
3078257
2632276
2444469
4079808
3612956
3064508
2800561
2280058
3537141
2741801
1587098
1904643
2120507
1751901
2431799
2280129
1876845
1735020
2192247
2335422
2086710
2153375
1542989
1940214
1835315
1561202
1648127
2288112
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Week

Sales

Week

Sales

Week 27/2001
Week 28/2001
Week 29/2001
Week 30/2001
Week 31,/2001
Week 32/2001
Week 33/2001
Week 34/2001
Week 35/2001
Week 36/2001
Week 37/2001
Week 38/2001
Week 39/2001
Week 40/2001
Week 41/2001
Week 42,/2001
Week 43/2001
Week 44,/2001
Week 45/2001
Week 46/2001
Week 47/2001
Week 48/2001
Week 49/2001
Week 50/2001
Week 51/2001
Week 52/2001
Week 1/2002
Week 2/2002
Week 3/2002
Week 4/2002
Week 5,/2002
Week 6/2002
Week 7/2002
Week 8/2002
Week 9/2002
Week 10/2002
Week 11/2002
Week 12/2002
Week 13/2002
Week 14/2002
Week 15/2002
Week 16,/2002
Week 17/2002
Week 18/2002
Week 19/2002
Week 20/2002
Week 21/2002
Week 22/2002
Week 23/2002

5187932
4978862
5926167
4519588
3577718
3202177
3186564
2715797
3865311
4106679
4417628
2881843
2579913
2750153
2993723
2579861
2797988
1957547
2936830
2538715
2027196
2709882
3007134
3268912
2286447
1773867
2687093
2271150
2346260
2238878
2866988
2219256
2555820
2263271
2326495
2907213
2589854
2527123
2887433
2842291
3221716
3001184
3341405
3087029
3149088
3179749
3027566
3713998
5630234

Week 6/2007
Week 7/2007
Week 8/2007
Week 9/2007
Week 10/2007
Week 11,2007
Week 12,/2007
Week 13/2007
Week 14/2007
Week 15/2007
Week 16/2007
Week 17/2007
Week 18/2007
Week 19/2007
Week 20/2007
Week 21/2007
Week 22/2007
Week 23/2007
Week 24/2007
Week 25/2007
Week 26,/2007
Week 27/2007
Week 28/2007
Week 29/2007
Week 30/2007
Week 31/2007
Week 32/2007
Week 33/2007
Week 34/2007
Week 35/2007
Week 36/2007
Week 37/2007
Week 38/2007
Week 39/2007
Week 40/2007
Week 41/2007
Week 42/2007
Week 43/2007
Week 44,/2007
Week 45/2007
Week 46/2007
Week 47/2007
Week 48/2007
Week 49/2007
Week 50/2007
Week 51/2007
Week 52/2007
Week 1/2008
Week 2/2008

Continues in the next page...

2340295
1856677
2178414
2387049
1839173
2080375
1821560
1867146
2249850
2043826
2209278
2612835
3913849
3035823
3363584
4137460
2104115
3210528
3366970
2916113
5561243
5398958
4797002
4562853
4577326
4512109
3466389
3484006
3147108
2309977
2126661
2533570
2429710
2197202
2551922
2108353
1789974
1655688
2097765
2360214
2152498
1725665
1749327
2021910
2516246
2004826
1786796
1616077
1896702
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Table 5.4.2 — Continued

Week

Sales

Week

Sales

Week 24/2002
Week 25/2002
Week 26/2002
Week 27/2002
Week 28/2002
Week 29/2002
Week 30/2002
Week 30/2002
Week 31/2002
Week 32/2002
Week 33/2002
Week 34/2002
Week 35/2002
Week 36,2002
Week 37/2002
Week 38/2002
Week 39/2002
Week 40/2002
Week 41/2002
Week 42/2002
Week 43/2002
Week 44/2002
Week 45/2002
Week 46/2002
Week 47/2002
Week 48/2002
Week 49/2002
Week 50/2002
Week 51/2002
Week 52/2002
Week 1/2003
Week 2/2003
Week 3/2003
Week 4/2003
Week 5/2003
Week 6/2003
Week 7/2003
Week 8/2003
Week 9/2003
Week 10/2003
Week 11/2003
Week 12/2003
Week 13/2003
Week 14/2003
Week 15/2003
Week 16/2003
Week 17/2003
Week 18/2003
Week 19/2003

5647959
6133903
4086884
7481043
4561935
3336950
2298535
1795398
4059187
4541634
3460739
2929769
3312203
4337180
3096599
2487257
2166852
2829997
2489479
2440010
1836245
2824424
3084545
2400476
2180859
2108846
2767276
2951331
3101019
2411754
2091221
2344265
2554344
2087222
2384806
2355510
4240721
1404384
1821054
2572587
2749742
2518900
2072693
2939268
2868848
2455639
2484590
3822776
3264968

Week 3/2008
Week 4/2008
Week 5/2008
Week 6/2008
Week 7/2008
Week 8/2008
Week 9/2008
Week 10/2008
Week 11/2008
Week 12/2008
Week 13/2008
Week 15/2008
Week 16/2008
Week 17/2008
Week 18 /2008
Week 19/2008
Week 20/2008
Week 21 /2008
Week 22/2008
Week 23 /2008
Week 24/2008
Week 25/2008
Week 26,/2008
Week 27/2008
Week 28 /2008
Week 29/2008
Week 30/2008
Week 31/2008
Week 32/2008
Week 33/2008
Week 34/2008
Week 35/2008
Week 36,/2008
Week 37/2008
Week 38 /2008
Week 39/2008
Week 40/2008
Week 41 /2008
Week 42/2008
Week 43/2008
Week 44/2008
Week 45/2008
Week 46,/2008
Week 47/2008
Week 48/2008
Week 49/2008
Week 50/2008
Week 51/2008
Week 52/2008

Continues in the next page...

1786087
1924555
1826086
2171090
1834858
1847698
3119016
2537237
2449622
2477690
2002338
3437607
2443131
3181962
3588418
3366375
2453671
3951939
5283446
4321461
4537587
4451132
4568490
3629043
2407967
3666894
4029739
4773272
4076976
3628467
2473349
2826566
4360510
4479319
2749200
2215935
2769579
2659052
1955810
1704084
2498404
2793180
2303739
1853996
1913062
3186749
2284180
2302637
1917573
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Week

Sales

Week

Sales

Week 20/2003
Week 21/2003
Week 22/2003
Week 23/2003
Week 24/2003
Week 25/2003
Week 26/2003
Week 27/2003
Week 28/2003
Week 29/2003
Week 30/2003
Week 31/2003
Week 32/2003
Week 33/2003
Week 34/2003
Week 35/2003
Week 36/2003
Week 37/2003
Week 38/2003
Week 39/2003
Week 40/2003
Week 41/2003
Week 42,/2003
Week 43/2003
Week 44/2003
Week 45/2003
Week 46/2003
Week 47/2003
Week 48/2003
Week 49/2003
Week 50/2003
Week 51/2003
Week 52/2003
Week 1/2004
Week 2/2004
Week 3,/2004
Week 4,/2004
Week 5/2004
Week 6/2004
Week 7,/2004
Week 8,/2004
Week 9/2004
Week 10/2004
Week 11/2004
Week 12/2004
Week 13/2004
Week 14/2004
Week 15/2004
Week 16/2004

2980751
3338559
3795066
4861309
3859993
2686226
4486447
5328098
4366524
4081855
3472574
4235990
4504910
3499123
3833747
3089664
3609030
3919008
2505294
2352757
2559015
2549628
2321544
2156849
2262453
2644424
2639170
2063080
2441794
2545541
2664210
2462348
2530282
2010711
2232971
2204838
1837343
2257356
2417491
2453689
2165516
2436447
3037165
2010665
1968738
2108793
2905879
2277141
2315125

Week 1/2009
Week 2/2009
Week 3/2009
Week 4/2009
Week 5,/2009
Week 6,/2009
Week 7/2009
Week 8/2009
Week 9/2009
Week 10/2009
Week 11/2009
Week 12/2009
Week 13/2009
Week 14/2009
Week 15/2009
Week 16,/2009
Week 17/2009
Week 18/2009
Week 19/2009
Week 20/2009
Week 21/2009
Week 22/2009
Week 23/2009
Week 24/2009
Week 25/2009
Week 26/2009
Week 27/2009
Week 28/2009
Week 29/2009
Week 30/2009
Week 31/2009
Week 32/2009
Week 33/2009
Week 34/2009
Week 35/2009
Week 36/2009
Week 37/2009
Week 38/2009
Week 39/2009
Week 40/2009
Week 41/2009
Week 42/2009
Week 43/2009
Week 44/2009
Week 45/2009
Week 46/2009
Week 47/2009
Week 48/2009
Week 49/2009

Continues in the next page...

2106193
2634985
2351758
2064283
2491609
3119109
2547601
1839200
2466054
2911494
2527839
2355366
2543897
2941673
3077187
2978107
2138566
3201548
4102988
4007709
3273680
9617576
5180040
4365749
4921847
5557854
5006407
9826676
9705439
6227846
4940653
4406095
3512060
2787517
2909381
4179106
3029413
3330570
3435229
3046156
3193715
2741613
2663604
2307745
3139445
2556855
2313595
2356704
2952435
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Table 5.4.2 — Continued

Week

Sales

Week

Sales

Week 17/2004
Week 18/2004
Week 19/2004
Week 20,2004
Week 21/2004
Week 22,/2004
Week 23/2004
Week 24 /2004
Week 25,2004
Week 26,2004
Week 27/2004
Week 28/2004
Week 29/2004
Week 30,2004
Week 31,/2004
Week 32/2004
Week 33/2004
Week 34/2004
Week 35,2004
Week 36,2004
Week 37/2004
Week 38/2004
Week 39/2004
Week 40,/2004
Week 41,/2004
Week 42/2004
Week 43/2004
Week 44,/2004
Week 45/2004
Week 46,2004
Week 47,/2004
Week 48/2004
Week 49/2004
Week 50/2004
Week 51,/2004
Week 52/2004
Week 1/2005

Week 2/2005

Week 3/2005

Week 4/2005

Week 5/2005

Week 6/2005

Week 7/2005

Week 8/2005

Week 9/2005

Week 10/2005
Week 11/2005
Week 12/2005
Week 13/2005

2424359
3048647
3110173
4486423
3531813
4069386
3812879
3771381
3113831
3353187
4018478
4577138
3643350
2274765
3330015
3936423
2541321
3289351
2708966
2934089
3589900
2510938
2315608
2305684
2744836
2531931
2258744
2054699
2657164
2687454
2112851
2070644
2164784
2248424
2200349
2411323
1999391
2178662
2258625
2045641
2107681
2150651
2383880
2178316
1514920
2213110
2533642
2024704
2400506

Week 50/2009
Week 51/2009
Week 52/2009
Week 1/2010
Week 2/2010
Week 3/2010
Week 4/2010
Week 5/2010
Week 6,/2010
Week 7,/2010
Week 8/2010
Week 9/2010
Week 10/2010
Week 11/2010
Week 12/2010
Week 13/2010
Week 14/2010
Week 15/2010
Week 16/2010
Week 17/2010
Week 18/2010
Week 19/2010
Week 20/2010
Week 21/2010
Week 22/2010
Week 23/2010
Week 24/2010
Week 25/2010
Week 26,/2010
Week 27/2010
Week 28/2010
Week 29/2010
Week 30/2010
Week 31/2010
Week 32/2010
Week 33,2010
Week 34/2010
Week 35/2010
Week 36/2010
Week 37/2010
Week 38,2010
Week 39/2010
Week 40/2010
Week 41/2010
Week 42/2010
Week 43/2010
Week 44/2010
Week 45/2010
Week 46,/2010

Continues in the next page...

2752478
2340506
2304976
2460717
2499677
2323663
2185857
2241975
2966363
2231558
2789168
2207965
2859274
2801928
2577976
2308383
3098129
2948625
29046

3569217
3365704
4336038
3293971
3093574
4112841
4950567
4614168
4960458
4500692
3904511
6531135
5905227
5989815
6636083
5817367
4676220
3080303
4581311
4083486
3966731
2908668
2979651
2908662
3248016
1375272
4245950
2628521
3126566
2778568
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Week

Sales

Week

Sales

Week 14/2005
Week 15/2005
Week 16/2005
Week 17/2005
Week 18,/2005
Week 19/2005
Week 20/2005
Week 21/2005
Week 22/2005
Week 23 /2005
Week 24/2005
Week 25/2005
Week 26/2005
Week 27/2005
Week 29/2005
Week 30/2005
Week 31/2005
Week 32/2005
Week 33/2005
Week 34/2005
Week 35/2005
Week 36,/2005
Week 37/2005
Week 38 /2005
Week 39/2005
Week 40/2005
Week 41/2005
Week 42/2005
Week 43/2005
Week 44/2005
Week 45/2005
Week 46,/2005
Week 47/2005
Week 48/2005
Week 49/2005
Week 50/2005
Week 51/2005
Week 52/2005
Week 1/2006
Week 2/2006
Week 3/2006
Week 4/2006
Week 5/2006
Week 6/2006
Week 7/2006
Week 8/2006
Week 9/2006

2191309
2552563
2224823
2743075
2475998
2990511
2638878
2950930
2469329
2730435
2975941
3505573
2703008
3405088
3223184
3312664
2260459
3085029
2461010
2252468
2960554
3057640
3256333
2141784
1718958
1868168
2214655
1790966
1681442
1644086
1965016
1938285
1864924
1675378
2074166
2180600
2103779
1935984
1679207
1989111
2095454
1699000
1627846
2052770
1995528
1851658
1713908

Week 47/2010
Week 48/2010
Week 49/2010
Week 50/2010
Week 51/2010
Week 52/2010
Week 1/2011

Week 2/2011

Week 3/2011

Week 4/2011

Week 5/2011

Week 6/2011

Week 7/2011

Week 8/2011

Week 9/2011

Week 10/2011
Week 11,/2011
Week 12/2011
Week 13/2011
Week 14/2011
Week 15/2011
Week 16,/2011
Week 17/2011
Week 18/2011
Week 19/2011
Week 20/2011
Week 21/2011
Week 22/2011
Week 23,/2011
Week 24/2011
Week 25/2011
Week 26,/2011
Week 27/2011
Week 28,/2011
Week 29/2011
Week 30/2011
Week 31/2011
Week 32/2011
Week 33,/2011
Week 34/2011
Week 35/2011
Week 36/2011
Week 37/2011
Week 38,/2011
Week 39/2011
Week 40/2011
Week 41/2011
Week 42/2011
Week 43,/2011

Continues in the next page...

2199673
2371753
2556968
2931188
2350386
2352637
2558949
2131942
2473954
2249915
2156809
3050521
2573061
2611030
2101574
867459

929321

2198028
3925263
4659060
4054998
2482409
2169366
4560781
4671129
3446401
3868174
3676501
9594894
5540264
4771888
5966606
6532075
9547618
5280350
4682671
5519564
5385591
4595666
5222869
4870710
4096739
3398617
3266710
2595111
3185410
3311189
2706442
2950426
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Table 5.4.2 — Continued

Week Sales Week Sales
Week 44/2011 2524455
Week 45/2011 981767
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5.4.3 Values with noise

Table 5.4.3: Sales with different added noises

A% V=0.1 V=0.7 V=5 V=10 V=15 V=25 V=50

4515921 4523113 4553418 4560731 4533299 4550628 4538218
3466389 3497134 3513503 3491294 3497326 3504252 3496443 3499196
3484006 3522067 3509683 3506420 3494447 3507289 3519288 3517659
3147108 3183175 3191555 3174085 3155007 3173641 3153494 3150754
2309977 2339920 2322089 23156 2329347 2317501 2353295 2324322
2126661 2163134 2160280 2134669 2154007 2152748 2159772 2167177
2533570 2574823 2545002 2551168 2551129 2575172 2563233 2577017
2429710 2464691 2476106 2475373 2453404 2444563 2441828 2447077
2197202 2234678 2214910 2218437 2231467 2224199 2201668 2231442
2551922 2565244 2601255 2597023 2583189 2554493 2589384 2556902
2108353 2121727 2153700 2129335 2136302 2143414 2108672 2133512
1789974 1815614 1798522 1807138 1813988 1813403 1818027 1813932
1655688 1703054 1662763 1661499 1677462 1703509 1698820 1697780
2097765 2124046 2113157 2143063 2144420 2124875 2111623 2104444
2360214 2373719 2374113 2409669 2363816 2407222 2383424 2398549
2152498 2159021 2173703 2175571 2175293 2182930 2189517 2156741
1725665 1735007 1764566 1738878 1743250 1742728 1741376 1729866
1749327 1767575 1755086 1786798 1777354 1793878 1785194 1751021
2021910 2064735 2025357 2053979 2069128 2040089 2065478 2024319
2516246 2551324 2559635 2521629 2530244 2516690 2541651 2538208
2004826 2006468 2044132 2014696 2018896 2020152 2051472 2043222
1786796 1798440 1789324 1821167 1822587 1807141 1825542 1827580
1616077 1636229 1659464 1646498 1621296 1644254 1619415 1650514
1896702 1926831 1932608 1942216 1910986 1943250 1901862 1933081
1786087 1788088 1810351 1808319 1812063 1788580 1793386 1834774
1924555 1967498 1973347 1932861 1926103 1960518 1972997 1968483
1826086 1850645 1862497 1828195 1844139 1843364 1860079 1866104
2171090 2196113 2216770 2192417 2184101 2202318 2204285 2217609
1834858 1863882 1865081 1879759 1872020 1878330 1883289 1868051
1847698 1884735 1859197 1885961 1875774 1875653 1860919 1858566
3119016 3163881 3147926 3129379 3128998 3148286 3137014 3158778
2537237 2572317 2553259 2585485 2585408 2545285 2562676 2563715
2449622 2472950 2477246 2490115 2461891 2462622 2469827 2486588
2477690 2508140 2493877 2524305 2524818 2521061 2516215 2523154
2002338 2015379 2007180 2046647 2025520 2029076 2010310 2008607
3437607 3437875 3479560 3457250 3459945 3475734 3469729 3446026
2443131 2459150 2450252 2451782 2457948 2443411 2489520 2481717
3181962 3184689 3225275 3214713 3223418 3204217 3190834 3226978
3588418 3602456 3630474 3601057 3591529 3595241 3607918 3633435
3366375 3388726 3376119 3407675 3367756 3384289 3411362 3387624
2453671 2492918 2500110 2466389 2474709 2481197 2477912 2489819
3951939 3978763 3970244 3970913 3988050 3993272 3968438 3978390
5283446 5291389 5324013 5311628 5329260 5324295 5313763 5291079
4321461 4358596 4359437 4323293 4364487 4343577 4348221 4349524
4537587 4541939 4564975 4563078 4562227 4547514 4575115 4577598
4451132 4484941 4472647 4471489 4478545 4488800 4497660 4458364
Continues in the next page ...




54. DATA SET

Table 5.4.3 — Continued

Vv

V=0.1

V=0.7

V=5

V=10

V=15

V=25

V=50

4568490
3629043
2407967
3666894
4029739
4773272
4076976
3628467
2473349
2826566
4360510
4479319
2749200
2215935
2769579
2659052
1955810
1704084
2498404
2793180
2303739
1853996
1913062
3186749
2284180
2302637
1917573
2106193
2634985
2351758
2064283
2491609
3119109
2547601
1839200
2466054
2911494
2527839
2355366
2543897
2941673
3077187
2978107
2138566
3201548
4102988
4007709
3273680
9617576

4615337
3654597
2431864
3680865
4076676
4811643
4107078
3650979
2499365
2839362
4367982
4515041
2763972
2227418
2796561
2665174
1978814
1746261
2507499
2833810
2317712
1873967
1952863
3216280
2312279
2307700
1923194
2138597
2684855
2396099
2072865
2518381
3159415
2584777
1867083
2501644
2927254
2545746
2358670
2556824
2953307
3098302
3001026
2174400
3242500
4141581
4034099
3308547
5652622

4572042
3668284
2454084
3679016
4046167
4793747
4110228
3654285
2499117
2840265
4368551
4515932
2775581
2256964
2808887
2664257
1956757
1724554
2500607
2829820
2350281
1894796
1958692
3193885
2304681
2304776
1923234
2118136
2670302
2372297
2095190
2507102
3147975
2568103
1880708
2497716
2924090
2576966
2396097
2563225
2955080
3084521
3021702
2164121
3236676
4111916
4033178
3314860
5623043

4608775
3678245
2435463
3697398
4074792
4797223
4090291
3630853
2523010
2863034
4362077
4513510
2791430
2237917
2789851
2689378
1994844
1742764
2544758
2816626
2347434
1876408
1958201
3196003
2317718
2309909
1926584
2142674
2664957
2352765
2098015
2511889
3152214
2557460
1875096
2493859
2920750
2536223
2405086
2569762
2951998
3121328
3027988
2188427
3221645
4122472
4054696
3290384
5666440

4594901
3673497
2436920
3694027
4072141
4777071
4093634
3657060
2475678
2876349
4368916
4525879
2788992
2256685
2770333
2660249
1999823
1744560
2547475
2823239
2325211
1885076
1939097
3227764
2327816
2303324
1918307
2130784
2680630
2353710
2107688
2538812
3119674
2553026
1866653
2506746
2958063
2547238
2368053
2570145
2988964
3088787
3021826
2165617
3210583
4149078
4016191
3292285
5662717

4607535
3668253
2450266
3680208
4057586
4798510
4104902
3650518
2509067
2868009
4360991
4506020
2785279
2235440
2817197
2660546
1964143
1750635
2505464
2796594
2309668
1898101
1932340
3204730
2330266
2314134
1918930
2129755
2644798
2391382
2102202
2511822
3132081
2594472
1859254
2475671
2953468
2554239
2391276
2580368
2963518
3122466
3017513
2158523
3236549
4143948
4052361
3289656
5629603

4582248
3635720
2455686
3682762
4055909
4777962
4118591
3668446
2508358
2834457
4409682
4487684
2765219
2245626
2770455
2693680
1995829
1738572
2535986
2835617
2313705
1870967
1919031
3192500
2284729
2307852
1924760
2134711
2671087
2398903
2078489
2530469
3129376
2594715
1856316
2488047
2948006
2557214
2374894
2567444
2953577
3097766
2998794
2180208
3234120
4143685
4025212
3291911
5653198

4598488
3641494
2438332
3696751
4077872
4786444
4090427
3666960
2480754
2837515
4365700
4490505
2756895
2233704
2777324
2680174
1961313
1726063
2517461
2818936
2307982
1894929
1936141
3197705
2290703
2331493
1945292
2128589
2664095
2372825
2089171
2541541
3156748
2570076
1868608
2492302
2927113
2573064
2379736
2566942
2953818
3095009
2990045
2180279
3203809
4126480
4020025
3292886
5627661

Continues in the next page ...
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238 CHAPTER 5. NUMERICAL RESULTS

Table 5.4.3 — Continued

A\ V=01 V=07 V=5 V=10 V=15 V=25 V=50
5180040 5186959 5192003 5209790 5183276 5212119 5193455 5228634
4365749 4373251 4366352 4398386 4369903 4394714 4377373 4381730
4921847 4962407 49528 4949552 4921917 4930472 4956623 4942336
5557854 5567892 5591989 5589994 5586398 5562303 5600245 5593025
5006407 5016467 5029941 5055591 5010046 5039313 5040024 5025664
5826676 5855870 5832591 5855849 5854676 5848630 5869242 5836915
5705439 5716690 5755039 5711146 5726580 5739363 5735873 5750415
6227846 6275532 6228674 6229905 6229147 6259868 6234005 6239064
4940653 4944814 4955904 4977863 4977947 4951824 4944679 4941149
4406095 4451577 4418417 4434855 4433769 4419070 4430476 4421973
3512060 3524503 3552226 3536357 3556412 3547078 3553146 3512683
2787517 2807578 2787877 2810408 2792367 2794133 2814903 2834359
2909381 2958377 2928165 2918333 2913891 2955973 2923683 2922915
4179106 4192488 4202923 4214185 4190334 4195196 4209314 4188261
3029413 3077083 3045902 3069980 3040222 3037991 3051922 3056907
3330570 3344776 3361123 3356849 3343694 3357172 3354980 3362468
3435229 3458157 3449523 3436098 3443904 3447356 3479218 3475420
3046156 3065048 3061188 3086603 3052189 3052380 3067020 3048020
3193715 3236367 3216565 3204319 3213587 3227866 3237348 3208717
2741613 2748166 2776170 2789535 2760175 2779505 2775235 2780992
2663604 2679079 2688908 2672313 2683425 2696206 2691314 2690714
2307745 2345857 2329548 2337030 2328728 2331767 2318084 2356610
3139445 3155953 3171790 3159250 3176449 3181293 3177194 3180686
2556855 2581805 2591556 2576253 2584853 2580306 2604567 2572167
2313595 2329259 2325909 2330537 2325150 2337409 2336917 2314003
2356704 2404418 2401227 2378004 2394477 2400820 2378764 2383470
2052435 2956879 2986576 2980290 2980936 2957557 2962051 2986992
2752478 2792478 2783219 2798199 2762964 2762239 2782209 2753116
2340506 2376432 2373579 2345172 2351536 2375640 2367840 2374678
2304976 2336575 2309680 2319170 2314853 2327037 2313711 2318645
2460717 2461566 2482035 2499200 2473546 2494408 2469249 2491917
2499677 2502618 2548491 2520851 2529895 2502234 2544758 2545216
2323663 2371144 2333913 2327920 2348190 2362676 2341484 2328359
2185857 2194707 2213107 2225582 2196578 2196428 2195954 2212984
2241975 2244742 2267659 2285670 2244233 2272392 2264552 2243474
2966363 2969600 3004855 29718 2992175 2998933 2999471 3001470
2231558 2239532 2253477 2240362 2267896 2273238 2259646 2239152
2789168 2802810 2829263 2825474 2833687 2793718 2800653 2814550
2207965 2221933 2216598 2243969 22466 2250529 2222170 2240417
2859274 2871235 2884130 2859944 2891058 2891024 2892998 2906652
2801928 2839977 2833143 2811526 2838065 2818135 2848907 2803635
2577976 2589851 2613920 2627404 2593477 2582705 2620958 2623327
2308383 2331728 2324852 2355552 2317123 2326249 2357382 2322258
3098129 3133512 3123451 3115007 3140256 3124621 3111983 3138088
2048625 2988384 2952592 2967035 2996034 2968240 2949140 2966855
29046 2016818 2938311 2906777 2921013 2925734 2954051 2943557
3569217 3601026 3581472 3569775 3616250 3584055 3591598 3587252
3365704 3381426 3384360 3383851 3393755 3383476 3394188 3408794
4336038 4349895 4378710 4363453 4359310 4373657 4345027 4378437

Continues in the next page ...




54. DATA SET

Table 5.4.3 — Continued

Vv

V=0.1

V=0.7

V=5

V=10

V=15

V=25

V=50

3293971
3093574
4112841
4950567
4614168
4960458
4500692
3904511
6531135
5905227
5989815
6636083
9817367
4676220
3080303
4581311
4083486
3966731
2908668
2979651
2908662
3248016
1375272
4245950
2628521
3126566
2778568
2199673
2371753
2556968
2931188
2350386
2352637
2558949
2131942
2473954
2249915
2156809
3050521
2573061
2611030
2101574
867459

929321

2198028
3925263
4659060
4054998
2482409

3298557
3103212
4136564
4982107
4648760
5003294
4531255
3917086
6549030
5907186
6009119
6643415
9862825
4693780
3089388
4596390
4104650
3995390
2915841
2982481
2921146
3252934
1406712
4295494
2677853
3131633
2815410
2210377
2377900
2587091
2935853
2361781
2388574
2598766
2173166
2499970
2292303
2180427
3090757
2591275
2657098
2124405
897278

950935

2199581
3949922
4697157
4097852
2482629

3301880
3126713
4159971
4977581
4620608
5007906
4546291
3944001
6533535
5919392
6007434
6677964
9855150
4717021
3125896
4607979
4098691
3977506
2937068
3003399
2913357
3284807
1389698
4277137
2637696
3131952
2826002
2229061
2401985
2561112
2946834
2367248
2383140
2590508
2154697
2517028
2279671
2168674
3072390
2580054
2625932
2102925
912469

965459

2198686
3967097
4676085
4067458
2524574

3316025
3133202
4115459
4974373
4635507
4974231
4518875
3910531
6550838
5934577
6017709
6638282
5824084
4693560
3080867
4581326
4105364
3976200
2952127
3015724
2933778
3253201
1378982
4262119
2642936
3129279
2814566
2245222
2407066
2557095
2949594
2368668
2380523
2600858
2170593
2482011
2292500
2201554
3095774
2583960
2642443
2134931
873711

940460

2226381
3968864
4687641
4062767
2523014

3315342
3133226
4114137
5000423
4637056
4979479
4514420
3914438
6560174
5949235
6000389
6642730
5828264
4696408
3111128
4582443
4089142
3993161
2917077
2991193
2957381
3256962
1401373
4286139
2669960
3133821
2800058
2200323
2397743
2559235
2961551
2371195
2399173
2598588
2153767
2496722
2257795
2163871
3063947
2595648
2656678
2111571
893388

951162

2228129
3958884
4669725
4101023
2486998

3305660
3104905
4146377
5000429
4638982
4993286
4539144
3907815
6548733
5910243
6032493
6659542
9831523
4678051
3110398
4613149
4100606
3967997
2932166
3029163
2914202
3270963
1386685
4268677
2657837
3127135
2793372
2239364
2420469
25728
2958152
2396707
2365157
2577642
2155109
2499448
2295199
2170136
3068619
2602860
2616383
2102789
912510
950014
2220590
3935407
4662133
4085850
2529005

3342048
3131963
4115836
4993551
4628837
4962284
4534005
3907887
6554073
59238
6013373
6650349
5832894
4677669
3096756
4613399
4100285
3970502
2910632
2991965
2924478
3271097
1399334
4289294
2639246
3173723
2822854
2230571
2410801
2560522
2936968
2382536
2373715
2584330
2151918
2506698
2276998
2170373
3077166
2576206
2629384
2115257
880084
972042
2227143
3931490
4689157
4063466
2518922

3300307
3139386
4146861
4998910
4652579
4999069
4550502
3918184
6551071
5914466
5992923
6643795
5855520
4717411
3087856
4592269
4087763
3986951
2947995
2986699
2919490
3297862
1422390
4251637
2640965
3158203
2789386
2218921
2410205
2589611
2964689
2389868
2389603
2560789
2149376
2487913
2250056
2165150
3092327
2590079
2639766
2117597
916426

946329

2209181
3954551
4695986
4065923
2500080

Continues in the next page ...
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240 CHAPTER 5. NUMERICAL RESULTS

Table 5.4.3 — Continued

A% V=0.1 V=0.7 V=5 V=10 V=15 V=25 V=50
2169366 2206930 2213868 2211308 2175690 2214623 2205657 2190442
4560781 4581366 4573554 4594780 4602139 4600018 4604784 4610142
4671129 4698010 4713711 4694831 4692694 4716401 4708451 4686113
3446401 3465606 3491549 3458821 3477855 3460787 3486894 3467776
3868174 39046 3913861 3899261 3910808 3912460 3871201 3901006
3676501 3706511 3697759 3698477 3690894 3716110 3698533 3702469
9594894 5603787 5617914 5601279 5631282 5634269 5637396 5604929
9540264 5571243 5548799 5563071 5582399 5586711 5570818 5565907
4771888 4791111 4778080 4801202 4820783 4804612 4812140 4777263
5966606 5994126 5999974 6004091 6010155 6002782 5979185 5976956
6532075 6569000 6541711 6538099 6556623 6547879 6549906 6571880
9547618 5553333 5581931 5586644 5589488 5548636 5568564 5564356
9280350 5321685 5284557 5300900 5289315 5298381 5302223 5288539
4682671 4715150 4724715 4714712 4712986 4703578 4703824 4695211
5519564 5543872 5539640 5566954 5566075 5550572 5522852 5554922
5385591 5385999 5414256 5433983 5405638 5426730 5424267 5427336
4595666 4598186 4638784 4637778 4628413 4610968 4607697 4597214
9222869 5258633 5233573 5263613 5254689 5265681 5240726 5223115
4870710 4883640 4905255 4909035 4909746 4911116 4907825 4902171
4096739 4116010 4137913 4111926 4139095 4119773 4098683 4116935
3398617 3435449 3442502 3432393 3445530 3440696 3434202 3399641
3266710 3266919 3288433 3287592 3282997 3316180 3303340 3314020
2595111 2630196 2599569 2623331 2604749 2610708 2613799 2601557
3185410 3192755 3214499 3231067 3187417 3193967 3203210 3193315
3311189 3315066 3331912 3315827 3341124 3360103 3318872 3340250
2706442 2735099 2725649 2723590 2742883 2752435 2740312 2753165
2950426 2986375 2964278 2990949 2953778 2960182 2983472 2985259
2524455 2568497 2572212 2571194 2542381 2530980 2560636 2537483
981767 1004779 1015236 1007564 990848 1025589 1014508 1019723




5.4. DATA SET 241

5.4.4 Temperature and other atmospheric variables
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CHAPTER 5.
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