ENSAYOS EN PACKS DE BATERÍAS DE VEHÍCULOS ELÉCTRICOS

FACULTAD DE INGENIERÍA - UNIVERSIDAD DE LA REPÚBLICA (UDELAR) - URUGUAY

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

CONTEXTO:

 EL LABORATORIO DE ENSAYOS DE BATERÍAS FUE PROYECTADO Y ARMADO POR EL GRUPO DE TRABAJO EN VEHÍCULOS ELÉCTRICOS (GTVE) DEL INSTITUTO DE INGENIERÍA ELÉCTRICA DE LA FACULTAD DE INGENIERÍA DE LA UDELAR.

• El proyecto fue presentado y aprobado en 2018 con un aporte del 80% de la Agencia Nacional de Investigación e Innovación (ANII) + un aporte del 20% de la Universidad de la República.

EQUIPAMIENTO PRINCIPAL:

BATTERY CYCLER.

- MARCA Y MODELO: CHROMA 17020 (EE. UU.)
- FUNCIÓN PRINCIPAL: CURVA DE CARGA Y DESCARGA DE LA BATERÍA DE FORMA DE ONDA PROGRAMABLE (ES DECIR, CURVA DE DESCARGA DEL CICLO DE CONDUCCIÓN WLTP)

EQUIPAMIENTO PRINCIPAL:

EX-PROOF CHAMBER.

- Marca y modelo: Dongguan Xinbao Instrument Co. XB-OTS-665
- VOLUMEN: 1M3
- TAMAÑO MÁXIMO DE LA BATERÍA: 9 KWH

PROYECTOS CONDUCIDOS ACTUALMENTE:

- SEGUNDA VIDA DE BATERÍAS DE VEHÍCULOS ELÉCTRICOS
- SISTEMA DE ALMACENAMIENTO PARA PLANTA DE GENERACIÓN OFF-GRID

OBJETIVOS PROYECTO SEGUNDA VIDA:

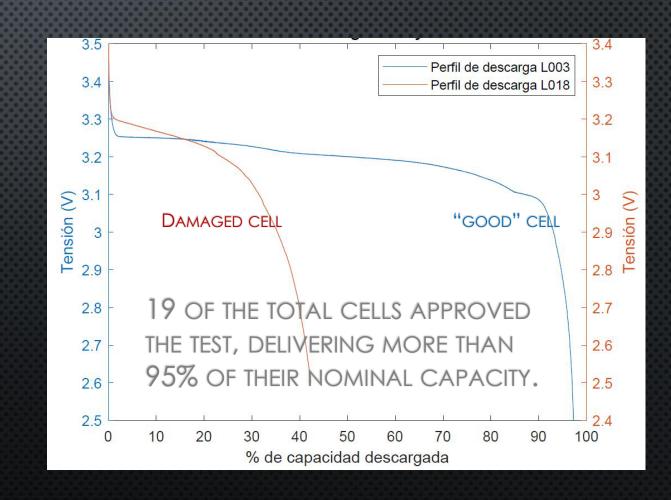
- DESARROLLAR UN MÉTODO DE PRUEBA PARA IDENTIFICAR LAS CELDAS REUTILIZABLES DE UN PAQUETE DE BATERÍAS DESAFECTADO DE UN VEHÍCULO ELÉCTRICO.
- ESTUDIAR LA VIABILIDAD DE LA REUTILIZACIÓN Y SEGUNDA VIDA DE LAS BATERÍAS DE VEHÍCULOS ELÉCTRICOS.
- Construir un paquete de baterías de segunda vida (SLBP), a partir de celdas EV usadas.

PROYECTO ANII FSE_S_2020_1_165336

BATTERY PACK ORIGINAL:

- ORIGEN: VEHÍCULO ELÉCTRICO LIGERO
- TECNOLOGÍA: LIFEPO4 (LFP)
- NÚMERO ORIGINAL DE CELDAS: 24
- CAPACIDAD DE LA CELDA: 50 AH
- TENSIÓN NOMINAL DE CELDA: 3,2 V
- FABRICANTE: SIMILAR A HHE (CHINA)
- PAQUETE DE BATERÍA ENTREGADO SIN CARCASA METÁLICA
- PAQUETE DE BATERÍA ENTREGADO SIN BMS
- INTERCONEXIÓN ORIGINAL: TERMINALES SOLDADOS
- DESCARTAR MOTIVO: FALLO DE SOBRETENSIÓN DURANTE LA CARGA

TESTS REALIZADOS:


SE BASARON EN LA NORMA IEC 62660-1:2018 "CELDAS SECUNDARIAS DE IONES DE LITIO PARA LA PROPULSIÓN DE VEHÍCULOS ELÉCTRICOS DE CARRETERA - PARTE 1: PRUEBAS DE RENDIMIENTO" Y EL MANUAL DE PRUEBA DE BATERÍAS DE VEHÍCULOS ELÉCTRICOS DE USABC.

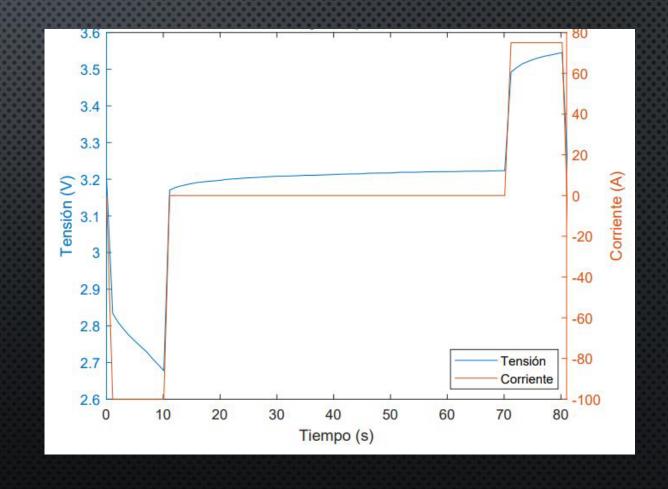
1ST. STATIC CAPACITY TEST:

OBJECTIVE: PARA MEDIR LA CAPACIDAD DE LA CELDA (AH) BAJO UNA DESCARGA DE CORRIENTE CONSTANTE.

PROCEDIMIENTO:

- I. CARGAR LA CELDA DE ACUERDO CON LA INFORMACIÓN DEL FABRICANTE (CC-CV).
- II. DESCARGAR LA CELDA CON UN C/3 DC (CORRIENTE CONTINUA) HASTA EL VOLTAJE DE CORTE.
- III. CALCULAR LA CAPACIDAD SEGÚN LA NORMA IEC 62660-1:2018.

2ND: POWER TEST

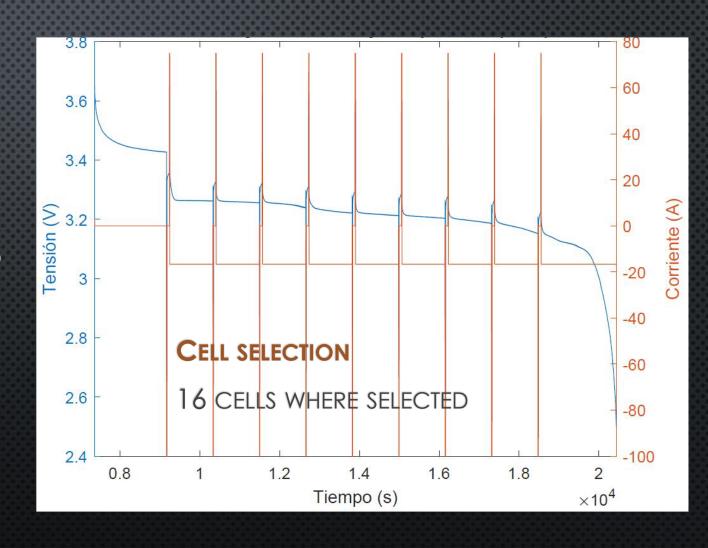

BASADO EN HPPC (CARACTERIZACIÓN DE POTENCIA DE PULSO HÍBRIDO) Y PRUEBA DE POTENCIA MÁXIMA DEL MANUAL DE USABC.

OBJETIVO:

DETERMINAR LA POTENCIA DE DESCARGA Y LAS CARACTERÍSTICAS DE REGENERACIÓN DE LA CELDA, A TRAVÉS DE UN PERFIL HÍBRIDO QUE CONTIENE UN PULSO DE CARGA Y UN PULSO DE DESCARGA.

PERFIL USADO:

- I. PULSO DE DESCARGA @ 2C / 10 SEG.
- II. TIEMPO DE DESCANSO: 1 MINUTO
- III. PULSO DE REGENERACIÓN @ 1.5C / 10 s



POWER TEST

PROCEDIMIENTO:

- i. Cargar completamente la celda de acuerdo con la información del fabricante.
- ii. Mantener la celda en circuito abierto durante 30 min.
- iii. EJECUTAR LA PRUEBA DE POTENCIA DESCARGANDO EL 10 % DE LA CAPACIDAD DE LA CELDA (AH) A C/3 DC.
- iv. Repetir pasos II y III 9 veces hasta que se haya descargado al menos el 90% de la capacidad nominal.
- v. Finalice la prueba descargando la Celda a su voltaje de Corte en C/3 DC.

CONSTRUCCIÓN DEL BATTERY PACK

(16 CELDAS EN SERIE)

EL VOLTAJE DE LA BATERÍA DEBE SER DE 48 V (COMPATIBLE CON EL VEHÍCULO GREENSTAR).

DEBIDO A LA CONEXIÓN EN SERIE, LA CAPACIDAD DEL PAQUETE DE BATERÍAS ES DE 50 AH (2,4 KWH).

CELL CONNECTION:

SE IMPLEMENTÓ UNA CONEXIÓN ATORNILLADA.

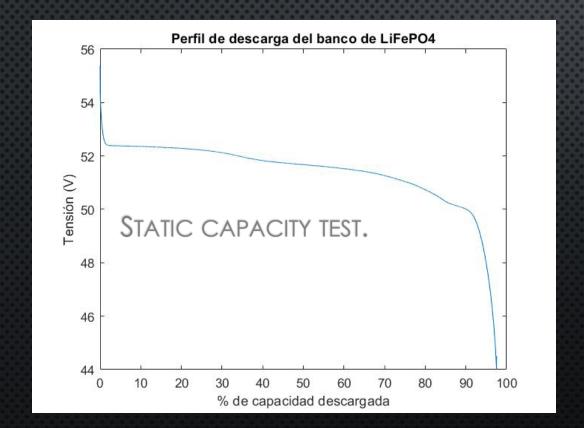
CONTAINER CABINET:

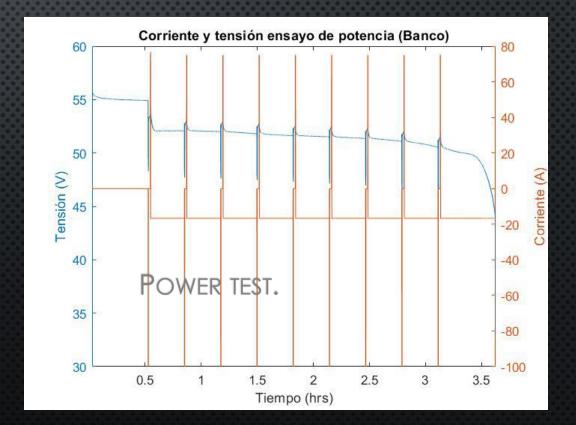
SE DISEÑÓ Y FABRICÓ UN GABINETE METÁLICO PARA BRINDAR PROTECCIÓN MECÁNICA AL PAQUETE DE BATERÍAS.

CONSTRUCCIÓN DEL PACK DE BATERÍAS:

BMS (BATTERY MANAGEMENT SYSTEM):

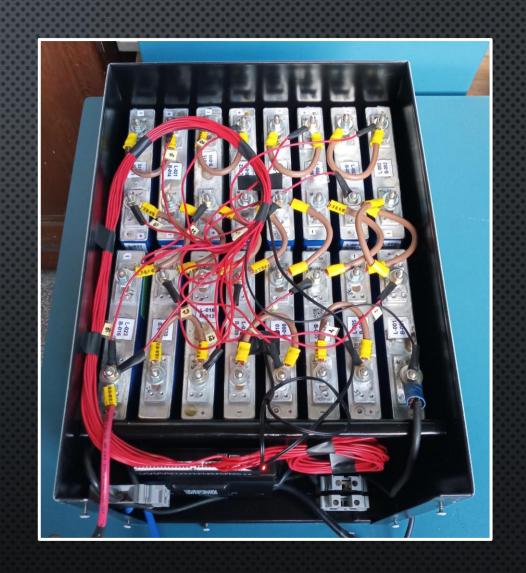
- LOS REQUISITOS DE BMS CUMPLEN CON UN-R136, CON PROTECCIÓN CONTRA SOBRECARGA Y SOBREDESCARGA, CORTOCIRCUITO Y SOBRETEMPERATURA.
- Capacidad de Gestionar hasta 24
 CÉLULAS LIFEPO4 / CORRIENTE NOMINAL
 DE 150 A.
- CONEXIÓN BLUETOOTH CON APP EN INGLÉS QUE PERMITE CONFIGURAR VARIOS PARÁMETROS.
- EQUILIBRIO CELULAR ACTIVO.




Charge: On	Discharge: On	Balance: On
Battery Power: 6 Battery Capacity: 5 Cycle Capacity: 6 Ave. Cell Vol.: 6 Balance Cur.: 6 Battery T1: 7	$egin{array}{lll} egin{array}{lll} egin{arra$	in Battery: 0 [*] in Capacity: 0.0 ^{AH} in Capacity: 0.0 ^{AH} in Capacity: 0.00 ^{AH} in Capacity: 0.00 ^{AH} in Capacity: 0.002 ^V in Capacity: 28 ^C in Capacity: 28 ^C in Capacity: 28 ^C in Capacity: 28 ^C in Capacity: 25 ^C
Cells Voltage		
01 3.167 ^v	09 3.167 ^v	17
02 3.167 ^v	10 3.167 ^v	18
03 3.167 ^v	11 3.167 ^v	19
04 3.167 ^v	12 3.167"	20
05 3.167 ^v	13 3.167 ^v	21
06 3.167 ^v	14 3.168 ^v	22
07 3.168 ^v	15 3.167 ^v	23
08 3.167 ^v	16 3.169 ^v	24
Cells Wire Resistance		
01 0.118°	09 0.118°	(17) 0.000°
02 0.116°	10 0.115°	18 0.000°
03 0.117°	11 0.138°	19 0.000°
04 0.116°	12 0.112°	20 0.000°
05 0.116°	13 0.126°	21 0.000°
06 0.113°	14 0.113°	22 0.000°
07 0.133°	15 0.117°	23 0.000°
08 0.114°	16 0.116°	24 0.000°

RESULTADOS DE LOS ENSAYOS:

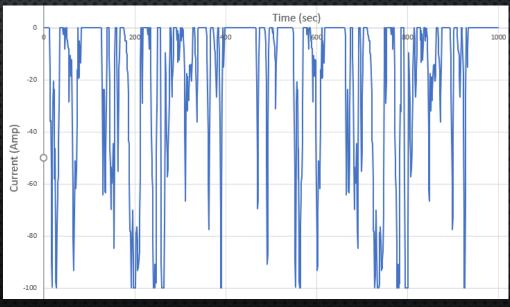
- STATIC CAPACITY TEST: LA BATERÍA INCORPORADA ENTREGÓ 48,8 AH.
- Power test: La batería construida completó la prueba de potencia sin exceder los límites de Voltaje de Cada Celda, entregando un total de 48,5 Ah.



CONCLUSIONES:

- El 79% de las celdas originales aún pueden almacenar el 95% de la capacidad original y se utilizaron 16 celdas para la fabricación de SLBP.
- SURGIERON ALGUNAS DIFICULTADES AL ENSAMBLAR EL PAQUETE DE BATERÍAS, DEBIDO A LOS TERMINALES DE CELDA ATORNILLADOS.
- El rango de operación de SLBP SOC está entre 10% y 100%.
- 16 DE 24 CELDAS APROBARON AMBAS PRUEBAS (PRUEBAS DE POTENCIA Y CAPACIDAD) / 25 KG DE PESO.
- LA CORRIENTE MÁXIMA DE DESCARGA DE SLBP ES DE HASTA 2C Y LA CORRIENTE MÁXIMA DE CARGA ES DE HASTA 1,5C DURANTE 10 SEGUNDOS // SLBP TIENE UNA CAPACIDAD DE 48AH.

APÉNDICE


SIMULACIONES VEHICULARES:

• SE REALIZARON SIMULACIONES DE VEHÍCULOS ELÉCTRICOS LIGEROS (LEV) Y SE ENCONTRÓ QUE EL SLBP ENCAJARÍA BIEN EN UN CICLO DE CONDUCCIÓN LEV WLTP CLASE 3 (LOS PARÁMETROS DEL VEHÍCULO CORRESPONDEN AL LEV DISEÑADO Y FABRICADO LOCALMENTE PROPIEDAD DE LA PYME URUGUAYA GREENSTAR) / 40 KM DE AUTONOMÍA.

- VALIDACIÓN DEL SLBP EN EL VEHÍCULO REAL.
- EVALUACIÓN DE COSTES Y VIABILIDAD ECONÓMICA.
- RECICLAJE CELULAR PARA LAS CÉLULAS DESECHADAS (EN CURSO EN LA UNIVERSIDAD UDELAR)

FIN

JUAN CARRIQUIRY

JPCARRIQUIRY@FING.EDU.UY

+59898707688