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WHAT ARE LYAPUNOV EXPONENTS,

AND WHY ARE THEY INTERESTING?

AMIE WILKINSON

Introduction

At the 2014 International Congress of Mathematicians in Seoul, South Korea,
Franco-Brazilian mathematician Artur Avila was awarded the Fields Medal for “his
profound contributions to dynamical systems theory, which have changed the face
of the field, using the powerful idea of renormalization as a unifying principle.”1

Although it is not explicitly mentioned in this citation, there is a second unify-
ing concept in Avila’s work that is closely tied with renormalization: Lyapunov
(or characteristic) exponents. Lyapunov exponents play a key role in three areas
of Avila’s research: smooth ergodic theory, billiards and translation surfaces, and
the spectral theory of 1-dimensional Schrödinger operators. Here we take the op-
portunity to explore these areas and reveal some underlying themes connecting
exponents, chaotic dynamics and renormalization.

But first, what are Lyapunov exponents? Let’s begin by viewing them in one of
their natural habitats: the iterated barycentric subdivision of a triangle.

When the midpoint of each side of a triangle is connected to its opposite vertex
by a line segment, the three resulting segments meet in a point in the interior of
the triangle. The barycentric subdivision of a triangle is the collection of 6 smaller
triangles determined by these segments and the edges of the original triangle:

Figure 1. Barycentric subdivision.
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Figure 2. Iterating barycentric subdivision (courtesy of C. Mc-
Mullen, [54], used with permission).

As the process of barycentric subdivision starts with a triangle and produces
triangles, it is natural to iterate the process, barycentrically subdividing the 6
triangles obtained at the first step, obtaining 36 triangles, and so on, as in Figure 2.

Notice that as the subdivision gets successively finer, many of the triangles pro-
duced by subdivision get increasingly eccentric and needle-like. We can measure
the skinniness of a triangle T via the aspect ratio α(T ) = area(T )/L(T )2, where
L(T ) is the maximum of the side lengths; observe that similar triangles have the
same aspect ratio. Suppose we fix a rule for labeling the triangles in a possible
subdivision 1 through 6, roll a 6-sided fair die and at each stage choose a triangle
to subdivide. The sequence of triangles T1 ⊃ T2 ⊃ · · · obtained have aspect ratios
α1, α2, . . ., where αn = α(Tn).

Theorem 0.1 ([54], see also [16]). There exists a real number χ ≈ 0.0446945 > 0
such that almost surely,

lim
n→∞

1

n
logαn = −2χ.

In other words, if triangles are chosen successively by a random toss of the die,
then with probability 1, their aspect ratios will tend to 0 in the nth toss at an
exponential rate governed by exp(−2nχ). The same conclusion holds with the
same value of χ if the initial equilateral triangle is replaced by any marked triangle.
This magical number χ is a Lyapunov exponent. We return to this example at the
end of the next section.

Lyapunov exponents make multiple appearances in the analysis of dynamical
systems. After defining basic concepts and explaining examples in Section 1, we
describe in Sections 2–4 a sampling of Avila’s results in smooth ergodic theory,
Teichmüller theory and spectral theory, all of them tied to Lyapunov exponents in
a fundamental way. We explore some commonalities of these results in Section 5.
Section 6 is devoted to a discussion of some themes that arise in connection with
Lyapunov exponents.
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1. Cocycles, exponents, and hyperbolicity

Formally, Lyapunov exponents are quantities associated to a cocycle over a
measure-preserving dynamical system. A measure-preserving dynamical system
is a triple (Ω, μ, f), where (Ω, μ) is a probability space, and f : Ω → Ω is a mea-
surable map that preserves the measure μ, meaning that μ(f−1(X)) = μ(X) for
every measurable set X ⊂ Ω. We say that (Ω, μ, f) is ergodic if the only f -invariant
measurable sets have μ-measure 0 or 1. Equivalently, (Ω, μ, f) is ergodic if the
only functions φ ∈ L2(Ω, μ) satisfying φ ◦ f = φ are the constant functions. Any
f -invariant measure μ can be canonically decomposed into ergodic invariant mea-
sures, a fact that allows us to restrict our attention to ergodic measures in some
contexts, simplifying statements. The measures in such a decomposition are called
ergodic components, and there can be uncountably many of them. The process of
ergodic decomposition is a bit technical to describe; we refer the reader to [50] for
more details.

1.1. Examples of measure-preserving systems. Here is a list of three types of
measure-preserving systems that we will refer to again in the sections that follow.

Rotations on the circle. On the circle Ω = R/Z, let fα(x) = x + α (mod 1),
where α ∈ R is fixed. The map fα preserves the Lebesgue–Haar measure μ (that
assigns to an interval I ∈ R/Z its length |I|). The map fα is ergodic with respect
to μ if and only if α is irrational. This has a straightforward proof: consider the
equation φ ◦ fα = φ, for some φ ∈ L2(R/Z, μ), and solve for the Fourier coefficients
of φ.

When α = p/q is rational, every point ω ∈ Ω is periodic, satisfying fq(ω) = ω.
Each ω then determines an ergodic fα-invariant probability measure νω obtained
by averaging the Dirac masses along the orbit of ω:

νω :=
1

q

(
δω + δfα(ω) + · · ·+ δfq−1

α (ω)

)
.

Each νω is an ergodic component of the measure μ, and hence there are uncountably
many such components.

When α is irrational, μ is the unique fα-invariant Borel probability measure. A
homeomorphism of a compact metric space that has a unique invariant measure
is called uniquely ergodic—a property that implies ergodicity and more. Unique
ergodicity is mentioned again in Section 2 and is especially relevant to the discussion
of Schrödinger operators with quasiperiodic potentials in Section 4.

There is nothing particularly special about the circle, and the properties of circle
rotations listed here generalize easily to rotations on compact abelian groups.

Toral automorphisms. Let Ω = T2 := R2/Z2, the 2-torus. Fix a matrix A ∈
SL(2,Z). Then A acts linearly on the plane by multiplication and preserves the
lattice Z

2, by virtue of having integer entries and determinant 1. It therefore
induces a map fA : T2 → T2 of the 2-torus, a group automorphism. The area μ
is preserved because det(A) = 1. Such an automorphism is ergodic with respect
to μ if and only if the eigenvalues of A are λ and λ−1, with |λ| > 1. This can be
proved by examining the Fourier coefficients of φ ∈ L2(T2, μ) satisfying φ ◦ fA = φ:
composing with fA permutes the Fourier coefficients of φ by the adjoint action of
A, and the assumption on the eigenvalues of A implies that if φ is not constant
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there must be infinitely many identical coefficients, which violates the assumption
that φ ∈ L2(T2, μ).2

In contrast to the irrational rotation fα, the map fA has many ergodic invariant
Borel probability measures, even when fA is ergodic with respect to the area μ.
For example, as we have just seen, every periodic point of fA determines an ergodic
invariant measure, and fA has infinitely many periodic points. This is a simple
consequence of the Pigeonhole Principle, using the fact that A ∈ SL(2,Z): for every
natural number q, the finite collection of points {( p1

q , p2

q ) : p1, p2 ∈ {0, . . . , q−1}} ⊂
T
2 is permuted by fA, and so each element of this set is fixed by some power of fA.

Bernoulli shifts. Let Ω = {1, . . . , k}N be the set of all infinite, one sided strings
ω = (ω1, ω2, . . .) on the alphabet {1, . . . , k}. Endowed with the product topology,
the space Ω is compact, metrizable, and homeomorphic to a Cantor set. The shift
map σ : Ω → Ω is defined by σ(ω)k = ωk+1. In other words, the image of the se-
quence ω = (ω1, ω2, . . .) is the shifted sequence σ(ω) = (ω2, ω3, . . .). Any nontrivial
probability vector p = (p1, . . . , pk) (i.e., with pi ∈ (0, 1), and

∑
i pi = 1) defines a

product measure μ = pN supported on Ω.3 The triple
(
Ω, σ, μ = (p1, . . . , pk)

N
)
is

called a Bernoulli shift, and μ is called a Bernoulli measure. It is not hard to see
that the shift σ preserves μ and is ergodic with respect to μ.

The shift map σ : Ω → Ω manifestly has uncountably many ergodic invariant
Borel probability measures, in particular the Bernoulli measures (p1, . . . , pk)

N, but
the list does not end there. In addition to periodic measures (supported on orbits
of periodic strings (ω1, . . . , ωq, ω1, . . . , ωq, . . .)), there are σ-invariant probability
measures on Ω encoding every measure-preserving continuous dynamical system4—
in this sense the shift is a type of universal dynamical system.

1.2. Cocycles. Let Md×d be the d2-dimensional vector space of d × d matrices
(real or complex). A cocycle is a pair (f,A), where f : Ω → Ω and A : Ω → Md×d

are measurable maps. We also say that A is a cocycle over f . For each n > 0 and
ω ∈ Ω, we write

A(n)(ω) = A(fn−1(ω))A(fn−2(ω)) · · ·A(f(ω))A(ω),

where fn denotes the n-fold composition of f with itself. For n = 0, we set
A(n)(ω) = I, and if both f and the values of the cocycle A are invertible, we
also define, for n ≥ 1,

A(−n)(ω) = (A(n)(f−n+1(ω)))−1 = A−1(f−n+1(ω)) · · ·A−1(ω).

One comment about the terminology “cocycle”: while A is colloquially referred
to as a cocycle over f , to fit this definition into a proper cohomology theory, one
should reserve the term cocycle for the function (n, ω) → A(n)(ω) and call A the
generator of this (1-)cocycle. See [11] for a more thorough discussion of this point.

2In higher dimensions, a matrix A ∈ SL(d,Z) similarly induces an automorphism fA of Td :=
Rd/Zd. The same argument using Fourier series shows that fA is ergodic if and only if A does
not have a root of 1 as an eigenvalue.

3The product measure has a simple description in this context: setting Ci(j) :={ω∈Ω : ωi= j},
the measure μ=(p1, . . . , pk)

N is defined by the properties μ(Ci(j))=pj , and μ(Ci(j)∩Ci′(j
′))=

pjpj′ , for any i �= i′ ∈ N and j, j′ ∈ {1, . . . , k}.
4Subject to some constraints involving invertibility and entropy.
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A fruitful way of viewing a cocycle A over f is as a hybrid dynamical system
(f,A) : Ω×Md×d → Ω×Md×d defined by

(f,A)(ω,B) = (f(ω), A(ω)B).

Note that the nth iterate (f,A)n of this hybrid map is the hybrid map (fn, A(n)).
The vector bundle Ω × Md×d can be reduced in various ways to obtain associ-
ated hybrid systems, for example, the map (f,A) : Ω × Rd → Ω × Rd defined by
(f,A)(ω, v) = (f(ω), A(ω)v). Thus a natural generalization of a cocycle over f is a
map F : B → B, where π : B → Ω is a vector bundle, and F acts linearly on fibers,
with π ◦ F = f ◦ π. We will use this extended definition of cocycle to define the
derivative cocycle in Subsection 1.4.

1.3. Lyapunov exponents. Let f : Ω → Ω be a measurable map (not necessarily
preserving a probability measure). We say that a real number χ is a Lyapunov
exponent for the cocycle A : Ω → Md×d over f at the point ω ∈ Ω if there exists a
nonzero vector v ∈ Rd, such that

(1) lim
n→∞

1

n
log ‖A(n)(ω)v‖ = χ.

Here ‖ · ‖ is a fixed norm on the vector space space Md×d. The limit in (1), when
it exists, does not depend on the choice of such a norm (exercise).

Oseledets proved in 1968 [55] that if (f,Ω, μ) is a measure-preserving system and
A is a cocycle over f satisfying the integrability condition log ‖A‖ + log ‖A−1‖ ∈
L1(Ω, μ), then for μ-almost every ω ∈ Ω and for every nonzero v ∈ Rd the limit
in (1) exists. This limit assumes at most d distinct values χ1(ω) > χ2(ω) > · · · >
χk(ω)(ω). Each exponent χi(ω) is achieved with a multiplicity di(ω) equal to the
dimension of the space of vectors v satisying (1) with χ = χi, and these multiplicities

satisfy
∑k(ω)

i=1 di(ω) = d.
If the cocycle A takes values in SL(d,R), then, since log det(A(ω)) ≡ log(1) = 0,

one also has that
∑k(ω)

i=1 di(ω)χi(ω) = 0. Thus if A takes values in SL(2,R), then
the exponents are of the form −χ(ω) ≤ 0 ≤ χ(ω).

If (Ω, μ, f) is ergodic, then the functions k(ω), χi(ω) and di(ω) are constant μ-
almost everywhere. In this case, the essential values χ1, . . . , χk ∈ R are called the
Lyapunov exponents of A with respect to the ergodic measure μ.

1.4. Two important classes of cocycles. Random matrix cocycles encode the
behavior of a random product of matrices. Let {A1, . . . , Ak} ⊂ Md×d be a finite
collection of matrices. Suppose we take a k-sided die and roll it repeatedly. If
the die comes up with the number j, we choose the matrix Aj , thus creating a
sequence Aω1

, Aω2
, . . ., where ω = (ω1, ω2, . . .) ∈ {1, . . . , k}N. This process can

be packaged in a cocycle A over a measure-preserving system (Ω, μ, σ) by setting

Figure 3. A 30-sided die, a.k.a. d30.
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Ω = {1, . . . , k}N, μ = (p1, . . . , pk)
N, where pj is the probability that the die shows j

on a roll, and setting σ to be the shift map. The cocycle is defined by A(ω) = Aω1
.

Then A(n)(ω) is simply the product of the first n matrices produced by this process.
More generally, suppose that η is a probability measure on the set of matrices

Md×d. The space Ω = MN

d×d of sequences (M1,M2, . . . ) carries the product measure

ηN, which is invariant under the shift map σ, where as above σ(M1,M2, . . . ) =
(M2,M3, . . . ). There is a natural cocycle A : Ω → Md×d given by A((M1,M2, . . . ))
= M1. The matrices A(n)(ω), for ω ∈ Ω are just n-fold random products of matrices
chosen independently with respect to the measure η.

In the study of smooth dynamical systems the derivative cocycle is a central
player. Let f : M → M be a C1 map on a compact d-manifold M . Suppose for
simplicity that the tangent bundle is trivial: TM = M ×Rd. Then for each x ∈ M ,
the derivative Dxf : TxM → TfxM can be written as a matrix Dxf ∈ Md×d. The
map x �→ Dxf is called the derivative cocycle. The Chain Rule implies that if
A = Df is a derivative cocycle, then Dxf

n = A(n)(x).
The case where TM is not trivializable is easily treated: either one trivializes TM

over a suitable subset of M or one expands the definition of cocycle as described
at the end of Subsection 1.2: the map Df : TM → TM is an automorphism of
the vector bundle TM , covering the map f . Lyapunov exponents for the deriva-
tive cocycle are defined analogously to (1). We fix a continuous choice of norms
{‖ · ‖x : TxM → R≥0 : x ∈ M}, for example the norms given by a Riemannian
metric (more generally, such a family of norms is called a Finsler). Then χ is a
Lyapunov exponent for Df at x ∈ M if there exists v ∈ TxM such that

(2) lim
n→∞

1

n
log ‖Dxf

nv‖fn(x) = χ.

Since M is compact, the Lyapunov exponents of Df do not depend on the choice
of Finsler. The conclusions of Oseledets’s theorem hold analogously for derivative
cocycles with respect to any f -invariant measure on M .

A simple example of a derivative cocycle is provided by the toral automorphism
fA : T2 → T2 described above. Conveniently, the tangent bundle to T2 is trivial,
and the derivative cocycle is the constant cocycle DxfA = A.

1.5. Uniformly hyperbolic cocycles. A special class of cocycles whose Lya-
punov exponents are nonzero with respect to any invariant probability measure are
the uniformly hyperbolic cocycles.

Definition 1.1. A continuous cocycle A : Ω → Gl(d) over a homeomorphism
f : Ω → Ω of a compact metric space Ω is uniformly hyperbolic if there exists
an integer n ≥ 1, and for every ω ∈ Ω, there is a splitting R

d = Eu(ω)⊕Es(ω) into
subspaces that depend continuously on ω, such that for every ω ∈ Ω:

(i) A(ω)Eu(ω) = Eu(f(ω)), and A(ω)Es(ω) = Es(f(ω)),
(ii) v ∈ Eu(ω) =⇒ ‖A(n)(ω)v‖ ≥ 2‖v‖, and
(iii) v ∈ Es(ω) =⇒ ‖A(−n)(ω)v‖ ≥ 2‖v‖.

The definition is independent of choice of norm ‖ · ‖; changing the norm on
Md×d simply changes the value of n. The number 2 in conditions (ii) and (iii)
can be replaced by any fixed real number greater than 1; again this only changes
the value of n. Notice that measure plays no role in the definition of uniform
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hyperbolicity, as it is a topological property of the cocycle. For short, we say that
(f,A) is uniformly hyperbolic.

A trivial example of a uniformly hyperbolic cocycle is the constant cocycle
A(ω) ≡ A0 ∈ SL(2,R), where A0 is any matrix with eigenvalues λ > λ−1 sat-
isfying λ > 1. Here the splitting R2 = Eu(ω)⊕Es(ω) is the constant splitting into
the sum of the λ and λ−1 eigenspaces of A0, respectively. For a constant cocy-
cle, the Lyapunov exponents are defined everywhere and are also constant; for this
SL(2,R) cocycle, the exponents are ± log λ.

A nontrivial example of a uniformly hyperbolic cocycle is any nonconstant, con-
tinuous A : Ω → SL(2,R) with the property that the entries of A(ω) are all positive,
for any ω ∈ Ω. In this case the splitting is given by

Eu(ω) :=
⋂
n≥0

A(n)(f−n(ω)) (C+) and Es(ω) :=
⋂
n≥0

A(−n)(fn(ω)) (C−) ,

where C+ denotes the set of (x, y) ∈ R2 with xy ≥ 0, and C− is the set of (x, y)
with xy ≤ 0. For an example of this type, the Lyapunov exponents might not be
everywhere defined, and their exact values with respect to a particular invariant
measure are not easily determined, although they will always be nonzero where
they exist. In this example and the previous one, the base dynamics f : Ω → Ω are
irrelevant as far as uniform hyperbolicity of the cocycle is concerned.

Hyperbolicity is an open property of both the cocycle A and the dynamics f : if

(f,A) is uniformly hyperbolic, and f̂ and Â are both uniformly close (i.e., in the

C0 metric) to f and A, then (f̂ , Â) is uniformly hyperbolic. The reason is that, as
in the example just presented, uniform hyperbolicity is equivalent to the existence
of continuously varying cone families C+(ω), C−(ω) ⊂ Rd, jointly spanning Rd for
each ω ∈ Ω, and an integer n ≥ 1 with the following properties: A(n)(ω) (C+(ω)) ⊂
C+(fn(ω)); A(−n)(ω) (C−(ω)) ⊂ C−(f−n(ω)); vectors in C+(ω) are doubled in length
by A(n)(ω); and vectors in C−(ω) are doubled in length by A(−n)(ω). The existence
of such cone families is preserved under small perturbation.

1.6. Anosov diffeomorphisms. A diffeomorphism f : M → M whose derivative
cocycle is uniformly hyperbolic is called Anosov. Again, one needs to modify this
definition when the tangent bundle TM is nontrivial: the splitting of Rd in the
definition is replaced by a splitting TM = Eu ⊕ Es into subbundles—that is,
a splitting TxM = Eu(x) ⊕ Es(x) into subspaces, for each x ∈ M , depending
continuously on x. The norm ‖ · ‖ on the space Md×d is replaced by a Finsler, as
in the discussion at the end of Subsection 1.4. Since M is assumed to be compact,
the Anosov property does not depend on the choice of Finsler.

Anosov diffeomorphisms remain Anosov after a C1-small perturbation, by the
openness of uniform hyperbolicity of cocycles. More precisely, the C1 distance
dC1(f, g) between two diffeomorphisms is the sum of the C0 distance between f
and g and the C0 distance between Df and Dg; thus if f is Anosov and dC1(f, g)
is sufficiently small, then Dg is hyperbolic, and so g is Anosov. Such a g is often
called a C1-small perturbation of f .

The toral automorphism fA : T2 → T
2, with A =

(
2 1
1 1

)
is Anosov; since the

derivative cocycle is constant, the splitting R2 = Eu(x)⊕Es(x), for x ∈ T2 does not
depend on x: as above, Eu(x) is the expanding eigenspace for A corresponding to

the larger eigenvalue λ = (3 +
√
5)/2 > 1, and Es(x) is the contracting eigenspace
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for A corresponding to the smaller eigenvalue λ−1 = (3−
√
5)/2 < 1. Since λ > 2,

we can choose n = 1 to verify that uniform hyperbolicity holds in the definition.
The Lyapunov exponents of this cocycle are ± log λ.

The map gε : T
2 → T2 given by

(3) gε(x, y) = (2x+ y + ε sin(2π(x+ y)), x+ y)

is a C1-small perturbation of fA if ε is sufficiently small, and so gε is Anosov for
small ε. Moreover, since detD(x,y)gε ≡ 1, the map gε preserves the area μ on T

2; we
shall see in the next section that gε is ergodic with respect to μ. The two Lyapunov
exponents of gε with respect to the ergodic measure μ are ± log λε, where λε < λ for
ε �= 0 small. There are several ways to see this: one way to prove it is to compute
directly using the ergodic theorem (Theorem 2.1) that ε �→ λε is a smooth map
whose local maximum is achieved at ε = 0.

In contrast to f , the exponents of gε are not constant on T2 but depend on
the invariant measure. For example, the averaged Dirac measures νx1

= δ(0,0) and

νx2
= 1

3

(
δ( 1

2 ,
1
2 )

+ δ(0, 12 ) + δ( 1
2 ,0)

)
corresponding to the fixed point x1 = (0, 0) and

the periodic point x2 = ( 12 ,
1
2 ), respectively, are both invariant and ergodic under

gε, for any ε. Direct computation with the eigenvalues of the matrices Dx1
gε and

Dx2
g3ε shows that the Lyapunov exponents with respect to νx1

and νx2
are different

for ε �= 0.

1.7. Measurably (nonuniformly) hyperbolic cocycles. We say that a cocycle
A over (Ω, μ, f) is measurably hyperbolic if for μ-a.e. point ω ∈ Ω, the exponents
χj(ω) are all nonzero. Since the role played by the measure is important in this
definition, we sometimes say that μ is a hyperbolic measure for the cocycle A, or
A is hyperbolic with respect to μ.

Uniformly hyperbolic cocycles over a homeomorphism f are hyperbolic with
respect to any f -invariant probability measure μ (exercise). An equivalent definition
of measurable hyperbolicity that neatly parallels the uniformly hyperbolic condition
follows: A is hyperbolic with respect to the f -invariant probability measure μ if
there exist a set X ⊂ Ω with μ(X) = 1 and splittings Rd = Eu(ω) ⊕ Es(ω)
depending measurably on ω ∈ X, such that for every ω ∈ X there exists an integer
n = n(ω) ≥ 1 such that conditions (i)–(iii) in Definition 1.1 hold. The splitting into
unstable and stable spaces is not necessarily continuous (or even globally defined on
Ω), and the amount of time n(ω) to wait for doubling in length to occur depends
on ω; for these reasons, measurably hyperbolic cocycles are often referred to as
“nonuniformly hyperbolic”.5 In this nonuniform setting it is possible for a cocycle
to be hyperbolic with respect to one invariant measure, but not another.

A measurably hyperbolic cocycle lurks behind random barycentric subdivision.
The random process generating the triangles in iterated barycentric subdivision can
be encoded in a cocycle as follows. First, we identify upper half-plane H ⊂ C with
the space of marked triangles (modulo Euclidean similarity) by sending a triangle
T with vertices cyclically labeled a, b, c to a point z ∈ H by rescaling, rotating, and
translating, sending a to 0, b to 1 and c to z; see Figure 4.

5The terminology is not consistent across fields. In smooth dynamics, a cocycle over a mea-
surable system that is measurably hyperbolic is called nonuniformly hyperbolic, whether it is
uniformly hyperbolic or not. In the spectral theory community, a cocycle is called nonuniformly
hyperbolic if it is measurably hyperbolic but not uniformly hyperbolic.
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Figure 4. The upper half-plane H is the space of marked trian-
gles, up to Euclidean similarity. The triangle T on the left corre-
sponds to the point z ∈ H on the right.

Labelling cyclically the triangles T (1), T (2), . . . , T (6) in the subdivision as in Fig-
ure 5, the Möbius transformation B(z) = 2(z+1)/3 sends the marked triangle T to
the marked triangle T (1). The involutions pictured in Figure 6 generate the sym-
metric group S3, whose nontrivial elements we label P1, . . . , P5. A bit of thought
shows that the transformations B,BP1, . . . , BP5 are the 6 maps of the plane send-
ing T to the rescaled triangles in the subdivision.

Fixing an identification of the lower half-plane with the upper half-plane via
z �→ z, the action of these 6 transformations on H are identified with the pro-
jective action of 6 elements A1, . . . , A6 of PGL(2,R), where B is identified with

Figure 5. A Möbius transformation that selects the first triangle
in barycentric subdivision.
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Figure 6. Three involutions generating the symmetric group S3:
inversion in the circles |z| = 1 and |z−1| = 1, and reflection across
the line Re(z) = 1

2 .

(
2/
√
6 2/

√
6

0 3/
√
6

)
, P1 is identified with

(
1 0
1 −1

)
, P2 is identified with

(
0 1
1 0

)
, and

P3 is identified with

(
−1 1
0 1

)
.

Thus random barycentric subdivision is governed by a random matrix cocycle
over a Bernoulli shift. If repeated rolls of the die generate the sequence ω1, ω2, . . .
with ωi ∈ {1, . . . , 6}, then the nth triangle Tn(ω) generated is the projective image

of

(
i
1

)
under A(n)(ω), and an exercise shows that the aspect ratio of Tn(ω) is given

by

α(Tn(ω)) = ‖(0, 1) ·A(n)(ω)‖−2.

We thus obtain the formula

lim
n→∞

1

n
logα(Tn(ω)) = −2 lim

n→∞

1

n
log

∥∥∥(0, 1) ·A(n)(ω)
∥∥∥ ,

and out pops the Lyapunov exponent χ = limn→∞
1
n log

∥∥(0, 1) ·A(n)(ω)
∥∥.6

Numerical simulation gives the value χ ≈ 0.0446945, but the fact that this num-
ber is positive follows from a foundational result of Furstenberg (stated precisely
as a special case in Theorem 6.1) that underlies some of Avila’s results as well.
The upshot is that a random product of matrices in SL(2,R) (or PGL(2,R)) can’t
have exponents equal to 0, except by design. In particular, if the matrices do not
simultaneously preserve a collection of one or two lines, and the group generated
by the matrices is not compact, then the exponents with respect to any nontriv-
ial Bernoulli measure will be nonzero. These conditions are easily verified for the
barycentric cocycle. Details of this argument about barycentric subdivision can be
found in [54] and the related paper [16].

The barycentric cocycle is not uniformly hyperbolic, as can be seen by examin-
ing the sequence of triangles generated by subdivision on Figure 2: at each stage it

6As with eigenvalues, the Lyapunov exponents for left and right matrix multiplication coincide.



WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? 89

is always possible to choose some triangle with aspect ratio bounded below, even
though most triangles in a subdivision will have smaller aspect ratio than the start-
ing triangle. For products of matrices in SL(d,R), uniform hyperbolicity must be
carefully engineered, but for random products, measurable hyperbolicity almost
goes without saying.

A long-standing problem in smooth dynamics is to understand which diffeo-
morphisms have hyperbolic derivative cocycle with respect to some natural invari-
ant measure, such as volume (see [19]). Motivating this problem is the fact that
measurable hyperbolicity produces interesting dynamics, as we explain in the next
section.

2. Smooth ergodic theory

Smooth ergodic theory studies the dynamical properties of smooth maps from a
statistical point of view. A natural object of study is a measure-preserving system
(M, vol, f), where M is a smooth, compact manifold without boundary equipped
with a Riemannian metric, vol is the volume measure of this metric, normalized
so that vol(M) = 1, and f : M → M is a diffeomorphism preserving vol. It was
in this context that Boltzmann originally hypothesized ergodicity for ideal gases in
the 1870s. Boltzmann’s nonrigorous formulation of ergodicity was close in spirit to
the following statement of the pointwise ergodic theorem for diffeomorphisms:

Theorem 2.1. If f is ergodic with respect to volume, then its orbits are equidis-
tributed in the following sense: for almost every x ∈ M and any continuous function
φ : M → R,

(4) lim
n→∞

1

n

(
φ(x) + φ(f(x)) + · · ·+ φ(fn−1(x))

)
=

∫
M

φ dvol.

On the left of equation (4) is the limit of the average value of the “observable”
φ along the f -orbit of a typical point x; on the right is the average (or expected
value) of φ over M . The ergodic theorem thus asserts that for an ergodic system,
“time averages equal space averages.”

As remarked previously, an example of an ergodic diffeomorphism is the rotation
fα on R/Z, for α irrational. In fact this transformation has a stronger property of
unique ergodicity, which is equivalent to the property that the limit in (4) exists
for every x ∈ R/Z.7 While unique ergodicity is a strong property, the ergodicity of
irrational rotations is fragile; the ergodic map fα can be perturbed to obtain the
nonergodic map fp/q, where α ≈ p/q.

Another example of an ergodic diffeomorphism, at the opposite extreme of the
rotations in more than one sense, is the automorphism fA of the 2-torus induced

by multiplication by the matrix A =

(
2 1
1 1

)
with respect to the area μ. In spirit,

this example is closely related to the Bernoulli shift, and in fact its orbits can be
measurably coded in such a way as to produce a measure-preserving isomorphism
with a Bernoulli shift. As observed in the previous section, ergodicity of this map
can be proved using Fourier analysis, but there is a much more robust proof, due to
Anosov [1], who showed that any C2 Anosov diffeomorphism that preserves volume
is ergodic with respect to volume.

7This is a consequence of Weyl’s equidistribution theorem and can be proved using elementary
analysis; see, e.g., [37].
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2.1. Ergodicity of Anosov diffeomorphisms and Pesin theory. Anosov’s
proof of ergodicity has both analytic and geometric aspects. For the map fA, it
follows several steps:

(1) The expanding and contracting subbundles Eu and Es of the splitting
TT2 = Eu ⊕ Es are tangent to foliations Wu and Ws of T2 by immersed
lines. These lines are parallel to the expanding and contracting eigendirec-
tions of A and wind densely around the torus, since they have irrational
slope. The leaves of this pair of foliations are perpendicular to each other,
since A is symmetric.

(2) A clever application of the pointwise ergodic theorem (presented here as
a special case in Theorem 2.1) shows that any φ ∈ L2(T2, μ) satisfying
φ ◦ f = φ is, up to a set of area 0, constant along leaves of the foliation
Wu and (again, up to a set of area 0) constant along leaves of Ws. This
part of the argument goes back to Eberhard Hopf’s study of geodesics in
negatively curved surfaces in the 1930s.

(3) Locally, the pair of foliations Wu and Ws are just (rotated versions of)
intervals parallel to the x and y axes. In these rotated coordinates, φ(x, y)
is a measurable function constant a.e. in x and constant a.e. in y. Fubini’s
theorem then implies that such a φ must be constant a.e. This conclusion
holds in local charts, but since T

2 is connected, φ must be constant.
(4) Since any f -invariant function φ ∈ L2(T2, μ) is constant almost everywhere

with respect to μ, we conclude that fA is ergodic with respect to μ.

The same proof works for any smooth, volume-preserving Anosov diffeomor-
phism—in particular, for the maps gε defined in equation (3)—if one modifies the
steps appropriately. The foliations by parallel lines in step (1) are replaced by
foliations by smooth curves (or submanifolds diffeomorphic to some Rk, in higher
dimension). Step (2), the so-called Hopf argument, is almost the same, since it
uses only volume preservation and the fact that the leaves of Wu and Ws are
expanded and contracted, respectively. Step (3) is the most delicate to adapt and
was Anosov’s great accomplishment, and Step (4) is of course the same.

The ergodicity of Anosov diffeomorphisms is also a consequence of the much
stronger property of being measurably encoded by a Bernoulli shift. This so-called
Bernoulli property implies that Anosov diffeomorphisms are mixing with respect
to volume, meaning that for any L2 function φ, we have

∫
M

φ · φ ◦ fn → (
∫
M

φ)2

as n → ∞. Visually, sets are mixed up by Anosov diffeomorphisms; see Figure 7,
which explains why fA is sometimes referred to as the “cat map”. The map gε will
similarly do quite a number on a cat. The proof of the Bernoulli property for Anosov
diffeomorphisms builds the Anosov–Hopf proof of ergodicity. The Anosov–Hopf
argument has the additional advantage that it can be adapted to prove ergodicity
and mixing for systems that are not Bernoulli.

As explained in Subsection 1.6, any C1-small perturbation of an Anosov dif-
feomorphism is Anosov, and C2 Anosov diffeomorphisms preserving volume are
ergodic. Hence volume-preserving C2 Anosov diffeomorphisms are stably ergodic:
the ergodicity can’t be destroyed by a C1-small perturbation, in marked contrast
with the irrational rotation fα.

The Anosov condition thus has powerful consequences in smooth ergodic the-
ory. But, like uniformly hyperbolic matrix products, Anosov diffeomorphisms are



WHAT ARE LYAPUNOV EXPONENTS, AND WHY ARE THEY INTERESTING? 91

Figure 7. The action of fA on a cat, from [2]. A cat is drawn in
a square fundamental domain for T2 at the lower left. Its image
under A is shown in the parallelogram, and it is reassembled into
another fundamental domain to show its image under fA. The
image of the cat under f2

A is depicted at right.

necessarily contrived. In dimension 2, the only surface supporting an Anosov diffeo-
morphism is the torus T2, and conjecturally, the only manifolds supporting Anosov
diffeomorphisms belong to a special class called the infra-nilmanifolds. On the other
hand, every smooth manifold supports a volume-preserving diffeomorphism that is
hyperbolic with respect to volume, as was shown by Dolgopyat and Pesin in 2002
[29].

In the 1970s Pesin [57] introduced a significant innovation in smooth ergodic
theory: a nonuniform, measurable analogue of the Anosov–Hopf theory. Under
the assumption that a volume-preserving diffeomorphism f is hyperbolic with re-
spect to volume, Pesin showed that volume has at most countably many ergodic
components with respect to f . Starting with Oseledets’s theorem and repeatedly
employing Lusin’s theorem that every measurable function is continuous off of a
set of small measure, Pesin developed an ergodic theory of smooth systems that
has had numerous applications. Some limitations of Pesin theory are: first, that it
begins with the hypothesis of measurable hyperbolicity, which is a condition that
is very hard to verify except in special cases; and second, without additional input,
measurable hyperbolicity does not imply ergodicity, as the situation of infinitely
many ergodic components can and does occur [28].

2.2. Ergodicity of “typical” diffeomorphisms. The question of whether er-
godicity is a common property among volume-preserving diffeomorphisms of a com-
pact manifold M is an old one, going back to Boltzmann’s ergodic hypothesis of
the late 19th century. We can formalize the question by fixing a differentiability
class r ∈ [1,∞] and considering the set Diffr

vol(M) of Cr, volume-preserving diffeo-
morphisms of M . This is a topological space in the Cr topology, and we say that
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Figure 8. Generically, positive entropy implies ergodicity and
measurable hyperbolicity.

a property holds generically in Diffr
vol(M) (or Cr generically, for short) if it holds

for all f in a countable intersection of open and dense subsets of Diffr
vol(M).8

Oxtoby and Ulam [56] proved in 1939 that a generic volume-preserving homeo-
morphism of a compact manifold is ergodic. At the other extreme, KAM
(Kolmogorov–Arnol’d–Moser) theory, introduced by Kolmogorov in the 1950s [43],
implies that ergodicity is not a dense property, let alone a generic one, in Diff∞

vol(M),
if dim(M) ≥ 2.

The general question of whether ergodicity is generic in Diffr
vol(M) remains open

for r ∈ [1,∞), but we now have a complete answer for any manifold when r = 1 un-
der the assumption of positive entropy. Entropy is a numerical invariant attached to
a measure-preserving system that measures the complexity of orbits. The rotation
fα has entropy 0; the Anosov map fA has positive entropy log(λ). By a theorem
of Ruelle, positivity of entropy means that there is some positive volume subset of
M on which the Lyapunov exponents are nonzero in some directions.

Theorem 2.2 (Avila, Crovisier, Wilkinson [7]). Generically in Diff1
vol(M), positive

entropy implies ergodicity and, moreover, measurable hyperbolicity with respect to
volume.

See Figure 8. This result was proved in dimension 2 by Mañé and Bochi [17,51]
and in dimension 3 by M. A. Rodriguez-Hertz [58]. Positive entropy is an a priori
weak form of chaotic behavior that can be confined to an invariant set of very small
measure, with trivial dynamics on the rest of the manifold. Measurable hyperbol-
icity, on the other hand, means that at almost every point all of the Lyapunov
exponents of the derivative cocycle Df are nonzero. Conceptually, the proof of
Theorem 2.2 divides into two parts:

(1) C1 generically, positive entropy implies nonuniform hyperbolicity. One
needs to go from some nonzero exponents on some of the manifold to all
nonzero exponents on almost all of the manifold. Since the cocycle and the
dynamics are intertwined, carrying this out is a delicate matter. This part

8Since Diffr
vol(M) is a Baire space, properties that hold generically hold for a dense set, and

two properties that hold generically separately hold together generically.
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of the argument relies on the fact that the C1 topology is particularly well
adapted to the problem. On the one hand, constructing C1-small pertur-
bations with a desired property is generally much easier than constructing
C2-small perturbations with the same property. On the other hand, many
useful dynamical properties such as uniform hyperbolicity are C1 open.

(2) C1 generically, measurable hyperbolicity (with respect to volume) implies
ergodicity. This argument uses Pesin theory but adds some missing input
needed to establish ergodicity. This input holds C1 generically. For ex-
ample, [7] proves that the positive entropy assumption generically implies
existence of a dominated splitting; this means that generically, a positive
entropy diffeomorphism is something intermediate between an Anosov dif-
feomorphism and a nonuniformly hyperbolic one. There is a continuous
splitting TM = Eu ⊕ Es, invariant under the derivative, such that for al-
most every x ∈ M , there exists an n = n(x) such that for every ξu ∈ Eu(x),
‖Dxf

n(ξu)‖ ≥ 2‖ξu‖, and for every ξs ∈ Es(x), ‖Dxf
−n(ξs)‖ ≥ 2‖ξs‖.

The proof incorporates techniques from several earlier results, most of which have
been proved in the past 20 years [6, 18, 20, 59]. Also playing an essential technical
role in the argument is a regularization theorem of Avila: every C1 diffeomorphism
that preserves volume can be C1 approximated by a C2 volume-preserving dif-
feomorphism [5]. The fact that this regularization theorem was not proved until
recently highlights the difficulty in perturbing the derivative cocycle to have desired
properties: you can’t change Df without changing f too (and vice versa). This
is why completely general results analogous to Furstenberg’s theorem for random
matrix products are few and far between for diffeomorphism cocycles.

3. Translation surfaces

A flat surface is any closed surface that can be obtained by gluing together
finitely many parallelograms in R

2 along coherently oriented parallel edges, as in
Figure 9. Two flat surfaces are equivalent if one can be obtained from the other by
cutting, translating, and rotating. A translation surface is a flat surface that comes
equipped with a well-defined, distinguished vertical, “North” direction (or “South”

Figure 9. A flat surface (of genus 2) with a distinguished
“South,” also known as a translation surface. Parallel edges of the
same color are identified (courtesy of Marcelo Viana, used with
permission).
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depending on your preferred orientation). Two translation surfaces are equivalent
if one can be obtained from the other by cutting and translating (but not rotating).

Fix a translation surface Σ of genus g > 0. If one picks an angle θ and a point x on
Σ, and follows the corresponding straight ray through Σ, there are two possibilities:
either it terminates in a corner or it can be continued for all time. Clearly, for any
θ, and almost every starting point (with respect to area), the ray will continue
forever. If it continues forever, either it returns to the initial point and direction
and produces a closed curve or it continues on a parallel course without returning.
A version of the Pigeonhole Principle for area (Poincaré recurrence) implies that
for almost every point and starting direction, the line will come back arbitrarily
close to the starting point.

Figure 10. Closing up a ray that comes back close to itself (cour-
tesy of Marcelo Viana, used with permission).

Kerckhoff, Masur, and Smillie [42] proved more: for a fixed Σ, and almost every
θ, the ray through any point x is dense in Σ, and in fact is equidistributed with
respect to area. Such a direction θ is called uniquely ergodic, as it is uniquely ergodic
in the same sense that fα is, for irrational α. Suppose we start with a uniquely
ergodic direction and wait for the successive times that this ray returns closer and
closer to itself. This produces a sequence of closed curves γn which produces a
sequence of cycles [γn] in homology H1(Σ,Z) � Z

2g.
Unique ergodicity of the direction θ implies that there is a unique c1 ∈ H1(Σ,R)

such that for any starting point x,

lim
n→∞

[γn]

�(γn)
= c1,

where �(γ) denotes the length in Σ of the curve γ.

Theorem 3.1 (Forni [32], Avila and Viana [13], Zorich [65, 66]). Fix a topological
surface S of genus g ≥ 1, and let Σ be almost any translation surface modeled on
S.9 Then there exist real numbers 1 > ν2 > · · · > νg > 0 and a sequence of of
subspaces L1 ⊂ L2 ⊂ · · · ⊂ Lg of H1(Σ,R) with dim(Lk) = k such that for almost
every θ, for every x, and every γ in direction θ, the distance from [γ] to Lg is
bounded, and

lim sup
�(γ)→∞

log dist([γ], Li)

log(�(γ))
= νi+1,

for all i < g.

9“Almost any” means with respect to the Lebesgue measure on possible choices of lengths and
directions for the sides of the polygon. This statement can be made more precise in terms of
Lebesgue measure restricted to various strata in the moduli space of translation surfaces.
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Figure 11. A local picture of the Teichmüller flow (courtesy of
Marcelo Viana, used with permission).

This theorem gives precise information about the way the direction of [γn] con-
verges to its asymptotic cycle c1: the convergence has a “directional nature” much
in the way a vector v ∈ Rd converges to infinity under repeated application of a
matrix

A =

⎛
⎜⎜⎝
λ1 ∗ · · · ∗
0 λ2 · · · ∗
0 · · · · · · ∗
0 0 · · · λd

⎞
⎟⎟⎠ ,

with λ1 > λ2 > · · ·λd > 1.
The numbers νi are the Lyapunov exponents of the Kontsevich–Zorich (KZ)

cocycle over the Teichmüller flow. The Teichmüller flow Ft acts on the moduli
space M of translation surfaces (that is, translation surfaces modulo cutting and
translation) by stretching in the East-West direction and contracting in the North-
South direction. More precisely, if Σ is a translation surface, then Ft(Σ) is a new

surface, obtained by transforming Σ by the linear map

(
et 0
0 e−t

)
. Since a stretched

surface can often be reassembled to obtain a more compact one, it is plausible that
the Teichmüller flow has recurrent orbits (for example, periodic orbits). This is true
and reflects the fact that the flow Ft preserves a natural volume that assigns finite
measure to M. The KZ cocycle takes values in the symplectic group Sp(2g,R)
and captures homological data about the cutting and translating equivalence on
the surface.

Veech proved that ν2 < 1 [60], Forni proved that νg > 0 [32], and Avila and Viana
proved that the numbers ν2, ν3, . . . , νg−1 are all distinct [13]. Zorich established the
connection between exponents and the so-called deviation spectrum in Theorem 3.1,
a connection that holds in greater generality [65,66]. Many more things have been
proved about the Lyapunov exponents of the KZ cocycle, and some of their values
have been calculated which are (until recently, conjecturally) rational numbers! See
[25, 31].

Zorich’s result reduces the proof of Theorem 3.1 to proving that the the expo-
nents ν1, . . . , νg are positive and distinct. In the g = 1 case where Σ is a torus,
this fact has a simple explanation. The moduli space M is the set of all flat
structures on the torus (up to homothety), equipped with a direction. This is the
quotient SL(2,R)/SL(2,Z), which is the unit tangent bundle of the modular sur-
face H/SL(2,Z). The (continuous time) dynamical system Ft on Ω is given by

left multiplication by the matrix

(
et 0
0 e−t

)
. The cocycle is, in essence, the de-

rivative cocycle for this flow (transverse to the direction of the flow). This flow
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Figure 12. The moduli space H2/PSL(2,Z) of flat structures on
the torus, which is a punctured sphere with two cone points, cor-
responding to the hexagonal and square lattices in R

2. Pictured at
right is a fundamental domain in H2 (courtesy of Carlos Matheus,
used with permission).

is uniformly hyperbolic (i.e., Anosov), and its exponents are ν1 = log(e) = 1 and
−ν1 = log(e−1) = −1.

The proof in [13] that the exponents ν1, . . . , νg are positive and distinct for
general translation surfaces is considerably more involved. We can nonetheless boil
it down to some basic ideas.

(1) The Teichmüller flow itself is nonuniformly hyperbolic with respect to a
natural volume (Veech [60]), and it can be coded in a way that the dynamics
appear almost random.

(2) Cocycles over perfectly random systems (for example i.i.d. sequences of
matrices) have a tendency to have distinct, nonzero Lyapunov exponents.
This was first proved by Furstenberg in the 2 × 2 case [34] and later by
Guivarc’h and Raugi [36] in the d× d case (see also [35]).

(3) Cocycles over systems that are nonrandom, but sufficiently hyperbolic and
with good coding, also tend to have distinct, nonzero Lyapunov exponents.
This follows from series of results, beginning with Ledrappier in the 2 × 2
case [46], and in increasing generality by Bonatti and Viana [22], Viana
[61], and Avila and Viana [12].

4. Hofstadter’s butterfly

Pictured in Figure 13 is the spectrum of the operator Hα
x : �2(Z,C) → �2(Z,C)

given by

[Hα
x u](n) = u(n+ 1) + u(n− 1) + 2 cos(2π(x+ nα))u(n),

where x is a fixed real number called the phase, and α ∈ [0, 1] is a parameter called
the frequency. The vertical variable is α, and the horizontal variable is the spectral
energy parameter E, which ranges in [−4, 4]. We can read off the spectrum of Hα

x

by taking a horizontal slice at height α; the black region is the spectrum.
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Figure 13. Hofstadter’s butterfly. Reprinted figure with permis-
sion as follows: Douglas R. Hofstadter, Energy levels and wave
functions of Block electrons in rational and irrational magnetic
fields, Physical Review B 14 (1976), 2239–2249. Copyright 1976,
American Physical Society.

In an influential 1976 paper, Douglas Hofstadter of Gödel, Escher, Bach fame
discovered this fractal picture while modelling the behavior of electrons in a crystal
lattice under the force of a magnetic field [38]. This operator plays a central role
in the theory of the integer quantum Hall effect developed by Thouless et al.,
and, as predicted theoretically, the butterfly has indeed appeared in von Klitzing’s
QHE experiments. Similar operators are used in modeling graphene, and similar
butterflies also appear in graphene related experiments (see, e.g., [27]).

Some properties of the butterfly have been established rigorously. For example,
Avila and Krikorian proved:

Theorem 4.1 (Avila and Krikorian [9]). For every irrational α ∈ [0, 1], the α-hor-
izontal slice of the butterfly has measure 0.

Their proof complements and thus extends the earlier result of Last [45], who
proved the same statement, but for a full measure set of α satisfying an arithmetic
condition. In particular, we have:

Corollary 4.2. The butterfly has measure 0.

Other properties of the butterfly, for example its Hausdorff dimension, remain
unknown.

The connection between the spectrum of this operator and cocycles is an inter-
esting one. Recall the definition of the spectrum of Hα

x :

σ(Hα
x ) := {E ∈ C : Hα

x − E · Id is not invertible}.

The eigenvalues are those E so that the eigenvalue equation Hα
x u = Eu admits

�2(Z) solutions, i.e., those E such that Hα
x − E · Id is not injective.

The following simple observation is key. A sequence (un : n ∈ Z) ⊂ C
Z (not

necessarily in �2(Z)) solves Hα
x u = Eu if and only if

AE(f
n
α (x))

(
un

un−1

)
=

(
un+1

un

)
, n ∈ Z,
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where fα : R/Z → R/Z is the translation mentioned above, and

(5) AE(x) =

(
E − 2 cos(2πx) −1

1 0

)
,

which defines an SL(2,R)-cocycle over the rotation fα, an example of a Schrödinger
cocycle. Using the cocycle notation, we have

A
(n)
E (x)

(
u0

u−1

)
=

(
un

un−1

)
, n ∈ Z.

Now let’s connect the properties of this cocycle with the spectrum of Hα
x . Sup-

pose for a moment that the cocycle AE over fα is uniformly hyperbolic, for some
value of E. Then for every x ∈ R/Z there is a splitting R2 = Eu(x)⊕Es(x) invari-

ant under cocycle, with vectors in Eu(x) expanded under A
(mn)
E (x), and vectors in

Es(x) expanded under A
(−mn)
E (x), both by a factor of 2m. Thus no solution u to

Hα
x u = Eu that can be polynomially bounded simultaneously in both directions,

which implies E is not an �2 eigenvalue of Hα
x . It turns out that the converse is

also true, and moreover:

Theorem 4.3 (R. Johnson [39]). If α is irrational, then for every x ∈ [0, 1],

(6) σ(Hα
x ) = {E : AE is not uniformly hyperbolic over fα}.

For irrational α, we denote by Σα the spectrum of σ(Hα
x ), which by Theorem 4.3

does not depend on x. Thus for irrational α, the set Σα is the α-horizontal slice of
the butterfly.

The butterfly is therefore both a dynamical picture and a spectral one. On the
one hand it depicts the spectrum of a family of operators Hα

x parametrized by α,
and on the other hand it depicts, within a 2-parameter family of cocycles {(fα, AE) :
(E,α) ∈ [−4, 4]× [0, 1]}, the set of parameters corresponding to dynamics that are
not uniformly hyperbolic.

Returning to spectral theory, we continue to explore the relationship between
spectrum and dynamics. If α is irrational, then fα is ergodic, and Oseledets’s
theorem implies that the Lyapunov exponents for any cocycle over fα take constant
values over a full measure set. Thus the Lyapunov exponents of AE over fα take
two essential values, χ+

E ≥ 0 and χ−
E ; the fact that det(AE) = 1 implies that

χ−
E = −χ+

E ≤ 0. Then either AE is nonuniformly hyperbolic (if χ+
E > 0) or the

exponents of AE vanish.
Thus for fixed α irrational, the spectrum Σα splits, from a dynamical point of

view, into two (measurable) sets: the set of E for which AE is nonununiformly
hyperbolic, and the set of E for which the exponents of AE vanish. On the other
hand, spectral analysis gives us a different decomposition of the spectrum:

σ(Hα
x ) = σac(H

α
x ) ∪ σsc(H

α
x ) ∪ σpp(H

α
x ),

where σac(H
α
x ) is the absolutely continuous spectrum, σpp(Hx) is the pure point

spectrum (i.e., the closure of the eigenvalues), and σsc(H
α
x ) is the singular continu-

ous spectrum. All three types of spectra have meaningful physical interpretations.
While the spectrum σ(Hα

x ) does not depend in x (since α is irrational), the de-
composition into subspectra can depend on x.10 It turns out that the absolutely

10In fact, the decomposition is independent of a.e. x, just not all x.
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continuous spectrum does not depend on x, so we can write Σac,α for this common
set.

The next deep relation between spectral theory and Lyapunov exponents is the
following, which is due to Kotani:

Theorem 4.4 (Kotani [44]). Fix α irrational. Let Z be the set of E such that the
Lyapunov exponents of AE over fα vanish. Let Zess denote the essential closure of
Z, i.e., the closure of the Lebesgue density points of Z. Then

Σac = Zess.

Thus Lyapunov exponents of the cocycle are closely related to the spectral type
of the operators Hx. For instance, Theorem 4.4 implies that if AE is nonuniformly
hyperbolic over fα for almost every E ∈ Σα, then Σac,α is empty: Hα

x has no
absolutely continuous spectrum.

We remark that Theorems 4.3 and 4.4 hold for much broader classes of
Schrödinger operators over ergodic measure-preserving systems. For a short and
self-contained proof of Theorem 4.3, see [64]. The spectral theory of one-dimensional
Schrödinger operators is a rich subject, and we have only scratched the surface here;
for further reading, see the recent surveys [40] and [26].

Avila’s very recent work, some of it still unpublished, provides further fascinating
connections of this type, linking the spectral properties of quasiperiodic operators
with analytic potentials to properties of the Lyapunov exponents of their associated
cycles [3, 4].

5. Spaces of dynamical systems and metadynamics

Sections 2, 3, and 4 are all about families of dynamical systems. In Section 2, the
family is the space of all volume-preserving diffeomorphisms of a compact manifold
M . This infinite-dimensional space is not locally compact, and we have thrown up
our hands and depicted it in Figure 8 as a blob. Theorem 2.2 asserts that within
a residual set of positive entropy systems (which turn out to be an open subset of
the blob), measurable hyperbolicity (and ergodicity) is generic.

In Section 3, the moduli space M of translation surfaces can also be viewed as
a space of dynamical systems, in particular the billiard flows on rational polygons,
i.e., polygons whose corner angles are multiples of 2π. In a billiard system, one
shoots a ball in a fixed direction and records the location of the bounces on the
walls. By a process called unfolding, a billiard trajectory can be turned into a
straight ray in a translation surface.11 The process is illustrated in Figure 14 for
the square torus billiard.

The moduli space M is not so easy to draw and not completely understood (ex-
cept for genus g = 1). It is, however, a finite-dimensional manifold and carries some
nice structures, which makes it easier to picture than Diff(M). Theorem 3.1 illus-
trates how dynamical properties of a meta dynamical system, i.e., the Teichmüller
flow Ft : M → M, are tied to the dynamical properties of the elements of M: The
Lyapunov exponents of the KZ cocycle over Ft for a given billiard table with a
given direction describe how well an infinite billiard ray can be approximated by
closed, nearby billiard paths. In yet another example, Lyapunov exponents of the

11Not every translation surface comes from a billiard, since the billiards have extra symmetries.
But the space of billiards embeds inside the space of translation surfaces, and the Teichmüller
flow preserves the set of billiards.
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Figure 14. Unfolding billiards in a square to get lines in a torus
(courtesy of Diana Davis, used with permission).

Teichmüller flow control the rate of convergence of time averages to space averages
for the billiard flow.

In Section 4, we saw how the spectral properties of a family of operators
{Hα

x : α ∈ [0, 1]} are reflected in the dynamical properties of families of cocycles
{(fα, AE) : (E,α) ∈ [−4, 4]× [0, 1]}. Theorems about spectral properties thus have
their dynamical counterparts. For example, Theorem 4.3 tells us that the butterfly
is the complement of those parameter values where the cocycle (fα, AE) is uniformly
hyperbolic. Since uniform hyperbolicity is an open property in both α and E, the
complement of the butterfly is open. Corollary 4.2 tells us that the butterfly has
measure 0. Thus the set of parameter values in the square that are hyperbolic form
an open and dense, full-measure subset. In fact, work of Bourgain and Jitomirskaya
[24] implies that the butterfly is precisely the set of parameter values (E,α) where
the Lyapunov exponents of (fα, AE) vanish for some x.12 These results in some
ways echo Theorem 2.2, within a very special family of dynamics.

Figure 15. The Mandelbrot set.

12This automatically means for all x in the case of irrational α.
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The Hofstadter butterfly is just one instance of a low-dimensional family of
dynamical systems containing interesting dynamics and rich structure. A similar
picture appears in complex dynamics,13 in the one (complex) parameter family
of dynamical systems {pc(z) = z2 + c : c ∈ C}. The Mandelbrot set consists of
parameters c for which the map pc has a connected Julia set Jc (see Figure 15).

Note that in this noninvertible, conformal context, uniform hyperbolicity of the
derivative cocycle of pc on Jc just means that there exists an n such that |(pnc (z))′| ≥
2, for all z ∈ Jc. It is conjectured that the set of parameters c such that pc is
uniformly hyperbolic on Jc is (open and) dense in the Mandelbrot set.

6. Themes

We conclude by summarizing a few themes, some of which have come up in our
discussion.

Nonvanishing exponents sometimes produce chaotic behavior. The
bedrock result in this regard is Anosov’s proof [1] that smooth Anosov flows and
diffeomorphisms are mixing (and in particular ergodic). Another notable result is
Anatole Katok’s proof [41] that measurable hyperbolicity of diffeomorphism with re-
spect to some measure μ produces many periodic orbits—in particular, the number
of orbits of period n grows exponentially in n. Pesin theory provides a sophisti-
cated tool for exploiting measuable hyperbolicity to produce chaotic behavior such
as mixing and even the Bernoulli property.

Exponents can carry geometric information. We have not discussed it here,
but there are delicate relationships between entropy, exponents and Hausdorff di-
mension of invariant sets and measures, established in full generality by Ledrappier
and Young [47, 48]. The expository article [63] contains a clear discussion of these
relationships as well as some of the other themes discussed in this paper. The in-
terplay between dimension, entropy and exponents has been fruitfully exploited in
numerous contexts, notably in rigidity theory. Some examples are Ratner’s theorem
for unipotent flows, Elon Lindenstrauss’s proof of Quantum Unique Ergodicity for
arithmetic surfaces, and the Einsiedler–Katok–Lindenstrauss proof that the set of
exceptions to the Littlewood conjecture has Hausdorff dimension 0; see [30,49,53].

Vanishing exponents sometimes present an exceptional situation that
can be exploited. Both Furstenberg’s theorem and Kotani theory illustrate this
phenomenon. Here is Furstenberg’s criterion, presented in a special case:

Theorem 6.1 (Furstenberg [34]). Let (A1, . . . , Ak) ⊂ SL(2,R), and let G be the
smallest closed subgroup of SL(2,R) containing {A1, . . . , Ak}. Assume that

(1) G is not compact.
(2) There is no finite collection of lines ∅ �= L ⊂ R2 such that M(L) = L, for

all M ∈ G.

Then for any probability vector p = (p1, . . . , pk) on {1, . . . , k} with pi > 0, for all i,
there exists χ+(p) > 0, such that for almost every ω ∈ {1, . . . , k}N (with respect to

13Another field in which Avila has made significant contributions, which we do not touch upon
here.
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the Bernoulli measure pN),

lim
n→∞

1

n
log ‖A(n)(ω)‖ = χ+.

One way to view this result: if the exponent χ+ vanishes, then the matrices
either leave invariant a common line or pair of lines, or they generate a precompact
group. Both possibilities are degenerate and are easily destroyed by perturbing
the matrices. One proof of a generalization of this result [46] exploits the con-
nections between entropy, dimension and exponents alluded to before. This result
was formulated more completely in a dynamical setting by [21] as an “Invariance
Principle,” which has been further refined and applied in various works of Avila
and others; see for example [10, 14, 15].

For general SL(d,R) cocycles, vanishing of exponents is still an exceptional situa-
tion, but even more generally, the condition di ≥ 2—that an exponent has multiplic-
ity greater than 1—is also exceptional. This statement was rigorously established
for random matrix products by Guivarc’h and Raugi [36] and undleries the Avila–
Viana proof of simplicity of spectrum for the KZ cocycle. See the discussion at the
end of Section 3. The same ideas play a role in Margulis’s proof of superrigidity for
higher rank lattices in semisimple Lie groups; see [52].

Continuity and regularity of exponents is a tricky business. In the family
gε of Anosov diffeomorphisms considered in Subsection 2.6, the Lyapunov expo-
nent χε = log λε varies smoothly with the parameter ε. In general, however, Lya-
punov exponents do not depend smoothly, or even continuously, on the cocycle.
Understanding the exact relationship between exponents, cocycles, measures, and
dynamics is an area still under exploration, and a few of Avila’s deepest results,
some of them still in preparation with Eskin and Viana, lie in this area. The book
[62] is an excellent introduction to the subject.
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