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Preface

-

This book gives a comprehensive introduction to discrete-event simulation.
It describes and compares coded case studies for the three most popular
methods of structuring simulations: the three-phase approach, event sche-
duling, and the process view. It provides, moreover, the statistical basis for
sampling theory, experimentation, and variance reduction. Techniques
for visual output are developed and more complcx simulation concepts are
discussed including: the role of simulation in decision-making, and the use
of advanced computing.

There is a simulation package in Pascal which has the facilities of a
commercial simulation package, but nevertheless can be tailored to suit
‘any specific requirements. The appendices include the entire package,
together with documentation and details on how to get it implemented with
a number of specific systems.

- Exercises at the ends of the chapters test comprehensnon of the most
important concepts and enable the reader to gain confidence in their appli-
cation. We have also provided an annoted biography which will be parti-
cularly helpful to readers who want to study aspects of the subject in more
depth.

The idea for this book arose when we were both PhD students at the
University of Southampton and wanted a text that explained in parsimoni-
ous detail how to develop and experiment with a discrete-event simulation
. model represented as a computer program. Having failed to find a suitable
text, we have now written an (essentially practical) book which aims to
provide this information.

PROSPECTIVE READERS

In the USA, this book may serve as the basis for a complete one-semester
‘or one-term course in simulation. In the UK, it may be used as the basis for

" a whole-year course in simulation, or provide the text for half or part of a

course. Such courses are typically part of the curriculum in management
__scnence mdustrlal engmeermg, and operatlonal research departments

xii
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They are somctimes also provndcd in statistics, mathemdhcs computer

- seience, and various different engineering departments. This book is parti-
~cularly useful for students who are familiar with Pascal.

QOutside the academic community, we envisage thls book as being

- useful to others as follows

(a) For those wnth no pnor knowledgc of discicte-event lechmques
but who need to develop a simulation program, this book teaches
the fundamcntal snmulanon concepts and provides a package for
use. /

(b) Those experienced in developing simulations with one or more
different simulation packages, but who want to model a system
which needs some particular modelling technique or visual out-
put (which their packages cannot easily provide), can use this
book to understand how to tackle the problem and they will be
able to adapt and apply the Pascal package to solve lt.

(c) Those who are interested in the application of simulation tech-
niques (such as clients in simulation projects who want to under-.
stand the project and ask the right questions) can read selected.

chapters of this book.

Case studies

We use two cases studies extensively throughout the book one is con-
cerned with the use of resources by patients in a hospital system, and the
other with machine breakdown in a manufacturing system. The book gives
working simulation programs, both with and without visual output, for the
case studies. Two further case studies, which describé a bank queueing
system and a traffic light system, provnde matenal for exercnses in many of
the chapters. :

Structure

The first ﬁve chapters of the book provide a basnc core of knowledge
covering: simulation methodology, the Pascal package, sampling, and the
collection and analysis of results. Chapter 6 uses this material to prov:de _
three-phase’ ‘and event-scheduling simulations for ‘the. two case studies.”
Chapters 7—14 contain more advanced material.*The ‘modelling of_ :
more complex’ systems is described in Chaptcrs 7 and 11 while Chapter 8is ..

concerned with experimentation and variance reduction. Chapters9and 10 .

show how to provnde s:mulanons w:th wsual output: and the use of the .
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process view approach is explained in Chapter 12 with ‘ex_élrhples. Chapter

'13 discusses simulation as part of the-wider decision-making process and
-Chapter 14 describes more advanced simulation techniques and packages.

Some of these later chapters can be read independgntly although they are
all related: Chapter 10, in particular, depends upph_Chap’tg'r 9,.and Chap- -

 ter 11 builds upon material given in Chapter 7. Examples.of how to read
- this book for readers with specific requirements are as follows.

(a) Basic material: Chapters 1-6, and perhaps Chapters 7 and 8.
+ (b) Basic material with visual output: (a) plus Chapters 9 and 10.
(c) Basic material with more advanced concepts and programming:
(a) plus Chapters 7 and 11. :
(d) Basic material with the wider uses of simulation: (@) plus
Chapters 13 and 14. -

- Those wishing to learn about discrete-event simulation without using
or understanding the Pascal package should read Chapters 1, 2, and 4 (ex-
cluding the paragraphs at the end of some sections which explain how the

~concepts are implemented in Pascal), Chapter 5 (excluding section 5.3),
Chapters 8 and 9 (excluding seéctions 9.3 and 9.4), Chapter 12 (excluding

section 12.4), and Chapters 13 and 14... .~

.- Software

Proper software development, particularly stepwise refinement and modu-
larity, is emphasized throughout. We have been careful to provide soft-
ware tools and methods which can be used for advanced work as well as for
- the more simple textbook examples. - L o
We chose Pascal because, not only is it used in the majority of under-
graduate programming courses around the world, but also it is well-
structured, strongly typed, and provides a linked record structure which is
particularly useful for manipulating lists in simulation programs. Even so,
most of the ideas and even much of the code contained here could equally
well be expressed ip FORTRAN, C, Ada, or any other procedural algori-
thmic language. ;‘ - : , ' R
The Pascal package, entitled Pascal_SIM, mostly follows the 1SO
standard for Pascal with a few minor exceptions (see Appendix A). We
~-have developed the package. from some Pascal routines written by John
Crookes at Lancaster. University; we considerably changed .and rewrote
these while at the University of Southampton. We have further refined and

simplified ,:ther:r_x,‘._for_‘tgeaching to students and for presentation in the book.

& "'pro'vidc;s‘go‘mprche_nsive_gocumcmat_ion‘q_f_ ﬁhefpack_age
' coding is given in Appendix B.:Appendix C.shows how to -
kage .in ; ious diffe; r}!z;,xcrsipns;.-of._,,x_!?ascal.;;';» :

Preface xv -

Prerequisites

The only prerequisites for a course based on this book are: a previous
course in Pascadl preferably including dynamic memory allocation and
pointers, and a grounding in basic probability theory and statistics.

Supplementary material

There is both a teacher’s manual providing worked exercises and advice
on the use of the simulation package and an IBM disk providing listings
of: the Pascal_SIM package, the case study simulations and answers to
cxercises. The manual and the disk are available to adopters of the book.
Other readers who are interested in obtaining a disk of the Pascal SIM
package, should contact one of the authors directly by post or through the
publishers. .

ACKNOWLEDGMENTS

A number of people have provided help with this book, to whom we are
both grateful. ' ; :

(a) John Crookes of Lancaster University, who generously gave us
his programs and started us on the track of using Pascal for simu-
lation modelling.

(b) Peter Bell and Paul Kirkpatrick of the University of Western
Ontario for allowing us to use the example OPTIK screen shown
in Chapter 9. S ) R

(c) Dick Nance and Osman Balci of Virginia Polytechmceln.stltute
and State University, who provided many pearls of ‘wisdom,
some of which have slipped into Chapters 12 and 14.

(d) Huw Davies of the South Bank ‘Polytechnic, ‘who - did-the
variance-reduction work on the repair shop case study explained
in Chapter 8. S NS

(¢) Our former students from the South Bank Polytechnic, Kent

_University, and Virginia Polytechnic Institute who have provided

‘case studies and have used ‘and ¢riticized the: material in the
(f) “Tim,.Peter, and Susan, who were .spppo_rti\_'e:j,t:_l'l»r'gpg.l.)out,'_:_m_d
.- Jackie, who was always there. . S .y




Notation

-~

Throughout the book the Pascal code has been presented in the following
format.

. _
(a) All complete programs and extracts from programs shown in -

figures and appendices are in standard computer print-
out typeface.

(b) Within the text all Pascal code, apart from predefined Pascal_
SIM words, is in italics. Predefined Pascal_SIM words are in

bold typeface to distinguish them from thc commentary and the

rest of the Pascal codmg

. xvi

1

Simulation Modelling

The word simulation is a generic term describing many different types of
activities including: role playing in a social psychology experiment, com-
plex video games, and scale models built by engineers to describe the be-
havior of bridges or aircraft. When the word is used by computer scientists,
statisticians, and management scientists, they normally refer to the con-
struction of an abstract model representing some system in the real world.
The simulation describes the pertinent aspects of the system as a series of
equations and relationships, normally embedded in a computer program.
Typically, we wish to develop and experiment with a model in order
to address some problem. We use a model, rather than experiment with

. the real world system, for one of three main.reasons.

(a) The system as yet does not exist. Simulation might, for. example,
‘be used for planning a new productlon facility or-a new hospital.

~ (b) Experimentation with the system is expens:ve Modelling may,
for example, indicate whether it is wise to spend a large sum of
money on new equipment. .

(c) Experimentation with the system is mappropnate A good ex-
ample of this is disaster planning where the hospital, police and
"ambulance service need to plan for major accidents.

1.1 MODELLING
The identification of the system problem will, in turn, lé'éd to‘-the-deﬁnilio'n
of ob;ecnves These may be very. specific, such as

(a) to determine whether an additional server m a shop wnll keep the
- queue. Iength down toa certain Jevel i

or on the other hand be much more vague such as:

(b) to understand the populahon dynamlcs.of ﬂpond hfe

1




2 ] ] ' , ‘ Simulation Modelling

In modelling any system, a process of selection has to be made where-
by some elements of the system ar¢ modclled and some are assumed to be
unimportant or irrelevant in the context of the objectives. A model thus
not only embodies objectives but also assumptions. These should be stated
clearly as rhey may have to be questioned at a later stage in the modellmg

. process

If we regard the simulation model as a black box, it is clear that the
simulation must provide output or responses which are pertinent to the
questions asked and the objectives that-have been set. This black box must
be fed with input to provide information about the state of the system
being modelled. Some input variables are controllable by those that
manage the ‘real life’ system. These are called decision variables. They
may be changed to sec the effect on the output or response variables.

* An objective function expresses the objectives as a mathematical
function of the output measures. If the objectives of a simulation study can’
be expressed as an objective function, it ‘may be possible to determine an

optimum strategy by a series of carefully organized simulation experi-
ments. If, on the other hand, the objectives are vague and the definition of
an objective function is not feasible, such as is frequently the case with
social systems, the simulation may be used in an exploratory way. It might,

for example, be used to examme the consequences of different decisions or -

policies.”

model instead of the real system. The purpose of ‘building the simulation-
- and hence its use, generally falls into one of three categories as follows.

(a) Companson A comparison of simulation runs:can be used to
assess the effect of changing a decision variable. The results
of the different runs can then be evaluated in terms of the
objectives. '

- -(b) Prediction. A srmulauon may be used for prednctwe purposes to
determine the state of the system at some future point in time,
_ subject to assumptions about how 1t behaves now and how it will
. continue to behave.
(c) - Investigation. Some snmulanons are. developed to provrde an-
- insight into the behavior of the system, rather than to. perform
;. detailed experimentation. It is of interest to see how the simu-
_.':f'i-latlon behaves and reacts to normal and abnormal stlmuh

Thls classnﬁcanon of the snmulat:on objectlves helps to determme the

type of analysns and expenmentatlon that ‘will be’ needed However the

Simulation is thus a descnptlve tool, allowmg us to expenment witha

Different Types of Simulation : . 3

1.2 DIFFERENT TYPES OF SIMULATION

There are three types of model-building simulation: statistical, continuous,
and discrete. These, however, are related not only because elements of sta-
tistical simulation appear in the other two, but also because there are com-
bined simulations ‘'employing both continuous and discrete techniques.
This book will be concerned solely with discrete simulation but a brief dis-
cussion of the other two types will help to clarify its characteristics.

1.2.1 Statistical simulation

N f"',- A system that is subject to random processes is said to be stochastic
o whereas one that is not is deterministic. Furthermore, a system that does

not vary with time is static whereas one that varies is dynamic. A statistical
simulation describes system’i; which are both stochastic and static and is
used to estimate values that cannot be easily deduced mathematxcally This
type of simulation is; sometlmes\ also called a Monte Carlo simulation.

In order to introduce the necessary concepts we shall consider the re-
latively simple problem of estimating the area of -an amorphous shape.
Suppose, for example, we want to estimate the size of the shaded area in
Fig. 1.1, which may represent a lake, field or the outline of a city. Direct
calculation. of the size is not possible because. of the irregularity of the
shape, although a numerical approximation can be obtained by breaking
the shape down into smaller regular shapes such as rectangles and circles.

In order to solve this problem using a statistical simulation, a rec-
tangle is drawn on the map (see Fig. 1.1) so as to enclose the shaded area.
Suppose it has a length of 100 units and a height of 59; hence the area is
5000 units. The rectangle is mapped onto the X and Y co-ordinates such
that the bottom left-hand corner has the co- ordmate (0 O) and X is in the
range 0—100 and y in the range 0-50. -

An arbitrary pair of co-ordinates will be elther msrde the lrregular
area or outside. (Being exactly on the boundary is'equivalent to being




4 ' _ Simulation Modelling
inside the area.) Thus if a pair of co-ordinates is chosén at random, it will
result in a ‘success’ (inside the area) or ‘failure’ (outside). If a number of
random co-ordinates are generated, the ratio of successes 10 the sample
size will reflect the ratio of the shaded area to the area of the rectangle.
Thus, if A is the true size of the shaded area and m is the number of suc-
cesses in n generations of random pairs then: :

_nn_z_ = §6Aﬁ as n tends to infinity

A random variable which is given the value 1 if there is a success, and
0 if there is a failure, has a Bernouilli distribution. Its parameter, p, is
estimated by m/n as n tends to infinity. '

Each random number in the pair of co-ordinates is generated in-
dependently and in the appropriate range. Readers interested in experi-
menting with this example can try sampling numbers from random number
tables (which can be found in books of statistical tables).

In general, statistical simulations sample random numbers and derive
results based on the values of the numbers sampled. The results themselves
are thus also samples from distributions. ' : :

In more complex examples, random numbers are sampled from prob-
ability distributions rather than from a uniform range of numbers. This
process is called distribution sampling. Chapter 4 explains the computer
techniques for random number and distribution sampling.

Statistical simulation techniques are used widely in risk analysis for
assessing the risks and benefits of different, and often very expensive,
decisions.

1.2.2 Continuoiis simulation

Continuous simulation is used to model systems which vary continually
with time. The systems are dynamic but may be either deterministic or
stochastic. S 7 / - :
Consider modelling the operation of an @Wben
switched on, the element heats the water until it reaches a ceriain tem-
perature. This causes the kettle to turn itself off. Figure 1.2 shows a plot of
the water temperature against time. The increase in water temperature,
and its slower decrease following the kettle turning itself off, is a con-
tinuous process which can be represented in a.continuous simulation as a
number of differential equations. This approach would be useful if we were
modelling the kettle with a view to comparing the operations of various
types of kettle. -~ - o 7 .
‘Continuous simulation is used extensively where feedback occurs in a

N .
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Temperature § _
Kettle Kettle

switch — switch

turned on turned off

(X R Y R RN Y

Figure 1.2 Action of kettle

system. A good example of this is the use of a thermostat with two settings
to control room temperature. With the heating on, the temperature in the

room increases until the upper setting on the thermostat is reached, at

which point the heating switches off. The temperature will then decrease

until the lower setting on- the thermostat is reached, at which point the -
heating will be switched back on. Such continuous simulation models,’
often composed of scores of feedback loops and hundreds of differential

equations, are used extensively in mechanical, production, and electrical

engineering. ' . _

A variation on continuous simulation called systems dynamics was
developed by Forrester and his co-workers at MIT in the early 1960s, for
use in problems that can roughly be called socio-economic. Systems
dynamics has been used to model urban E{owth, industrial production,
fishing regulations, ecosystems, and many other systems. For an introduc-
tory text, see Roberts ef al. (1983).

1.2.3 Discrete simulation

If, in the kettle example, (see Fig. 1.2) the intermediate water temperature
is of little interest, the action of the kettle can be considered as two discrete

events: switching the kettle on, and the kettle switching itself off. If, for -

example, we were modelling the activities of a kitchen we might describe

the kettle in this way. . S .
Discrete-event simulation is concerned with the modelling of systems

that can be represented by a series of events. The simulation describes each

discrete event, moving from one to. the next:as :time progresses. The

systems modelled are dynamic and, almost invariably, stochastic.
Consider, for example, a simple inventory system for a single product

where,.each week, the operator must make a-single -decision about how

S
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- much to order, We can identify three events in this system: the placing of
ET&‘&‘&?‘TFQM and a sale. —
' If the demand for the items and the time for an order to arrive from
the supplier are assumed to be deterministic, then the size of each order
"“can be calculated analytically. If, however, the variables are regarded as
- stochastic (i.e.; they are -sampled from probability distributions) the prob-
lem is more comphcated and dtscrete-event simulation may help determine
- the_best order size. .

WP

’ been accompllshed

In describing stochastic systems, dtstnbutron sampling determines the
operation of the system and the length of the activity times. Thus, the out-
put measures of a simulation are normally samples from statistical distribu-

- tions. Clearly several samples wrll be needed to provrde good estimates of
» drstnbutron parameters

1.3 TWO CASE STUDIES

ln setting up a simulation study in ‘an organization, a description of a
system and of the problems leading to the need for a simulation study may

~ have to be built up through interviews with staff, the research of papers
h showmg, for example, 'minutes of committee meetings, and data collection

exercises. The description should provide the information to decide on:
the objectives of the study, some initial assumptions, decision variables,

! and the key events to be described in the simulation. The assumptrons may
.be relaxed at a later stage in the modelling process if the model is not con-
-sidered to be sufficiently detailed. As a rule of thumb, models should be as
srmple as possible to produce results within the requirements for accuracy.

The research together with the ﬁltermg and simplification process can,

“in practtce be extremely time consummg In providing the following case

study descriptions, we are assummg that thns background work has already

. 1 3. 1 Hosprtal

Patients are. central to the use of expensrve resources in health care. The

. activities of patients.in.a hospital environment are comiplex,-however; and
“.many different facilities- -are used durmg the ;course of .treatment.. Simu-

ations can be used 10 model the actlvmes of patlents to, .enable chmcnans to
lan.gesource- use.: - .

The. _h_osp_itat ‘case istudy. is .based on ex re,’n_t'ely*.;comhrc')h‘ "activj_ties

=

- and-sometimes-open.: thure 1z

) show whether mcreasm theitimes’ at ‘whi
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Ward

. y
Figure 1. 3 Simple hospital system showing queue for ward with
four beds

which are probably familiar to all readers. The number of beds in a hospital
ward is a constraint on the use of hospital facilities. Patients are admitted
to a ward and, following treatment, are dnscharged The purpose of de-
signing this simulation is to examine the effect of different resource levels
(e.g., number of beds) on the service given to patients (measured by the
waiting time for admission, or by the length of the waiting list).

Figure 1.3 shows that patients, identified by a. doctc_)r as needing treat-
ment, are put on a waiting list. (In the simulation, new arrivals may be
sampled from a statistical distribution and put in a queue.) When a bed is
available and there is a patient in the waiting list, the patient is admitted to
the ward and a bed is committed until discharge. The bed is then released
and becomes available for another patient.

This model is very simple and it is unlikely to be sufﬁcxently detailed
for any practical purposes. Therefore, we are gomg to'look at a slightly
more complex system in which some patients require operations and some
do not. They join different waiting lists, have different average arrival rates
and lengths of stay. Priorities now have to be assigned between the two
groups. wattmg for the available resources. In this example, those who do
not require ‘operations (assuming they are the emergencres) are- gwen
priority for the available beds. :

- A further comp]extty is that the operatmg theatre may be effecttvely
constraining the number of admissions to wards.-Those patients requiring
operations are putina wamng list for the operating theatre after they have
acquired ‘a bed. There is ‘one. ‘Operating theatre avhich is ‘sometimes shut
shows patients: be ‘operated on, and - -
returned to the ward afteran operatnon Expenmentmg with' the model can: -
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Figure 1.4 Hospital system showing queue for ward with four beds
and one operating theatre

changing the number of beds, can increase the throughput of patients in
the ward. : ' :

1.3.2 Repair shop

Perhaps industrial engineers are the most frequent users of simulation
techniques. The technique has been used to model entire production pro-
cesses and individual aspects of production such as job shop scheduling,
maintenance provision and the operation of repair shops.

The example presented here is a classic application area for simu-
lation: modelling machine breakdown. Within many production environ-
ments, machine breakdowns occur all too frequently. Often staff will be
employed simply as repair mechanics, with the sole fask of repairing
broken machines as quickly as possible. The objective of the management
is to minimize downtime by making sure that broken machinery is back in
operation as soon as possible. However, against this objective must be off-

set the cost of providing both repair. support and the equipment necessary

for repair work to proceed. .. S
- i Figure 1.5 shows the activities of a typical machine in the repa

‘When aimachine-brcak_s down, the mechanic removes -all covers and also

ir shop." :

Two Cases Studies

Mechanic
repairing
machine

Working
machine

Mechanic
removing parts

Broken .
machine with
parts removed
awaiting equipment

Figure 1.5 Life cycle of machine in repair shop

any material stuck in the broken machine, prior to obtaining the equip-
ment necessary for the repair of the machine.

The problem is to determine how the numbers of mechanics and
items of equipment provided will affect machine downtime and hence the
productive capacity of the repair shop. 7

Unlike the hospital system, which the patients entered and left, the
production system here is self-contained — nothing flows into or out of the
system. In reality, raw or partially finished materials may be processed by
the machines, but the flow of these is considered to be beyond the bounds
of the system. In effect, it is assumed.that there is always engughlmaterial
for the machines to be busy if they are not broken. - . .~ .

Again, as with the hospital system, generalizations are being made:
we assume that all the machines are identical, we make no distinction be-
tween different types of equipment which may be as diverse as cranes and
spanners and, furthermore, we assume that the time the mechanics take to
transport the equipment to a broken machine is negligible. :

133 -Compﬁrisoﬁ of two systéms .

In the hospilél the_inain objects are-patignts_;irho éfe pfocé,ssed ‘or served
by the other objects in the system whereas in the repair shop the machines .
are the main objects. Although. they go through a number'of activities,

2
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they remain static in the system. The former approach is called material or
customer oriented, whereas the latter-is machine oriented. However, the

distinction is largely academic and 1is not of crucndl lmportance in the simu- -
- lation design. ' '

Another aspect of the system is the time scale to whtch the system
operates. We will assume that the repair shop works eight-hour shifts and,
if any machines are in the process of being repaired at the end of the shift,
they are returned to working order ready for the next shift. We are thus
modelling a system that has distinct starting and finishing times and always
starts off in a cold state, whereas hospital wards usually operate continu-
ously, day and night. Furthermore, the time for a repair takes a matter of
minutes, whereas the time between the admission and release from hospl-
tal usuvally takes a mattgr of days or even weeks.

‘The differences between the two examples as mdtcated above, are

worth emphasizing as follows.

,Hospital case

(a) The system is open ~ transient objects flow through the system.

(b) The system is customer onented patlents are the main objects
under consideration.”

(c) The system is an ongoing process — admission ‘and release from
. hospital will continue into the. foreseeable future '

(d) The activities can last for days or even ‘weeks.

Repalr shop case

"(a) The system is closed - the number of machmes remams static.
(b) The system is machine oriented. -

- (c) The system terminates after every eight hours. -

(d) The activities last for minutes or hours

Note that other systems have dtfferent combmattons of these aspects.

For instance, consider the service of cliénts in a bank or post office. The

system is open and customer ortented (like the hospital), but it terminates,

and activities last for a_matter.of minutes- (like the Tepair shop) In later

chapters we- will see how these dlfferences affect the way in which each
,,example is modelled. '

- From the descnptnons of the case studtes we can tdentlfy the objec-

_;_»tlves the main assumptions that we are going to make in ~modelling the
‘system,. he responses from the srmulatlon the decision variables, and the

»

uns, her than ‘ineither a. general inve ttgatron of how. the
or els¢ in making predictions.
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Table 1.1 Summary of hospital system

. Post-shtft workmg

; SRR -*Events e
h of these case: studnes our mam 1nterest isin the ompanson of '

of,r_epalr “end of. repair.

Objectives
To investigate the effect of bed and operating theatre provmon on patient waiting

times.

Initial assumptions

The system runs contmuously with no breaks for weekends or holidays.

Patients who do not require an operation are assumed to be emergency pattents
and are admitted in preference to those who do.

.Decision vanables
" Number of beds.

Opening times of the operating theatre.

Responses
Patient waiting lists and waiting times.

Events
Patient arrival, admission, the start of an operation, the end of an operation and

discharge.
Operating theatre opens, operating theatre closes.

Table 1.2 Summary of repair shop system

Objectives
To investigate the effect of mechamc and equipment provision on machme down-

time.

Initial assumptions

A shift starts with no machines working and lasts until all machines are retumed to-
working order after the end of an eight-hour shift.

There is always enough material to keep the worktng machines busy. A
All the machines are identical.

The time taken for a mechanic to travel toa machme or to transport equrpment toa

machine is negllglble

Deczs:on vanables :
Number of mechanics.
Number of sets of equlpment

Rcrponses

Machine downtime.
Utilization of mechanics.
Utilization of equipment

t of equipment removal;end of equipment removal, start

-~Machine breakdown st
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1.4 SUMMARY

Simulation involves building a model of a system (0 meet one or more
objectives. The level of detail and the assumptions that are made clarify
these objectives. We have classified the models as: comparative, predictive
or investigative. - : I

There are three types of model building simulation: siatistical,
discrete, and continuous. Statistical simulation provides estimates of distri-
butions. Continuous simulation is used to model systems which vary con-
tinuously with time, whereas discrete simulation is used to model systems
which are assumed to change at discrete points in time,

A discrete system can be either open or closed, customer or machine
oriented, continuing or terminating. A simulation may model a few
seconds, many months of Activity or many years.

This book only deals with discrete simulation, although the sampling
facilities presented can be used within a statistical or continuous simulation.

1.5 EXERCISES

1. Get some centimetre graph paper and draw a square 10 cm by 10 cm. Draw a

- shape within the square and estimate its size by counting the millimetre

squares. Using randoin number tables from the back of a statistics book,

and selecting these in pairs, estimate the area of the shape by the method of

statistical sampling. How many samples do you think you will have to take
before you get within 10% of the more accurate estimate? -

2. The first, second, third, fourth, and fifth prizes at the hospital raffle are: a
radio worth £200, a food blender worth £60, a bottle of whisky worth £30, a
bottle of wine worth. £3, and a box of chocolates worth £1.50, Tespectively.,
Altogether, 10000 tickets are sold, of which you buy 10. Use statistical
sampling methods (repeating the experiment 50 times) to estimate your
expected winnings. Compare this to the theoretical value and comment on
the results. - - ' S

3. ldentify the important discrete events in the follo‘wirig systems. :

(a) The investigation of queues in a petrol station. e
() A change in the train timetables on a railway network, -
(c) The provision of terminals on a main-frame computer system. .- -
(d) A decision about the number of waiters required in a restaurant.
. (€) A production line for making sliced bread from the basic ingredients
of flour, yeast, water, salt, and additives. TR
4. Read the case studies in Appendix 1.A of this chapter and answer the fol-
. -lowing questions for each of the.bank System and traffic light system. ..

:More Case Studies 13

(a) State the objéclivcs of the study. Identify the decision variables and
the responses of interest to those commissioning lh.e study. N '
(b) If this system is to be described as a discn;le-event snmulalnon, identify
the discrete events that are likely to be of interest. Classify the model
) as predictive, comparative, or investigative. )
- (¢) List any assumptions that you will need to make in order to model the
system. .

1.A MORE CASE STUDIES

These case studies will be used in the exercises throughout the book.
Therefore, readers will find that they will need to refer back to them

frequently.

1.A.1 Bankcase study

A local branch of the Royal Interest Bank in Savingstpn ha§ fou.r tills, one
of which (Till 4) is only open when the bank is very busy. Till 2 is reserved
for customers who wish to withdraw money by cheque but these customers
may, if they wish, go to any of the tills. The traqsactions. that are permitted
at any till, except Till 2, include money deposits, foreign currency trans-
actions, and the payment of bills. The time taken to serve different cus-
‘tomers at the tills varies considerably. Those depositing cash from shops
and small businesses, in particular, take a long time. R
The bank manager is disturbed by complaints from custor‘nersva!)gut_
long waiting times, especially when they queue behind someone depo_sntm.g
large amounts of cash. They also find that becaus? the waiting space is
cramped when the bank is busy, it is difficult to identify the s.hortest‘queue. :
Furthermore, if they want to join a queue at the end of the bank,--theylhave :
to push through the nearer queues to get. there. . .o e
-The bank manager thinks that a one-queue system,. in :_w!'nch cus-
tomers wait in one queue and are served at the first aval.lab]-e-ull,."mlght
solve these problems and is prepared to make some alterations to the bank
to implement it. However, he is concerned that a one-queue system would
be less personal and would disadvantage those who simply want a cheque
transaction and can now join a fast moving queue. He also points out tha_t; .
the additional time it will take for customersto move from the front of t:hg- a
queue to_the service till, ‘which he estimates would take:10 s on average,

might offset the benefits..He would like help in resolving thxsquesnori,r 0
“Data on arrival :and service: times:we collected at three glf_fereqt ""'@

A
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Toble 1.3 Customer arrival data from bank survey - Table 1.5 Service time data from Till 2 in bank
Time PL.’"o,d hsecs .. G Observed frequency Time period in secs : Observed frequency
0-10 B o 0= 25 . 16
1020 e 42 . 25_ s 14
20-30 : Lo e -, 23 50—. 75 6
30 -40 _ R B 75 — 100 13
;‘3:23 o L ’8 ' 190 - 125 7
€0 - 70 . R - / 125 - 150 2
70 - 80 : : o 150 - 175 0
80 - 90 . . ) 3 : 175 - 200 3
B0~ o e 8. 200 - 225 -2
' - - R 250 + 2
ST 65
: CONANL e
Table 1.4 Service time data from all tills in bank .
' Time period in secs I . " Observed frequency Table 1.6 Average arrival rate of bank c«rstomers with time of day
0- 25 3 Time in hours Average arrival rate - ‘ No. tills open
25- 50 ' : /
S0_ 75 ) , e :3 930 - 10-30 _ Sifeg =035 3
75100 e b . 10-30-11-30 . - 73 3
100 — 125 v S e 3 1130 -12:30 © 109 3
125 - 150 | | o cre e 19 ’ 12:30 - 1330 213 4
150 — 175 g 13-30 - 14-30 ‘ oo 3
175 — 200 3 14:30 - 15-30 - 114 ‘ 3 .~
200 - 225 8 , . v .
250 + _ 7 to red (29 s) again. The traffic is particularly heavy in the rush hour with a
T build up of long queues at the junction. A bypass, to be finished in three
years time, is expected to take some of the pressure off the road and the
_ council are interested to know.to what extent the trafﬁc ﬂow on Oneway
Road at this jurnction will be improved.
t;]mes of day over a total perrod of 110 min. These were combmed to give . . Data w;s collected durmgp67 cycles of the trafﬁc lights dunng th c
:) i mterarr';y a;ldlstn‘tt)uuon shown in Table 1.3 and the service time distri L evemng rush hour. Most of the vehicles counted were cars but there were a
utions in Ta kS
es 1.4 and 1.5. The survey. showed that one ih"d of the few bicycles, lorries, buses, and motor bikes. The total number of arnvals‘

arriving customers Jomed the queue for Till 2.°

in each phase are shown in Table 1.7.
The ratio of traffic in each lane remamed falrly constant at

- (a) traffic leaving major road 73‘6 %-_.
-7.(b) .traffic turning. nght
(c) trafﬁc tummg left

o vay. loa at a busy »‘chan e'd?'fr(')'m red and"aiﬁber'fd‘
e afﬁc hghts vary regularly from 1ed to green (21 s) and back . -rhrofgh ghc 1,gms in that ]anevbefore ]
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Table 1.7 Total number of vehicles arriving in each of 67 cycles of traffic Ilghts,

‘Key in the centre lane, during evening rush hour

No. vehicles . - - Frequency

Traffic lights on
approaching lights

Oneway Road

14
15
16
17
18
19
20
21
22
23
24
'25
26
27
28
29
30
31
32
33
34
35
36

Church

School

HASMANWOUUNWNUNN S NWN =

- . '. .HOUSBS : ’ o0 oo ’
B Figure 1. G {opposite) Layout of traﬂic lanes on Oneway Roadata
busy ;unction, traffic Iights on Eastand West Road not shown but
: co-ordlnate with those on OnewayRoad .
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Simulation packages incorporate mechanisms for performing the discrete
events in the nght order. Tocher (1962) was one of the first pcople to struc-
ture simulations in this way und although other approaches have evolved,

they all have many common elements. It is important, therefore, to under- -

stand the concepts and the correspondmg termmology before .attempting
to develop a model.

~ In this chapter, ‘we shall define and explain the termmology used
throughout this book. We shall also show how systems can be described by
diagrams and modelled using two different approaches. All new concepts
will be illustrated by using the case studies outlined in Chapter 1. They are
referred to as: the simple hospital system (Fig. 1.3), the hospital system
(Flg 1. 4) and the repair shop system (Fig. 1.5). \

2.1 TIME

In Chapter 1 a discrete-event simulation model was defined to be one in
which changes in the state of the model, called events, are assumed to take
place at discrete pomts in time. Each point in time at which one or more
events take place is called a time beat.

The measurement of fime in a simulation run corresponds to appro-
priate units of time in the actual system, whether minutes or millenia. The
time period over which the simulation is to run is referred to as the
duration of the simulation. However, the time the computer takes to run
the simulation is largely dependent on the number of events that have to
be performed and bears little relation to the duration of the simulation,

A simulation program, starting at time zero, performs all events in
the order in which they occeur, advancxng from one to the next until:

(a) there are no more events to perform,

(b) the time of the next event to be’ performed exceeds the maxnmum .

~»..4ime set for.the duration of the smulatlon _or
(c) some termlnatmg event. rs encountered

. -‘..,3'18
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Example
(1) In the simple hosprtal system, time could be measured in days.
If it were, measured in parts of a day or hours, however, the simula-
tion would give a more accurate picture of bed ‘availability and the
se of the ward. Hours, or even smaller subdivisions of time, are
ncessary for looking at the use of operating theatres in the hospital
system or for simulating the repair shop system. '
The duration chosen for the hospital system is arbitrary because we
ormally expect the activities in this system to continue with-
k. However, the repair shop system only operates durmg
working h ‘Qy:d therefore the natural duration to choose is the

length of the working day.

2.2 ENTITIES AND RESOURCES

The ob]ects or individuals whose activities are being modelled, are repre-
sented in a simulation program by entities, which can be individually
identified by their artributes. The attributes invariably include a number

- indicating the time of the next event, sometimes called an entity clock.

Resources are items in theslmulatlon which do not have characterls-
tics but act as constraints on the activities of the entities. Resources can be
thought of as being held in a receptacle or bin from which they are acquired

- when ne'eded and returned after use. -

Example ' ,
“(2)." In the simple hospltal system, patients are entities and the beds
are resources. The parients, which may be individually identified,

~-.each have an entity clock to record the time of the next event. The
beds are assumed to have no individual characteristics.: They are
acquired from the bin when a patient starts a hospital stay and are
returned at the end of that stay. In the hospnal system the operatmg
theatre is also an entny

‘ There is an lmportant dlstmctlon between permanent and temporary
(or translent) entities. Permanent entities are created at the beginning of a
simulation run and remain in it throughout, whereas temporary entities are
created when they are requnred and drsposed of when no longer needed ’

1 nve in the system fromv
foutside’ world’ The
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most natural way to describe this phenomenon is for the simulation

program to create temporary entities when thcy are neceded and to
dispose of them when they leave the system. '

On the other hand, in the repair shop system the machmes are the
entities. These would be described as permanent entities because
they remain in the simulation throughout with no new machines being
introduced or removed.

Entities belong to classes which distinguish between groups of
entities. .

Example

(4) In the hospital system, the patients who need operations, those
who do not need operations, and the rhreatres are entities from three
different classes.

2.3 EVENTS

An event occurs when something happens to an entlty ata partncular pomt i

n time. There are two distinct types of events:
(R H (‘.,(‘ >

(a) a bound event (or B event, sometimes called a scheduled event) is
one whose occurrence is predictable and can thus be schedule _fl

(b) a conditional event (or C event, sometimes called a contmgem
event) is one whose occurrence is dependent upon the fulfilment

of certain conditions (e.g., the availabjlit of certain Tesources).
A abovadalis

"When an enmy is scheduled to take part in a bound event, the time of
he bound event is written to the entity clock. There is an. important type of
round event called a feeder whose role is to generate temporary entities.
zach time a feeder generates an arrival, it creates the next entity and sets
he time of its arrival. - :

Example

(5) The arrival of patients is an event called patient_arrival which is
a feeder which sets the time of the patient arrivals.

" The start of a hospltal stay, called smrlJzospltaI_.smy, is a condi-

tional event because it can only take place if a bed is available and a
patient is waiting for admission. However the times of arrivals and
discharges are set and scheduled by the simulation program. The
‘event patieni_arrival and the event of patient drscharge end_.hospttal
stay, are thus bound (or scheduled) events.

\»\
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2.4 STATES AND QUEUES

Once created, an entity in a snmulatlon may be in one of three states: busy,
qucueing or idle.

(a) An entity is said to be busy if it.is scheduled to take parl in a
bound event. -

(b) Entities waiting in turn for. some condition to be satisfied are said
to be gueueing. The most frequently used criterion for selecting
entities from a queue i first-in ﬁrst-oul (known as FIFO). Other
queue disciplines are discussed in Chapter 7. - ant

(c) Entities which are not busy or queueing are said to be ldle

Example .
(6) In the hospital system, patients may be waiting for admission
(i.e., queueing) or in hospital (i.e., busy). When the rtheatre is not in
use, it does not need to join a queue because it is unique; it is thus
said to be idle.

2.5 ACTIVITIES . e
“)J VT
An entity which i is busy is sald to be engaged to an activity. Activities are
usually started by conditional events and finished by bound events whose
number and time of occurrence is scheduled in the conditional event and
held on the entity clock during the course of the activity.
. Example I
(7) In the snmple hospital system, the hospital stay is an actmty

~ which will be referred to as hospital_stay which is started by start_

hospital_stay and finished by end_hospital_stay. \

2.6 BRANCHING FROM ACT! lVlﬂES 7

In a snmulauon emmes sometiines have a chonce of routes lhrough the
system. Branching may take place after either a bound or a conditional
event. There are many different criteria for choosing one branch or an-
other. Some typlcal ones are as follows : ‘

1

~ (a):The chonce as to whether entmes should go down one path rather '

- than another is' -unpredictable:

~(b) The cho:ce of path depends on some mherent characterlsncs of
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the cntity. For example, if the entity attribute number is less than
10, the entity mtght take one route and if greater or equal to 10,
another.

(c) The choice depends on resource avanlabrhty or queue length at
that particular point in ttme '

Branchmg is not used in the case studies introduced in Chapter 1, but
will be dlscussed in more detatl in Chapter 7.

2.7 ACTIVITY DIAGRAMS

An activity diagram describes the life of entities in the system and their
interaction with other entities. Where temporary entities are used, the
sequence of entities may be more logically represented as a flow of activi-
ties from beginning to end, called an activity-flow diagram, rather than as
a closed cycle of activities, called an actrv:ty cycIe diagram, used for per-
manent entities.

“Queues are shown by large c1rcles and activities by rectangles. The
resources are represented by smaller circles. The lines with arrows show
the order in which entities engage in activities or resources are committed.
- The creation and destruction of entities are shown by zigzag lines.

’ .. The case studies introduced in Chapter 1 can now be more fully de-
scrtbed as a series of activities and events, and drawn as activity diagrams.

2.7.1 Hospital systems

Figure 2.1 demonstrates how to represent the s1mple hospital system. The
compressed arrow ' indicates - the - -feeder, pancm_arnval which brings
- patients into the system. After each arrival, the time is set for the next

.- arrival to take place. Following the arrows down the page, the first circle

represents the queue of patients waiting for hospltal admission. The rec-
- tangle represents the activity, hospltal_.stay .The events which start and
ﬁmsh this activity are not shown exphcrtly '
* Figure 2.2 shows the activity flow of the hospltal system This starts
: wnth two separate streams of arrivals at the top of the page, feeding into the
two queues, gl and g2. Those patients in"g1 are waiting to engage in the
, acttvrty, hospnal_smy, and are competlng for beds with those in g2, who
.- are waiting for hospital admission prior. to havmg an opération. The way in
» "which priorities are allocated to the’ pattents in the different queues will be
‘-;_;jdlscussed later, Entities leaving the’ activity pre_operatlve_stay must enter
a queue; .g3; until the theatre is available. The theatre is -only.available to
* this:ward a_t.-pamcular times of the eek: It is thus described as an enttty in
. its'own ight cyclmg through states’ of_tdleness and avatlabthty

e

B returned to the bin after repair.

e q3 before starting: work ‘In practice;
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Figure2.1 Activity diagrant for si;'nple hospital system

After their operation, patients join a queue for their post_operative_
stay. There are no constraints on this activity and so it is called a dummy

“queue. It is usual to mdrcate the. dummy queues in activity diagrams

because:

(@) in many simulation languages they must be explicitly deﬁned as
queues (although this is not so in the Pascal package described in
this book), and

(b) constraints may need to be added at a later stage when experi-
menting with the model.

After the post_operative_stay the patient is discharged.

2.7.2 Repalr shop system

Frgure 2.3 shows the actlvrty cycle of the machme in the repair shop
system. The most striking difference between this and the previous two
diagrams is that the machine’s life is shown as describing a complete cycle.

When the machine finishes the activity work, it must wait for a
mechanic to be available before starting remove. After finishing remove, it

- then ‘queues : again until -equipment becomes available. _as well as the

‘mechanic before starting repair. Both the mechanic and th equtpment are

 After repair, the dtagram shows the nttty as Jomlng nother queue, ,
inechanics - ould not have to walt w

because “the’ actwrty is unconstrained; so this "
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The equipment and the mechanics are simply resources, in the same
way as the beds in the previous example. The mechanic is reserved for
more than one activity in the same way as the beds in the previous exam-
ple. The activity diagram shows the involvement between the life cycles of
different entities and resources in the snmulauon

2.8. EXECUTIVE
2.8.1. »Calandar '

A Lalendar is cnher a list of emmes whlch |dentlfy the next evenls to be
performed or a list of events ldennfymg the .entities to take part in those

“Executive
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- Machine
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" Mechanics

i
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- . Figure 2.3 Activity diagram for repair shop system

events. This book uses the former approach. The calendar is ordered by
the times on the entity clocks. Alternative names for the calendar include:

the next-event:set or the future-event list.
‘The executive or time-advance mechanism is the part of the simulation

. program that makes all the events take place in the correct order. The first

task, or phase, is to advance the simulation time to the time of the next
scheduled event. This is done by selecting the first entity from the calendar.
The subsequent phases activate the event for that entity and then, progres-
sively, activate each event scheduled for the same time beat. When this is
complete, the simulation returns to the: first phase and advances the simu-
lanon time to the time of the next event. . S
- In order for a simulation to start workmg, there must be an entity in
the calendar.-One or more should be put in the; calendar in the initial-
ization phase of the simulation. If there is a feeder in thesxmulauon one of

these must acuvate the feeder or it: wﬂl not start workmg
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2.8.2 Worldviews

There. are three methods of structuring a simulation in common use:

: (a)' the three-phase approach,
' (b) the two-phase or event method, i
(c) the process view. : i

These different methods-are called world views.

Although .each of these three approaches can be programmed in
Pascal, the process view has a different executive from the other two L
approaches. This chapter uses the three-phase approach originally devised
by Tocher (1962) and the event method. Chapter 12 describes the concepts
behind the process view and gives examples of its use.

In the three-phase approach bound events and conditional events
are programmed as separate procedures. The three phases of the executive

are as follows

(a) advance the clock to the time of the next scheduled event,

- (b) execute all bound events due to happen at this time,

(c) testall condmonal events and execute those whose conditions are
. satisfied.

+ Bound events’and conditional events are thus written as separate and
independent modules.

On the other hand, in the event method the procedures for scheduled -
events include all the conditional events which happen as a direct result of
those scheduled events. Therefore the scheduled events have many more
statements than those in the three-phase approach. The event approach
con5|sts of the following two phases:

- (a) advance the clock to the time of the next event,
' (b) perform the next scheduled event due. to happen. .

The structure. of the executive is thus exactly the same as for the
three-phase approach, with the omission of the third phase.:

2 9 PSEUDO-CODE

The next ste -n: desrgmng a srmulatlon program after drawmg an actwlty

srs is a suhSet of the Enghsh language written in a ngrd format without any
f’]‘he language'rs Jess ‘precise and more transparent than a Pascal
"ny structured programmmg language
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Simple Hospital S ystem. "

procedure patient_arrival; { Bl }
begin
< put the newly arrival patient in Q1 for admission >;
< treate the next patient >;
< set the time of arnval of this next patrent >;
end,
procedure start_hospital_stay; {-C1}
begin
while < Q1 is not empty and a bed is available > do
begin -
< admit the next patient from Q1 >;
< acquire a bed >;
< set the time to end this patient’s hospital stay >;
end '
end; ' .
procedure end_hospital._stay; { B2 }
begin
< discharge this patient >; -
< return the bed >;
end; ‘
Figure 2.4 Simple hospital system described in pseudo-code
-, using three-phase approach ]

-Since we are using Pascal, the pseudo-code used in this book is
written and indented very much like Pascal, using Pascal reserved words
such as begin, end and while. Phrases and sentences that are not Pascal are
delimited by angled brackets.

Figures 2.4 and 2.5 show the pseudo-code for the simple hosprtal

. simulation using the three-phase approach and the event method. Appen-

dices 2 A and 2 B show the pseudo—code for the other case studles

2. 10 SIIVlPItE HOSPITAL-SYSTEM

Table 2.1 shows queue lengths and the. use. of resources:in. the srmple

hospital system, simulated over seven days where the number of beds is

only four and the arrival times of panents and the lengths of stay in hosprtal

have been predetermmed rather than sampled from a distribution. »
i-Table 2 Zt'shows the T 'ultmg queue lengths and the use of resources -

_f; m the system.:E

Condltl nal’ event can b seen to~anse always as a dlrect result of T
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procedure parwnt_.nrrlval { B1}

begin .
if < a bed is avallablc > then
begin
< acquire a bed >;
< set the time for the end of thns pauent s hospital stay >;
end
else
begin
< put the patient in Ol to await admission >; _/
end,

< create the next patient >;
< set the time for thig next patient to arrive >;
end; : '
procedure end_hospital_stay; { B2 }
begin
< discharge this patient >;
if < Q1 is not empty > then
begin
< admit the next patient from Q1 >;
< set the time for the end of this patlem s hospital stay >;
end ’
else
begin
< return the bed >;
end
end;

Figure 2.5 SImpIe hospital system described in pseudo-code using
. event method

ilso takes place. If, on the other hand, a patient is in the admission queue
yecause a bed is not available prior to the event end_hospital_stay, this
:vent will release a bed and cause start_hospital_stay to take place.

2.10.1 . Three-phase approach

The pseudo-code in Fig. 2.4 shows two bound events and one conditional
svent.:The bound events are numbered B1.and B2 and the conditional
:vent, C1. The patient_arrival feeder, B1, is a very simple event which puts
he: amvmg entlty on the queue, creates a new entity and sets the time for it

o arrive (i:¢.; the time for the feeder to be recalled). The first arrival is -

:reated in the mmahzatlon phase of the sxmulatlon after whlch each amval '
’enerates the next.’ - :

"=:'-’~«‘Ihe condmonal evems are un mdependently of the bound events

PCRECY R

Simple Hospital System

Table 2.1 Patients needmg admission to four-bed ward over seven- .
day period, showing day arrived for admission and length of stay

. Patient number Arrival day : L(‘l‘lglh of stay

1 0 4

2 1 3
3 1.7 4

4 1 3.
5 2 1

6 4 4

7 4 2

8 4 1

9 4 2
10 5 1
11 5 1
12 6 1
13 8 -3

Table 2.2 Patients, w:th arrival days and fengths of stay as shown in
Table 2.1, progressing through simple health system; number of
' beds in ward is four

_ using the three-phase approach and he data m Table‘2 g

Dayb Arrival Waiting list, Q1 In-patients Discharges
0 1 ‘ - 1 -

1 2,3,4 - 1,2,3,4 -

2 5 -5 1,2,3,4 -

3 - : 5 1,2,3,4 - g
4 6,7,8,9 8,9 - 5,6,3,7 L 1,2,4

5 10,11 10,11 . 8,6,9,7 3,5

6 12 11,12 - 10,6,9,11 1,8 -

7 - - ' 12,6 + 9,10,11

8 13 - ©213 © 6,12

and, therefore, may have several entities wamng for several avallable re-
sources. The while loop ensures that as many entities as possible will be
satisfied. In C1 the entities are pafients waiting for beds: The hospital stay
is ended by B2 and a bed is released for other ‘waiting patients.’

Table 2.3 shows, in detail, what. happens on day 6 in the simulation

(a) At the. begmmng of
- The first one is engag'
erate patient 12 on day

actwnty hospual_stay The time

the entlty clock gwes th day
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Table23 Three-phase simulation ofdayGofslmple hospital system ' RS . admitted, acquiring two beds while patlent ]2 remains in the
example, showing state of calendar and walting list after each event; ' waiting list. )
—-entities In calendar are identified by their next event, attribute i1 ol
o number, and time ofnextboundevent L This example demonstrates -two 1mportant characteristics of the
Phase - ‘Event . qﬂlendar o . W‘_’mng list Patients using | o o three-phase approach:
- ' o o o1 abed S (a) conditional events are performed separately and independently
PR ' . L of bound events,
A s L2, 6] 10, 11 . 7,8,9,6 (b) entities are put in queues for conditional events in 1 the B phase
' g: g: g% R ‘ regardless of the availability of resources.
[2,9,7] - o A
[2,6,8] o
. 2.10.2 Event method
B Bl [27.6] 10, 11, 12 7,8,9,6 . : o
: ‘ , 12,8, 6] i There are two scheduled events only shown in Fig. 2.5. The work of the
[2,9,7) “ conditional events has been absorbed in these scheduled events.
2,6, 8] : : : . The feeder is now more complex because it not only generates
+[1,13,8] e ' S . patients, but checks whether a bed is available for each. It has an if. . .then
T - : loop for this condition, rather than a while loop (such as in C1 in the
. /B2... 10,1112 8,9,6 P previous example), because only one patient is generated and tested at a
T " « : S : ’ - E time.
, Flz ?3833]” o . If a bed is not available on arrival, then a pa_tient will acquire a bed
T E when one is released in B2. Here again, an if statement is used because
B2 [2, 9,7) - 10; ’ 11. 12 9 6 CE only one bed is released at a time. The conditions which lead to an arriving
. [2,6. 8] ’ "R patient starting a hospital stay thus occur in more than one event.
[1,13, 8] ' Table 2.4 shows the progression of events on day 6 of the hospital
- — _ _ , o simulation, using the event method and the data in Table 2.1.
= - Cl - E 19(')’77]] ‘ ]2__ - 10,11,9.6 e _ (a) At the begmnmg of the day the simulation is in exactly the same
o [2,11,7) - v E : state as for the three-phase simulation with five entities in the
- [2,6,8] calendar and two in the waiting list. :
* [1.13, 8] (b) B phase. Three patnent enntxes have day 6 on thelr clocks as
: follows. . .
@) Patient. 12 is taken off the top of the calendar and put in
: ' : - SRR ““the waiting list in the feeder event, B1, and patient 13 is
.- of discharge. (i.e., the time of end_hospital_stay, which is B2)." e : added to tghe bottom of the calendar. 1f, ho»Sever there
~Patients 7 and 8 are due to be discharged on day 6 and the other " - " had been a bed free at this- stagc Patlent 12 WOUld have
two on days 7 and 8 respectively. Three bound events are there- . ' acquired a bed within this event.
" fore -due to take place ‘on day 6, the .day in question. o ' : (if). Patient 7 is taken off the calendar. and dxscharged in B2.
(b) B phase The first event, B1; generates patlent 12 who is added to - - BUEERY lnstead of releasmg the bed thoweve -the s1mulatlon allo- -

the’ waltmg list,; Q1, and creates patlent 13: who _is:put.in ithe .
1 ndar to be generated on day 8.B2i is called t 1ce to dlscharge )
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Table 2.4 - Event-based simulation of day 6 of simple hospital system
example, showing state of calendar and waiting list after each event;
entities in calendar are Identified by their next event, attribute
number, and time of next scheduled event

Phase Event " Caleridar Waiting list Patients using
Q1 ‘a bed

A - 1,12, 6] 10, 11 7,8,9,6
[2,7.6] - \
[2,8,6]
[2,9,7]
[2,6.8]

/

B B1 (% 7, 6] 10, 11, 12 7.8,9,6
[2,8,6]
[2,9,7]
[2,6,8]
1,13, 8]

B2 [2, 8, 6] 11, 12 10, 8,9, 6
[2,9,7] '
: [2’ 10v'7]
[2,6, 8]
1,13, 8)

B2 " 12,9.7] 12 S 10,11,9, 6
[2,10,7] v

[2.11,7}

[2,6,8]

- [1,13,8)

At the end of the day the calendar and lists are in exactly'theﬂsame
state as they were in the three-phase approach, shown in Table 2.3.
_ This example illustrates the greater complexity of the events in the
two-phase method, where resources are allocated within the scheduled
events as, and when, they become available. '

2.10.3 Comparison of two approééhes

‘The procedures of the thr_¢é¥phés'¢"apprdéch'hre;‘éhéﬁf-é‘nd simple. In the
event method, on the other hand, the programmer has to determine which

conditional events can take place within each scheduled event. If, more-

over, the simulation conditions are changed, the programmer has to deter-

‘mine the effects of this on"all the scheduled events. " -

The three-phase .approaéh is therefore more modular, easier to pro-
gram, and much more robust to changes than the event method. However,

the executive has to do more work because all the conditional events have

to be tested after each bound event has been performed. Therefore, the
three-phase approach is more efficient .in development time but less effi-
cient in computer time than the event:based method.

A further important difference is that the order in which the condi-
tional events are listed in the calendar determines their relative priorities.
In the event method these have to be identified explicitly within the sche-
duled events. The problems arising with modelling priorities will be dis-
cussed further in Chapter 7.

Example :
(8) In the hospital system described in Appendix 2.A, the two con-:
ditional events are start_hospital_stay (C1) and start_pre_operative_
stay (C2). Both of these events describe admissions to hospital wards
but in C1 they come from a list of patients who do not require opera-
tions and in C2 they come from a list of patients who do require
operations. When a bed becomes available and there are patients in
both queues, C1 will be performed first and therefore patients who do
- not require operations are always given priority over the use of the
- beds. If those who require operations were to be given priority, thén
' Start_pre_operative_stay would have to be listed first in the executive.

The advantages and disadvantages'of the three worl'd.viéws will be
discussed further in Chapter 12. : '

2.1 PREPARING A SIMULATION MODEL -

In any modelling exercise it is important first to decide the boundaries of
the system to be modelled and the system objectives (briefly discussed in -
Chapter 1). The objectives and choice of technique will then determine the
assumptions to be made (and vice versa). A much more detailed descrip-
tion of the stages of modelling is given by Rivett (1980). In using discrete-
event simulation; it is usual to make fairly restrictive assumptions about
queue discipline, and the number and the type of activities and entities.
These may then be relaxed at a later stage when the data has been collected

. (see Chapter 4) or after model validation (see Chapter 8).-Chapter 6 gives
- a more detailed discussi

i of the initial stages of preparing a simulation
model. " . U e e sl

ng thesumu a lon;'-.étiiiétu,xé.' the first stépls id'":,iaen'iitfy the

o In dcvisi

- entities, the activities, and the queues and then to draw:an activity fiow or
- cycle ,diagf'am. o I e e T

- ~'Preparing a Simulation Model -~ - ) . 33
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- The. next step will depend both on the simulation world view and on
"the computer package to be used. An inféractive package such as Inter_
SIM (O’Keefe 1987) or a programmer generator such as CAPS (Clement-
son 1978) may be used immediately to generate a working simulation pro-
gram. However, these have their dlsadvantages which will be discussed in
Chapter 14. If a simulation is to be written in a tailor-made simulation
language or in a. general high-level Ianguage such as FORTRAN or Pascal,
then the next step is to write the program structure in pseudo-code. The

program is then ready for coding. :

2.12 SUMMARY K

Time, in a simulation model advances from one discrete point in time,
called a time beat, to the next. Discrete-event simulations are concerned
with the activities of individual entities which alternate from busy to

idle or queueing, and back again, as the simulation progresses. The change -

of entity state is called an event. When entities are busy they are said to be
engaged to an activity.

Entities generally need some resources in order to take part in an
activity. Events which mark the start of an activity are often dependent on
some condition being met, such as a resource being available. These are

called conditional events. Bound eévents which mark the end of an activity
are unconditionally scheduled to occur at a particular point in time.
Feeders are a special type of bound event which generate new temporary
entities. Activity diagrams show the flow or life cycle of entities and
pseudo-code is used to describe activities in structured English.

There are three world views for controlling the structure of, and the

ﬂow of time in a discrete-event simulation: the three-phase approach :

the event method, and the process view. The main difference between the
three-phase approach and the event method lies in the treatment of con-

ditional events. In the three-phase approach, the conditional events are -

treated as separate procedures, whereas in the event method they are mte-
grated in the scheduled events ' :

2.13 "EXERCISES ' 7

Exercises . 35

2. A garage'chain wants to determine the staffing levels in a new type of garage
which will operate as follows. A receptionist registers €ach vehicle, passes it
to a team of senior mechanics who diagnose the faults and then send it 1o
either a-minor or major repair workshop. The workshop mechanics repair
the vehicle and send it to a test station. If the examiners at the test station
find fault with the vehicle, they return it to the relevant workshop for correc-
tion. When they pass it, they send it to a valeting department where it is
thoroughly cleaned inside and out. The cleaning staff then drive it to the
reception area from where the customer can collect it.

(a) List the resources, entities, and activities in this system and then draw
an activity flow diagram of it.

(b) ldentify the decision variables.

(c) Suggest what additiona! information you would need in order to be
able to model this system. »

3. The ante-natal clinic is on Wednesday afternoon. Women who attend, have

appointments to see either the community midwife or the general prac-
ticioner (G.P.) but each must first visit the practice nurse to be weighed. The
nurse, who has no appointment system, sees other people with various ail-
ments as well as the pregnant women.

New patients always see the G.P. alone. After the first visit, and until
she is 35 weeks pregnant, a patient is booked to come once every four weeks
and see, on alternate occasions, the G.P. and midwife. After this, and until
the baby is"born, she is booked to come every week and see the G.P. and
midwife together: Pregnancy usually lasts 38-40 weeks.- Patients needing to
see both the midwife and G.P. are booked for joint appointments at the end
of the clinic. 7

. The doctor.is concerned because of complaints about long queues in the
clinic and his wife is annoyed that he gets home late on Wednesdays. He asks
you to look at the system to see if it could be orgamzed more efﬁcrently You
decide to write a srmulatlon model. :

(a) 1dentify the elements of the system you wnll model Suggest altematlve
-~ ways of organizing the clinic that might improve matters. :
(b) Identify the entities, attributes, resources, and queues of this system.
.(¢) Draw an activity flow chart and, based on the three-phase simulation
- method, write a brief descnptlon of each actlvrty m pseudo-code

- 4. Bank System (Appendrx ] A.1). Assume that four tllls remam open all the

tlme

flow charts for the present and proposed queurng

v(b) Write pseudo—code for the bound and condmonal events in the three-
phase approach, .
(c) Wnte pse do-c

th : s‘heduled e‘yems_ rn': the event-Schedullng

: St_ate ‘any‘ additional .assumptions tha you‘-_-,vn'eed ',t'o"méke{
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s. | Traffic Light System (Appendix 1.A.2). Carry out the following tasks.

(a) Draw an activity flow chart for the system.

(b) Write pseudo-code for the bound and conditional.events in the three-
phase approach.

(c) Write pseudo-code for the scheduled events in the event-scheduling
approach. :

State the assumptions you need to make.

* * L

2.A CASE STUDIES IN PSEUDO-CODE USING THREE-PHASE
APPROACH >

The numbers in braces to the right of each procedure name indicate the
number of the event. The queue numbers match those shown in the activity
diagrams in the chapter

2.A_.1 -Hospital system

patzem] entities represent those patients who do not have an operatxon
during their stay whereas patieni2 entities have operations. The events of
the hospital system using the three-phase approach are shown below.

procedure patient]_arrival; { B1 }
begin »
< put the newly arrived patient in Q1 for admission >; -
< create the next patient >;
< set the time of arrival of this next patient >;
end,
procedure patient2_arrival; { B2} .
begin
. < put the newly arrived patient in Q2 for admission >;
< create the next patient >;
< set the time of arrival of thls next patlent >3
end,
procedure start_hospital_stay; { C1 }
begin
whlle < Ql is not empty and a bed is avallable > do
. begin
. < admit the first patxent from Ql>
< acquire a bed >; »
o se! the tlme to end this patient’s hospltal stay >
: end : , _ .
' end;

Case Studjes in Pseudo'—Code"Using“ Thrée-Phase Appioach

procedure. end_hospual_smy, {B3}
begin :
< dlscharge this patient >;
< return the bed >;
end; '
procedure slaﬂ_pre_operanve_stay, {C2}
begin
while < Q2 is not empty and a bed is avallable > do
begin
< admit the first patlenl from Q2 >;
< acquire a bed >;
< set the time to end this patient’s pre-operative stay >;
end
end,
procedure end_pre_opemnve_stay, {B4}
begin
< put panent on the end of Q3 for an operation >;
end, .
procedure start_operation; {C3}
begin
while < Q3 is not empty and a theatre is open and avallable > do
begin
< make the theatre unavailable for any other patients >;
<< operate on the next patient in Q3 >;
< set the time for the end of the operation >;
end
end;
procedure end_operation; { BS }
begin
< make the theatre available >3
. < put the pauent in Q4 to end the post-operatnve stay >;
end; _ ,
procedure smrt..posl_operanve_stay, {C4}
begin .
< while Q4 is not empty >;
< set the time for dlscharge from hospital >;
end; -
procedure end_post_operative_stay; {B6}
begin
- < discharge this patient >;
< return the bed >; ‘
end,
procedure open..theatre. {B7)}
begin - -
. < open the theatre >;
< set the’ tlme for theatre to close >3
end ' : . :
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Case Studies in Pseudo-Code Using Event Method | 39

procedure close_theatre; { B8 }
begin
- < close the theatre >;
< set the time for the theatre to open >;
end; -

2.A.2 Repairshop system:

procedure end_working; { Bl }
begin
< put the broken machine in Q1 for the removal of parts >
end,
procedure start_removal, {C1}
begin
while < Q1 is not empty and a mechanic is available > do
begin-
< take the next machine from Q1 >;
< acquire a mechanic >;
< set the time for the end of the removal of
the parts from this machine >;

“end,;
- endy:. -
procedure end._removal {B2 }
- begin :
<-put the machine in 02 for repair >;
.end;
procedure start_repair; { C2 }
begin
while < Q2 is not empty and the equnpmem is avallable > do
begin

< take the next machme from 02 for repalr >;
< acquire the equipment >; '
< set the time for the end of the repalr to this mdchlne >
end; : .
end;
procedure end__repalr { B3 )
begin - -
7 < return the mechamc >;
- < return the equipment >; .
: < set the tnme for the machme 1o stop workmg agam >

The two.case studles are descnbed usmg the event method

2.B.1 Hospital system

protedurc patmntl_arnval 2 Bl >

begin
if < there is a bed available > then
begin
< acquire the bed >;
< set the time for the end this patient’s hospnal stay >;
end .
" else
“begin
< put this patient in Q1 for admission >;
end;

< create the next patient >;
< set the time for the arrival of this next patlent >3

end;
procedure pattentZ_amvaI { B2}
begin
if < there is a bed available > then
begin
< acquire the bed >; ! :
< set the time for end of this patlent S pre-operative stay >;
end
else
begin
< put this patient in Q2 for admission >;
‘end;

< create the next panent >,
< set the time of the arrival of this next patlent >;
end;
procedure end_hospual_smy, {B3 }
begin
< dlscharge this patient >;
if < Q1 is not empty > then
begin
< admit the next patient from Q1 > :
< set the time of the end of this patlent S hospltal stay >
-end’ .
' else
if < Q2 is not empty > then
begm
- < admit the next patient from QZ > . SR
. < set the time of the end of ‘this patlent s hOSpltBl stay >;
- end
'else '
- - begin
o S return the,bed >
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procedure end_pre_op('ranw. stay; { B4 )

begin .
if < theatre is open and available > then
begin
< make theatre unavailable for other patxcnts >
< set the time for the operation to finish >;
- end o
else
begin
< put the patient in Q3 to await an operation >;
end
end,
procedure end_operation; { B5 }
begin
if < Q3 is not empty and the theatre is open > then
begin

< operate on the next patient from Q3 >;

< set the time for the end of the operation >;
end '

else
begin
< make the theatre available >;
end;

< set the time for the end of this patient’s post operative stay >;
end,

procedure end_post_operanve_ﬂay, { B6 }
begin
< dlscharge this patient >;
if < Q1 is not empty > rhen
begin
< admit the next patient from Q1 >;

< set the time for the end of this pauent"s hospital stay >;
end . .

else ‘
if < Q2 is not empty > then
begin
< admit the next pahent from Q2 >;

< set the time of the end of this patlem S hospltal stay >;
end

else . -
begin
< return the bed >
end
end; o
procedure opcn_llzeatre. { B7 }
begin
< make .the theatre open >, ’ "
lf < theatre is avallable and 03 is not empty > then

Case Sludies in Pseudo-Code Us'ing Event Me,'thod o Co 41

{Note: in theory the theatre could be unavaxlablc because patlcnts can
finish their operatlon after it has been closed and so the program
logic allows for thls}

- begin

< operate on the next patient in Q3 >;

< make the theatre unavailable >;

" < set the tlme for the end of the operation >;
end,;

< set the time for the theatre to close >,

end,;
procedure close_theatre; { BS }
begin

< close the theatre >;

< set the time for the theatre to open >;

end,

2.B.2 Repairshop system

procedure end_working; { Bl }
begin
if < there is a mechanic avallable > then
. begin :
< acquire a mechanic > - »
- < sét the time for the end of the removal of machine’s broken
parts >;
end
else
begin
< put the machme in Ql to awalt a mechamc >
end : v
end,
procedure end_removal; { B2 }
begin
if <-there is equnpment avallable > Ihen
begin
* < acquire the equipment >;’ e
< set the time for the end the repair to ‘this machme >3
end :
else
- begin
< put the machme m Q2 for repalr >
] end
" end;
procedure end_reparr, { B3 }
begin . - .. P
< set the t|me at whnch machme wlll ‘stop orkmg agam >

™
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if < Q2 is not empty >- Ihen _
‘begin . ——
< take thec next machine from 02 >;

j set the time for the end of the reparr to this machme >;
€n -

else .
begin
* < return the equ:pment >;
- if <'Q1 is not empty > then
begin -
< take the next machine from Q1 >;

< set the time for the end of the removal of the machine’s
broken parts >;

end
end
else
begin
< return the mechanic >:
end
end;

>

’

vF

3 -
Representmg a Slmulatlon
in Pascal

Once the simulation logic has been determined, it must be represented as a
computer program. There are numerous purpose-built programming lan-
guages and packages designed for this task. Three of the most popular are
SIMSCRIPT (Russelt 1983), GPSS (Schriber 1974), and SIMULA (Birt-
wistle et al. 1979) The major advantage of using a simulation programming
language (SPL) is that it imposes structure on the model. This structure
will be based on one of the world views mentioned in the previous chapter.
Most SPLs also provide comprehensive facilities for sampling, list control,
entity descriptions, the collection of results, and report writing.

. An alternative to using an SPL is to use a general purpose hrgh-level
language such as Pascal or FORTRAN.: Those using-this approach are

‘well-advised to .use a set of pre-written routines that provide the basic

facilities of an SPL. This will ensure that they write their simulation pro-
grams in an efficient and reliable way that is adaptable to changes in the
model structure and which can be readily understood by others in the field.
This book uses a Pascal package, Pascal_SIM, in which most of the
commonly used facilities. are provided. Readers can translate. these con-
cepts -and contructs to another high-level language’ 1f they prefer .
. Pascal_SIM which can be used for the’ three-phase approach the
event’ method and the process view is based on the followmg concepts

(a) entities carry the information about thelr next bound (or sche—
duled) events ‘and the time at which they will occur,

(b) queues and the calendar are implemented as lists; -entities thus
move from one list to. another as they progress through the
- simulation, . - W s -

(c) the executive is programmed as a procedure Wthh must be up-
dated and recompnled for each’ ew 'mulatron .mode 1 P

PascaLSlM is documented -a d how
back of the'—b k
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3.1 PASCAL 3
In choosing a high-level language in which to implement simulation facili-
ties, we have sought the following characteristics: '

(@) good list-processing facilities, : _

(b) a language that is widely used and encourages good program-
. ming practices, and '

(c) portability.

Pascal appeared to fulfil the criteria.

Pascal was designed as a structured programming language in the
early 1970s by Nicklaus Wirth and has become widely used in many educa-
tional institutions, now bging the main scientific high-level language taught
to students,

There is an internationally recognized standard for Pascal, the 1SO
standard (Wilson and Addyman 1982), which many implementations of
Pascal follow. A program developed using the ISO standard is thus easily
transferable from one machine to another. With a few exceptions, the ISO
standard is followed in this book. (Appendix A itemizes these exceptions;
Appendix C shows how to implement Pascal_SIM with a number of Pascal
implementations. ) ' :

- The facilities of Pascal which make it particularly appropriate for
simulation work are those providing a record structure for variables, for
typing, and for linking records. These are described in more detail below.

3.1.1 Record structure

Variables may be declared to have a record structure with fields of parti-
cular types (e.g., integer, character, boolean). This is extremely useful for a
simulation program where entities, resources and queues all have parti-
cular characteristics that need to be represented. ‘

3.1.2 Typing

Pascal is ‘strongly typed’. Every variable must be declared with a specific
type, which determines how it can be used in a program. Predefined types
are integer, real, char .and boolean. Many Pascal implementations -also
' provide a string type although this is not in the ISO standard. =~ .

é;an}Pl_e a »sc"a_lar-typc ,decl'a_;ration thét_ 1sused lnPascaLSlM st

.. cardinal = 0. maxmt

;- In Pascal it is also possible for users to define their ovin types. For S

'_ .,E‘n'my Type 5

- The advantage of deﬁnihg-' cardinal in the range of 0 to maxint (maxint

heing the largest integer variable a particular computer can st‘(.)r'e)v is that
p()sitivc variables can be declared as type cardinal rather than mteger.,.e:-
nbl'i‘n'g the program to perform range checkin.g. Any person rcadn_qg the
program will also know that the program requires a positive integer in the
specified range. o , _ » o

P There are also enumerated types. For example, Pascal SIM includes

a type for screen color thus: .
. color = (null, black, red, green; yellow, blue, magenta, cyan, white);
A variable which is declared as type color can then take the value of any of

the colors in the list. : . |
The facility for typing makes programs both more concise and more

readable.

3.1.3 Pointers

Pointer variables are variables which locate other variables. Variable A is

- said to “‘point at’ variablé B if B can be located by dereferencing A. There-

fore, pointer variable B does not need a unique name. Pointer vana}blesl,jm
general, do not need unique names because they can be located via other
vanal:ler;ther important characteristic is that computer memory space dfc_xr
a pointer variable is not created when it i§ declared but exp!xcn_tly cregted'lsrz |
a program using the procedure new.'Th1§ memory ,allo_c-athn nlna): e rlo -
posed of using the procedure dispose. This is important in simu at!:l)n pbl

grams, where the number of entities in the system may vary considerably

over the duration of the program. . . -~

' ointers are used extensively in the procedures described in
this bgglfzr:d? therefore, it is desirable that the reader should ur'ldcrstgnd
what they do and how. they work. Readers unfamiliar with pointers are
recommended to refer to the book by Findlay and Wa!t (1985).

The linking facility by which records can be dyp?mlcally.c_re?ted _a'nd
disposed of will be shown to provide an ideal facility fo; mgmpqlatmg
queues and the calendar list. v - S

3.2 ENTITY TYPE

3.2.1_Entity attributes

_ The last chéﬁié}, ei—plh'inéd?‘Iha‘::’éﬁ‘:i.ﬁes)'haY—"'.:"E attribute for holding the
time of the next bound event, called theentity clock."The simulation also
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- needs to know which bound event they are 1o take part in next. They thus
- peed: attributes which enable thém to be individually identified, their
entity clocks, and attributes to indicate which bound events they wi,ll take
_part in next. The simulation may also need to know whether they are busyv‘

or id!e_jin order to determine whether théy are available to take pért in
-~ ‘certain activities. Furthermore entities belong to classes which distinguish

})e]t;ween groups of entities. In Pascal _SIM, the basic entity attributes are as
ollows: = - ' ’ '

(a) an l:nd):i:ation of availability (a Boolean) which is set to true if an
entity is available and false if it is taking part in an activity and is
thus in the calendar, ' ’

‘(b) a class number, . . : : '
(c) a ¢.:ol.or attribute for visual simulations (see Chapters 9 and 10 —
this is not covered here), ' i
“(d) an attribute number to uniquely identify individual entities,
(e) the‘n.ext bound event (denoted by a number), and - ’
(f) the time of the next bound event. '
~An en‘tity record in Pascal_SIM:(omitting the color ‘attribute) thus has the
following structure: o B o e '

an_entity = packed record
- avail - :boolean;
= attr, next_B :cardinal;
. class - -« :class_num;
time - wreal;
. -end;'_' .
where

H(a) -<cardinal = 0..maxint; e o
RN ()] -class_.nu.m _=' 1..max_class_num; and max_class_num ié»set to
o ...the maximum number of classes. RN n
An -t_:n;t'ilt')" is then defined as a pointer variable:
o . type. U o
- entity = “an;ent'ity;,;{:.' —

‘Ina simulation model, entities can be dec¢lared as type entity. For example

a patient

tity, in the hospital example. can be declared.as follows:

- Resources are_passive and must be acquired
~ . |Bins are.gecord variable: esenting a set-

Resource Type : _ .

However, entities do not normally have unique variable names because
they are stored in lists.

3.2.2 Creation and disposal

When cntities are created they acquire computer memory space and when
disposed of, they release it again. Pascal_SIM supports temporary entities
and thus éntities can be created or destroyed at any point in the simulation
program. Entities can be created with a class and attribute number by using
the following function:

function new_entity’ (¢ :class_num; a :cardinal) :entity;

~

For example,
var
patient :entity;
patient ;= new_entity (1,1);

_creates a newpatient entity with class number 1 and attribute 1.. The class

number indicates the group of items to which an entity belongs and: the
attribute number can be used to uniquely identify each entity. Entities
xhich.leave the system can be removed using: -

Y procedure dis_entity (e :entity);

'3.2.3 Current enfity'

Although, as mentioned above, the different entities in a simulation are -
not normally given unique names, they are given temporary names when

they are in usé. When an entity is taken off the calendar to be used in a

bound event it is referred to as the current entity and called current. For

example, the statement:

.dis_entity (current);

disposes of the current entity, regardless of its class or attribute number. -

3.3 RESOURCETYPE
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ype
-bin = record
number .num_avail :cardinal;
end,

where

(@) number is the total number of resources of that type allocated,:

and .
(b) num_avail is the number available at any point in time.

.For example, the beds in a ward are represented by a bin in the
hospital examples as follows:

var
bed :bin;

>

In order to set the maximum number of resources available in any parti-
cular bin, the procedure make_bin is called. For example:
make_bin (bed, 10)

establishes a bin with 10 beds (i.e., there are 10 beds in the ward). The

total number of beds is thus bed.num, and the number available is bed.

num_avail. The following procedyires: ‘

procedure acquire'(va.r frdm :bin; n :cardin.al);

procedure return (var from :bin; n :cardinal); .
: ]

are used to acquire or return a number of resources, denoted by n, to the,’

_bin. A resource may be required for several activities. It is acquired when it
is used at the beginning of an activity and returned at the end of the last.
activity in which it is needed. An attempt to acquire a resource from a bin
that contains no available resources, or return a resource to a bin when all
resources are available, results in an error message.

.

3.4 LISTS

Pascal_SIM uses a double-linked circular chain to represent a list. From
. each link in the chain, a pointer can be moved forward to the next link, or

backward to the previous link, -~ - - o o '
. .The chain is composed of pointer variables called links. The structure
of a link type is as follows: ..~ . v oe o o

ype S
o dink - = “adink;’ L0 _

a_llnk record .

next,pre :link; -
. item - enmtity;
Cend;

Link points to an entity, denoted as item, and also points to a previ-

- ous and a next link.each of which also points to an entity. Each link thus
" has no characteristics of its own but exists to relate one entity to another in

an ordered way. If a list contains no entities, one link remains, in order to
keep the list open and available. This remaining link is called the list ‘head’
and points to a dummy entity. This is shown in Fig. 3.1.

Figure 3.2 shows that when an entity is added to the empty list, a new
link is created whose previous and next link are both pointing at the head
link. At the same time, the pointers of the head link are also changed so
that its previous and next links are the new link. '

In general, when an entity is added to a list a new link is created-in the
closed chain. Figure 3.3 shows that the links on either side of the new link
have to stop pointing to each other and have to point to the new link.
Figure 3.4 shows that the opposite happens when an entity is removed from

a list. » , , .
Lists are used to represent queues, the calendar, and class lists. These

are described in more detail below. : o

3.4.1 Queues

A queue is defined to be a link typé: :
type
. quene = Jink; P _
A queue may be created as an-empty list using: = -
- procedure make_queue (var g :queue); '
This creates the list head, and points the head’s pre and next poime_rs at the
head. . B T VO
In a queue, the entities are ordered from “top’ to ‘tail’. The entity at
the ‘top’ of the list is defined to be the one next to the head and the ‘tail’ is

previous to the head. These programming simulations will usually want to .

put_entities on, or take entities off, either the top or tail of a'queue. The
following procedures and functions provide. these facilities: »

procedure give_top (g :queue; ¢ sentity); -~ .
. procedure give_tail (g-:queue; e entity);
.~ Junction take_top (g.:queue) zentity;. . . .
~ function take_tail (g :queue):entity;

a9
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. Dummy

" pre

Flgure 3.1 Empty llst with head s next and pre links pointmg to
) itself

. Dummy _b

Ist with one entlty, head hnks point to Iink with e" ity e
: and vice versa

Lists : o " 51

Dummy.

Entity 1

Entity 4

Entity 2

Entity 3

iinks before adding

Jinks after_addmg
Entlty3 T

Figure 3.3 Addmon of entity to list; entrty 3 is added to list between
D . . Entmesz and 4 A
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Entity 3 Entity 1

Entity 2
Figure 3.4 Removal of entity from list; entity 1is removed from top
~.of list and entityz replaces it
YFor example,

var
patient_q :queue;

. give_tail (patient_gq, current) '
will put the current entity on the end of a queue called panem_.q and

- patient := take_top (panem_q)

takes the enmy off the top of patient

g, whnch now becomes the entit
patient. Entities may be added or removed from any place ina queue usmgy
procedure give (g queue, I3 :link; e 'entity)

and

| f“""‘ion“’ke (q_":_queué: t ,élink).;""”" .

B3 e .~ Representing a Simulation in Pascal -

“In using these functions, the lmks after which an entity is to be added or at
““which an entity is to be removed have to be specified explicitly. The entity
_. to be inserted is always the next one after the one specified by ¢ in give.

In the last chapter, we described how entities queue for resources
before taking part in activities. These queues are constantly changing in

~'size and composition and it is frequently necessary to check the length of

the queue. The function which does this is:
Sfunction count (var q queue) :cardinal;

This function will count all the entities in the queue. The function empty

checks whether a queue is empty or not:

~ function empty (g :queue) :boolean;

returning true if ¢ does not contam any entities, otherwise returning
false.

3.4.2 Calendar

Chapter 2 defined the calendar to be the list of entities which are scheduled
to take part in bound events. This is implemented in Pascal SIM as a
queue, called calendar, which is ordered according to the value on the
entity clock, time. The next entity due to take part in an event (i.e., the one

_ with the smallest value of time) is kept at the top of the calendar (i.e., is on

the next link to the head) and the last one due to take part in an event (i.e. .
has the largest value of time) is at the tail. When an entity is added to the
list, it is put in after an entity with a smaller or identical value of time and
before an entity with a larger value of time. Entities are always removed

_from the top of the calendar.

3.4.3 Class llsu

It is often uséful to search through entmes of the same class ThlS can be
done efficiently if they are linked together in'a queue.. This class list is
maintained independently of either the queues for activities or the calen-
dar. Instead of creating entities as mdmduals wnth make_entlty, entities

 may be created and lmked in a class usmg

procedure make_class (var c queue, n,s:ze .cardma!),
For example ' : e B Re

. var-
§ pat queue _ :
make_.class (pat l 30)
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creates 30 entities numbered 1 30ina queue or class called par with class“

number 1. : -

_ Class lists are usually used for permanent entities which are always'

~ kept fixed in number. However, all the ‘procedures and functions for.
- adding entities to queues and removing them from queues can also be used

for class lists. : :

3.5 TIME ADVANCE AND EXECUTIVE

Simulation time is advanced in discrete steps from one time beat to the
next. The current simulatjon time Pascal SIM, is a global variable, tim,
which must never be altered by the programmer.

3.5.1 Cause statement

Activity times for entities are usually scheduled within condmonal events
or feeders (see Chapter 2). The procedure cause schedules the entities. It
calculates the time on the entity clock by adding tim to the scheduled activ-
ity duration, sets the entity clock and the number of the next event and
enters the entity in the calendar in time order. It is:

procedure cause (nb cardmal e :entity; ¢ real)
' where

© (a) nb is the unique number grven to each bound event,
- (b) e is the entity, and -
_(c) tis the duratron of the actrvnty

For example,

-var
g1 :queue;
- cause (2, take_.top(ql) 10);°

,,:..takes the entity from the top of the queue called ql and puts it in the
‘calendar in time order so that it does bound ‘event number 2 in 10 time

. units from the current simulation time.- ‘Thé entity timie of . entity e is thus

-_‘:,_a:.set 2to tim +.10, where tlm is the present snmulatlon tlme and next_b 1S set '
() e : . P

*.. facilities as well as;the events and.
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procedure run (duration :real; max_C :cardinal);

where

(a) duration is the duration of the simulation,
(b) max_c is the number of conditional events in the simulation.
(This is set to zero in a two-phase simulation using the event

method. )

Figure 3.5 shows the skeleton of a three-phase executive program for
Pascal_SIM. The bound event numbers and names are in a case statement
and the conditional event numbers and names are in a for loop.

It should be noted that the name listed for each event in the executive
must correspond exactly to the name of the corresponding procedure. As -
the procedure run calls the event procedures by name, this procedure has
to be adjusted and recompiled for each simulation.

There is a global Boolean variable called running which must be set
to true for the executive to call and perform events (i.e., for the simulation
to continue to run). If at any point in the simulation, running is set equal to
false, the simulation will stop at the end of that time beat. Running is
always set equal to false when: .

(a) there are no more events remaining in the calendar, or
(b) the clock time on the next entity in the calendar (i.e., the time
of the next event to be performed) is greater than the value of

duration.
The three phases of the execut:ve in Pascal SIM are thus as follows:

(a) A phase. Assummg that.running is true, the executive advances
the simulation time by setting the current simulation time, tim, to
the clock time on the entity at the top of the calendar. :

(b) B phase. The executive performs all the bound events due at that
simulation time; they will -be performed in the' order in which
they happen to have arrived on the calendar.

 (c) C phase. The executive tests the conditional events in the listed
© - order, to see whether any of their conditions have been satisfied
. to, enable them to be performed _They will, in their turn, put

- more -entities mto the calendar and thus keep the srmulatlon

.._'_runmng

‘The executive for the event method has exactly the same structure but
w1thout the C phase. . ol

/3.8 'SIMULATION STRUCTURE
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procedure run (duration :real; max_C :cardinal);
{ duration is the duration of the simulation and
max_C is the number of C evenis }
begin
< set Boolean vanable running to frue >
repeat
if< calendar is empty > then < set running to false >
else
begin
< set the simulation time to the time on the entity at
the top of the calendar >
A  phase if < present simulation time has exceeded the duration >
then < set running to false >
else >
begin
while < there is an entity in the calendar and the time
of the entity at the top of the calendar is equal
to the simulation time > do
begin

B phase < take entity off the top of the calendar >

: ) case < the number of the B event on the entity > of
0:
1: < first B event >;
2 : < second B event >;

end;
end { do };
for' < number of C event, from 1 to the max_C > do
" case < number of C event > of
: . 1: < first C event > .
C ’__-pl’rase » ~ 2: < second C event >

end { for };
end -
end
until not running;
-end { run }; .

«

Figure 3.5 Executive of three-phase approach in pseudo-code
showmg three phases

.
The procedure lnmahze is wntten by the user. and sets up the mmal
queues. and classes using: SRR

(a) :make_sim (to set up the calendar), .
“(b) make_class {to dcfine the classes), -

- (c) ‘make_queue (to set up the queues),

o .8 SUMMARY

Surmmary L B - S BT

(d) make_bin (to set up the resources in bins),

(e) make_streams (to set up the streams for qamplmg, see Chapler
4) :

(f) make_hrstogram (to set up the hrstograms for collectmg statis-
tlcs, see Chapter 5). -

It is essential that the initialization phase creates at least one é‘htity, using
new_entity, and puts it in the calendar with the cause statement to start the -
time advance in the executive. ’
The report procedure is for the presentation of statistics at the end of
a simulation run (see Chapter 5). The simulation program structure is then:

bound events;
conditional events;
procedure run;
procedure initialize;
procedure report;
begin
, irllitialize;
run;
report
|

end.

3.7 SIMPLE HOSPITAL SYSTEM

Appendix 3.A shows a three-phase program of the simple hospital simula- _
tion which uses the facilities of Pascal_SIM, listed in Appendix B at the
back of the book. (In order to get Pascal_SIM and this program runmng, .
readers are advised to look at the implementation details in Append1x C.)
The structure of the program follows the pseudo-code shown in Fig. 2.4.

In this simulation there are 20 hospital beds. The patient interarrival
times and the hospital stay are fixed at constants 6 and 60 time units, re-
spectively. The simulation is set to run for 720 time units. The program
writes out the arrival and departure time of each patient. Note that report
is a dummy procedure because there is no. collection of. statlstrcs. ‘

Thls chapter has shown how the srmulauon eoncepls described Chapte
2 can be implemented in Pascal_SIM: Pascal_SIM provndes entitie
can be rndrvrdually |dem_|ﬁ_e_d a_nd l}elq g to rlasscs. They can be create
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they are required and disposed of when no longer needed. Resources are
available which can be acquired and returned to their bins as necessary.

Linked lists are the most important and useful structures as they keep
ordered scts of entities. These form the basis of queues, the calendar, and -

‘class lists.

* The simulation executive is very similar both for the three-phase
approach and the event method. The executive controls the time advance
and access to the events. The overall structure of the simulation program
must include initialization, events, reporting facilities and the executive.

- Chapter 6 explains and shows the full simulation programs for the
hospital and machine repair case studies, including the initialization and
report phases.

3.9 EXERCISES

In order to lmplement Pascal_SIM for use in these exercises, you can either copy
the entire code from Appendix B and implement it on your machine using the in-
* structions in Appendix C, or you can implement just those parts you need. For
" these exercises you will need the followmg routines and corresponding global
variables:

‘ . (a) error messages,
- (b) queue processing,
. (c) entities and classes,
. (d) resources, and
“ (e) the three-phase and event executive (1 €., procedure run)

'Appendlx D shows a full set of routines for non- wsual simulations.
1. Wnte Pascal_SIM statements to do each of the following:

<~ (a) create the 30th entity ina class of customers (class number three) and
-+ call it. customer;
W -(b) while there is an entity in the queue called wait_list and a resource is
.+ available called hire_car, acqulre the resource and dnspose of the entity -
;- at the top of the queue; . s,
") ‘create a class lrst of 20 entities in a class called Iorry (class number :
L ~.::’lW0), '
_search the queue walt_.hsl for an enmy wnth attribute equal to six;
_cause the current enmy to perform bound event number two m 12.1
- time units from the present simulation time, tim;
} perform the executive of 3 three-phase snmulatlon wrth 19 condltlonal
ts for 100 time umts X SRR : ;

0§umerzj mts and has the following event
ash:(C1), end_wash:-(B2), -start_dry (C2),-en

. o . B B C
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3.

- 3.A

. Compile and run lhe simple hospital system using the program in Appendlx

3.A. Print out the time of each event to check that the simulation is working
properly. i

Bank Sys!em Model the present queuemg syslem in the bank - (Appendxx
1.A.1) in PascaLSIM using the pseudo-code developed in Exercise 4 of
Chapter 2. Build up either a three- -phase or two-phase simulation in the
followmg stages: : ‘

(a) outline the structure of the simulation;

(b) write the executive;. .

(c) declare the entities, resources, queues and vanables

(d) write the events assuming that the customers arrive at one minute
intervals and each spends exactly three minutes being served;

(e) write procedure initialize;

(f) put the parts together into a program and compile;

(g) provide output to check that the simulation is working logically.

Traffic Light System. Using the traffic light system described at the end of
Chapter 1 (Appéndix 1.A.2) and the pseudo-code developed in Exercise S of
Chapter 2, write a working program in Pascal_SIM in the same way as in the -
previous exercise. Assume that the cars arrive at half-second intervals.

* [ 4 »

A

SIMPLE HOSPITAL SYSTEM CODED IN PASCAL_SIM

program simulation (output);

const :

- amount_of_beds = 20;
~inter: arrlval tlme e 6; .
stay_time | 60

var

bed :bin;

- q - . squeue;’
¢ Bound events ) ' -
proc'edure -patient arrives; { B%1 )

begtn

-writeln (‘Patient arrives at- t:me.

. give_tail (q,current);

;.cause (1 new entity(1 1),1nter arr!val tlme),us
-:end,' : 2 B ; :

timeTi2d;
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procedure end_hospital_stay; { B2 )

begin : : S )
writeln ('Patient departs at time: Y, tim:7:2);
return (bed,1); '
dis_entity (current);

‘end; :

{ Conditional events )

procedure start_hospital_stay; ¢ C1 )

begin )
while (bed.num_aveil>0) and (not empty(q)) do
begin ’

writeln ('Patient admitted at time: ',tim:7:2);

acquire (bed,1);
cause (2,take_top(q),stay_time);

end; ¥
end;
procedure run (duration :real; max_C :cardinel);
var
¢ :cardinal;
begin
running := true;
repeat : : - L .
- if calendar=calendar”.next then running:=false
else :
begin

tim == calendar-.next .item".time;
if duration<tim then running := false

else :

begin B S
while (calendar<>calendar”.next) and

(tim=calendar“.next".item".time) do
begin : -
" .calendar_top;
scase current”.next_B of
. 0z ;
.1z patient_arrives;
2: end_hospital_stay;
..end; :
. end; .
for c:=1 to max_C do
case ¢ of - - »
1: start_hospital_stay;
- end;
end; -
end .
until not running; "
end ¢ run ); R

- procedure -initialize;
begin S
- make_sim;

make_streams; .
make_bin (bed,amount_of_beds);

make_queue (q);
end { inftialize );

procedure report;
begin
end;

begin
initielize;
cause (1,new_entity(1,1),0);
run (720,4);
report;

end.




Sa mpling f r om Dlstrlbutlons

This chapter describes }mw to generate random numbers and to sample
from frequency histograms and common parametric distributions. It also
shows some of the difficulties and pitfalls of collecting and analyzing data
for use in“a simulation program. : ’

4.1 NEED FOR SAMPLING

~In management and organizational systems, the underlying processes will
. usually.be stochastic in nature. In' queueing systems, for example, the
-+ average arrival -and service times can be measured but it is not possible to
. predict when people or items will arrive, which queue they will join, and
- how long it will take for them to be served. As a simulation has to describe
-individual arrivals and activities, it must, if it is to demonstrate the stochas-

- tic nature of a system, sample different interarrival and service times and -

decisions. Moreover, the frequency distribution of the samples should look
' like those measured in the real system. Distribution sampling techniques
“are thus needed. ' ‘ = : P
- = A sample from a uniform distribution is equally: likely to be any
o n_umber in a specified range. Although this is very simple, other distribu-
. tions such as the negative exponential, the Normal and log Normal are
. -often: much more useful for describing the distributions ‘of arrival and.
wservice times. If it is not possible to fit the data to a common parametric
istogram of the observations. .7

Distribution sampling uses sequences of random
mulation run may be adequate to_observe the general behavior-of a

of random numbers, are likely to be needed to provide adequate
sures for.comparative: or-predictive ‘purposes.”: :

distribution, then it may be necessary to'sample from a relative-frequency -

numbers. " Whereas -

veral runs with activity times and decision based on_different’
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4.2 RANDOM NUMBER GENERATION

A number is said to be random if its occurrence is unpredictable from any
previously sampled numbers and is equally likely to occur anywhere over a
predefined range. Random number generators usually provide real num-
bers in the range (0, 1). ‘ : g

In a sequence of random numbers, each must be independent of all
previous ones. Any sequence generated from a formula, by definition,
produces predictable and therefore non-random numbers. Truly random
numbers must be generated from random phenomena of the type which
occur in radio-active or electronic gadgets. These are necessary for some
simulations where complete randomness is of the utmost importance, but
they have the serious disadvantage that, unless they are recorded on file,
they cannot be recalled and re-used for multiple runs of a simulation
program. As very many numbers are invariably needed, random-number
storage is unsatisfactory and wasteful of storage space, - L

Most simulation packages therefore use pseudo-random numbers
which can be generated from formulae and appear to be unpredictable and
independent of each other although, of course, they are not. There has
been much research into devising formulae which can generate streams of
numbers which have properties close to those of genuine random numbers.

..\

4.3 ' PSEUDO-RANDOM NUMBERS

A common method of generating pseudo-random numbers is based on the
production of a sequence of integers over a wide range, using the following
simple iterative process: ' RS FEREE ‘

Cm =)

where the number, n,-“',;appears to be unrelated to 'n,-"a_i_r_id;;t:b as many

previous numbers in the sequence as possible. - T Lo
* In order to produce real numbers in the range (0, 1), the integers are
divided by the width of the range of integers, m.;The pseudo-random

number y; is thus foi_md_ as ;fdllows_:




tor returns to a number that has occurred before. For example, if 'n; is
equal to n;, then f(n,) is equal to f(n,) and therefore n,, , is equal to n;, 4.
Hence, all subsequent numbers in the sequence will also recur in the same
order. o : .
- The recycling of numbers_is clearly non-random and provides ex-
ternal evidence of a dependence between the numbers. It is important in
divising a pseudo-random number generator, therefore, to make the cycle
length as long as possible so that the generator produces very many dif-
ferent integers before it recycles. '
A useful class of functions is given*by the formula:

- f(n) = (an; + ¢) mod m

where a, ¢, and m are int'eger constants. Thus f(n;) is the remainder when a
linear transformation of the number, n;, is divided by m. The next integer.
in the sequence, n;,,, is set equal to f(n,;). The values of the generated
numbers are sometimes large and sometimes small and, depending on the
value of the constants, can appear to vary almost unpredictably. -

If the value of c is greater than zero thén the generator is called a
mixed congruential generator. The formula will generate integer numbers
in the range 0 to m — 1. It is clearly important, therefore, that m should be
a very large nnumber. : » _

The maximum cycle length of this type of generator is thus m but it

may be smaller than this if some integers in the range are never produced.
For example, if all the chosen constants are even, then no odd numbers are
generated. The rules to ensure that the cycle length is maximal are quite

complicated and were devised by Knuth (1969):

~ (a) cand m are relatively prime (i.e., they have no t:ommqn factors),

(b) if p is a prime factor of m then choose @ = 1 (mod p),
(c) if4is a factor of m then choose a = 1 (mod 4). . '

Note that if condition (c) holds then condition (b) also holds.

If ¢ is equal to 0, then the generator is a multiplicative congruential
generator and only one rule is necessary: that m and a should be mutually
prime. In this case, however, the numbef 0 is never generated and the
maximum cycle length is m = 1 rather than m. e

- A further principle for either type of generator is the avoidance of
small multipliers (constant a) because they cause the appearance of se-
quences of monotonically increasing numbers within the number stream.

- Many generators which obey these rules nevertheless have inherent
and detectable patterns. They must be subjected to a battery of statistical

-~ tests 1o ensure, that numbers are equally likely to occur in any range and -
that they:are .independent. There is:considerable research in this field

covering many. different types of generator.- Examples_include Fishman
. and More (1982), 1BM {1969)-and Lewis et al. (1969). These tests are not

Sampling from Distributions

. dual stream J can be reset independently of theothers by -

. s - v_r‘ e .“1‘;_\_‘ ‘w: T v
Strearﬁs : -85

discussed in this book and for a comprehensive coverage, the interested
reader should read the work by Fishman (1978), or Law and Kelton (1982).
Pascal_SIM has generators of this type. These are as follows:

16-bit: - f(n;) = (3993n; + 1) mod 32767 ,
32-bit: f(n;) = 16807n; + 0) mod 2147483647

The 32-bit generator, which is well established is a reliable genera-
tor, was recommended by Lewis e al. (1969). The 16-bit generator, which
is useful for 16-bit microcomputers, relies on the non-detection of intege:r
overflow (Thensen et al. 1984). It is inevitably inferior but, nevertheless, it
is adequate for development work and investigative simulations.

4.4 STREAMS

A pseudo-random number generator starting on the same number or sged
will always produce the same stream of numbers. Different seeds will give
rise to different streams and if the seeds do not happen to be numbers
which are close together in the cycle, the generated numbers will appear
to be independent of each other. ' L
When comparing the effects of different policies on the outcome of
simulation runs, it is important that a comparison run should use the same

-activity times and decisions -as the original run except where these are’

directly affected by the predetermined change in input. 1t is thus necessary .
to re-use the same random numbers for different policy options. Chapter 8
will show that to reduce the variance of the results, the length of time taken
for each activity and the decision taken at each branch in a simulation
should be sampled from different random number streams.' Therefore,
there -should be sufficient streams for each activity and each decision
branch. Moreover, when several simulation runs are used to find the means
and variances of results, each run should be based on different and inde-
pendent random number streams. _ R
- .In Pascal_SIM, the procedure make_streams initializes all 32 streams
by setting the values of the seeds of each stream. Seed i is given the value
1000 i + 7 to provide adequate spacing in the 16-bit generator. The spacing
should, ideally, be increased for the 32-bit generator.. . '
.~ -The array original_seeds holds these initial seed values and the array
seeds holds the current integer random number values in each stream. Thus,
wheréas make_streams initializes the values of all the streams, an _indivi-_:

originaLseeds {j]
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function rnd (s :stream_num) :real;

Each time a program calls rnd, with any specific stream number, the next
number in the sequence is produced by the pseudo random number gen-
erator and seed is updated.

4.5 SAMPLING FROM DISCRETE DISTRIBUTIONS -
A discrete probability distribution is the distribution of prob'abi]ity over a
number of discrete points: v '

Xy, X2, X3y X4, --., Where x;4y > x;

In simulation problems, the. pomts will usually be finite in number and

occur at integer points: 0, 1, 2 .. .m. If the probability that i occurs is given

by p;, then

Z p; = 1, over all values of {

‘Figure 4.1 shows an example in which a function is defined at points 0, 1, 2, 8

3, 4, 5 with probabllmes Y%, W&, Y4, V4, 0, Va, respectively.

“
D
%

1/4 9. .

Sl Y%

iscrete probability function defined at points 0-5 .

‘ : . : \ .
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P- = e o2 OF BOA
4.5.1 General diseretednstrnbutio‘\sg WNEGHRMATIOA

‘Simulations use discrete distributions when:

" (a) there is a branch in a simulation model such that the choice of
branch for each entity is random and unrelated to any previous
activities or entity characteristics (see Chapter 7);

(b) newly generated entities have to be given characteristics (see
‘Chapter 7), which may be chosen from a discrete distribution.
Patient entities, for example, may be given an age group and
blood group.

Suppose a finite discrete distribution has m points with a probability, pi, at
each point i. In order to decide which of the m points to choose, the simu-
lation generates a pseudo-random number between 0 and 1 from one of the
streams. The decision is based on the range of numbers within which the -
random number falls. For m paths, it is done in the following way:

Range of numbers Choice of path
.0, D1 1
PPt P2 2
'-P1+P2,P1+P2+P3 3

k-1 k -

2 Pi» 2pi k-
e R =

m—1 .. ’ . ’ ) . .o

S je=1
The width ‘of each range of random numbers is_thus equaI: to ‘the prob-:"
ability. These ranges can be seen to be based on the cumulatrve probablhty‘
funcuon - ’

- -
' F(k) = zpi

Usmg thls nolatIOn the path k is chosen 1f the random number hes
'rbetween ‘F(k=:1) and F(k). - PN % -
i FiThe general method of samphng a value Xy from a dlscrete dlstrrbu-"
: tlon wrth probablhty functlon P(x); and a cumulative probabrhty function
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< sample a random number u in the range (0, 1) >;
<setitol > : _ '
while < u is less than F(x;,) > do < increase i byl>;
< x; is sampled from the discrete distribution > '

In Pascal_SIM, the discrete values, x;, and their corresponding cumulative
distribution values F(x,), can be held in a text file, referred to as sample_
file. Make_sample, which is called at the beginning of a'simulation run,
reads these values into a two-dimensional array called table. The first
column in the table has the cumulative values: F(x;), F(x3) ... F(x,) and
the second column consists of: Xy, X2, ..., X,. Using the logic described
above, the probabilities of x; are sampled using:

fundion sample (table <lookup_table; s stream_num);

where lookup_table is a two-dimensional array type.

4.5.2 Poissondistribution

If the number of arrivals in any time interval are completely random and
:ndependent of those in any other time intervals, then the probability of a
sarticular number of arrivals in any time interval (with the same average
arrival rate) may be described by the Poisson distribution. _

This is clearly a very useful distribution but, nevertheless, it is not
:ommonly used in discrete-event simnlation_s.-This is because discrete-
:vent simulations usually generate arrivals using interarrival-time distribu-
ions (such as the negative exponential distribution) rather than generating
he numbers of arrivals per time interval. However, a Poisson distribu-
ion can model the sizes of barches of items arriving in the system, where
he batch sizes vary from one to the next. :

The method of sampling from the Poisson distribution is similar to
he method for the general distribution but, in this case, the cumulative
alues can be calculated as required rather than stored. If the mean
umber of arrivals is 4, then the probability of x arrivals is given by:

X agraf : : .
f(x) = 4 e’;'( '1), 0 < x < =, 4 is the distribution mean

or any particular distribution, the values may be calculated itefatively: .

1) =Xlexp (=) _ @)
f(x_,fi-l) N ) TR L

| where f(0) = exp (-2)
he cimulative values may also be caleulated iteraiively: <
BG4 1) = FG) + fGx+ 1), where F(0) = f(0) = exp (-1)
he pseudo-code of the ‘

. Sampling from Continuous Parametric Distributions .

- . between 0 and 1 as x goes from atob. . welgiooeono v_
* w22 Figure 4.2 shows that if we sample a random number, 4, between 0
_-and 1, for any value of u, there is a corresponding

lgorithm for the ,P»o‘i‘sson distribution is thus,hs o

fo)lows:

<setxto0>
< set P, the probability of x=0, to exp(—m) >
' < set F, the cumulative function, to P > _
< sample a2 number u in the range (0, 1) > -
while < v is'less than F > do_.
begin
<increase x by 1 >; -~ ..
< set the new value of P to (m/x)P >;
< set the new value of F to F+P >;
end
< x is the sampled value from the Poisson >
end,;

The Pascal_SIM function is:
function poisson (m :real; s :stream_num) :real,

where m is A the distribution mean.

4.6 SAMPLING FROM CONTINUOUS PARAMETRIC
DISTRIBUTIONS .

if we wanted to ;sa'niple a real number, such as the length of time of an
activity, this would be sampled from a continuous distribution. The prob-
ability density function f(x) describes the distribution of the probability of x
over a continuous range. - : BN o )
If f(x) is continuous and defined between the limits a and b, then if x,
and x, lie between a and b, the probability of sampling a number between

x; and x3, is given by:

The cﬁrhulati\{e probability at point y is the probability of ééi_mpl_ing a point
less than or equal to y and is expressed as a function:

Fo) = [ fewy ax

“ The inverse transform method of sampling ekploit§ the Z__i_'act thaﬁ F(y) ranges

valué of F(x). Thus if

u = F(x), andthe Ainverse exists; then
= F-l(u)

|
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Fix)
1 =

UsFlY) o m e e e

0 T .. - Y
a . y=Fu) b x

Figure 4.2 Cumulative probablllty function of continuous
. dlstrlbutlon, fix), showing that, using inverse transform method, a
random number, u, sampled between 0 and 1 provides Y. & sample
- from probability dlstnbut:on fix) S :

"~ To; prove that x is a sample from f(x), we have to show that the probablhty |

- .that u is sampled between two random numbers uy and u,, 1s the same as
'the probability that x lies between x. and x, where

x = F'(u,) and x, =F )

;I'he probabillty that :xlibes,betwc_en x. 'and X5 is

.,_il,,i:f‘?l e = 7 160 s - f 16) s
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4.6.1 Uniform

Although the ur.uform distribution does not commonly occur in practice, it
is a very simple distribution and useful for setting up a first draft of a
simulation program before more accurate data are collected.

The uniform distribution is given by the formula:

1 o
= <x=<
| f(x) & —ay vulhere a<x b
Since each random number u is generated from a uniform distribution,
where g = 0 and b = 1, then a sample from a general uniform distribution
can be derived from a simple linear transformation:

x=a+ (b - a)u
In PascaLSlM this is provided by:
function uniform (L,h :real; s :stream_num) :real;

where ! and h are the lower and upper limits of the range, respectively.

4.6.2 Negative exponential

Arrivals in a system are commonly assumed to be randomly distributed, in-
dependent of each other, and equally likely to occur in any time period.
The number arriving in each time interval thus has a Poisson distribution,
and the time between arrivals has a negative exponential distribution.

" The negative exponential distribution is also sometimes used to de-
scribé the time taken for an activity to take place. There is an underlymg
assumption, however, that the time taken to0 finish- an actwnty is 'in-"
dependent of the time it has already taken: If, for example, in the machine
repair problem described in Chapter 1, the probability of a machine break-
down were assumed to be independent of the time since the last repair,
then the length of time between the last repair and the machine breakdown
would be taken to be a negatwe exponential distribution. S

‘‘Because this assumption is unlikely to be true in most systems ‘the

K negatlve exponential dlstnbutlon 1S much more useful for mteramval tlmes
: ,than service times. : LU T

Samples from a negatlve exponentlal -dlstnbutlon 'are obtamed usmg
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7(x) is continuous and strictly increasing and so for each value of x there is

unique value of F(x) between 0 and 1. ,
f F(x) = u where u is a random number between 0 and 1, then

x = F' (u)
“herefore ‘
 u=1-—exp (—hx)
1 — u = exp (—Ax)
log. (1 —u) = —Ax
- —log. (1 — w)
X =

C .
et v = 1 — u, then v is also a random number in the range 0-1, and

_ —log. v
-2

Fo obtain a sample from a negative exponential distribution, therefore, we

nust sample a number v from the uniform distribution and transform it .

1sing this formula. This is done in Pascal _SIM with:
function negexp (m :real; s :stream_num) :real;

vhere m is the distribution mean which is equal to Y.

1.6.3 Normal

Activity times which vary randomly about an average value may-usefully
se approximated by a Normal distribution. Typical activities of this type
nclude the time it takes for someone to drink a pint of beer, for an athelete
© run a race, or for.a mechanic to mend a machine with a particular well-
jefined fault. : . : -

The Normal distribution can never be a true representation of activity -

ime because it is unbounded whereas activity times have a minimum value

>f zero. As a rule of thumb, to use the Normal distribution, the mean of -

he activity-time distribution should be at least three standard deviations in
salue. Less than one percent of the values sampled will then be Jess than

rero. If this condition does not hold, it might be better to fit the datatoa -

skewed distribution, such as the log Normal. Whenever the Normal distri-
sution is.used, the programmer should check for and eliminate negative
values because they may arise, by chance, however, large the mean.

- The cumulative standard Normal distribution function is given by the
formula: o a R T o

- F(x) =_‘\/]-2_—:E | - exp (—-12/2) di
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As there is no analytic inverse function, F ~)(u), a choice has to be made
between other, less efficient, methods of sampling from this distribution,
of which there are many. The interested reader can find detailed descrip-
tions of these in other textbooks, for example, Law and Kelton (1982).
Pascal_SIM uses the method of Box and Muller (1958) in which a pair
of random normal deviates are produced from two random numbers. In
order to derive these, we start with two independent random numbers
sampled from a standard Normal distribution, x and y. Their joint distri-

- bution is:

. . y . g X )
F(x,y) dx dy = '21; j_m J_w exp [—(x2+y?)/2] dx dy

Using polar co-ordinates

x=rcos®,and y=rsin8
Thus | o )
. P =x?4+y* and 0 =tan™' (x)
The joint distribution.of r and 0 becomes o "

N T 6 r N ‘» .
F(x,0) = %E.L fo exp (—r?2) rdr do

e r )
.=f 2%:‘1-9_]0 exp (+r2/2)rdf;'.

0

This indicates that @ and r are independently distributed. Let G (6) be the

cumulative distribution of 8 L :
G®) = feldé -2 o<e<2m

Thus 6 has a uniform distribdtion over (0, :2:r:).'

If u is a random number from the range (0, 1) then

u= G(9)=_—26;7

Iaet H(r) be the cumulalive distribution of r IV |
a 'H(r) =I gx]ﬁ (,—:}-'2/2)} dr‘. N
S e T T
gs |

By substitution of s = r?/2,- o = T, ;ﬁ"e have

HO = [ 9 b= o ol = 1= e ()
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I v is a random number from the rang_c;_(()'. 1) thenw =1 — vis also a
random number from the range (0, 1) if

v=H®)=1- exp (-r¥2)
w = exp (—r*2)
Therefore .

r=%VvV -—2 log. w

We can now express the Normal deviates x and y in terms of the
random numbers « and w.

x = V-2 log, w (cos 2nu)
¥ :
y = V-2 log. w (sin 2nu)
Simulations generally need only one sample at a time and cannot
therefore readily make use of the two independent Normal deviates pro-

duced by two random numbers. In Pascal_SIM we use only the first of
these two. The function is: : '

function normal (m,sd :real; s :stream_num) :real;

where m and sd are the mean and standard deviation respectively.

4.6.4 Log Normal

Service times in queueing systems can often be successfully described by
the log Normal distributions. A log Normal distribution has two para-
meters: its mean, m, and standard deviation, s. A sample from a log Nor-
mal is m. a corresponding sample from a Normal distribution,

' < 0 = log. (s/m + 1) o

If x is sampled from a Normal diSt_fibﬁ_ticixi (wnh pafarﬁetéfs u and o) using

the Box—Muller method, then y = log, x is a sample from a log Normal

di‘stribu.ti_c‘)_nv with parameters m-and s..Th Pascal_SIM function is:

unctiori log mormal (m;sd ‘real; s istream_num) :real; -~

iﬁéépég,t__ivélj

parametcrs are simply related by the following formulae:

where m and sd are the mean and standard .deviation of the distribution, -
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4.7 SAMPLING FROM HISTOGRAMS

If the activity timgs or arrival times do not readily fit a common parametric
distribution, then it will be necessary to sample from a probability distri-
bution derived from a frequency histogram of activity or arrival times.
Difficulties which may be encountered in finding and analysing the data
will be discussed later in this chapter.

.Figure 4.3 shows a histogram representing the lengths of stay of
patients in hospital in a short stay ward. The discrete probability distri-
bution is derived from the frequency distribution and can be treated in
exactly the same way as the discrete probability distributions in the previ-
ous section. Figure 4.4 shows the cumulative distribution function corres-
ponding to the histogram in Fig. 4.3 and indicates how a random number
of 0.64 gives rise to a sampled length of stay of three days.

This method, however, samples lengths of stay at fixed points in time
rather than from a continuous range. Samples from a continuous range are
derived from the continuous cumulative distribution function, such as the
one shown in Fig. 4.5. If the random number, u, is between F(x) and
F(x + 1), then the sampled value, s, will be between x and x +.1. The dis-
tance that s is from x is in proportion to the distance u is from F(x). Thus

. u=F@ _
s=x+Eey 1)—xF(x)-

The pseudo-code is as follows:

< sample a random number u in the range (0, 1) >

<setxtol> _ _ v
while < u is less than F(x) > do x := x + 15
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Figure 4.4 Stepwise cumulative probablllty function of probabilities
shown in F'g 4.3

1)+ (u —F(x — 1))

< Set the sampled value equal tq( (F(x) TG 1))

>

.8 CONDITIONAL bls'rmeurlous '

dmetimes. srmulauons are initialized with entmes already engaged in
tivities - and their remaining activity times must be sampled. Unless a '
ngth of stay is generated from the’ negative exponential distribution, the :
‘maining actmty tlme will be dependent -on the length of time that the -

Bampling from Distributions. ~

. Conditional Distributions

: found ‘The additional time to be spent in the acthtyas thengivenbys = T.- f

verse transformatlon method Frgure 4. 6 shows a cumulatwe functlon Thef'-
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Figure 4. 5 P:ecew:se continuous probablllty funetlon of hlstogmm
~ . inFig. 4. 3 . ,

entity has already- spent on the activity.: There are two approaches ‘to
sampling from the conditional distribution.

First, if the entity has been engaged in the actwrty for a penod of
time, T, then one samples in the usual way from the appropriate distribu-

_ tion to obtain, ¢, the time to be spent on the activity. If the value is less than

T, the sample is rejected and resampled until a:value, ¢; greater than Tis

' A second and more efficient method cinbe: moorporated intothein-
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..Figure 4.6 Graph showing G(x), cumulatlve distribution of
condmonal probablllty d:strlbutlon f(tlt > T)
part of the functnon that is to the nght of T and above F (T) glves the shape i

f the cumula_tlve functron whrch is conditional upon ¢ >:T: -However, the
erti ust be: rescaled so that the values of the cumulative prob-.
blhty rom Tto o/ Can vary between 0. and 1 rather than between F Ty

Sto derive the shape of hlstograms 10 be used to sample: actjvity times: How--
ever, sufficient data should be: colleeted $0 1hat~they dook asif xhey approxn-

- tails, the values: may have‘t' 5 be; estlmated by assuming a geometric
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_ F(i) = F(T)
G =" = F)

4.9 COLLECTION OF DISTRIBUTION DATA FOR SAMPLING

Much has been written about the problems and techniques to be used in
sampling distributions. Pascal_SIM together with most other reputable
simulation packages provide adequate samphng facilities for most simula-
tions. However, there are many pitfalls that arise in collecting and analy-
sing the statistics to provide the histogram data or distribution parameters
from which to sample.

It is sensible to write and test a s1mulat|on using simple parametnc
distributions such as the uniform’ or the negative exponential. Neverthe-
less, it is essential at an early stage in the project to ascertain the type,
quantities, and reliability of data that are ‘already available and the an-
alyses that will be needed. Adequate data-collection exercises and sur-
veys can then be established in good time. gl

There will undoubtedly be dependencies between enuty charactens-
tics, distribution data, and other factors external to the system being
simulated. Considerably more data will be needed to study these than to
examine the distributions and characteristics under assumptlons of in-
dependence.

Decisions also have to be made between using parametric dnstnbu-
tions and frequency histograms. With enough effort, a parametric distribu-
tion can be found to fit almost any set of distribution data. However, if a
distribution fails to fit one of the common distributions described in. this
chapter, it will probably be quicker to sample from the frequency histo-

gram. The penalty for this is the need for additional computer storage for -

the frequency data in the simulation program. Moreover, there is often a
problem with the distribution tails where very little data may be avallable

. The Chl—squared distribution is very useful for testing’ whether data
comes from ‘a particular_distribution but there must be sufficient data-
points to obey.the: Chl-squared rules. There should, for-example, ‘be at
least five data points in each interval. For more information consult a stan-

~ dard statistics text such as Freud and Walpole (1980). For practical work, it
- is a good idea to use one of a number of .commercially avarlable distri-
_ »butnon fitting packages such as UNIFIT (Law and Vincent 1986).

“+There are no srmple rules for estlmatmg the.amount of d ta necessary :

' ate_to a’continuous . dlstnbutlon Where «data. 1S, Ihm the. dlstnbution
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Chapter 1 explained how to set objectives and plan the simulation in
close co-operation with management staff. The development of the simu-
lation structure is an interative process which is influenced by the inter-

views with management staff and the data analysis, as well as the later _

stages of simulation development such as validation.

4.9.1 Datasources

All organizations collect large quantities of data for day to day manage-
ment and for accounting purposes. Time and motion studies, for example,
provide extremely detailed data. Furthermore, it is quite common for the
same information to be coliected by different individuals or groups for dif-
ferent purposes.

Those needmg data for simulations will need the co-operatron of
management in order to gain knowledge of, and access to, these informa-
tion sources. They must also expect to have to do a certain amount of de-
tective work of their own to find out exactly what is available. It may be
possible to check the accuracy of the data by cross-checking information

from different sources. However, this can become a time -consuming red

herring. If the data collection is already computerized, this can save a
considerable amount of time. The main decision to be made is whether the

data is good enough for the purpose or whether a new data collection

exercise will have to be set in progress.

4.9.2 Data collection

Where the existing data sources are madequate there are two main optrons
for acquiring the data:

(a) mountmg a specxal data-collectron exercrse or
(b) acquiring parameter estimates.

Data collection ‘can be extremely time consuming and may also present
difficulties of an internal political nature because it will almost certainly
be necessary to involve local staff to make the necessary observations. It
is essential, therefore, to consult fully at an early stage with those who
commissioned the srmulatlon both to agree the costs and to determme the
' Iogrstlcs
Parameter estrmates should be used where the costs of 3 acqurrmg the
data outstrip the: percerved benefits. The estimates should come from well<
informed people in the orgamzatron and cross-checked with management
ustaff The sensitivity ‘of the simulation to these estimates can be tested in
‘ the srmulatron usmg techmques descnbed in Chapter 8 -

- ments are sampled from the t'ollowm

Exemlses e . g

4.10 SUMMARY

Simulations take samples from distributions in order to provide realistic
activity times and decision criteria. : Pseudo-random number generators

- provide streams of numbers in the range (0, 1). In a good random number
~generator these numbers appear to be independent of each other, have no

detectable pattern and each is equally likely to appear anywhere in the
range.

In the inverse transform method the random number is set equal to
the inverse of the cumulative distribution, to sample a number from the
distribution. This principle is used in sampling from frequency histograms,
the exponential distribution and the Poisson distribution. As the cumula-
tive Normal distribution has no analytic inverse, other methods have been
developed. The Box—Muller method is described in this chapter. A sample
from a log Normal distribution uses a transformation of the parameters
sampled from a Normal distribution.

There may be many different distributions in one simulation. Deci-
sions about which parametric distributions to use, the parameter values,
and the frequency histograms must be based on collected data and infor-
mation from those who are working on, or are knowledgeable about the -
system being simulated.

-

4.11 EXERCISES

In using Pascal_SIM for these exercises, note that Exercises 1-6 requrre only the

. routines for random number generation and streams. The remaining exercises

require these routines together with the ones listed in section 3.9. You should take

'partrcular care to read the instructions in Appendrx Cif you are lmplementmg the :

32-bit generator.

l \/ Check that your random number generator is workmg by

(a) printing out 50 random numbers from the first five streams, and
(b) simulating 360 tosses of an unbiased six-sided die- and plottmg the
- results as a relative frequency- drstrrbutlon SRR

2. Use Pascal to simulate the rafﬂe descnbed m Exercise 2 of Chapter 1 and
estimate the expected wmmngs

3. Estimate the profit for drfferent values ot‘ price in the followmg example

Proﬁt Normal (1000 100) « (Pnce Normal (20,2)) -—\;_ L
) . Normal (20000,5000 . .

- A speculator is consrdenng ;vhether to. buy a parr of lmked mvestments (r e., -~
.~ he can invest in neither or both). The: exp_ected pa_y_—offs from the two.invest- -
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(a) Normal with mean $100000 and standard deviation $70000,
(b) Negative exponential with mean $150000.

respectiv_ely'.’Write a Monte-Carlo simulation to provide an estimate of the
" total payoff from the two investments and log the results to a histogram.

L

6 vte 6

Figure 4.7 Area of shape in Exercise 5

(§j  Write a program to find the area of the shape shown in Fig. 4.7 using a

Monte-Carlo simulation. Calculate the exact area of the shape and estimate -

the number of samples necessary for your simulation to provide a good
" approximation to it. Does-the use of different random number streams affect
-.. this number? : :

”6) “ Write an additional procedure for Pascal_SIM to sam_ple from a histogram.
h " Test the procedure on the histogram shown in Fig. 4.3.

/ 7) - Amend the simplé hospital system (Chapter 3, Appendix 3.A) to, sample
"/ .. random arrivals, with an average interarrival time of six hours, and sample
: the lengths of stay from a log Normal distribution with a mean of 60 hours

- and a standard deviation of 20 hours. S :

-( 8} . Bank System. Look at the data in the case study at the end of Chapter 1
' (Appendlx 1.A.1) and do the following: o

(a) fit a negative exponential distribution to the customer arrival data
(b) fit distributions to the overall servnce-tlme data, the Till 2 data, and the
service-time data excluding Till 2; -

(¢) substitute sampled values in the cause statements in the program_ o

... developed in Exercise 4 of Chapter 3;
o (d) suggest what additionat data you would llke to collect from the banl\ in
-order to snmulate thls system sattsfactonly : o

Exercises _ ' 83

(c) adapt the program developed in Exercise 5 of Chapter 3 to sample
arrivals from the negative exponential distributions.

(d) identify what other data should be collected in order to meet the
. objectives of the study and suggest how this should be done.
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Collection and Analysis of
Results

Data may be collected from any activity or queue in any time beat of a
simulation run. There is a tefiptation, therefore, to produce mountains of
>utput. Although the objectives of the study should determine the exact
selection to be made, most simulation runs should produce a few digestible
-esults which can be summarized using graphs or histograms, or in simple
:ables. Statistical analyses, such as factor analysis and the estimation of
>onfidence intervals, both of which are described later in this chapter are
ilso helpful.

5.1 RESULTS FROM DIFFERENT TYPES OF SIMULATIONS

“hapter 1 listed three purposes of simulation modelling, each of which has
lifferent requirements for the collection of simulation results and therr
inalysis.

(a) Comparison. Simulation runs are designed to compare the effects
of changing the values of a decision variable, such as an arrival
rate or a resource level. Values may be plotted and compared by
eye or by the use of statistical hypothesis testing techniques.
Interest will centre on an assessment of the difference between
output measures from two or more runs.

(b) Prediction. A simulation for predictive purposes will provide
averages or trends in the same way as a simulation for compara-
tive purposes. However, it will be important to obtain absolute,

. rather than comparative, parameter estimates of distribution
-.values and to evaluate changing trends over time. Several runs,

~-each with dxfferent sets of random number streams, are hkely to

“+..be needed.
(c) Invesugatton. A s1mulat|on set up to mvestlgate how a system

L works should provrde mformauon about changmg resource use

84
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" and queue lengths with txme A continuous display. of mforma—
tion while a simulation is running is particularly helpful, high-
lighting particularly long queues, the underuse of resources and
other problems. The use of continuous displays for validation
“and to assess how a system works will be discussed in Chapters 9
and 10. The accuracy of statistical estimates of values is of much
‘less importance.

The simulation objectives determme the output measures to be collected.
For comparative and predictive simulations, data must be captured while
the simulation is running to provide frequency distributions, estimates of
distribution parameters of values, and to display trends over time. ‘Snap
shots’ of queue values, entity numbers, or resource use at particular points
in time may also be useful.

5.2 STEADY STATE AND TERMINAT‘NG SIMULATIONS

A variable is in a steady state if its average value remains the same over the
time period under consideration. A simulation is in-a steady state if all its
queues are in a steady state. Most simulations will attain a steady state if
they are run for a long enough period of time. : _
'Some simulations describe systems which operate over a short period -
of time, such as the repair shop simulation which takes place over a single

_eight-hour shift. A more dramatic example would be the simulation of the

launch of a rocket, which could never be expected to attain a steady state.

' These are called terminating simulations.

-Figure 5.1(a) shows the behavior of parameters in-a steady-state-

" simulation which, when started without any active entities, attains stability

after an initial run-in period (sometimes called the initial transient period).
It is only of interest while it is in its steady state. A terminating simulation »
may also attain a steady state, but in this case the whole duration of the
simulation, rather than just the steady state, is “of interest. Figure 5.1(b)
shows the typical pattern of queue behavior in shops and banks, which
starts at zero, attains a steady state, and then declmes agam to zero at the

end of the day. -
" Not all simulations, however. wnll be termmatmg or steady state

' Queues may fail to reach a steady state in the chosen duration of the simu- -

. lation. Moreover, the simulation may not have a natural terminating point. -

- For.example,: Davies {1985b) describes a non-termmatlng simulation.of -

* " patients with' chronic renal failure who increase in number with i mcreasmg L
D :?queues for kldney transplants, throughout the sunulatlon run ol
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itput
“rameter

A

state. If results are collected over the whole duration of the simulation, the
“run-in period will influence the aggregate results and corresponding para-
meter estimates. This initial bias can be offset, to some extent, by running
the simulation for a very long period of time. S

N For accurate results, the simulation should be in a steady state during
the whole period over which results are collected. This is done in one of
three ways. ‘ ‘ ' ' :

(a) The simulation is started in the steady state by priming it with

“information from the ‘real-life system’, including the number

- and types of entities in activities and queues. All the entities

: , that start in activities must be put in the calendar and given a

- ' _ time at which they will end their activities. If the service time

has a negative exponential distribution, then the time to end the

. _ activity can be sampled in the usual way. For other distribu-

0 - : . tions, it is more accurate to sample from the conditional distri-
(a) © Time 7 - bution (see Chapter 4). - S

- : ' _ S (b) The simulation is run up to the steady state once and its finishing

wtput ' : S ' - point used as a starting point for all subsequent runs. = -

arameter - . . _ . R (c) A simulation is run from empty up to the steady state. Statistics

A A ’ are collected from the simulation once it has reached a steady
state. Any results from the run-in period are rejected.

In using any of these methods, care has to be taken to ensure that a steady
state has been reached. Moreover, with the first two methods.there is a
danger that the simulation is biased by a very abnormal set of starting con-
ditions. There is also a danger that a simulation, which starts in a steady
state with one set of values for the decision variables, may not startin a
steady state if those. values are changed. The third approach is thus gen-
erally the most reliable. .~~~ - . e C L

5.2.2. .‘D:e.t"ectil‘l'g stoady étate

b T Time Steady state can némgli} be adequately detected by use of the cumulative
: o R ' moving average method (Gafarian et al. 1978).. Here, cumulative means
* for each output parameter aic generated at discrete-time points, and plot-

. ted. As;the system réaches a steady state, the cumulative moving average

-+ for each parameter will tend towards a constant. The point at which the ..

ched can be detected by eye, or by the.use of simple statis-
atpit parameters may behave differently,‘the -

Figure 5.1-.. Typical behavior of parameters, such as dileue lenétli in . .

L

hestarting -conditions, .

ce_the time taken to Teach
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time interval width must be chosen SO that there are a reasonable number

of observations. This can only be determined by trial and error.

In most’ snmulatlon_ packages, including Pascal _SIM, the cumulative
moving average can be calculated from_statistics recorded after each
chosen time interval.-Chapter 6 shows how. to determine the steady state
for the hospital simulation. :

5.3 QUEUEING THEORY AND SIMULATION

Discrete-cvent simulation models may be regarded as complex queucing
models. The results produced from a queueing theory model are, there-
fore, also of interest to thos& using simulation models. These include:

(a) queue lengths,

{b) waiting times in queues,

(c) numbers of entities in the system,

(d) throughput time (i.e., time spent by entmes in the system)
(e) utilization rates or res?urce use.

These results may be weighted and summarized to produce costs.

- Systems described by queueing models are assumed to be in a steady
state and therefore one or two parameters may adequately describe the
results of interest. Simulations which do not describe steady-state systems
are likely to be much more complex in structure than queueing models and
many more results may need to be collected and presented.

Unlike queueing models, results from simulations are summarized
from individual measurements recorded at the time of each event. More-
aver, the measurements are dependent on the random numbers produced
in any particular run. The collection of data from a simulation program is
ikin to the collection of data from activities in ‘real life’ where decisions
ibout the type and accuracy of the required results will influence the period
>f time over which the results are collected. However, simulations have
‘he advantage that repeat runs can be made, with different random number
itreams, to provide more accurate estimates of results ' '

5.4 COLLECTION OF RESULTS

l‘he‘ ;pes of results that a stmulatnon may produce are as follows

R -vtlon runs

(a) -The dlstnbuttons, means, and variances of. response vanables -
.~ over time (such as the changing queue length and resource use) -
i provnde partlcularly useful mformatton about steady state snmula- '

Co/lection"'o'fReSU_ITS' . : A . Cr 89 s

(b) Time series plot and analyses are, on the other hand only of
interest for variables which vary systematically during part or
whole of a 51mulduon run. They are thus used in non steady state
simulations.

(c) Single variables taken at a ‘snap shot’ in time (such as queue
lengths and counts of entities) or results which summarize mea-
surements over a whole run, such as total or-average resource
use, may be of interest in steady state or non steady state

simulations.

Simulations must record the statistics in histograms or tables as the simu-
lation progresses.

5.4.1 Waiting times of entities

The normal place to record the waiting times of entltles in queues is at the
beginning of a conditional event when the entlty is removed from the
queue, and before it is put into the calendar again. -

To calculate the waiting time, the start of the wait must be recorded.
Fortunately, this is done automatically in a simulation program because, if
the entity has been in the calendar, the time attribute on the entity still
has the value of the time when the last bound event took place; this is
usually the time that that entity was put in the queue. If the entity has not
been in the calendar, then it has almost certainly been in the same queue
since the begmmng of the simulation and the time attribute has value zero.
The time spent in the queue is therefore the present time’ minus the time

on the entity clock.
5.4.2 Tlme-weighted data

Dtstnbuttons of queue lengths and resource ‘use should reﬂect not only
their values when they increase or decrease, but also the time for which-

k.___.,.,...c____ e

" they maintained each of those values. This is. done by the use of time-

weighted observations. Immediately ‘before an entlty is added to or re-

moved from a queue, the simulation records the resource use and/or queue -

- length, x, and, in addition, the time lapse, f, since the last recordmg was

made. The product at, glves the ttme-werghted observatlon

.4 3 Ttme serles data

Ttme series show the trends in response .variables: over. ttme ln graphs

. _the values may be plotted agamst txme Anfo matlon 1 ust-'therefore, be

_.c
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available about parameter values at regular time intcrvals l-lowever,—

“The most efficient technique for recordmg these data dcpends on the

‘ fact that evcrythlng in- the simulation remains completely stablé between
discrete events. The program can thus collect data at the begmmng or end
of each discrete event.and make up the data relatmg to the missing time in-
tervals, in retrospect “The way in which the ‘missing’ data can be recorded

.in hlstograms is descnbed below.

5.5 HISTOGRAMS -

s . ¥
A histogram provides a visual representation of a frequency distribution. It
may either show the distribution of output variables during the simulation
run or else the trends of particular variables over time. Either type of his-
togram may be displayed while a simulation is running or used to sum-
marize results at the end of a run. '

5.5.1 Frequeney data

The x-axis is divided into cells of equal width and must provrde for the

maxrmum measurement that we are likely to encounter in the simulation

(e.g., the largest queue length). When a measurement is made at a parti-

cular pomt m the simulation it will fall i in the range of one of the cells on the

x-axns
For observations that are not time-weighted (e.g., waiting timez in a
- queue), a value of one is then added to the frequency value of that cell.
- This type of histogram is called a state histogram. ...

For time-weighted data, the time since the last recordmg is added

to the cell. Figure 5.2 shows the frequency distribution data of the. length of
- a partrcular queue using tlme-welghted data. R wee

ln Fig. 5.3, the x-axis is drvrded into cells of equal w1dth each representmg :
: 'txme interval: The length of»the ams must, thus provxde for the total .

I INFOURKMATICA ,

Histograms N U
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Figure 5.2 : T'me-wwghted hlstogram showing dlsrnbutlon of queue
‘ = Iength in stmulatlon run

mterval wxdth then trunc (t,,/t) is. the number of time mtervals since the
begmmng of the simulation. If m is the result recorded at trme t,, 1, then m
is recorded in all the cells of the hlstogram thus BT
oy
"--trunc (1)

e (57 3). e (2 2)

: ‘Flgure 53 shows a hlstogram representmg the trend in the queue length

5.5.3 ~Histograms in Pascal_SIM




 Collection and Analysis of Results

: Queue
' length
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. Figure 5.3 Graph showing trend in queue length over simulation »
- run

) pe
; histogram = record
cell . :array [cellLnum] of real; ,

count, width, base, : .

total, sosq,

min, max, expended :real;
state ‘ = “zboolean;
end; ' :

! where, using the notation that f; is the ith frequency value to be recorded
o and x;jis its value on the x-axis, the various fields are:

(a) cell is used to'store the f; values in the’ histogram cells, where the
cells are numbered from one up 10 a maxrmum number of
max_cell_num, .

" (b) count is the total of the frequencnes (fi ) in the hlslogram Zf), -

’ (c) width is the width of each cell in the hrsto&,ram
(d) base is the minimum value on the x-axis, i.e., the base value,

B, '
(f)‘sosq is the total of f, multrphed byc\,—squared (Ef,x,z), L
®) -amin is the mmrmum recorded Xi; ‘value, ’
.(h) max is._the : maxrmum recorded x, value

'(e) total is the total of each frequency value () multlphed by Xio - maximum number of characters in the ‘Theighit

~set at 80,

" 93

H/stc‘:_)g"ra'ms L

0} expended gwes the last time at which a rccordmg was made (for
use in time-weighted- ‘histograms),

( j) state is switched to true for a state or time series histogram and to
false for a trme-werghted histogram.

Histograms are. set up in the: jnitialization phase of the srmulduon using

procedure make.hrstogram (var h histogram; cell_base,
. ‘cell_width :real; state boolean)

where h was prevrously declared as a histogram. The variables cell_base
and cell_width set the base and width fields of the histogram respectively.

Max_cell_num histogram cells are then established, with the first and last
cells for underflow (i.e., less than base) and overflow values (i.e., greater
than base + (max_cell num — 1) « width) respectively. The remainder of

‘the histogram fields are initialized to zero using:

procedure rwet_histogram (var h. 'histogram); .

which is also available for use in the simulation program Data are logged N
in the hrstogram usmg . .

procedure log_lnstogram (var h hlstogram x,y real) W’g

where x is the drstance along the x-axis and y indicates the value to add to" '
the relevant cell in the hlstogram Then: o

(a) fora state ‘histogram, y is added to the relevant cell; . el

(b) for a. time-weighted histogram, ‘the relevant cell is updated by. o
(tim“expended) [+ .i.e., the time for whrch y-' has persrsted and )
expended is then set to. trm

(c) for atime series histogram, x is the number of time mtervals since
. the start of the simulation and yis equal to the vanable value
. (e.g.;'queue length) e :

For any type of histogram, these values of X and y are used to update the
appropriate cell, count, total, sosq, max and min. s

: Hrstograms are prmted out on thelr sides wrth astensks to represent’
frequencres usmg e el A

procedure pnnt_.hlstogram (var pr texl h hlstogram, ‘
~-len max_strmg_length)

The variable pr mdrcates where the output ‘should be wntten Output t '
the default output stream can be obtained by setting pr 16 o ut den is th

of the hrstogram wrth a maxmiufn--value of max_strin:

~The’ procedure a!so calculates -and prints
standard devratron and mrmmum and maxin
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Queue length shown as a time weighted histogram.

“means  4.04 varfances  9.84 sd = 3.13
Cmin=- " 0.00 max= 10.00 ‘ '
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Figure 5.4 Histogram in Fig. 5.2 represented as output from
' PascaLSlM )

histogram cell values For a state hlstogram the sum of the cell frequencxes
(i.e., count) is also prmted The histogram is fitted to the width of the page
. by ﬁndmg the maximum cell value and scaling it to len. Each cell of the
histogram is pnnted out with a number of asterisks in proportion to the
frequency value in that cell: F;g ¢ 5.4 shows how the histogram shown in
Fig. 5.2 would appear, with Ier/x set to 50; Figure 5.5 shows a PascaL_SlM
hlstogram representmg the tlme series in Fig. 5. 3

5.6 'jCOLLECT 1ION OF RESULTS FOR F,UﬁTHER ANALYSIS

Results may be needed for further analysis for statistical tests, summaries

of several simulation runs, graphical displays or to provide costings of dif-
ferent simulation outcomes. The advantage of recording detailed statistics

. as the simulation progresses is that decisions about data analysis can be left
until later. The disadvantage is that the recording activity will slow down 4
the progress of the simulation and, without proper selection, can provide a
“large mass of. rather indigestible-statistics. The main task of selecting and
. deciding how to present the mformanon can now take place after the simu-
-._-,lauon run- ratherv than before - T

N 9
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B
-
|
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Queue length over time

processed = 113

mean = 3,40 varfence = 10.90 sd = 3.30
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Figure 5 5 - T'me series in Fig. 5.3 represented as output from )
: - Pascal_SIM :

and stored either at each time beat and, whéi'e' af)p,o"pi"i v‘e _: "weighted by
the time lapse between beats. In order to save computér memory where it
is 1nsufﬁc1ently ]arge the values may have to be wntten to dlSk on each

5 6. 2 Using informatmn

Informatlon may :be. prcsented in tables-or hlstograms usmg Sim le; for-r -
matting instructiofs and the proccdures descnbed in lhe last scctlon '-'For, E
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anything more sophisticated, it is sensible to send the information into a
specialized statistical, graphics or sprcadsheet package. A well-documen-
ted packa;,c will provide comprchensive information about the format in
which it is prepared to accept data. .

5.7 ANALYSIS OF RESULTS

The techniques for the analysis of simulation results are based on statistical

theory and methods. Some recaders may wish to use this section in conjunc-

tion with a textbook such as Freud and Walpole (1980).
T T e

¥

5.7.1 iIndependent samples

from a stochastic simulation run are always samples from distri-
e results are referred to as responses and may be the averages of
values collected over the the whole or part of the run, or may be single
measurements such as the length of a particular queue at the end of a run,

Because responses are samples from distributions, they may vary consider- -

ably between runs or between different parts of the same run. The average
of the. distribution of responses is called.the distribution mean and is
denoted by p. The extent to which responses vary may be measured by the
standard deviation, o, and the variance, o’

- Where a response is the average of values collected from a steady- 1
state simulation (such as an average queue length or average resource use),
one single response can be used to estimate the distribution mean. The |

_ longer the period over which the results are averaged, the better the estr-‘
mate is likely to be.. However, several mdependent responses will be;
needed in order to estimate the distribution variance.

‘Terminating and other non-steady-state simulations mvanably need
several samples of respo s to find the drstnbuuon mean as well as the
standard deviation an nee. U4l

- Most statistical -analyses of srmulauon experrments, therefore Te-

qurre -several independent responses x.,. ,__x,, The, samp_les,_ X;, are -

obtamed as fOllOWS' o

(a) Fora termmaung srmulatlon n dlfferent runs of the entlre simu- .
. lation can be used to generate x
.- independent yandom number stre
independent estimates of parameters -Sometimes,: only part of
the duration of the simulation is of interest, so results will only be
recorded over that trme Each run: rs called a repl

For each run, different -
< are > used,  producing

g

1

N AJA bkl

g3 -

. I

o

%;Qhalyéis"bf_._ﬁe‘su/ts SO

~ an interval surrounding the sample mcan wh ch hav" :
: of mcludmg the dlstnbutlon mean

a7

(b) The method of rephcatrons is also used for steady-state simula-
- tions. However; each sample is only taken from the steady -state
penod and not from the run-in penod : o

(¢) Fora steady—state srmulatron lhat ‘t@kes a long time to reach a
- steady ‘state, the method of replxcatlons can be- expensive in
computer time. An altematlve is the method of batch means,
where the simulation is- executed through the ‘run-in- ‘period
once, and then values ofix; ‘are obtained from-~ sticcessive
time periods of equal length:
advantage that considerable correlation may exist between suc- 3
cessive samples. :

(d) Where we are interested in measurements over specific penods
or at specific instances, the regenerative method is useful. For
example, suppose in a manufactunng simulation we are interes-
ted in the queue length at a machine when it breaks down. A
breakdown can be considered a regenerative point: an indepen-
dent sample can be obtamed rmmedrately after each breakdown

y I

5.7.2 Means and variances

The parameters hkely to be of most interest for summanzmg results from P \

simulation runs, are the means and variances. If x; is the 1th response from
n replications or batches, then the drstrlbutlon mean, p,, is estlmated by:

. racy of the esumates of the mean. If the estlmate is the sample mean ofa
-set of responses the conﬁdence Imuts of that estrmate gl ‘

', n. The method has the dis- |,
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The variance of the sample mean _with sample size, n, is o2/n. From
(5.1) thisis esnmdtcd by

._s;2= i;E’XiZ | l(bw»»dml"&*w

(n—1) - .
" o la W",‘?S

The standard deviation is thus estimated by:

If the responses have a No¥mal distribution, then the sample mean has a
Student’s r-distribution with n — 1 degrees of freedom. However, if the

" number of runs, n, is large (typically greater than 20), then by the Central

Limit Theorem, the sample mean will be Normally distributed, regardless

.of the distribution of x.

. .. ‘The 95 % confidence limits of the sample mean can be determined
from Student’s t-tables for small sample numbers. For larger samples which
use the Normal distribution, the 95 % confidence limits ar=:

1965

5.7.4 - Predictive technir]ues

For non- terminating simulations which do not reach a steady state, it is

helpful to measure the mean, £,, within a time interval, t, and plot the

sampled mean %, against 7 to give a picture of how the results are varying
with time. Several responses can be averaged from different runs to give a
more accurate picture. Multiple regression, and other techmques may be
used to fit curves to these values. However, the pattern of %, is often quite
complex and may, for example be cychc whlch can make analysrs drfﬁcult

. f"Comparatrv, srmulatrons are desngned to test the effect of: changmg-decr- o
’ SIO vanables Stanstlcal hypothesrs testm&, techmques are. useful for deter-*‘ L

- e | RO i = Y—

Ana/ysis of Réquts

mining whether responses from simulations wrth drfferent decrsron variable
values are statrstrcally significant.

- Suppose x is the response variable, wrth mean j,, from the ﬁrst set of
simulation runs and y is the. response -variable, with mean Wy, from the
comparison set where the decrsron variable has been changed, then we are
testmg the hypothesrs that p., = u,. In statistical notation:

CHp:p, - ny =0
Hl P — p‘y_;e_o_

If we do n runs with the decision variable set to one value and repeat
the runs for the changed decision variable, then the sample mean of the
first set of responses is ¥ and of the second set of responses is y. The test is
based on the difference between X and y and the number of standard devia-
tions it is away from the mean. The estimate of the standard deviation de-
pends on whether the random number streams were matched between
pairs of comparative runs. If they were, then x; and y; cannot be indepen-
dent and the matched pairs ¢-test in which x; — y; is treated as a single

. variable, should be used. If they were not, then x; and y; may.be assumed

to be independent, and an appropriate test is the two sample t-test, (usually

~ known simply as the #-test). For large samples, the ¢-distribution can be

approximated, t2 the Normal distribution. Details of these tests can be

. found in most standard stausucs Donks such as that by Freud and Walpole

(1980).

5.7.6 Factoranalysrs

Factor analysrs is an important statistical techmque for use in analysmg
simulation results. Different decision variables which may be of interést
include entity arrival rates, the mean time it takes to complete an activity,
or the probabrhty of takmg a particular branch. These decision variables
are factors. Clearly there may be very many factors in a complex simulation.

In order to assess the effects of changes in the factors on the simula-
tion output, the simulation is run with different factor values, called levels.

- Factor analysis is ‘used to. measure the.extent to which different
factors, individually, and interacting with each other, affect simulation
output.. The complexity of the analysis increases exponentially with-each
additional factor that is considered because if, for-example, there are n

. -factors in which we are interested and factor i is measured at m; Jevels
: -then the number of drfferent possrble combmatronsvrs s

"V“'iThrs complexny rs further mcreased rf more than one output measure is




" Factor analysis was originally developed for measuring the effect of
varying factors in real observable situations.‘ For example, in an experi-
ment to measure the rate of growth of grass, factors which might be varied
in a systematic way are the proportion of rye grass in the seed and the
quantity of fertilizer given. The random effects of weather, number of
worms and other influences woulid be unpredictable and more or less un-
controllable. However, in simulation we have considerable control over
the random effects and use that control to reduce the variation of the
output

- There are therefore several 1mponant considerations in using this
techmque in the analysis of simulation results which distinguish it from its
use in real situations. First, each different output measurement will require
a different analysis. Howevar, output measurements are likely to be depen-
dent on each other and interpretation is thus confused. If one measure-
ment such as cost can summarize the results from the simulation then only
one analysis will be needed and the task is simplified.

Second, the differences between results from comparative runs in a
simulation is tightly controlled by giving different distributions in the simu-
lation different random number streams and by the use of variance reduc-
tion techniques (see Chapter 8). However, the theory behind statistical
tests used in factor analysis assumes either that the results produced at the
different factor levels are independent of one another, or that they are
matched on all factors apart from the onés of interest, which vary indepen-

dently of the othe" . 'either of these is entirely true for most simulation
PIO

In conclusion, therefore, factor analysis is suitable for simulations
with many factors, each to be tested at several levels. It is time consuming
and likely to be inconclusive because statistical tests, normally apphed to
the results, can no longer be used. However, it is valuable for giving a

picture of the effects of factor changes. Readers interested in pursuing this

further are recommended to refer to the book by Law and Kelton (1982).

5. 8 SUMMARY

A srmulatron can. be termmatmg or. steady State, or in some mstances
nexther._The start of a steady state can be detected usmg the cumulative
movmg average method...

- :Parameter values that are of partrcular mterest in a srmulatlon are
queue lengths, waltmg times in queues, numbers of entities in the system,
the time spent. by entities in the system, ‘and resource utilization. These
data are collected for presentatron ina hlstogram or for stanstlcal analysns

e

Pascal_SlM provrdes facnlmes for presentmg state and time-weighted
histograms, €ither to show the distribution of particular parameters, or to
show their trends with time. Results which are to be analysed statistically
should be collected from several simulation runs, or batches within runs,
and transferred to a statistical package for further analysis. Techniques
include the use of confidence limits, tests for the difference between means
and factor analysis. :

5.9 EXERCISES

If you are building up the parts of Pascal_SIM as you need them, you will now need
to include the histogram routines. When you have implemented these, you will
have implemented all the routines in Pascal_SIM necessary to develop non-visual
simulations (see Appendix D).

1. List three systems that could be modelled as terminating snmulatlons and -
three that could be described as non-terminating simulations. In each of the
non-terminating simulations explain whether you would expect to achieve a’
steady state anr'_ if so, estimate approximately how long rt would take.

2. In the &~ .atal clinic example (Exercise 3, Chapter 2):

(a) rdentlfy the objectives and the relevant output measures of the snmula-
"~ tion model;
(b) describe what histograms should be used and classrfy them as: state,
time weighted, or time series;
(c) if there were no limits on computer time, or your time, describe the
analyses you would perform with your simulation program.

3.  In the srmple hospital system, using the code developed in Exercrse 7,
- Chapter 4, carry-out the followmg tasks. ; :

(a) Find the steady state using the cumulative averages method Try using
different random number streams and vary the average length of stay
from 48\ -)to 120 hours to see. how the length of the run-m penod '
changes )

(b) Provide histograms of results collected dunng the steady state
showing: queue length, waiting times for admlssron and the trend of
queue length with time.

(c) Design a series of replications to estlmate the average queue length

. and thc confidence llmrts of that average v

4. - Some srmulatron packages are dwgned to collect alI stat.lstlcs that are hkely
. to be of interest for any simulation program written with that package. The

.. data are written to a file so that they can be analysed at a later date, If you

.- were asked to design such a package. explam what statistics you would collect

- and when and \\here in the program Q. ) "n the events or the executlve) you
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would pick them up.'Explain how you would organize the file or files of data,
bearing in mind that the same program logic would be used for any size or
type of simulation model.

" Bank System (Appendix lAl) Plan the output analysis in the following
‘way: ' ’

(a) identify the appropriate output measures,

(b) determine what histograms should be provided,

(c) identify the decision variables and suggest what analyses should be
performed on several replications of the simulation program.

Traffic Light System (Appendix 1.A.2). Plan the output analysis for this

system in the same way as for the bank system in Exercise 5 above.

v
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Hospltal and Repalr Shop
Case Studles

Previous chapters have provided enough background knowledge for devel-
oping a simulation program. This chapter presents working simulation
programs for both the hospital and repalr shop systems and also glves some
example output. . R

6.1 SPECIFYING A suMULAﬂoN sTuDY.

Chapter 1 showed that producmg arelevant and workmg 51mulatlon model
is not simply a matter of writing the code The structure of the simulation
model and of the dlstrxbutxons used are derived from the- followmg

(a) Objectives. Clear ob]ectxves should be laid down prior to the start
" of the modelling process. Such' objectives- may be loose and
subjective (e.g.; [investigate the pessibility for improved system
performance), or may be very detailed (e.g., invéstigate the

. effect of increasing the number of machmes from 2 to 3) “The
* objectives of the study determme s :

(i) : the necessary - decision vanables, T T 5

(u) whether visual output (see Chapter 9), a detailed statistics
- collection, or a mxxture of the two is more appropnate
~‘and Do S e

(m) what output measures are 1mportant

(b) Assumptzons "To model any system, we. ‘need to make assump-
;. tions aboutthe: system behavior. Some. assumptlons are often
e accepted implicitly in sxmulatlon ‘modelling; for instance; that the
< system under study is non- -adaptive (e.g.; doctors do not work at
i faster rate’when's a system becomes busner) “While frequently
; 1 chx li s greatly- reduce
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Also, we often make explicit assumptions for a particular
application. Examples of this include assumptions that a
transient system always starts and finishes at exactly the same
predetermmed time, or always starts from the same state (e.g.,
in a simulation of a bank, it may be assumed that the bank always
opens at 9.30 a.m. with no customers waiting for it to open).

" Both types of assumption should be documented. The pro-
grams should have a flexible design to permlt their relaxatlon ata
later stage of development.

(¢) Responses. Chapter 5 discussed the types of parameters and
measurements that are most likely to be of interest. If, for in-
stance, we want to measure the trade-off between the provision
of a particular resource (e.g., beds or machines), and the time
that transient entities (e.g., customers, patients) spend in the
system, then summarizing statistics for resource utilization and
entity throughput time must be collected. -

(d) Decision variables. The objectives will indicate which factors
should remain fixed during a simulation run and which factor
levels should be varied. For example, in the hospital system, we
may want to vary the number of beds whilst keeping the arrival
rate fixed. These variable factors, called decision variables (see

- Chapter 1), should be made easy to vary. They should be read
. in to the program at run time, or possibly declared as constants,
but certainly not buried in the program as fixed values.

Moreover, a simulation program obviously needs appropriate input data,
particularly activity and arrival distributions. We will assume here that data
collection and distribution fitting (or distribution assessment in the face of
limited or no data) have been carried out. However, it should be noted that
this task can be one of the most difficult. and most expensive aspects of
simulation modelling.

This information, together with the activity dlagram constitutes a
spec:ﬁcatlon from which the simulation pseudo-code and program can be
written. Typically, developing the specification can be as time consuming
as developing the program and the data collection can take longer than
both of these. . :

B 2 PROGRAM FOR HOSPITAL SIMULATION

| 621 Speclﬁcaﬂon e i e |

_ «The hosp:tal system here is a snmphﬁcatlon of the -activities of a ward of
E beds an operatmg theatre, and the systcm response to patlent arnvals

_Ttme for post-operative slay

. Program for Hospital Simulation -~ ’ AT © 105

Patients arrive for a short hospital stay (hospital-stay-only tj:itiehts), or for
an operation. When beds are not available, those requiring only a stay are

- given preference to the patients requiring an operation; they stay and then

leave. Patients requiring an operation must have a pre-opérative stay, then
an operation followed by a post-operative stay. They may have to wait for

a bed, and then for operating theatre time following their pre-operattve

stay. -

Table 6.1is an expanded vers:on of Table 1.1. This, together with the
activity flow diagram in Chapter 2, is the full specification. There are two
major- assumptions that need explaining.

(a) We are describing patient arrivals as a Poisson process with a
constant average rate which is an approximation, because in
reality most hospital patients are scheduled to arrive during the

Table 6.1 List providing specification for hospital simulation; used
S with actlwty-ﬂow diagram in Chspter 2

Objecnve
To investigate the effect of bed and operating theatre provision on patlent waltmg
times.

Assumptions :

The system runs continuously, with no breaks for weekends hohdays, etc.
Arrivals are subject to a Poisson process evenly distributed throughout the day.
Hospital-stay patients are admitted in preference to patients requiring operations.

Decision variables
Number of beds. :
Opening times of operating theatre

Responses

Number of each type of pat:ent waltmg tobe admttted

Utilization of beds. :
Waiting-time for operation, followmg completlon of pre-operatwe stay

Activity durations :
Time between hospital stay arrivals: »
negative exponential, mean = 12 hours.
Time between operation arrivals: ‘
negative exponential, mean = 6 hours. -
Time for hospital stay: : S
negative exponentlal mean = 2-5 days. R
Time. for pre-operative stay: . - : .
__ negative exponentlal mean =

g negatwe exponential, mean =
Tlme for operation: R :
+ normal, mean = 0 75 hour, standard de-\
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day. However, it provides a first step in the process of investi-
gating the effects of changing bed provision and operatmg
_theatre time.

*- (b) The system is being consrdered as operatmg contmuously, where-
‘as, in real life for example, theatre time may not be scheduled for
weekends and arrivals may not occur at night.

‘We are, thus, considering the system to be steady-state, and will
- investigate the effect of changing decision variables on steady-state para-
meters. In a full study, the effects of these assumptions would be assessed
as part of the validation process (see Chapter 8).

The most important measurements from the simulation (and this is
true in many health case simulations) are bed utilization and the lengths
of waiting lists. They give useful information about the extent to which
the number of beds and the availability of the operating theatre constrain
arrivals into the system. Another important measure is the length of time
that patients requiring an operation have to wait for one, following their
pre-operative stay. This wrll indicate where there is a shortfall of operating
theatre time. : .

- 6.2. 2 Program detalls

Together with the pseudo code for the. hospital, developed in Chapter 2,
-and the specification (compnsmg the activity flow diagram and Table 1.1),
‘we can start to develop the program. This chapter provides the three- phase

and event-schedulmg versions of the program The process v1ew versron is

consrdered in Chapter 12.

" The theatre can be scheduled for two types of event: the end of a
_ patlent s operation, and the time at which it closes. The pseudo-code in-
.. Chapter 2 indicates how this can be programmed. The entity representing -
the theatre is always in the calendar to determine when the theatre should '
be opened or closed. A Boolean variable showing whether the theatre is
: avallable or not is changed when an_operation starts.or ﬁmshes ‘(For a
‘. more elegant and general approach to handlmg thrs problem seé Chapter' :

iy

11)

Hrstograms must be declared and new values logged each time there
hange m B bound or condrtronal event :The’ wartmg trme fo' .an -
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6.2.3 Program '

The program is shown in Appendix 6.A. The decision variables are all
declared as global constants: the number of beds, the length of time the
theatre is open, and the length of time it is shut, which are called amount..
of_beds, theatre_open_time, and theatre_closed_time, respectively. They
are presently set to 20, 4, and 24. The time base of the simulation is hours.
The theatre is declared as a record thus:

var
theatre :record
body :entity;
open, available :boolean;
end;

where open will be true when the theatre is open, and available will be true
if there is no operation in progress. An operation can continue past the
scheduled theatre closing time, but no further operations will take place
after this until the theatre is reopened.

Notice that q4 is a durnmy queue, since there are no resource con-
straints on the post-operatlve stay activity. Thus the conditional event
start_post_operative_stay is superﬂuous the patient could be scheduled for
a post-operative stay within the end_operation bound event. However,

. keeping this separate, as was done with the pseudo-code in Chapter 2, has

advantages. Every activity is defined by a pair of condltronal and bound .
events, making the program easier to follow and modify. v
Histograms are declared to gather data from: the hospital-stay-only
queue, the operatzon-only .queue, bed utilization, and the-waiting time for
an operation following pre-operative stay. These are: ql_hzst q2_htst
bed_util, and op.wattmg, respectively. -

6.2.4 Run-in perlod

_ As the hosprtal srmulatron is to be treated asa steady-state srmulatron itis

necessary -to-detect the start:of the stéady state (the end of the initial
transrent period) to determine when to start collectmg statistics. :

 The detection .of the start of the steady state,’ usmg the .cumulative
movmg-average method as dlscussed m Chapter 5 is qurte, easy.to pro-




Parameter levels

Pfograhfobe‘spita_/Sirhblar[on P L e L 109

108 _ : , Hospital and Repair Shop Case Studies
19— » ' Table 6.2 Cumulative means for hospital output parameters. First
% Bed utilization mean is forﬁrsfeventaftersshou'rs (i.e., four days) of simulated
8 / A - time; means are then every48hours
17— : -
16 . A / Time . Hospual—slay * Operation-only .-Bed - -Operation waiting
1 / . ‘queue length _.queue length utilization _ © . time
14 96-30 000 T0-00 -7 - 10-14 892
13- 144-07 0-00 0-00” 1192 - 1106
S/ A
Y P L. - 241-33 021 -0-33 . -14- 10-
11 " | Wating time for 288-89 0-99 0-50 1594 10-94
10 an operation 33629 1-09 1-45 16:50 10-91
g . 384-00 1-09 2:12 16-90 10-91
433-84 1-12 275 - 17-29 11-12
8- 481-88 1-12 L 344 17-57 . 11-91
7 528-00 1-04 4-02 . 17-79 ) 11-53
6 576-28 099 4-52 - 1797 11-30
al | mp oo ommonm
. —— : L S 675-11 1- 5-2 ’ 18- 1-
4 [ 20mission for 720-00 1-02 562 . 1838, 11-86
3+ | » E | Snoperation 77153 1-03 576 1847 - . 1106
- , / | | e P 81609 . - 1.05 = 58 . 1857 . 10-69
/ : Waiting list for 864-00 - 1-05 : 5-85 18-65 o _ ©10-76
— hospital-stay- 914-14 - 1-06 - 573 - 18-69 - 10-44
oJ ; — , , | only patients %026 108 - 5.34 o T1866 0 0 1079
9630 19200 288-89 384- oo 481-88 576-28 675-11 771-53 864-00 960-26 ' '

..Time _ , .
6.2.5 Resul

- Figure 6.1 - Steady-state detection for hospital simulation using
-~ cumulative means In Table 6.2; graph was produced using Lotus

1-2-3 Followmg the run-in- penod the program runs for 14 snmulated days

Figure 6.2 shows the output statistics from a run. Theseé are based on a dif-
ferent set of random numbers from those used to determme the run-in
penod

The distribution of queue length for hospztal—stay-only patlents, with
a mean of only-1-17, has a large variance, as does the queue for patients
requiring an operation, which has a mean of 4-58. Bed utilization is 19-93,
all 20 beds being in use for 318 simulated hours of the 336 hours: of:. reph-
cation; 26 patients received an operatxon, and waltmg tlme was agam
highly variable. -

. As discussed in Chapter 5, each run with a dnfferent set of random
number streams produces a single. rephcatlon :Further rephcatlons .
necessary to provnde an accurate estlmate of output parameters'

-wamng time for an operation, reach steady states quite quickly, unlike the
operation-only queue and bed utilization, which take considerably longer.
This is to be expected, since operation-only patlents are only admitted if no
hospital-stay-only patients are wamng

- Figure 6.1 suggests that the run-in period should be about 720 hours
hence this number is used in the program in Appendix 6.A. In a real
project, a number-of cumulatwe-average measures would be produced for -
a number of output measures using different random number streams, to
ensure that a steady state had been reached. SRR

 Rather than starting the collectlon of statistics after the run-in penod

itis started at the: begmmng of the simulation,.and then all histograms are
reset after the run-in. Although this: apptoach might seem inefficient, it is
easier to program:and is unhkely 1o make the program take much more
tlme torun E e T S : R E




v./,—,',' .

(23

Program for Hospital Simulation : 111

110 , " Hospital and Repair Shop Case Studies

blunbei- of Hospital Stay Patients Wafting fbor'A'dﬂulon utitfzation of Beds

mean =  19.93 varisnce = 0.14 sd = = 0.37

mean = 1.17 varfence = 1.34 sd = 1.16
min =  17.00 mex = 20.00

min = - 0.00 mex = $.00~-

under ses _ reen o serssnsewsssacnas 1zo 81 under ’ : 0.00
1.00 * waesen . * seenann _ . 92.39 1.00 . 0.00
2.00 » » : v 67.91 3.00 : _ 0.00
3.00 werevensrevenive ) . 33.52 5.00° : : » 0.00
4,00 veenew . . : . $2.57 7.00 : . ) 0.00
5.00 | - _ B ' 0.77 - 9,00 - ' : © . 0.00
6.00° 0.00 11.00 . : ' © 0.00
7.00 - ) 0.00 13.00 : 0.00
8.00 0.00 15.00 0.00
9.00 » © 0,00 17.00  * 7.11
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14.00 - 0.00 27.00 - . ) . . 0,00
15.00 ‘ . 0.00 29.00 . ) ) - 0.00

over . ' . 0.00

over : ' o 0.00

Vefiting time for Operation

processed = . 26

mean = 9.40 varfence = 56.49 sd = 7.52
‘min= . .0.00 max = 22,97 )

. Number of Operation Patients Weiting for Admission

mean & 4.58 varfance = 6.81 ad s 2.61
min = 0.00 max = 9.00

- under. ¢ wewe » ' IR ; ob e, ,:-::
~4.00 wersrnsennsede ’ . . " a%.87 . .
2.00 wee : 6.27 4.00 - 0.00
3.00 cesenncerestnse ’ : 26.84 7.00. »e - 3.00
4.00 ' - 56,18 10.00 - < . . 3.00
) B : 13.00 o . 4.00
i'::' evstunsussen Lo S ' ::':; 16.00 ee " 3.00
7.00’ . essaeee 94 38 '
-, b e " \ 9 - 1.00
- ‘- ..oo - ‘.oomo-. : o } ‘ o * o 13.T0
9,00 wewew o S IR e ees
- 10.00 e e e . . 0.00
L7100 I ST S ..0.00
.. .00 o oo ‘ .. 0.00
eamee T T T 0.00
L 14.00 .- . R . :1,' / S . ) . 0.00
15.00 - . - SRR S 0.00
L -over : L R P 0.00

) ative means show n Table 6.2: ‘two values are- above the ﬁnal cumu-.
' wo-:are belo' Due to the: mherem vanancc in the sxmulatnon. :
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of steady-state paramelers, using estimates based on several runs, to be
larger than the final cumulative mean values, since these include statistics
from the initial transient period.

6.2.6  Event-scheduling version

The pseudo-code for an event-scheduling version of the hospital system
was presented in Chapter 2. The equivalent program is shown in Appendix
6.B. Statistics collection facilities, which would be much the same as in the
three-phase version shown in Appendix 6.A, have been omitted. Note that
‘the executive differs from that for the three -phase approach only in that
the scan of the conditjonal events has been removed.

6.3 PROGRAM FOR REPAIR SHOP SIMULATION

6.3.1 Specification

The repair shop consists of a number of machines, each of which can

breakdown and need repair. This is done by a mechanic, who first removes
any material stuck in the machine and all covers, obtains the equipment
necessary to repair the machine, and finally repairs it. After this, the
machine can return to work. Machines are repaired in the order in which
they breakdown and if no set of equipment is available, a mechanic will

wait until one becomes available rather than start to remove the covers on

any other broken machine. .

Each production shift works for- erght hours, and there is sufﬁcrent
time between shifts for the mechanics to finish repairing any machines that
are still down following the conclusion of the shift. Thus mechamcs if
necessary, work overtime so as to complete the repairs. o

Table 6.3, which is an extension of Table 1.2, indicates that the simu-

lation is to be used as an expenmental tool to investigate the relanonshlp '

between downtime and resource provision. The main output measure is
therefore downtime, and the decision variables are the levels of resources,
mechanics and equipment. Although the acceptable level of downtime is

not prescribed in the simulation objectnve typxcally thlS would be clanﬁed o

in dlscussnons with the client. -
Important additional measures are the utrhzatron of both mechanics

.'-;and equipment; since these will indicate where resources should be added
or:withdrawn so as to achieve an’ acceptable balance. BT :
Although the simulation has short actrvrty duratlon tlmes, and may

- reach a steady state qmte qmckly, summanzmg statlstrcs for the duratlon -

. Program for Repair Shop Simulation -

Table 6.3 List providing specifieation for rebair shop simulation;
" used with activity flow diagram in Chapter 2

Objective : -
To mvestlgate the effect of mechamc a.nd equrpment prov:sron on machme
down-time.. . .

R

Ass"umpuons .
The shift starts ‘cold’ at time 0.

. The shift ends after eight hours but the mechanics contmue workmg until all the

machines are repaired.

" Thereis always enough material to keep a working machlne busy

The probability of breakdown is equal for all machines at the start of each shift.
The time taken for mechanics to travelto a machme, or transport equipment, is
negligible.

Decision Variables
Number of mechanics.
Number of sets of equipment.

Responses

Machine down-time.
Utilization of mechanics.
Utilization of equipment.
Post-shift working.

Activity Durations

-Time between machine breakdowns: -

negative exponential, mean = 60 nunutes
Time to do removal: normal, mean = 5 minutes, sd = 1 minute. -
Time to do repair: normal, mean = 8 minutes, sd = 2 minutes. -

of entire shifts are very relevant. The srmulatron should thus be treated as
a terminating simulation. Additionally, the length of tire that mechanics
must work after the end of the shift is important, since labour costs will be
associated with this time. If costs were to be applied to these' measures, one
cost figure could summarize the results from all these 'output measures.
. This specification includes two lmportant assumptlons whlch requrre
explanation. : B : S
N (a) It is assumed that the probabrhty of breakdown for all machmes

- is equal at the start of the shift, although some machines : ‘may
have been recently reparred and others‘n‘ e,mean time
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machines or waiting for spare parts, we are choosing to ignore
this so as to keep the model simple.

Both these assumptions could be lifted if the resulting simulation model
were to prove insufficiently accurate.

If we were to extend the problem by consrdermg the number ‘of
machines to be a decision variable, the simulation structure would still
be relevant. The logic of the system is independent of the number of
machines, so this can be increased or reduced as desired. It is sometimes
useful to program such variables as if they were decisions variables since,j,
in any simulation study, fixed parameters may have to be varied at a later

\ date. However, if we were to relax the second assumption and take

account of the time that mechanics spend moving between machines, it

J would affect the simulhtion structure and necessitate the introduction of
new activities.

6.3.2 Program details

The program is developed using the pseudo-code presented in Chapter 2.
Every machine must be created and entered in the calendar at the start of a
run in order to set the breakdown times. Thus the initialize procedure
should be:

© procedure initialize; '
begm
< make the calendar and streams >;
< make the bins >;
< make the queues >;
< make the machinés >
for < all machmes > do < cause breakdown trme >;
end,; S s

. The program must ‘be ad]usted to take account of the run Iength of the
. simulation. It is not sensible to run the simulation simply for an eight-
- - hour stretch, since we wish to measure the amount of overtime that the
- mechanics work. We need to run the simulation out, that is, run it until all
the machmes that are queueing for repaif, or-are in the process of being
reparred are. completely finished after the end of the erght—hour shift. This
an e'by running the, simulation for elght hours setting a flag that
ndicates when the shlft has ﬁmshed ‘and then running the simulation again
, ag is, used to stop.any activities except -
the mmpletron f existing: repairs.. The run wrll €O, e,to‘an orderly halt .
the calen a becomes "empty.- ‘ '

. ‘633 Program
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begirr
initialize; _
run, (8*60,2); { run for 8 hour shift }

at_work := false; { close down the shift }
run (10000,2); { run out the remaining repairs }
report; ' )

end.

where 10000 minutes is an arbitrary long time, longer than any repair is
likely to take. So at_work can be employed in end_working and end_repair
thus: '

procedure end_working;
begin
if at_work then
< give machine to tail of q1 >;
end, .

procedure end_repazr, :
begin ‘ °
< return the mechamc >;
< return the equipment >;
" if at_work then .
< cause a new breakdown time >
end;

The- statrstlcs measures for the output parameters are trmeowelghted (see
Chapter 5). The histograms showing the utilization rates for the mechanics
and equipment are built up by logging the number of unavailable resources
to them each time there is a change in resource. levels (1 e., before
acquire or return).
. Whereas the simulation automatically keeps track of the number of
resources available, counts of entities in one state rather than another have
- to be kept explicitly. To collect statistics on machine-downtime, the count
is changed and logged to the’ hrstogram each time that a machme fails or
comes back into use. . ' :

Followmg the specrﬁcatlon the pseudo-code and the detarls above “most
. of the. program falls into place.: The program 1s'shown in Appendrx 6.C.

' ctroe to : declare the
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resource levels and all stream numbers as global constants, so that these
can be altered easily during experimentation.

6.3.4 Results

Figure 6.3 shows the results from one run of the repair shop simulation.
Again this is a single replication, and more replications will be necessary to
give an accurate estimate of output parameters and comparative results.

At the end of the shift, four machines were still broken, the last of
which had its repair finished at 12-66 minutes after the shift ended. The
summarizing statistics show that the number of machines down varied
between 0 and 10, with,a mean of 4-54. The utilization of mechanics was
higher than for the equipment (84-25 % against 68-7 %), but note that for a
large part of the time (334-72 minutes, i.e., over 5-5 hours) all the mechan-
ics were busy.

r”inhh.od repair at .

0: 8: 1.02
Finfshed repair ot 0: 8: 7.31 -
Finished repair at 0: 8:10.29

0: 8:12.66

Finished repair at

Number of Machines Broken Throughout Shift

mean = 4.54 variance = 4.79 od = 2.19
win = 0.00 max = - 10.00

under eseeesanvee ‘ . v , o '_ ‘ ) .. 20.57 .
1.00 weetwnconcansen - o ‘ ] o 24.56
2.00 ¢ LA . Lo 39.65
3.00 ewae . g i T 53.02

L 4,00 wee 104.21

- $.00 ' ‘ .. 83.42
6.00 seaw e 63.37
7.00 e . - 61,45
8.00 eessessnencasnne . . . 29.11
.00 eeecsancesew o ' 19.28

10.00 - S ’ ' 0.26

. 11.00 P R 0.00

. 12.00 » T L : o . . 0.00

- 13.00 s ce : w . 0.00

- 14.00 - . 0.00

. 15.00 x -~ 0.00

over C-0.00

Program for Repair Shop Simulation .

utitization of Mechenics

> g /
mean = 3.37) variance = 1.18 sd
min = 0.00 max = 4.00 .

under okl
1.00 vevease

‘2 .00 weves .

3.00 evsterenddane
4.00 * b " ST T e
5.00 ’ : . '

6.00
7.00
8.00
9.00

10.00
11.00
12.00
13.00
14.00
15.00
over

Utilization of Equipment 3 /

wean = _@\urhmo = 0.8 "d - 0.92

ain = 0.00 max = 3.00
. . ST o 29099

1.00 : Lo S 102.47
2.00 onee ' . 168.20
3.00 . bdebindst o 192.00
4.00 ) . . o . 0.00
5.00 ' : o L. 0.00
6.00 TP T, X
7.00 _ B K e 0.00 .
8.00 S SR ~ 7 0.00
9.00 . B : . R 0.00
10.00 ) S : e L s 0.00
11.00 - . : o T 0.00
12.00 ' . o S .. 0.00;
13.00 R : : - 0.00
14.00 - e i L 0.00
15.00 ' - L 0400
over [ . . ; ':7. o . ’ ' - . 0.00 )

. Figure 6. 3 Output from run of repnir shop slmulation with four
r mechanhs and three sets of equipment. - .
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6.4 SUMMARY

In this chapter, we have developed complete programs for both the"
hospital and repair shop systems, using the three-phase approach. Each

program was based upon the pseudo-code developed in Chapter 2, and a
specrﬁcatlon of the simulation study. The hospital simulation has also been
coded using the event-schedulmg approach. The hospital was treated as a
steady-state simulation; the repair shop was treated as a terminating srmu-
lation. A single replication of each has been shown.

The models presented here now require validation prior to their use
in experimentation. The process of validation, variance reduction and ex-
perimentation is developed in Chapter 8. Chapter 10 shows how the
two case studies maysbe provided with visual output while Chapter 12 pro-
vides a process-view version of the hospital system.

6.5 EXERCISES

Pascal_SIM should now be implemented with all the routines required for non
_vrsual simulations (see Appendix D)

1. Haspxral System. Implement the program descnbed in this chapter, running
the steady state analysis and providing the hrstograms descnbed

(o v A7 y running the program with dlfferent random number streams and
Jansde, 7
26¢ -.W’l’o“(aft mpare the results. %/o r2 : e
L o S ) Using six replications, de confidence hmlts of the estimate of the
5.,;.}—""’; e average bed occupancy and theatre utilization. (Note: the replications
\)_LLG’I A
Lot should be independent of each other.)
\ L,\__.\ N ' {¢) Using one of the rephcatlons, vary the decision variables to see how -
) “VMW‘*I W,WJZ . _ . they affect the output."Summarize your results graphically, either by ‘
p ( - "" e - hand, or by using a spreadsheet, statistics, or graphics package.

her T2 Repdir Shop System. Tmplement the program described in this chapter.

i

compare the results. -
(b) Using 12 replications, derive conﬁdence llmlts of the estimate of the

machine down-time and post-shift workmg (Note: the replications™”

should be independent of each other.)
(c) Using one of the replications, vary the decnsnon vanables to see how
they affect the. output :‘Summarize your results graphlcally

workshop

(@ Try running the program with drfferent random number streams and .

: Explam what addmonal mformatlon the management would need in order to
arrive at a decrsnon about the number of mechamcs to. be employed in thrs-’ '

A cell 1s a self-contamcd part ofa manufactunng operatlon Raw materlals or ;

'
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part-finished products enter the cell. Part or complelely finished products
leave the cell.

A small manufacturing company has a cell composed of three work
stations each of which is fed by a buffer that can hold three products. Pro-
ducts arriving at a cell attempt to enter each of the three buffers in turn but if
all the buffers are full, they leave without being processed.

A data collection exercise found that the inter-arrival time distribution of
products at a cell had a negative exponential distribution with a mean of 15
minutes. The time taken to process a product was Normally-dlstnbuted with
a mean of 30 minutes and a standard deviation of 5 mir %, 04;:;%"?"“*

(a) Produce a simulation model of the manufacturing’ ce .
(b) Estimate the duration of the initial transient penod and, hencc the
~ start of the steady state.
(¢) Using the method of replications, produce a conﬁdence mterval for the
utilization of each work station. L

4, Bank Case Study (Appendix 1.A. 1) Carry out the followmg tasks

(a) Prepare a specification for the case study. :
~ (b) Using the code developed in the exercises of previous chapters, write
programs (for both the four-queuc and the one-queue system) to meet
this specification.
(c¢) Perform several replications of each program and compare the results.
Discuss these in ‘the .light of the assumptions you madc in the
specification.

‘5. Traffic Light System (Appendrx 1 A.2). Carry out the followmg tasks

(a) Prepare a specification for the case study. ’

{(b) Using the code developed in the exercises of prevrous’ch
program to meet this specification.

(c) Perform several replications of the program, using the preseht evemng
rush-hour data, to estimate the key output measures:- ‘Vary ‘the deci-
- sion vanable(s) usmg one or more replrcauons, and dlSCUSS the
results

program simulation (output); . . .

".const . : S
... amount_of beds == 20
_V.,,-patient‘l seed P 2 HERE
;i patient2_seed .«=-‘“!=;,2; R
;hospital stay_ seed o
pre_op_stay_: seed
operation_seed -
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post_op_stay_seed = 6;
theatre_open_time = 4;
theatre_closed_time = 20;
var ‘ :
bed : tbin;
q1.q2.q3.q4 . iqueue; -
theatre strecord )
body tentity;
open, avallable tboolean;
end-

ql_hist,q2_hist,
bed_util,op_waiting :histogram;

{ B events )
procedure patlent1 arrives, { stay > { B1 )
begin
log histogram (qi_hist,count(q1),1);
give_tail (q1, current)-
;ause (1,new_entity(1,1),negexp(6, patient1 _seed));
end;

procedure patient2_arrives; { operation ) { B2 )
begtn
o log _histogram (q2_hist,count(q2),1); -
give_tail (q2, current),
:euse (2,new_entity(2,1), negexp(12,patlent2 seed));
end;

procedure end_hospital_stay; ¢ B3 )
begin
with bed do log_histogram (bed_util,number-num_avail,1);
return (bed,1);
dis_entity A{current);
end; ’

procedure end_pre_operative_stay; { B4 )
begln .
give_ tail (q3 current);
end;

procedure end_operation; { B5 )
begin
theatre.available := true;
give_ taul (q4,current);
end;

procedure end_post_operative _stay; (B6 )
begin

with bed do log_histogram (bed_util, number ~num_avail 1),‘

~return (bed 1);
. dis_entity. (current),
. end-'

procedure open_theatre; { B7 3}
begin ‘
theatre.open := true;
" cause (8, current, theatre _open_ tvme),
end; ) . .

procedure close theatre, { 88 3
begin .
" theatre.open := false;
cause (7,current, theatre closed_time);
end; -

{ C events )
procedure start hospltal stay; ( €1 )
begin
while (bed.num_svail>0) and (not empty(ql)) do
begin
with bed do
log_histogremr(bed_util,number-num_avail,1);.
acquire (bed,1);
log_histogram (q} hist,count(ql),1);
cause (3,take_top(ql), negexp(60, hospital stay_seed));
end;
end; -

procedure start pre operattve stey, c2)
begin
while (bed.num_svail>0) and (not empty(qZ)) do
‘ begln
-With bed do log_| hlstogram (bed util,number-num_avail,1);
acquire (bed,;1); .
log_histogram (q2_| hist, count(qZ) 1);
ceause (4,take_top(q2), negexp(ZL,pre op_ stay seed)),
end;
end;

procedure start_operation; { C3 )
begin . ! v
with theetre .do )
- while open and ovailable end (not empty(qS)) do
~begin ,
eveileble := false;
- current :=. take_top (q3);
log_histogram Cop_ ueiting,tim-current +time,1);
cause (5, current, nornel(o 75 0. 25 operatlon seed)),
end; . . )
end;

s
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procedure start post operative stay, ( cé )

begin
while (not empty(qé)) do’
begin o
;euse (6, take top(q4) negexp(72,post_op_stay_seed));
end; S :
end- .

procedure display,'
begin . :
end { dlsplay );

procedure run(duration:real;max_C:cardinal);
var
¢ :ccardinal;
begin
running :i= §rue;
repeat
if falendar-celendar .next then running := false
else
begin
" display;
tim := calendar“.next".item .time;
if duration<tim then runn!ng := false
else '
- begin
;uhrle (calendar<>calendar .next) and
. (t1m=celendar shext” .item ~time)
begin
..calendar- top,_, : :
ce:e current .next 8 of
.-1-lpetient1 arrlves,
.2: patient2_arrives;
3: end_hospital_stay;
,4:-end_pre_operative_stay;
5: end_operation;
- 6: end_post_operative_ stay,
7: open_theatre;
- 8: close_ _theatre;
. end; o
- end; :
for ¢ := 1 .to max_| c do
- case € of e :
»1 “start _hospital_stay;
~2: start_pre_operative_stay;
33 start _operation;.
- 4: start_post_operative_stay;
. end; - e '
.. end; T
S e send B
L until ‘not running,.:utf :
.end (run). o L

Hospital Simulation Using 'Th'ree-Phase Approach ) 123

procedure initialize;
begin
make_sim;
meke_streams;
make bin (bed, amount_of_beds);
make_queve (q1); make_queue (q2);
make_queue (q3); make_queue (qé);
with theatre do {create theatre)
begin
body := new_entity (3, 1),
open := true; ava1lable t= true;
cause (B,body,theatre_closed_time);
end; )
make_histogram (ql_hist,1,1,false);
make_histogram (q2_hist,1,1,false);
make_histogram (bed_util,1,2,false);
make_| _histogram (op_! ualting,1 3,true);
end ¢ Tnitialize ), ’ .

procedure report;
begin
writeln
('Number of Hospital Stay Patients Meiting for Admission');
- print_histogram (output,ql_| hlst ,60);
‘writeln; )
writeln ’
(*Number of Operation Patients Haitlng for Admlssion')-
print_histogram (output,qz hist 60),
writeln;
;writeln ('Wtilization of Beds');
print_histogram (output, bed_ utll 60);
writeln;
writeln (‘Waiting time for Operatlon'),
print_histogram (output,op_waiting,60);
end € report ); . .

begin
initialize; :
cause (1,new entity(1 1) 0); . .
cause (2,new_entity(2,1),0); o

©orun (24*30,4); € 30 days run in pertod ).
reset_histogram (ql_hist); o
reset histogrem (q2_hist);
reset hlstogram (bed_util);
reset histogrem {op_ waiting);

©run (24*(30+14), 6).
- report;

) end.»

{ do a rebltcetlon of 14 deye b
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6.B HOSPITAL SIMULATION USING EVENT METHOD

program simulate (output);

const
amount_of_beds - =
patient? seed =
patientZ seed =
hospttal stay_seed =
pre_op _stay seed - =
operation seed =
post_op_stay_seed =
theatre _open_time =
theatre closed time =

VBN aN
LU YA SAR AR AR

N~
o
-

var
bed  :bin; ¥
q1,92,q3 :queue;
-theatre :record

body stentity;
open,avaitlable :boolean;
end;

{ B events ) '
procedure patient1 -arrives; { stay ) { B1 )

begin
csuse (1,new_entity(1,1), negexp(é,patienti_seed));
if (bed.num_avail>0) then
begin
acquire (bed,1);

cause (3, current negexp(éO,hospital_stay_seed));

end
else give_tail (q1,current);
end;

procedure patient2 _arrives; { operation ) ¢ B2 )
begin
casuse (2,new entity(z 1),negexp(12,patient2 _seed));
if (bed.num evail>0) then
begin ..
acquire (bed 1;
cause (4,current, negexp(24,preﬁop_stay_seed));
end
else give_ tall (q2,current);
end; . : '

procedure end_hospital stay; { B3 )
begin
return (bed,1);
dis_entity (current);
-if_not empty €q1). then
_ begin ‘

(bed 1);
223:;rf3 take top(q1) negexp(éo hospltal stay seed))
end .

else :
if not empty (q2) then

begin bed, 1)
acquire (be o )
cegse (4 teke top(qZ) negexp(24,pre op stay seed)),
end;
end; , o
procedure end_pre_operative_stay; { B4 )
begin
sith theatre do
if open and available then
begin fol
ilable := false;
:::se (5, current normal(0.75,0.25 operation seed)),

end
else nive tail (q3, current),

end;

procedure end_operation; - { BS )}
begin .
with theatre do
. begin

available = true;
cause (6,current negexp(TZ post_op_stay__ seed)),

if open and (not empty (qS)) then

- begin
available := false;
cause (5,take_top(q3),

normel(o 75,0.25,0peration seed)),
end;
end; )
end;

procedure end post operetive stay,
begin ST
return (bed, 1), : B
dis_entity (current); -
- if not empty (ql) then
begin ; -(bed 1) S
. vire o
::gse a3, teke top(q1) negexp(60 hospltal stey _seed));
end
else
if not empty (q2) then
b i bed, 1);
acquire (be ) .
cazse 4, teke top(qZ) negexp(26 pre op stey seed)),
end;

€'B6 )
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procedure open _theatre; ( B7 )

begin B L
with theetre do : .
-begin ) .

open := true; ' ) o
cause (8,current, theatre .open_time);
if not empty (q3) then '
-begin
eveileble i= false;
cauge (5, take top(qS),
normal(o 75,0025 operotlon _seed));
‘end;”
.end;
"'”endl -

. ‘procedure close theatre, {88)
beoi
- theatre. open s= falge; - : :
cause (7 current theatre closed _time);

end; .
procedure run (duration -reol);
becin
running := true-
“repeat : -
. if felenderscolender .next then runnina :-:felse
o else :
beoin 3 ' '
“tim'e vcelendor snext*® .iten .tine- :

if. duretion<tin then running = feloe
o else

uhile (celendar<>colender .next) end

begin
“calendar top°' ST
cese current -next_B of

L

SR petient1 errives- -

2-;potient2 orrives’ L

iend_hospital stoy~'x

x end_pre_operative stey-

5: end operation; - L

6:'end post . operotive otoy,

7: .open: theetre'
close tbeetre'

" Repair Shop Simulation

-(tim-celendor next* .ltem .tlne) do

procedure initnelize,
begin
meke_sim;
*. make_ _streams;
meke bin (bed, emount of beds),
~ make_ _Queue (q1),
make_queue qug,
ue 3 ‘
'zgtﬁ.gzzotreqdo { ereate theatre )
begin
-gody := new_entity (3,1);
open = true; eveileble = true;
cause (B body,theetre closed_time);
end-
“end € initielize >

procedure Feport;
-begin. o
end € report y;

begin
initialize;
cause (1,new entlty(1 1, 0).
ceuse (2,new_entity(2,1),0);
run. (24'30)'
.report;
- end, ..

6.C REPAIR SHOP su'uutn'rion
_program sfmuiote (outputirij

.const
. amount_ of mechines _
- i amount_ “of_ _mechanics -~

i amount; of _equipments :

. inter breek _down_time

.. breakdown_seed
. removal_time_seed

"_,repeir time_seed -

mechenic; equipment o s abing

broken’

.mechanic¢ util, equipment util :histosrem,,

content . thistogrem; .
d



- {-Bound events )

“procedure. end | working; {'breakdoun Y {B1)
begin -

“if at_work then { machine can't break down after shift )

beg:n -
- with broken do
begin -
~number s= number+1;
log histogram (content number 1),
‘end; :
give_ tail (q1 current), -
end; -

procedure end_ removal' 82)
‘begin
give_ teil (gZ current),,
end H o

procedure end repair, ( 33 )
_begin . -
uith equtpment do ; :
~iog_histogram (equtpment util number-num s _avafl,1);
uith mechanic do

log, hietogrem (mechanic util number-num y_avail 1),_j

L returh {(mecheniec,1);
‘return (equlpment 1
if at_work . then o

begrn g e
. cause (1,current, nenexp(inter_break_down_time,
breokdoun seed)). PR BRI
s with broken do- o
: begin . o
Laumber = number-i.,
“log_| histogram (content number 1);
»end : - SO :
i end :
.. else .
: begin '
~Write ('Finished repair et ');”
- wurite time, uriteln- e co
end- o - I

;en§;

{ Conditional -évents )
procedure start removal-
begin -

< c1')'

uhule (mechenic num ovail>0) cnd (not empty (q1)) do .

-begin
: with -mechanic do :
log_histogram (mechenic_utfl, number num aveil,1);
acquire (mechenic,1);
‘cause. (2, take top(q1) normal (5, 1 removal time _seed)); -

end;
end; :
:procedure start _repair; (€23
begin
while (equipment.num avail>0) and Cnot empty (qZ)) do
begin

‘with equipment do '
© log_histogram (equipment_utit,number-num_eveil,1);
-acquire -Cequipment,1);
‘cause (3,take_top (q2),normal (8, 2 repair time_seed));
- endp
end' '7.’,"'

procedure run (duration -reol- max c. integer), »

var . .
) c,.cordinel'

N

' benin

irunning = true;
repeet :

if calendar=calendar®.next then runnins H felse
. uuelee : . S . .

. begin ; : .
FERRN tim = calendar .next’ .item .time,'»
5 if duretion<tim then running = felse
' elee . oo -
begin R ’
uhile (celendar<>calendar .next) end
“(tim.=caleéndar” .next .item .t:me) do
. begin B ) :
_ calendar top,.
“case current .next B of
0:
13 end uorking, g
2: end_removal; . :
32 end_repeir:v-' :

for c = 1 to max c do
ceee ¢ of

‘1: stare_ removal°
e 2- start_ repair--

, ‘end AL
: until ‘not - runninﬂ.
end ( run );
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-procedure fnitialize;
var S
) scardinal;

gin U
" -imake_gfm; ..., :
- make_streams; : .

7

- make_bin :(mechani ¢, amount._of_mechani c8); .
.- .make_bin -(gqufpment',a'mount_of_equipments);
© .. make_queue’ (91);- make_queue €q2); -

- {set a shift working )
: -;at_'wbr_k-:s',trl.l'e;-. S ’
€ set breakdown 't imes for all machines )

“for § :x 9.tp amount_of_machines do

'5‘_f--'§,.ause {1,new_entity. 1,4,

oo negexpl inter_break down f , removi : ( H
C.establish histograms 3 — = oY emOval_tine_seed));
uit_h'b_rokeni,do S

begin V.. oo :
‘.make_:_f ?;fsgrqm (content, 1, 1',_fal _se); :

.

Modelling Techniques

. Both the hospital and Tepair systems, as presented in preceding chapters,
have a number of simplifying features which are unlikely to be present in

- any simulation of reasonable complexity. This chapter is concerned with
various techniques for modelling more complex systems.

n
soendy o T , ,
“moke_histogram (mechanic_util,1,1, falge);

make_histogram (equipment uti} 1,1, falgers . ... .
- end C:Tnieiatize 30 o =Util lefatse); -

7.1 MODELLING PROBLEMS -

Pr:::?:" report;..o. In each of the examples discussed in previous chapters, there was only one
' ' - entity taking part in each activity and most of the activities were con-
strained by resources, Sometimes, however, both or al the types of object
that take part in an activity must have attributes. This may be because they
have .to be- identified individually or because they have to take part in
other activities, independently of each other. Hence, active entities must
take the place of passive resources. In the Tepair shop system, for example,
the mechanics might engage in ‘an activity which is independent of the
- machines, such as having a cup of coffee or going to lunch. They then have

to_be described as entities.

ol -"ur-it_eln;"'; T ’ .
oo o Mriteln ('Number-of Machines Broken Throughout Shifeiy: -
s:::t-rhis'togram (output',broken.content,'éog; . h -t i

A ? £ o
N:(8%60,2); { cloge ‘down: th ‘
tNork sz falges . - o the shift )

{:7un the ‘.c-imula;i6n='$dt,' e,
un- €10000,2) (-10000’_’1' arb

. often need other distinguishing characteristics or attributes; the treatment
“of a patient in.the hospital system, for example, might be influenced by

~attributes such as age, weight, and medical history.. Typicaliy, entities from
' different.,classés"-fhave.'dif_fer'éﬁ_tn:types of attributes, .-~ . .~ -
- _All'the ‘queue”priorities in ‘both the hospital

do vall-:l‘epiirs-ieft").'
tary large number. )" -

, tal and repair shop were

-~ first-in-first-out”. (sometimes called first-come-first-served, often denoted

by ‘the. mnemonic:FIFO). FO queues-are ‘very “common; ‘many

. systems involve much mor ‘queuc priorities, sometimes based on
.,/ entity-attribute ‘values."Fo »'An-the hospital system it would be
“) miore realistic to assum that the ‘which:operations.:
is dépendent ‘upon, the Teq)

re ‘predetermined in
s be subject to various
mpletion | of <dr

of

- Although entities_have attribute numbers- and class numbers, they .

tions-are performed -

an -

- T I RAE]

P T NI



activity, entitics might -have a_choice of branches to different activities.
The c__l%ige_\;might be dependent on attribute values, the state of the system,

- or might be completely random.

. 7.2 CO-OPERATING ENTITIES "

- In structuring a simuiation, decisions have to be made as to which objects

- should-be entities and which should be resources. Where all items are idén-
. tical'and are used -and released by other objects, they can usually be de-
scribed as resources. This is. true, for example, of the beds in the hbspital
system." A class. of objects must be described as entities rather than re-

.. sources if: B

. Work

““ Remove ~

. (a) items have to be identified individually or have attributes, or
(b) they are the main items taking part in other, independent activi-
ties so that they nced to carry the activity time on-their entity
clocks. : = .

Where two such types of entities are mutually dependent dn:cach other in

_ order to take part in the same activity; they are said to be co-operating in
* that activity. Each type of entity has its own cycle or flow of activities which

together make up the whole activity diagram. -

For example, if the mechaniés in the repair shob take fime off after

each repair tohave a cup of coffée, then they are the main entities in the

activity of having a cup of coffée. Thus, they must be considered as entities

which co-operate with machine entities in repair and removal. Figure 7.1
shows the activities of the machines, Fig. 7.2 shows the activities of the
mechanics, and Fig. 7.3 shows the combined activity-cycle diagram. .

- Now that the mechanics have individual attributes, their skills can be

" matched to the,,’diffe.rent machines and we shall show in the ‘next section
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{(b) I access 16 both entities is necessary,
take the second entity off the calendar in
by the first entity. In this bound event, th
at the top of the.calendar because the
entered the calendar together and carried
clocks. It is not possible for them to have got Separated. Thus, in

Pascal_SIM the entity can be removed and accessed by:
var :

e entity; o
e := take top (calendar);
where e is the second co-operating entity. The entity e is then
available- to join queues or engage in other activities.

then the solution s to
the bound event caused
e second entity is found

. | Machine

In the repair shop €xample in which ¢
‘approach is necessary because both t
be available to continue: their own ]
activity, '

In the hospital system, the o
co-operating entity. Readers shoul

he mechanics are entities, the secopd
he mechanics and the machines must
ife-cycle of activities after the repair

, Equipment -

perating theatre could be described as a
d'try modelling it in this way themselves,

- e 7.3 Combi @iétiyhf&clcdingrﬁmoﬁch;;rshb sir'bl&inl -
eo-operaung mechanics and machines together with oqill':ment . g

7.3 Emﬁ.Anﬁqpufss_' L
+ + which is still described as o resource

In many systems, entity.ch
activities. These attrib

aractenstlcs influence the length.and choice of
utes must therefore. be described in the model..

7.3.1 Individual entity attributes

An attribute might be an integer oii"'real.t_:ontinu_c\')hs_f»;ariable"(for example,

patient height, weight, or age in ears), 4n enumerated variable (for ex-

, amble,'éye'-éo.lb;‘ii').,'br';é relatively complex collection of data (for example,
.medical history), Within'a: lass of entitiés, each entity will have a separate

. value for .each particiila attribute, : The value- of each attribute. may be -

. fixed for-the duration of the simulation, or may change as the simulation

s the-entity record, cannot be altered:
: ‘ti__tj"’typej.i-a_and::.fin_clu_de-;-va;tt‘ribptes'_:‘in
he:basic e tity-record,-and.re- -




Lo type
' an_enttty packed record -

- cavall - “uboolean;
s class ©iclass.num;
"¢ aitr; nextB . :cardinal; -
time ' “zreal; .
" height, weight “treal;
end; .

o The new..entlty procedure must be altered to give height and weight

- their initial values and, if Pascal_SIM is a pre-compiled module, all the

’PascaLSlM routines .must be recompiled for the new entity type. Pas-

cal_SIM is thus tailored to the simulation program. Any entities which -

. are. declared are then’ ‘automatically- grven attnbutes. For example, if we
./ want an enmy called temp3 declared as: - B :

temp3 entlty, R
.- the assoc:ated attnbutes of temp3 are srmply temp3 hetght and remp3“
‘ wetghl '
‘In many- srmulat:ons, unlike the hospital srmulatnon, there will be
more than one entity class, and it is likely that entities in differenit classes

records, in which a dtfferent set of fields is provided for each class. If, for

. ‘above (i:e.; hetght and- werght) anda class of operating theatre entities with
the attnbute room size’, then a variant’ entlty type could be defined as:’

type ‘
an._entnty packed record ! ‘
: - o avail - boolean,
attr nexLB."' cardlnal

class i;and the operatmg theatres are class 2, lTh

ow_-identifies- the : ‘appropriate ‘part-of the variant record
shows how both new_entity. ritte

will have different attributes. One solution to this problem is to use variant

- 'examplé, there ‘was a class of pattent entities with. attributes described -

'-We can for example, ﬁnd the mean acuvnty time of the current entlty as
'follows* Coned o e o L AR

v .3 3. Using sets to storo Boolonn mrlbutes

gerous to work with because Pascal run-time systems. prowde httle error--
checking to ensure that you are dealing with the right record variant. It is
advisable during development, therefore, to check that the entity whose'

attnbutes are about to be accessed is of the right class. - '

7.3.2 Class attributos

An entire class of entities may have attributes that drfferentlate it from
other classes. These attributes are called class attributes. Consider an.ex-
tension of the- repair shop example in which there are two classes of
machine with different distributions of repair times. The repair-time dis-
tribution parameters can now be considered to be class attributes. They
can be given a type thus:

: ‘}’Pe
class..attrtbute record .
meansd :real;
s :stream_num;
end

. where the reparr drstnbutrons for each class will both be Normal but wrth :
- ‘different means and standard deviations: It is useful to make the stream

number-a class attribute 5o that the: activity times for the dttferent classes
can be sampled from different streams (see Chapter 8). Lol
~‘Each entity has a class nur_nber whtch can be used to relate the entlty

.to 1ts class attributes: _

cIass.attr :array [l. .max.class_num] of cIass_artnbute, '

B3

class_attr [current .class] mean

ln some’ stmulattons, control of the logrc is dependent upon relatlve values,
for example, *higher than 3 metres’, or previous enttty actions,: for-exam-

- -ple; ‘operation completed’. Each of these attributes is of a. Boolean'type .
"'-:smce it.can_only have.the value truc or false: : ©

__Obvrously, Boolean attributes. can beadded ‘to the entxty record in.-




P ',s'pppo_s:e ‘we want to -k_ée_p a record of all machines
-, broken-down.. We can'declare a-set thus;

tha_t‘ }ia.ve 'previously
. 'e~Droken set of amount_of_machines
and‘ladd. ;a"-'riia'chine-' to the set. . .-

| : h vé;b:mkén 1= ha?e_'.'b’ioké}z-F[curreht_‘.attr]
e 'alx_"qd 'i_gs( fér'-rh.embership of the set as desired

'. if ctiiyéntﬁ_atter in_have_broken then

. ’ .

7.4 QUEUE PRIORMIES

" 7.4.0. Simple priorities -

n‘order “(SIRO),. an entity is selected '
se that queue. SIRO can be thought of as-

queue discipline. .

Modelling Techniques
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< move 1o top entity in queue >;
present := < some initial value of attribute >;
“while < not at end of queue > do
begin " :
if < value of attribute for this entity is better
than present > then
begin : ‘ :
present ;= < this value >;
< remember this entity >;
end; : :
< move onto next entity in queue >;
‘end;
< take the remembered entity. >;

-For priority rules which involve a number of attributes, the same iteration

applies, but the test on the attributes is more complex. o
- In some instances, entities may have to fulfii certain minimal require-

“ments, in which case a search- of the. queue may either. find no suitable
_entity in the queue or else may find several. In the later case, it will be pos-

sible to stop the search after finding the first suitable entity..The require-

- ments may change systematically or randomly as the simulation progresses.

In the hospital example, suppose the entity.record has been extended

- byan age field (of type real) and we wish to give priority to older people for
- admission to hospital. Rather than take the top entity off the queue, e.g.,

take-_top {(q1), we have to search for the oldest patient thus: .

'.Va’_' .__':.. . o ’ -
. temp,pick :enﬁty; . el
" present  “real;-




then be used by a number of separate conditional events. This. js parti-
‘cularly important in the event method where the conditions are dispersed
amongst the scheduled events.. Furthermore, the ‘modules, if required,
can be moved between simulation programs. : e

7.4.3 'Priority‘ gé single measure

within conditional events, the entity with the highest value priority is taken
off the queue. In other parts of the simulation program, the programmer.,
must arrange for. priority to be assigned ‘and altered as necessary.,
-~ Where some classes¥of entities always take priority over others, bu
share ‘the ‘same “queues’(perhaps, for’ example, emergency and walk-in
. patients in a hospital), -each-entity can ‘be ‘assigned a numeric priority de.
pending ‘upon its ‘elass:-In" Pascal_ SIM; -an implementation: of the take :
- routine could be developed that simply removeés the entity with the highést
" priority from- the' quéue, vsing FIFO to choose between entities with eqial
.~ This method of ‘dealing. with priorities has:the-advantage of simpli-
- -city.. Furthermore in some systems, such-as the ordering of jobs in com-
,'pu_te'r'-'sysleri)s-,_f-'th'_i"s'is an ‘acciirate reflection of the way in which priorities
+ are allocated to queues, However, where priorities are complex, complete:
7 ly random, or depéndent on'the state of the system, this simple approach’
can-be extremely limiting, * Rt

©7.4.4 :Activity priorities

- Chapter 2 showed that the ordering of the list of conditional events in the-
. executive. of the three-phase approach determines the priorities given to -
'+ these events in the simulation, ‘Alternatively, in' the event method, the
:.-order in which conditions are attempted ‘within the scheduled events deter- -
7. mines priorities. - . % S T e
iz:In the -hospital simulation, for example, hospital-stay-only patients
eceive priority for admission. over operation patients, because the con- -
itional ?éV'e'i_,n'—'thét-_engagesithese patients to.a bed is attempted prior to the"
conditional,event foroperation patients. . . . . o

ted if C2 is successful.- This is further- cgmpligatediyllgn : t:_h_crg ig 'u{mai.,; |
‘dependency where;for example, the performance :of C1 tequires X but -
' freesY, and G2 requires Y but frees X (l.e.,- theyf\lvog rqsogrf,es)..ln the -
' three-phase approach, these are best dealt wnh b.)_(;p'ut_lmg,-tht.:- gntgrdepgn-- :
dent-conditional eventsinto one long, and rather unt.lvdy,vqondltxonal event.
“The logic fbr.mutuzilly exclusive events where there is .resour_vc_e swopping is
as follows; . .-~ . . : : o

"‘while < there
begin - - ol
< take an eéntity from the queue for C1 >
- <'take an entity from the queue for C2 >
< 'set the time for the end of activity 1 >
.- < set the time for the end of activity 2 >
L iendy T o .
E 'ﬁ)hil'e":,<' there is a queue for C1 and X is avallablg > do
" <tdke an entity from the queue for C1> ... |
‘<'acquire resource X >. - oo
" *<'return resource Y > o
_ <set the time for the end of activity 1 >

is 5"4uéhe for C1 and a'que'tvié.fdi'__'"CZ > do

hile < there is a queue for C2 and Y is available > do .
obegintt e e T
e g< take ‘an entity from the queue forCZ
< aoquir resowres Y >
T < return resource X > R
2 'set the time for the end of activity 2 >
end; . . .

In-the event ﬁiet-hddi simila_r‘.lbgiq must be mcorporated in r_thgvapp_i'op_rigtg |
sched_u‘led. evemts.. o et

7.5. BRANCHING

'Cha;;::-te:.r'v‘2”drﬂenfi(;ned'v.‘differént ways in Whiql! _bran'ching l!_light _arisg ina
simulation. Two of these are now discussed in more detail.

DO 0 3 St s A s




] -a-drink. By observing the bar in action, it
ossible 1o record the number of entrants, n, where x find a seat, ‘and .
'80°10 the bar.. Thus for each individual entrant, we can -assume ‘that the
:probability of finding a seat is */n, and the probability of going to:the ba

“(n=-x)/n.:Bar customers- can be routed appropriately. in a simulati
‘model by sampling from a uniform (0, 1) distribution in the arrival B event:
‘and given to the appropriate queue. Chapter 4 showed how

_ ¢ all patients are generated by a single arrival distribut;
~+ these 30 % require an operation, then this can be modelled as a single
. -arrival B event that routes entities to the appropriate queue thus;
- procedure Ppatient_arrives; { Bl ) S _
- begin IR : .
if tnd (patient_seed) <= 0.3 then give_tail
.- else give._tafl (g1,current); :
" ‘cause (l,new_enﬁ;y(l,]),negexp(6,patieaneed));
Ceends - e .

(@.curvent)

In this example, a second feeder with a random va
armivals, is replaced by Pprobabilistic branching. The number of stochasti
ariables thus remains the same. Where probabilistic branching replaces a
simple: détqrminisﬁc;,de,cjsipn ‘rule, it will increase the variability of the
10del."The benefits of increasing the accura

riable to-generat

te taken by entities through ‘the activities will:
s. For -example, in modelling a sea-port
: age, such that ships. within differen
ifférent activities, As with bra
for. deciding which branch ‘to i
representing the end of the "acti

" Exercises _ ,

- must choose the method that most closely models the Pparticular

143

- can be ‘adapted to deal with any of these complexities. In providing entities

with attributes, Pascal_SIM has to be amended and recompiled for each
simulation requiring different_entityf’aun'buteS.- Moreover, where these

“attributes are uled to determine queue priorities, different p’rdgcdurf:’s with
very similar logic will have to be written for each type of entity with dif-
ferent attributes. . ‘

Priorities may be deterﬁihed’ by the method of selection from

queues, the characteristics of entities; and

, the ordering of activities. The
logic and variability of the simulation will also be determined by the use of
branching between activities. - :

To some extent, use of queue, entity, and activity priority is inier-
changeable. In many simulation languages and packages, only one of these

s available. However, where there is a choice the simulation developer

system -
under. consideration and provides the most flexibility. : :

7.7 EXERCISES

For some of these exércises yoﬁ will need to adaﬁt Pascal SIM in the different ways
. described in the chapter. . TR . :

/1‘) '-'Hbskitai'Sy.ftem; Carry out i,]?é ..foqumlg»r--t ..

T (a).;.Ch_a‘hge the simulation described in Chapter 6, to generate only one set
ol o of Patient arrivals called patient_arrival and then branch to 41 and g2,
. (b) Model the theatre as a co-operative entity. - .
"+ (¢) Try changing the waiting list priorities: . . ... o
woe e (1) Cselect the patients randomly from the waiting list; - ]
(i) give the patients in the ‘waiting lists random px;io:_mcs,_( 1,2,0r3)

-and select them for admission in priority order; giving prefer-
ence ‘where ‘theré-is ‘a choice to those -who do"not_require an
-opetation, i 7 -




‘3. " Plant A inakes'a series of castings each of which is transported to plant B on
- single ‘-track-railway,by'a?locqmoti_vei(_th_e‘_jonly_locomotive in the system
- Plant B repairs the faults and paints. the castings. They are then transporte
~ back 1o plant A and dispatched to the customer. Two strategies are proposed:
for the locomotive: -~ - T Y :
o (a)' after arrivél a
.v_journey;ﬁ_v;:‘n: . ; 7
, - {b).i{.no casting is ready for the return journey but a ca
: - .:plant A, the locomotive makes the journey empty,
- ‘Design-a simu]gﬁ'o’n to discover the best-strategy:
. ,_.(i)""b'y using éctiviiy-ﬂow'diagiams; and
(i} ‘by describing the events in pseudo-code,
.. State c!garly _;he_ assumptions that You are making.

t plant B, it waits until a casting is ready for the return’

sting is waiting a

4./ Ina study of pubiic "transport'provisionl;vyou have been as

ked to simulate a
bus route with a view to cha

nging the frequency of the service.
(@) .':I_)cscﬁbg the buses as erititiés with the additional attributes: their ne
-, slop, capacity, and list of 'passeng_ers. Describe the passengers as e
' tities with the additional attribute of  destination stop. Recompil
* Pascal_SIM to provide for these additional attributes.

~~
=
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&
a8
[
e
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£
g
o
Z
2
s
5
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g
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. each’has a capacity of 30 seats; - _ e
~(ii) :the ‘time taken for buses-to move from one stop to the next
Normally distributed with a'mean of § miriutes and a standare
. .. deviation of 1-5'minutes; -~ R

- (iii) passengers arrive randomly at each stop at a rate of ] every twy

i minutes; of these 30 % get off atthe nextstop , and 50 % 15

Y the ‘subsequent stops, respectively, -
r Owr bus route. Print out information : _
> by ps.. State any assumptions that you.

ﬁile of assorted Joads ¢

g it takes (0 move the pile and hoy
ion'to determine if it is quicker
State any assumption

| 7.A 'fX’tENSDN*OF-ENTITY RECORD TO "QS_E A'ITRI_BQU'.I'ES o
- 'i‘d use variaﬁl entity records, bolh"'ne_w_entify and (Iis;entit_y must be’

a different variant, new_entity and dis_,'entity:éshould be:.

rewritten, For example, with two entity classes in the simulation, each with

function new_entity (c sclass_num; 'a-:cardma_l) tentity;
var =
" e sentity;
begin .
‘case ¢ of . /
12 new (e,?);
2: new (e,2);
end; .
with :‘ do -
begime :%.0.0; avail := true;
class 1= ¢; col := nul;
i.attr := 8y next_B := 0
o endy T
‘new_entfty := e;
end { new entity );

- .procedure dis_entfty (e-&entity):. )
b??:énot.é‘;availftheﬁ sim_error (f¢i§posing qf's bgsy entity!)
else .- - - s _
. case e“.class of
.- 1: dispose (e,1); .
. 7 2z dispose (e,2); .
. ~ends
-end { dispose entity );

-,
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ponential and uniform distributions. Leave out any scheduling
or more complex matching of entities at this stage and get the
program running. It is helpful to print the time and event names
10 the screen and record the attribute numbers of the entities
starting and leaving activities. This provides usefu! information
-to indicate whether the program is running as expected.
(b) If it is a steady-state simulation, perform a steady-state analysis
- and collect the results in histograms to check that they look sen-
sible. This is the stage reached with the programs. described in
Chapter 6.
(¢) Change the program so that decision variables can be read in
~ " from the keyboard and check that it produces the same results as

_in(b). S
~ (d) Change the simulation to sample from distributions based on
 results from data-collection activities and perform further steady-
_ state analyses. o S )
- (€) .If necessary, introduce more complicated logical processes and
- entity characteristics (see Chapter 7), one at a time, and test at
- each stage. The logical processes should be coded as procedures
.~ or functions so that they can be used and updated separately.
... "..(f) Run the program using a wide range of different data and dif-
. - ferent stream numbersin order to detect more elusive errors:

c LA m‘oc.:l?_l must be tested o ensure that it js reliable,
. credibility ‘with those who are to' use jt. Once is ha

‘particularly the

error-free, and has
) are to') s been fully tested:
decision variables, are varied to. determine the
nder different circumstances and to find the est

oo Pasf:ﬁL-SIM is provided with approximately 30 error traps to pick up
-~many of the errors a programimer is likely to make..Some implementations
. of Pascal also provide dynamic debugging facilities which are extremely
vuseful for:tracing obscure errors such as the use’of wrong variant records
~ (see-Chapter. 7). " = - = LT :

2, VALIDATION

Validation is the process of checking the model, rather than program logic.
We find out- whether the model looks and behaves, 'in important respects, -
like the real system. If it does not, then assumi

ng that the verification acti-

vitiés have been ‘done properly,

s: We recommend that those, wri
¢1ly.a model (as explained in‘Chapte
to meet th , . the

w the assumptions, and
re_there-are no. serious




'~ 8.2.1 Chacking by users

- doctors, or union representatives, cannot be expected to understand full

* - activity diagram and should be involved in determining the objectives an
- hence 'the logic and the level of detail of the simulation, :

- the build up of queues; the states of entities,'and the use of resources en

--ables the user to see if the simulation looks and feels like the real system

- Visual simulations, which are particularly good for this purpose, are de
~scribed in Chapter 9. . . - '

" 822 Useofgtatistics -

- Orice a program is' running without errors, the ‘next step is to see how

-« results compare to those produced by the real system. This necessitat

- additional data-collection work. Data about the ‘output’ variables such as

- - average queue lengths, server busy time and '
.~ needed to compare with those produced by.the simulation, -

. them from some time.in the past up to the present time. However, this can-
only be done if appropriate past data'is available, Although this technique’
‘wcan be very instructive, it can -also.be ‘misleading. It is quite likely, for

<-example, that policies or Tesc
.- under study. If so: the results can only be'accurate if these changes are also’
7 .taken into Aaccount., Statistical tests:can: help’ establish whether there is &
< significant difference between the results from the simulation and the in-

e :,bchavlio'r of the system as a whole. There are two main approaches to vali:
~++- dation which are: o S )

reasonable in themselves, when put together they may poorly reflect the

-+ should be; - . o
() 10 get ‘statistical evidence that the simulation produces simil
- results-to the real system, S '

' (a) to get the. users to-check that: the simulation is running as i

Those for whom the simulation is designed, whether management staff

the simulation coding. However, they should be able- to understand a

A display of simulation results while the program is running, shéﬁrin

average waiting times will be

‘> The standard technique for validating-predictive models is to ran

resource availability have changed in the period

collected fiom the system relafing to the:

present point in time

. measures taken from the real system must be determined. It should ‘be
- reasonably easy to check whether errors have crept into the data collection
~or analysis, . - L |
_However, problems that arise with the mogel structure and assump-
“tions may be more obscure. A common p_rotglem isto ﬁpd-that Fesource use-
.in the real system is high and queue length is low compared with the simu-

" lation results because the system adapts in various ways to reduce the un- -

desirable ‘effects of long queues and idle servers: for example;

" (é) ‘where a substantial number of people fail to join queues when

they are long (see Chapter 11), - R

(b) an appointments system, or » . o

(c) the introduction of a queue of non-urgent jobs which is pro-
cessed in slack periods.

In thé initial simulation 'design', these details mdy have bee‘n'(.ieli-
berately ignored in order to simplify the model, but once such assumptions

are seen to have a significant effect on the results, the simulation structure _

should be changed to take them into account.

_8:3 SENSITIVITY ANALYSIS

In séﬁsitivity éﬁalykis,. the responsiveness of the model to different assump-

-tions and changes in factor levels is tested._.Howey?r, the ,numt?el_' of facto-rs
should be kept as small as possible, because there is a geometric increase in
the size of the analysis for each factor selected. The analysns. is usually per--

‘formed at-two levels for each chosen factor. Factor analysis may be used

.. for testing sensitivity (see Chapter 5).

h 831 Séh’ilijiﬁiyhhalysls invalidation .

.“."I'h.e':rvc'ésohé for *ﬁsiing' ﬁénsiti\'rity ahélysfs as ;')ér_t"of_ztheivalidati(in process
: .':..‘.are"-.asz f°"9“’: R IR o ; Lo
"" (a)ji:.;Tq‘, certain that the model still prox ices sensible
" viresults when factors and assumptions are varied.

b):Tolook for ways to si

e

factor level in a certain range has no effect on model output, then ',
it may be possible to leave out certain resources or activities. If,

for.éxample, we included the activities o
pital‘example, and varied their number

To ‘check the -effect,

c)v

simplify the model stricture; if a change in

rdSeiisible range, we
might find that it had no effect’on patient throughput. We might
 then- decide- to'omit them :and their activitiesfrom the model. -
“¢heck -of ;using ;parametérs which -are based on_




It is aimest impossible,
these. purposes at once;" be

of course, to use sensitivity analysis for'a
sensitivity analyses must be

cause. they are likely to interact, ‘Therefore.
carefully selected and planned. -

= 8.#.2 S@n;ltivity analysis in qigperimentation :

: Scnsmvxty gqé!ysis"is also ‘used as part of thé'aperiménthﬁbh' j:i;béess
‘explore the effect, on the model results, of changing certain factors or th
random number streams.. "~ ¢ ST T

'_arg the number of beds and the opening times of the operating theatre. Tk
- Chosen maximum and minimim number of beds and extremes of operatin
theatre times -would t ; '

; | d 'be selected 1o be realistic values of interest to thi
anagement. They might; for example, be: - - GRS

U Minimum
0 M

stimating the means of these distribiiti
sample mean of several replication
e greater. the, variance: of the résponsé
f samples that.will be rieed
[3 a] M o

Constant arrival rates or constant
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' 8.4.1 Replications

The performance of several runs to estimate the response mean is called
the method of replications. With n replications the average response, i, or

E(X), is estimated by . The improvement in variance made by using n
replications, rather than one single run for the estimate, is given by:

Var (X) = Var (X) -
If the n replications are independent, then  —

Var (X) = &‘%ﬂ

~The variance reduction is, therefore: -

.. Var(X) - Var (X) = (i.—J/.;z):Var (X)

8.4.2 Constant rates

lengths of stay can éonsiderably rediice

the variance of results, However, such constant values must be used with

~€xtreme. caution because some’ of the stochastic characteristics of the
- system :will be lost. Queue len

- use overestimated. A simulati
~for some models and may
results, .. . . -

gths will be underestimated and resource
on- incorporating constant Values is wseful
provide lower or upper bounds of the desired

;
ate the mean differ-




. such that the differences between them can be assumed 10 be due
. . the chan;,ed factor alone, then X and ¥ will not be independent,
. covariance will be large and thus the variance of X Yproduccd in this:
will be very much smaller. This effect is produced in a simulation ¢ experi

+ - ment if the dxfferent distributions i in the simulation use different randoy

while one or more factor levels are-changed. In the hospital simulatio,
- described in Chapter 6, for example, there are drfferent random nu
streams for each of the followmg -

(a) each interarrival drstnbutron :
(b) the length of stay of patients not needmg an operatton A
(¢) pre-operative stay, ,
(d) operation length,

(e post—operattve stay.

i If, for example, the number of beds were to be increased, there would
resultant decrease in quetie lengths and ‘waiting times but, nevertheless,
the arrrva] rates and activity times would remain the same between the twe

- B another decision variable, the theatre openmg time, weretobe i mtro-
gH duced the followmg would remain the same between the two expenment

o ( ). .the number and timing of- the demand for operative and no
-:operatlve treatment, :
(b) the lengths of : stay of ) patrents not needing an operahon and th

" necessary pre-operatrve and post-operauve stay of those havmg
" a8n’ operation, ‘

(c) the order and lengths of the operatrons

order from those in the comparative simulation run. The sam
ould. thus_be’ given different lengths of stay in the two ‘ru
entities wrthm each group would remain the, same
In srmple mulation, if only one factor is changed (as above), the;

‘ 'gely determlmstlc rather tha

e =com__plex simulation | expe
'h‘e the followmg occur;

number streams

v-arn'v‘als wil be low and the average queu ength wxll be correspondmgly

(b) There is fet.dback in the system (see Chapter-1 1). 1f, in the above
‘example, patients had shorter lengths of stay if there were a-
shortage of beds (which is often true in practice), then with the

* provision of more beds, many patients would stay longer. Then
_there would no longer be an exact match between the. Jengths of
- stay in both experiments.
- (c) . The -queues are not FIFO and the entities are selected off the
: "'queues in a different order in the two experiments, thus there
" would no Jonger be a match between entities.

A different problem arises in attemptmg to repeat comparative runs with
' mdependent sets of random numbers. Suppose that the first comparatwe
runs, in the above ‘example, use random number streams 1-5 10 give the
values of x; and y,. Then an independent estimate of the effect of varying
certain factors will need five completely different random number streams.
We cannot repeat any of them, even to use them for different disiributions,
_because it may cause correlation between the results. Therefore, a simu- -

" lation of any 'size and complexrty will need a large number of drfferent'

random number streams. .

" In summary, the use of different random number streams for drffer-
ent dlstnbutrons, and keeping streams common betweén different experi-
mental runs, is a very effective means of reducing.variances in comparative
'srmulatron runs, but it makes a statistical analysis: drfﬁcult to interpret and

' =may requlre very many random streams.

844 .Antltliaticvarinblaa : .

‘ lf th'er'e“ie a stream of pseudo~random 'numbere u;," u;,':a_,,, Us. .., then we
‘have (1 — uy), (1 = uz), (1 = us), (1 — uy),...which is also a stream of

.‘-pseudo-random numbers. These. two sets of random numbers are called
annthenc variables. Either-could equally well be used in a simulation.

The method of ¢ using antithetic variables is based on the’ supposition
-that if a random number stream produces a htgh rtesult, then the opposite .

- ‘random number stream is likely to produce a correspondmgly low result. If
~:a simulation is.run wrth two random. ‘number streams. havmg antithetic

- vanables, the. average ‘results from those runs’ ‘will be much nearer to the
‘mean than the average of results from two runs using mdependent random

short_ If the mulatron is Tun again ‘wit

pposite. random number




simple queueing system, then th
¢ arrival rate for the second.:Thus
point in time will eventually affec
this effect. will be" considerab]
ts of antithetic variabl
back in the model..

the rate of arrivals in the system at any
every. activity; .and -for later activities

elayed: by:the service’ times. The effec
further confused by branching and feed

mber streams are intro
2.-A Boolean variable ¢
random.numbers '
ubtracted from 't
ance-reduction facility is thus
AN extra line in‘the procedure
riables were ‘added to

Chapter 6. The

duced such th
alled antitheti
d by rnd are

at'they are antithetic 10
¢ is declared and when it
the normal ones and whe
e.. The additional coding: to ‘provid
aration of one global vaiiabl

» _' the program 6f Iherepau' sho
'y showed little benefit over-using in

simple simulations but is unlikely 1o
owever, as it is so easy’ _
roblem can be readily. test:

3.
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If we take the simple health system queueing probiem, the average
arrival rate is an input variable and the queue length and resource use are
oulput variables. However, the actual arrival raie used in the simulation
depends on the random numbers sampled in that particular run. If the
actual arrival rate is higher than the theoretical rate, then the average
queue length and average resource use are also likely to be raised, and"
vice-versa. The. arrival rate is thus correlated with queue length and re-
source use.

In the method of control variates the difference between the mea-
sured factor values (such as the measured arrival rate) and the known aver-
age values (such as the input arrival rate) is used to adjust the estimates of
the output values (e.g., queue length or resource use). Let us suppose that
we are using the control variate (such as the arrival rate}, C, to adjust esti-
mates of W, the average of response variable, x, then: -

~ (a) the control variate average, p,, is known, o
. (b) the measured sample average of the control variate, averaged
" .. . over n replications (or batches) is ¢, T
- (€) the measured average response is % averaged over the same -

- replications (or batches).

estimate £ where: -~ -

" The problem is tofind a better estimate of 1, than %.-Let us call this

RTINS .i?l.i-"_+.'1:c(6'_-"_ W s
R’egardleé; Qf the value of k, this is an unbiased estimate of u, because
E(¢)isequaltop.. .- = L ‘ L

~ . The key to the successful use of control variates is the choice of k
- which. must be must be chosen'-to ‘make Var (X} as small as ‘possible.
- ;Taking variances of (8.1): % .-~ o T Tl

| Var (&) = Var (X).
et bifdéf-'to_'-irg'p'rOVe on the:method of replications, 'V
- ;smaller than Var (X) and therefore k multiplied by the cov
. :positive, tha - P A

k2Var (T) — 2k Covar




V(Var; (C""Var (X))

k‘e

R Var (C) ‘ = :
L Pi \,\_
SD((:) . = SDLC«\ v

. where ¢ is the correlatron between C and X..
- From (8.2) and. (8. 3) :

Var (X) = Var (X) +(Covar (C X))2 __ 2(Covar (C X))?
. Var (C) ~ Var (©)

. The vanance reductnon is therefore

gCovar gC,X!!z
“Var. (C)
= o? ‘Var- (X )

“In order to determme an approxtmate value of k, the standard devratton

" .and correlanon coefﬁcrent of C and X can be estrmated from several repl"
- cations of n runs. '

- Var (Xi) Var (X)

2 by the use of additional control variates. ‘For example, the average queu
s length may be correlated with the arrival rate and with the average length
: of service time in the’ activity tmmedrately following the queue, If thre

3 ;-' - control vamtes, C,, Cz, and C3 are mdependent then the response is esti
:mated by e

PE= R = kz(fr = #c) - kz(cz llc)

lf 9, is the correlanon between X and C,, then the mrmmum vanance of th‘
estimate is grven by . . el

A ;ln choosing the.¢ontrol factors it is helpful 1o. remember that acttvrty-trm
nflienc queue lengths and also the resource use in re.

_ated acnvmes However. arrival rates will only directly influence the fi

»a_ctrvrttes in the simulation snd will mdrrectly influence all the activities i in

he:s mulauon -after. -varying time: lapses:’ Therefore, the followmg stages
-are” necessary. in“orde to use the method f ¢ ntr lvanateS‘ w0

- (c) adjust the estimated expected valties of the output variable by
the wetghted ‘control variates.

The: rna]or problem in tmplementmg the method of control variates is that
there is-a considerable amount of work in estimating each value of k. If the
-user wants to base results on n replications, then several mdependent sets

of n rephcattons musi be made to estimate k accurately. This is only likely

‘to. be. worthwhile if the user has a great deal of experimentation to do.

- If the: user wishes to base the results obtalned on one run rather than

n repltcatrons, the expression for & simplifies to:

k= oSD&X
@35 (0)

"_where o !S the correlation between C and X The variance reduction
“bécomes @® Var (X). This can be compared to the benefit of using . -

rephcauons (see section 8.4.1) where the variance reductron is -
v (1 - 1/n) Var (X)
lf o’ is greater than (1 ~ 1/n) then the results will, on average be better

than those using n replrcatlons :
Suppose, in the repair shop example, we decide to estimate the aver-

“age number of broken machines throughout the simulated day based on
‘one simulation run. The control variates available for use are: the machine
'.-mter-breakdown ttme, ‘the removal time, and the- repair time. Table 8.1 -
'shows their average values and the estimates of k from the correlations and

standard deviations produced from 10 simulation runs.
“In studymg these results it must be remembered that the estimated
values of the control variates are subject to sampling error and are dif-

‘ferent from . their. theoretical values. Small’ ‘correlations are partrcularly
~-dangerous because they. may even have the  wrong sign.. The repair time m_{' .
Table 8.1, for example, shows a- negatrve correlation with the' average,__?v.-i_ '

number of broken machines which is illogical.. Therefore, in order to be

_ ,:—-:-_conﬁdent that the ‘method will reduce the _variance, it i best to use the -
" _control -variates which ‘are based on reasonably large: .correlation coeffi-
. cients. In this example, the first two control variates could be used to adjust

the estrmated average number of broken machmes from a smgle srmulauon '
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The use of visual output and the provision of interactive simulations
" have become increasingly important in recent years and these will be dis-
cussed in the next two chapters.

- ‘158 ’ _Validation and Experimentation Techniques:

. Table 8.1 ‘tfontrb_l variates constants calculated from 10 independent
, runs of repair shop simulation where response variable is bverage
"number-of broken machines and control variates are: (a) machine

ST tntorvbr_eakdown time, .(b) removal time, (c) repair time .. . .

Sl -"A verage. number - - lmgr-breakdown Removal B .' Rebm o o
broken machines . time time .. time -8.6 - EXERCISES
. '-'.;ﬁé(‘-)_;gtiéal ‘ o S R 'y . _ B o v v
oo Mmean - . S S @ Adapt Pascal_SIM to provide antithetic sampling and show to what extent
Samplg mean 417 . - 62:36 502 . 703 this reduces variances in the simple hospital system (Exercise 3, Chapter 3)
SFHDF!?{Q : 3 - : = ; - and in the hospital system (Chapter 6).
= deviation 0-42 464 0-084 0.46 : : RS . .
Correlation o 52 Bank System (Appendix 1.A.1). Use the program developed in Exercise 4,

w;th feﬁponk oo ..+0'664 0.797;. ) Cl_iapter‘. 6, to carry out the following, __
avale s -

_ - ditional data requirements. _ ‘
-(b) Explain which method of variance reduction is appropriate to this
.. - problem and implement it. ' _ ) S
.- (¢) Show how sensitive the results of the bank system simnulation are to the
- range of hourly arrival rates throughout the day and to the number of

tills in use, - o - . ' '

- (@) Explain how you would validate th bank systgm and identify the ad-

feremruns at various’ factor levels and with changed assumptions, They
- are particularly useful for simulations, with. many variable responses
which are used on a long term basis, - ST

3 Trbﬂic Light System (Appehdix.'],A.Z). Use the program developed in
+=" " Exercise §, Chapter 6, to carry-out the following. o .

-(a)  Explain how to use the control-variate method to reduce the variance

: of the output from the traffic light simulation from one Tun, using the
_ overall arrival rate as the control variable. Calculate the control con-
" stant from 12 replications and use this to estimate the output values

“ .- from a'single run, : . :

'(b) Determine the sensitivity of the simulation to the timing of the traffic
- (¢) If the volume of traffic is predicted to increase by 5 % a year until the .
" .. bypass is finished in three years time, predict.the ‘evening rush.-hour .
build up at-these lights in two years time. LR wioe L

- The verification of

h. Visual simulations’
ey reflect the importan
istical validation usin

showin

;model. and id tartin fo fudy l_h'e.calculéii&h-’bf.’coxj_trél variates in section 8:4.5 of this _éhapper. e
mental work, using some ‘or. all -of. th P etk or g1 of a1y of the o ,
»:Will also undoubtedly be neede
Teduce the numbér of n

(a) Explain ‘whether the staridard deviation of any of the control variable
.~ Yesponses, SD(C), could have been calculated theoretically and, if so,
cohows Do e e
b) Prove that three independent control variates (C1, G, C3) reduce the,
- variance of the estimate of response X by (ef + o} + o) Var {x).
where g, is the correlation between C;and X, Do
1A quick calculation will show that, in this example, the squared " .-
ed correlation’coefficients add-up to more than one. Explain -




v i

160

(a) the prbdppﬁls'lost to a cell (becausc all of the buffers are full), and 2= R
(b) the mean time to process products through the cell, ’

should b(, no worse than they are now. Furthermore, the buffers for ea - B 9 T
workstatl_on-mpst; for technical considerations, be of equal size. 1f a news : — - ‘
3 workstation costs £10000 and a single buffer space costs £3000, is it bettert

. (a)" increase the size of the workstation, __ L ' Visualoutput |

(b) build more workstations, or
" (o) doa combination of both?

. , . In previous chapters, once a valid model had been built, input statistics
. S - ‘ and experiments were used to produce output statistics of various mea-
R S 2 ' " sures. In these experiments, the Pascal simulation:is regarded as a ‘black. -
box’. However, visual simulations portray the changing activities and use
of resources as the simulation progresses..’ Lo e LT -

. 9.1 NEED FORVISUAL OUTPUT
_ There aié-tmaﬁy;situaﬁons when it is 'u;éft_li to view the simulation asit
proceeds in time:. ©. LR SRR Wi L

. . (a) to validate a simulation — it is helpful to look at parts of the
" ‘model in considerable. detail, in order to-check that the logic is
" correct;. o L o
_(b) to see how various elements interact and to identify’ the causes
‘of problems such as long queues_ OT: the: _l_m_nderuti_lizgﬁqn_qf_
TesOurces; . - - ¢ - . SR T
ey to interest users and”to_help'the_m t_mderstan_d and interpret.the -
- simulation. . R L

Y TN

- Where interactive facilities are available; a visual im_ulation-enables users
. to-alter decision variables in response to the snformation on the screen.

DING VISUAL OUTPUT-. 4
1 ‘Differe t‘appm&cﬁos- :
N
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Providing Visual Output _
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Ailhoﬁgh this is a useful aid to verification. jt can be difficult to follow as
the numbers can change very quickly-and become unreadable,

-~ tematically as the simulation progr
the activity-flow diagram.” Di; :
of activity. rectangles and,queue circles whe

" lines: may indicate the: movement of entities

n they are in ‘use. ‘Flashing
between states.: Whilst’ this -
1. has 1 of being applicable to almost any simulation, it j
" much more ii_aterestin'g-a’nd"ge'nerally.more useful to. produce: more sophis-«
* ticated pictures; o S SR AR
. " "*Most of the more recent packages employ dynamic iconic display:
An entity is represented by an icon which is a small symbol representing a
- number,letter, or picture. The background picture Tepresents; ‘as realis?
- tically és,:';‘ipds‘s_'il_;lc,_'th"e',sy:ste'm'_ being simulated and thep the entities move'
-« around the picture as the simulation progresses. The effect is'similar to that’
- "of a.vider game. Color can beuséd ‘to enhance both the Quality and realis

this approach can be used fo dispiay th
ree 'PSQ:"df the running simulation, - - -

display, and i':t.:s‘:fébnibina‘_thn ‘with user
!l interactive Simulation. (VIS), In.the
N interaction, the term .'anin_:atiq_n s

hay been--ﬂ;eéigned‘speéiﬁba_lly to tak
, WHY (Fiddy ¢t al.'1981), the majofi
ages now have some VIS facjlities. Many packages use high
phics and avoid probl_é;ﬁ_}t’_)’f._.hardwéiefﬁci)_rj_gpaﬁbili_
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“possible so. that it'is easily understood by people famrhar with the system'

e bemg srmulated The stages in developmg the'plcture are: -

(a) dcsrgnmg the ‘static bdckground
(b) designing the ‘dynamic component,
(). mlegratmg these wnh the srmulatlon.

1t i$ advisable to plan the vrsual output at-an early stage in the modellmg
process as it will help to° clanfy the structure and output requirements of

the simulation program. The static background should show, as realisti-
cally as possible, the things that remain constant. for the duration of the
simulation. This will include the picture or diagram covering the screen'and . -

any nécessary text explanation. The railway lines in the OPTIK mode! are,

for example, part of the background picture: The background need only be |

" written to the screen at-the start of the srmulatlon. The dynamic com-
- ponent of the picture changes with each event. Icons. representmg entities
~ can be moved across the screen and put into queues. Color can be used to

reflect attributes. The visual output must be driven by the simulation as it
proceeds. This may be done. i in one of two. ways: .

~(a) the visual output is ooded exphcltly wrthm the simulation events'.
and executrve,

(b) instructions are coded automatically. by the running simulation

" and these mstructrons are decoded by a separate program, elther,

L running at the. same time or after. the simulation run. e

3 Thrs chapter describes how the first approach is implemented in Pasca
SIM.: Chapter 14 drscusses the beneﬁts and drsadvantages of the two'_
methods S .

! 9 3 VISUAL OUTPUT WITH PASCALSIM

:The vrsual facrlmes uvanlable in- PascaLSlM are largely hardware mdepen
"dent, and can' be implemented for almost any console screen (see Appen
_dix' C): “They:use ‘charactet” facrlmes rather ‘than ‘specialized - graphics "
:capabilities-and as a: cousequence, are, fairly: srmple ‘The icons, for exam-
~ple, are letters of the-alphabet.’ Therefore ‘the quality of the output is con--
'isrderably poorer than :that »avatlable ina tool like: OPTIK However, the.

procedures for entity and queue manipulation to provide simulations wit
or -without visual output. The dynamic picture is updated in two ways:

--(a) when events occur, and
(b) after an entire time beat.

The logic for moving around the screen must be written in the events
because only there can the current entity and its attributes (such as color)
be identified.

For instance, in the hospltal system, suppose we choose to portray
the queue of operation patients waltmg for a bed (g2). The bound event E
patient2_arrives should move the arriving entity into the queue thus:

procedure patrcntZ._arnves,

- begin ..
< take the current entrty and add to tail of q2 >
< move the current entity towards q2 >;
< display the new instance of q2 >;
< create a new entity >;
< cause the arrival of the new entrty >

end;

In:the three-phase approach, the number ,.of.-resources'in use should be
written to the screen after the entire time beat. This is because resource

' levels are artificially depressed during the-course of a time beat.. For ex-

ample, the number of beds in use in the hospital system may decrease fol-
lowing a patient discharge; and then increase again in the same time beat -

. .due to.a patient, who has been waiting in the queue since the prevrous time
~ beat, being admitted to the bed."

In the event method, it makes little dlfference whether resource
levels are recorded rn the events or at the end of the tune beat o

9 3.2 Structuro ofclmulatlon =

| . The structure of a PascaLSlM srmulatron-,wr vrsual output is: slrghtly :

‘more eomplex than that for a non-visual simulation. " .
The picture must be initialized by giving entities default letters and.
colors -and by programming the static background. The initialization pro- -

'_ - cedure is called plcture. Code for updating the ptcture after each time beat -
- isicollected in @ procedure called display;”
.. visual simulation program ‘is now:

e: suggested structure for a

procedure'run, i
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- procedure initialize; -
- " procedure picture; LT
. begin - -

if necessary, be adapted to provide for the number of colors that arc avail-
able on a particular machine, where these are more or less than eight, in-

- cluding just black and white (see Appendix C). The foreground color and
background color for each character position is set with:

procedure set_foreground (c :color);
and '

+ " procedure set_background (c":color);

respectively. These procedures do nothing to the screen until there is a

- write statement. All the characters that are subsequently written to the
screen are shown in the foreground color on top of the background color.

. The background color covers only a square the size of the character posi-
 tion, for each character, The effect of the procedures is therefore akin to
dipping two brushes in paint but doing no painting until there are further
instructions. The routine: - T ’

"-;,,,9.'_'4;"Phpsnﬁnhmnyueiyis'um‘.oufrhur e

941 Basic screen control.. - -

- Pascal_SIM provides all the necessary screen control facilities to run visual .
o slmulations.._M_any__ versions of Pascal already provide Some, or all, of these.
“facilities. Appendix C shows how to alter Pascal_SIM for diffe;

“and implementations of Pascal.. o o
The proce.

- procedure reset_colors; ,

- sets both colors back to the screen’s default colors, normally white fore-
ground on a black background. The effect of calling the set_background

E and.'éet.'.foreground procedures remains in force unti) superseded by one of
‘the same routines picking up a different color or else by reset_colors.

9.4.3 Static background

The static baéﬁgfohnd_ can be composed of text and blocks '(tcétang'leé) of
~ ‘background lor. . There is a routine for coloring blocks of text:

procedure gotoxy (x.y. cardinal); -

; rocedurewnte_block (.l\:.l?;yl_f,xz_,};z:_:ch‘x_';iina'l_;_',b' eolor);. i
N ::\vheré__ihg"to;i,; 'left;-'hahd:'ct;-ofdi'néteé 'of_;t_h'el’iblock:ai.'é:v(xl-,y'l),f__'.-.an_d the
r:bottom right hand -are’_;(xZ',yZ).j-Thus.write_bIOck (10,10,14,18,blue) would

)i write (HOSPITAL SIMULATIONY);
ULATION or the

ITAL SIM

- ' produce a blue block*with a width of 4 characters and height of 8 charac-
Cters,*whose top left-hand point is situated at (10,10)."
T Te can'be put on the foreground of the block; or éntities ‘moved

; - Ttis 4 good idea to use contrasting colors to make -

t0p line of the screen, inden-

any color
egible :




class.table array [class_num] of
_record
» Yet :char; col color,
) end »

lt must be initialized by a call to
- procedure make._cless_table;

. -Then each entity class that is going to be'used in the display is entered in
~ the table using ‘ .

proredure enter.class (n class_num,l char c color),

_ where n is the class number (see Chapter 3) Entities that are not in the
: dxsplay do not néed to'be- represented in the class table.

o In the hospntal example operatron patlents have class number 2 For
- example ' ‘

. enter_class 2, ‘O' b!ue)

~ will cause these patient entities to be drsplayed as an O and they will be
. given a default color of blue. If the entity attribute col is given a different -
- color, then this wrll ovende the default -color in the class table.

.4 5 Dynamnc display

. Entmes represented in the c!ass table can be dlsplayed usmg o \V;lrl(
B ' » procedure wrxte_entrty (x.y cardmal e entity) R \(d
.v.wlnch wrltes ent:ty e at (x.y), usmg the letter.from the class w ;

procedure wrlte_queue (x.y :cardinal; b scolor;

queue, max_length :cardinal);:

’ wrrtes an entxrc que p.10 a ma rnum 'Iength of max_length, asa hon—
:-zontal_ fist’ of letters, with thé head ‘of the queue at the right-most point .

(x,y);-Each entrty is drsplayed mdwrdually as a letter in its correct fore-

«-ground color, If there are more than max_length members in the queue,
Che‘last entiy in the drsplay is an asterisk.- The vanable b denotes the back- .,
round, color ‘of . the queue Thus, for instance, _

and

~ .where move_v moves entity e from (x,y1) to (x y2) ‘where y2>y1, an'
. it over another space, erasmg the new original, etc., until it arrives at the

from left to right arid from top to bottom. Therefore the prcture must be

~This may ‘be difficult if entities have to retrace their steps. The reader may

' comfortable viewing. The rate at which the picture changes can be delayed
- by using the-constant ‘delay.num and the procedure delay; delay simply
~ loops fora period determined by delay_num'and it is used by both move_h

" the simulation after a picture is fully updated in display, delay can be calied

‘that is proportional to the time between time beats. This means that large

. gaps between. time beats appear greater than smaller ones. This can be

- done by recording the time of the last-time beat.as old_tim, and then,

" . within display, setting the amount of delay proportional to the difference
between the present clock trme tlm and old..nm for mstance'

' precédur'e move_h (y.x1,x2 :cardinal; e’ ‘entity; b :color);

move_h moves an entity from (x1,y) to (x2,y) where x2>x1. In each
case b is'a background color.

These procedures work by successnvely copymg the letter repreqen- ,
ting the entity to an adjacent character space, erasing the ongmal copying’

final position. These routines simulate movement on the screen so effec-
tively that the representation of the entity appears to move from one queue
to another.

These procedures dictate that the entities ‘flow’ through the picture -

desrgned so that the entities move from queues to activities in this way.

like, as an exercise, to develop new versions of these routines which will
move entities in different directions.
- When.coded and working, the picture may advance too quickly for

and movelv to delay the walkmg of an-entity across the screen. To delay

a number of tlmes, for example,
for =1t 10 do delay,

The simuilation can be made to look more reahstlc rf rather than provrdmg
a blanket delay after every time beat, the simulation is stopped for a délay
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Note that immediately after display the clock will be updated, thus
old_tim should be reset to the préesent clock time tim within display.

‘Finally, in-almost every picture, it is helpful to show the clock. This

can be written to the picture in display, before the delay is invoked. If

minutes are the basic time unit of the simulation, then the provided pro-

. cedure write_time can be used to convert the clock time tim to a days:

hours: minutes:-seconds display.

9.5 USER INTERACTION

Most commercial VIS phckages provide facilities for interaction as well as
animation. Those using the simulation for decision-making will normally
be the people who are interested in interacting with it. There are two cases
where user interaction is very helpful as follows. '

(a) 1t may be used when there are decision mechanisms in the system
- which are too complex, or not well enough understood, to encap-
sulate in the simulation. For instance, in a manufacturing system,
a production controller may make a number of decisions regard-
ing the scheduling of tasks to machines. Rather than trying to
capture the decision-making behavior of the controller in the
simulation, the simulation can be written so that every time a
scheduling decision has to be made, it is passed over to the user.
The combination of the simulation plus the controller results
(hopefully) in an accurate model of the system. (For an example
- of this, see Hurrion 1980.) o .

(b) In many systems an overseer or manager can alter parts of
__ the system as required. In the hospital system, for example, an
- administrator might have the option of opening another hospital
- ward if the waiting list were very long. Thus we would need to
“arrange for the user. to be ablé 10 halt a simulation when the
.. waiting list is seen to be long: Using visual interaction to provide
the prompt to the user; such actions can be incorporated in the

. simulation. - .. .. .. % S

" The first of these two types of interaction'is often called m'éde’l-d"etérminéd,» )

the second user-determined. Model-détermined interaction is quite easy to .
- -implement.:When a_decision needs to be ‘referred to the user, a bound
-4, event is scheduled in,which there is interaction with the user, fo :

" an necessary variable changes’a cheduling of bound events.

ermined interaction

,Wiléré . both interaction .and -_.s'f‘atisyi'ca}l.g na_lygs :
~approach is to do some interactive runs, 1. cordn_qg

llo‘Werc_l_: by ‘.

m

User Interaction

some pre-determined value if a key has been hit. (In Pasc_al, it i.s not poss?-
ble 1o just issue a read command, since program execution w11'l just wait
until a value is entered.). Many Pascal implementations prov'ldg a pre-
defined routine that does this. For instance, some UCSD Pascal implemen-

‘tations provide a function called keypress, which returns true if a key has

been pressed, but will return false after the value of the kFy has b.een r?ad.
This can be used in the display procedure to initiate interaction, since
display is called after the end of a time beat, thus;.

procedure display;
begin
< update display >;
if keypress then
- begin L
< read input >; - '
< take appropriate action >;
end;
end,

A sensible thing to do is to display a number of single-character menu
options for the available interactions. Then ?he user can .‘select a menu
option, whilst the simulation is running: whlch.‘can 'be plc.:ked up after
keypress teturns true. User-determined interaction gives rise to several
problems as follows:

"~ (a) Statistical analysis is invalidated, since the: user -can alter fhe
value of decision variables at will. For example, if the -hqsplt_al
administrator changes the number of beds in the simulation in
one run, he is unlikely to do so at exactly the same .pla.cg: in
another run. This invalidates the second run as a replication.

" (b) Almost certainly, steady-state si_r'nulart_ion“s_r__:_\_'\:rill be ;cmoved from

their steady state by any interaction. REE I
(c) Where users have the option of resetting resource levels in tl.u;
.__middle of a run, the user may wish to reduce resource avz.nlabll-
- ity. However, it is difficult to decrease them .wbil_e they are in use.
(d) In many cases, the user is not in a position to .gwq_mu_ch time to
- experimenting interactively with a simulation. . -

FEEN

re -required,  the best
‘exactly where and what
he inieraction can then
perimental




172 _ : Visual Output

9.6 SUMMARY

Visual output is now as important in simulation modelling as the collection
of statistical summaries. Using visual output can be a great deal of fun, but
can also greatly increase the time taken to program the simulation. For
newcomers to simulation, there is a significant danger that the provision of
visual output will become an end in itself and the overall objectives of the
simulation exercise will be forgotien. ' .

Visual simulations are developed in three stages with a static picture,
a dynamic picture, and the integration of the command creating a visual
display with the simulation logic. Visual output in Pascal_SIM is quite
simple and portable. Displays show entities as letters which, as the simu-
lation progresses, can be moved from one queue, or activity to another.
They can also change color as they change state. Visual displays make it
possible to introduce interactive facilities. The use of interaction is both
powerful and problematical as frequent user interaction will invalidate any
statistical analysis.

Chapter 10 shows how visual simulations can be developed for both
the hospital and repair shop systems. :

8.7 EXERCISES

Exercises 2, 3, and 4 will require the screen control and visual facilities of Pascal_
SIM. Readers should look at Appendix C for implementation instructions.

1. " Plan the static and dynamic pictuies for the following simulations:

(a) the garage (Exercise 2, Chapter 2);
" 7 (b) the ante-natal clinic (Exercise 3, Chapter 2); -
~ &) the manufacturing cell (Exercise 3, Chapter 6);
~ (d) the locomotive transport of castings (Exercise 3, Chapter 7);
. ({e)the bus route (Exercise 4, Chapter 7). S
+ " (f) the transport of items by truck and crane (Exercise 5, Chapter 7).

2. Implement the scre
~ do the following. o o .
(a) Clear the screen and write ‘TEST SCREEN' in white on blue, at the
_second line from the top on the screen; in the centre. - g

X (b) Draw a block six lines below the message ‘TEST SCREENL in

. magenta, 11 characters square. . ~ . ... . S el it L
i e‘_the‘;’,yvgrd fActiyityf in:red on white, ip_?the ‘middle of th’_c._blqc}c.-

e

gratm

173

en control and visual procedures of Pascal_SIM and then -

. Wﬁtg._-additionﬂ' prbcedures for PascaLSIM- to “move ehtitiés'f;éroundv Co
~the screen from right to left and from bottom to top. - e o L

Exercises

‘Write an animated version of the simple hospital- system’ (using -the
code from Exercise 6, Chapter 4) as follows.

(a) Plan and program a static picture. .
(b) Set up a class_table of patient entities.

(¢) Represent each entity by a Iett_cr'a'nd show t_he patients qqeueing for

admission. " ..o oE Lo
(d) Display a clock in the top right hand corner. . .
(e) If the picture moves too quickly, delay the simulation so that it can be

read. - -

(¢ 5, \, Adapt the simple hospital system in the previous exercise, to stop when a key

is pressed and restart when a key is pressed. When ll}is works, adapt this
further so that the user can change the number of beds in the ward “fhen the
simulation is interrupted. Remember that if the number of beds is to .be
reduced, you cannot assume that the beds you .wanl to close are unqccupled
at the point in time you interrupt the simulation. : :
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Hospital and Repair Shop
‘with Visual Output

The previous chapter introduced the idea of visual out ti ;
dynami.c iconic dispﬁay. and the facilities PascaLS]tvll) u;;cf\zg;ur);ly tr}::
gramming such displays. In this chapter, we will produce entire progrznis
f(?r the two examples given in Chapter 6, only this time providing visual
- displays rather than collecting statistics. (At this point, the reader may find

783-06 .
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it useful to review the specifications for the two examples, as presented in
- Chapters 1, 2 and 6).

Designing visual displays to get the correct level of detail, good colors

~and a useful background to the simulation, may demand as much artistic
_skill as programming skill. The first thing to do in designing a picture is to
-list what needs to go on the screen. Once this is done, sketch the picture on
- paper, and when a design is ready (probably following a number of attemp-

tcd designs and many discarded pieces of paper), produce a version on

- graph paper. This will provide the co-ordinates necessary for the various

visual routines. In the long run, this will be much less time-consuming than
rcpeatedly changing the simulation program.

An alternative is to use one of many ancillary graphics packages
(which are becoming increasingly available) to design background dis-

plays. A number of packages allow pictures to be drawn; saved, and then
" retrieved from within another program. Other packages provide for main-

tenance and manipulation of sprites or icons, which can be used to form

" the dynamic part of the display. We shall not review this option here, but

readers wanting to develop visual simulations professionally, should con-

sider it. - _ _ e
Figures 10.1 and 10.2 respectively, show finished drawings of output

from the hospital and repair shop simulations.. . e o

Beds in use

- Hospital stay only o f

. Operation
Coe T -Operating
" -_theatre

-

o Colors:'. black wsth Whlte Writing

colored icons representing entities in quédes .

0:3:52-92
moom2 w3 om4
.rn_18. . m9 - m10 :m11 ‘,  i
_m15 m16 _m17:> '_._'_ma'.~-;‘. ‘e
. ‘mechanics by

S :414

pital; time is 178.20 hours aftéf g
with 20 beds in use
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10.1 PORTRAYIN_G HOSPITAL
10.1.1 Design

Because the hospital simulation is customc‘r oriented, the picture should
focus on the path that patients take through the system, -and the size of
queues for beds and theatre. We need to display: K o

(a) the queue of hospital stay patients for beds (q1),
(b) the queue of operation patients for beds (q2), :
(c) the queue of operation patients for the operating theatre (g3),
(d) the number of beds in use, ' _
(e) the present state of the operating theatre — open or closed, and if

open, whether available or unavailable.

There is little point in displaying ¢4, since it is a dummy queue with no re-

source constraints, : : e
The picture shows movement of patients going from left to right and

top to bottom. Thus g1 and ¢2 are placed to the left of the screen, the beds
in the middle, and the operating theatre to the right, so that the flow of .
patient entities which arrive, obtain a bed and have an operation, moves
from left to right. Patients returning from the operating theatre to their bed
re-enter the bed area from the top of the screen. o .
- In this design, the resource numbers are shown at the right of the :
queues to which they relate. Thus the display of the number of beds in use -
is placed just to the right of the arrival queues, g1 and q2. ’
We have to decide upon the characters that should represent the two
types of -patient. ‘Although it is often easiest to use the first letter of the '
name of each class, here we use o for operation patients, and s for hospital-
stay patients. o ' -
The annotation on the picture should be kept to a minimum while
conveying sufficient information to understand the simulation display. The
resources and queues, for example, need to be labelled. In this display,
there is a label saying ‘Beds in use’, close to the box representing the hospi-
tal ward and another label denoting the theatre. Further labels distinguish
the two patient-arrival queues. Messages give information about the state
of the entities and change as the simulation progresses. For example, a
single number indicates the number of beds in use and a word indicates
whether the theatre is closed, opem, or in use. = '
- Figure 10.1 shows the screen layout but not the colors. Color can
~ i -letters representing hospital-stay-only patiems';r_emainone;color'through

© wiout but etters zepresenting the operation patients change color after the

|- operation:activity.. ... SR e e e s e B PR A
. .7 ":The choice of colorisa personal matter. The patients are represented |
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Portraying Hospital

l)y blue which is a neutral color, unlike red, for instance, which is generally

" associated with stop or danger. The queue backgrounds are whilc, which is
. casy to see. .

Both patient classes are given the color blue in the class table thus:

‘enter_class (1 ,‘S’,blue);
"enter_class (2, ‘0’,blue);

T This default color can be altevre'd'» by-chan_ging col in the entity record.

The program distinguishes patients who are ready for an operation by

* changing their color to yellow. This is achieved by placing

current”.col := yellow;

in the end_pre_operative_stay event. )
If the background of a picture is black, then yellow is a good contrast

for any annotation or legends. This is used here, together with.magenta for
the blocks of color representing the ward and theatre. ) )
The final touch, which was recommended in the previous chapte_r, is
to place the time clock in the picture. Because t.he hospital runs contlr:u-
ously, ignoring any breaks for the weekend, holidays, etc., a single point
value is used rather than the days: hours: minutes vérsion that can be

obtained using write_time.

10.1.2 Program details

Within the program, the visual display is updated in two separate places.

- The appropriate bound or conditional events update the queues and the

display procedure updates the display of the clock and th¢ number of b.cds

available. o . . - - . o

- When a queue is updated in a bound eve_nt,--tl_]e_ current entity is
moved into a queue using the move_h procedure and .the:» new queue is re-
written with write_queue. This is best seen in the feeders, patientl_arrives

and patient2_arrives, which both have the ‘fqrmat: SR
procedure arrival;
- begin
_give_tail < (current to queue >; . .
move_h < current into queue >;
write_queue < the queue >;
cause < another arrival >
Cend; T o T

Queues are rewritten in the conditional éven owing the _:_qtpoygﬂl of an

~The operati_ng“ theatrens,handl d 1ff,¢,rgntly 7 '_I’hg 'eygn‘t that
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opens the theatre writes ‘OPEN’ o the screen
overwrites it with ‘CLOSED”. Similarly, the conditional event start_opera-
tion writes ‘IN USE’ to the display. This is erased (by writing out an empty
string) when the operation is over. . ,

The number of beds in use is written out within display at the end of
each time beat. The procedure display is called after the scan of the condi-
tional events. The picture is then delayed, so that it may be viewed more
easily using a record of the time of the last event, old_tim, as explained in
Chapter 9. - - '

10.1.3 Steady state versus transient pictures

In Chapter 6, the cumulative moving average method was used to find the
start of the steady state for the. hospital simulation. The decision about
whether to display the simulation only in the steady state, or in the initial
period as well, will depend upon the purpose of the display and what infor-
mation it is being used to convey. If only a steady-state picture is required,

then a run-in period should be used during which no display is shown; the

picture is initialized after the run-in. However, normally visual output is

used to watch how a system behaves over a transient period, as well as the

steady state. o

10.2 PORTRAYING REPAIR SHOP

' 10.2.1 Design, with details

Whereas patients in the hospital move through the system, machines in
the repair shop remain static; repair men go to the machines. Thus for

- machine-oriented simulations like this, the approach to a visual display is

rather different. Figure 10.2 shows that we can represent each machine as

.~ aletter, placing the letters on the screen as if it were a birds-eye view of the

factory floor. -

- -To identify each machine in the display, -the entities ;;'cpre'senting |

each machine need individual co-ordinates. Then, within the simulation,
we can access the position of the displayed machine via the entity record.

o This is best done by extending the entity record with two attributes, as ex-
. plained in:Chapter 7, section 7.3. Here, the repair shop program assumes
.. that the entity record has had T AR

‘cardinal

wherg-'(.y,y) ,is_ gsed_ v'a_s a »,éofq'x"dinat__e _p_air_.‘

; conversely, close_theatre

.sources.. This is a typical exampl
-quality “of ; the ' display - would =requir
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Each machine is placed 10 character positions apart from its neigh-
bors in three rows of seven, seven, and six machines, where each row is
four positions apart. Within the initialize procedure, a simple algorithm is
used to achieve this: B : '

ji=0; : _

Jor i := 0 to < number of machines—1 > do

~ begin

k= imod7,

if k=0 then j := j+4;

< generate a machine, entity e >;

e".x := 10+k=10;

e’y :=j;

< write entity e at x,y >

end; : : ' . .

This algorithm lays out letters on the screen for any number of machines;
the horizontal spacing (10) and vertical spacing (4) can be changed easily.
The attribute number of each machine is written out beside each letter to
help the viewer understand the display. _ :

‘Each machine is always in one of three states: working, waiting to be
mended, and being mended (see the activity diagram in Chapter 2). Dif-
ferent colors are used to show the different states. The default color for
working is blue. This is entered in the class table thus

enter_class (1,'7’,blue);
where m is the letter representing the machine. This then changes to red
when the machine breaks down (an obvious choice of color for conveying
that something needs attention), and yellow when the machine is actually
being mended. For instance, when the machine breaks down, its color is
altered by . oo e e s '

with current® do

.- .col := red; write_entity (x,y,current);

- end; : e
The screen displays the meaning of each color and the total numbers of
mechanics and equipment in use (these are written as pairs of numbers in
the display procedure). = -~ ooeo T T e .

_For a more realistic display, repair. men. and equipment could be
shown moving around the machines attending.to the broken ones, but this
would convey no-additional useful information::They, would also need to
be modelled individually (i.e., réprésented, as entities) rather than as re-
1 ex e ionwwhere an increase in the
reviously imodelled as
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resources, 10 be modelled as entities. In many visual simulations all items
have to be entities. -
Finally, if desired, the effect of the display produced could be en-
" hanced by changing the background to white and all foreground annotation
to black. This can be done by altering the reset_colors procedure so that all
the visual routines reset the background to white and the foreground to
black i.e. '

procedure reset_colors;
begin
set_foreground (black);
set_background (white);

end;
L

10.3 SUMMARY

This chapter shows how to program visual display simulations for the two
case studies. The picture for the hospital simulation is based on the activity
flow diagram. The activities are portrayed as boxes. Letters representing
the patients appear to join queues, enter and leave activities until, when
the patient entities are discharged from hospital, they leave the screen.
Colors are used to highlight words and to distinguish entities as they move .
through the system. The visual simulation shows the system in its transient
and steady state. ,

In the repair shop example, the approach is different. The machines
are‘not seen to move through their life cycles but remain static. A change
of state is shown simply by a change in color. The entity record is changed
to identify the locations of each machine. :

These examples are rather inconsequential and could be enhanced by
including a display of statistics. Furthermore, the visual impact could be
improved by the use of graphics and windowing mechanisms. However,
the examples do show how instructions can be incorporated in the simu-
lation logic in order to provide visual output.- o

10.4 EXERCISES .

K

. , lmpléhlénl th"e.hosﬁité_l s}slém and_‘re;»:air'.‘shbp system visu_al simulations, de-
. scribed in this'chapter, " .. . .~ - , P .

N1

2 o (a)-Play around with them, changing color and layout, messages and delay.
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(b) If your 'corhp'u’lcr can write to more than one screen then design some .
block histograms, showing the current status of the queues, to appear
on the second screen. ' ‘

o lmﬁrove the display of the hospital by using procedures to move entitics from.

right to left and from bottom to top (see Exercise 3, Chapter 9).

| 3> Bank System (Appendix 1.A.1). Using the coding developed in previous

N exercises, design and implement a visual simulation in Pascal_SIM.

4 B . Traffic Light System (Appghdix l.A.2)._Using tht_: codir?g d(.:veloped in pre-
Kj vious_exercises, design and implement a visual simulation in Pascal_ SIM.

* = *

10.A HOSPITAL SlMULATiON WITH VISUAL OuUTPUT

program ,simu.late (outpu't)_;' '

const

amount_of_beds = 20;

patientl_seed =1;

patient2_seed = 2;

hospital_stay_seed = 3;

- pre_op_stey_seed = 4;
operation_seed . = 5;

post_op_stay_seed = 6;

theatre_open_time . = &;
= 20;

theatre_closed_time

var
bed : :bin;
- q1,92,93,94 :queue;
theatre . ~ :record G
. : - body s L. dentity; o
. open,available :boolean; . . .= ...
{ true if theatre is open, aveailable )
end; C e
old_tim sreal;

{ B events ) -
procedure patient1_arrives; { stay ) < 81‘_)_
begin . .
give_tail (ql,current);
move_h (12,2,10,current, white); : '
write_queue (22,12,white,q1,20); = . .
_cause (‘l,neu_entity(h.1)4ne9e_xp(6,_pqtlengj_sged,))..
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- procedure end hospital _stay; {( B3 )

. procedure open theetre, ( B7 >

procedure patient2 .arrives; { operation ) ¢ B2 )
-begin
give_tail (q2 current);
“move_h €(14,2,10,current white);
write _Queue (22 14 uhlte,qz 20);
cause (2,new entity(Z D negexp(lz patient2_ seed))'
end;

begin
return (bed,1); .
move_h (12, 40 70,current uhite),
dls entity (current)

end

procedure end_pre_operative _stay; € B4 )
begin

give_ toil (q3,current);
current”.col := yellou-
move_v (30,14,20,current white);
move_| "h €20,30,50,current white);
write _queue (60 20 uhlte,q3 30)'

- end;

procedure end operatlon, {B5)
begin
theatre.available := true; ’
gotoxy (63,21); write (® b H
move_v (30,4,10,current white);
‘give_tail (q4 current);
- end;

procedure end post operative_stay; { B6 )
begin
“return (bed,1);
“move_h (12, 40 70, current uhlte),
dis entlty (current)
- end;

begin
theatre. open HE true;
;gotoxy (63,20); urite ('OPEN );
ceuse (8 current, theatre _open_time);
_,end- :

procedure close theetre, {88)
begvn S
- theatre.open’ '= felse'

; gotoxy (63,20); write C('CLOSED®); :
:ause (7, current theatre closed _time); -

en . L - el
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{ C events )
procedure start hospltal stay; { C1 )

begin
eghrle (bed.num_avail>0) and (not empty(q1)) do
begin bed, $5;
acquire (be H
cegse 3, take _top(q1),negexp(60, hospltol stay_seed));

write queue(22 12,white,ql, 20),

end;
end-r
procedure‘stert pre_operative_stay; { C2 )
begin
e:hile (bed.num avcil>0) and (not empty(qZ)) do
begin

acquire (bed,1);
cegse (4, take top(qZ) negexp(24,pre op_stay_seed));

urite queue 22, 16 uhite,qz 20);
end; .

procedure start. operetion. €c3)

beglnh h : »
th theatre do
u’uhile open and evailable end (not empty(q3)) do

begin
available := false,' v
cause (5, take_top(q3),
normal(O 75,0.25,0peration_seed));

otoxy (63,21); urlte ('IN USE*);
:rvte _queue (66 20 uh!te,q3 30);

end;
procedure start_post_ operatlve stay; ( cé >
begin .

while (not empty(qk)) do
begin eed))
cause (6 take top(qA) negexp(?Z,post op stay s H
end- : o
- end;

procedure displey;
var :
scardinal;

begl:ox} 630 12); urite (bed.number bed num_ evall 2);

_gotoxy (1, 1), ur|teln (tim- ~7 2),‘.-.
1 N
' g::o?y £11 28 trunc ((tlm old tim)/Z) do delay,
~old tim == tim; " | i . .
end € dlspley »n
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procedure run(duration:real;ﬁax_C:cardinai);

var
¢ :cardinal;
begin
“running := true;.
repeat

if ca(endar:céléndar‘.nekt then running := false

else
begin
display;

tim := calendar.next".item*.time;
if duration<tim then running := false

else
begin

while (calendar<>calendar‘.next) and
(timscalendar‘.next‘.item’.time) do

begin

case
0:

1:

23

3:

42

5:

6:

7:

8:
end;

end;

for ¢ := ¢

calendar_top;

current”.next_B of

patient1_arrives;
patient2_arrives;
end_hospital_stay;
end_pre_operative_
end_operation;
end_post_operative_stay;
open_theatre;
close_theatre;

stay;

to max_C ao

) Repair Shop Simulation with Visual dutpul

case
1:

start_post_operative_stay;

¢ of-
start_hospital_stay; .
start_pre_operative_stay;
start_operation;

end .
. until not running;
~end € run );

procedure initialize;
begin ’

.make_sim; moke_streams;

make_bin (bed, amount_of_beds);
make_queue (q2);
make_queue (q4);

- make_queue (ql);
- make_gqueue (q3);
with theatre do

- begin - -
.. body"

end;

- end € initialize 3;

:i»néu_entify(S,l);
-open.:=.true; available := true; )
. . cause (B,body,theatre_closed_time);v

procedure picture;
begin
make_screen;
set_background (black);
enter_class (1,'s?,blue);
enter_class (2,'0',blue);
clear_screen; .

-write_block (28,10,32,14,magentsa);
write_block (60,18,70,23,magenta); -
set_foreground (yellow); i ,
gotoxy 4,11); urite‘('Nospltgl stay only!');
gotoxy (4,15); write ('Operation’);
gotoxy (32,8); write ('Beds in use');
gotoxy (60,15); write ('Operating');
gotoxy (60,16); write ('Theatre');
reset_colors;

end { picture );

procedﬁre report;
begin
end { report };

begin
initialize;
picture;

- cause (1,new_entity(1,1),0);
cause (2,new_entity(2,1),0);
old_tim := 0;
run (365,4);
report; .
reset_colors;

end. :

e

10.B  REPAIR SHOP SIMULATION WITH VISUAL OUTPUT

To implemént this, x and y must be included in "thefer’itity record and

initialized in new-entity.

program simulate (output);

const , ;
amount_of_machines = 20;
amount_of_mechanics = 4&;
amount_of_equipments = 3;
inter_break_down_time = 60;
breakdown_seed e 1y
- removal_time_seed .. = 12; .
= 13;

repair_time_seed
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var _ . : .
a;_work tboolean; prsz:dure start_repair; ¢ €2 )
q1,92,93 1quete; e
mechanic, equipment tbin; b einentaty,
‘old_tim sreal; eg

while (equipment.num eveil>0)
and (not empty(q2)) do

; . begin
{ B events ) . -
B H t k to 2"
pr:cedure end uorking, ( breekdoun ) < 81 ) :it; ea ;o P
egin .
o : ; begin :
1fbet work then { machine cen't breek down after shift ) gol := yellow; write_entity (x,y,e);
591" P - . . .
. end;
with current” do ' ;
acquire (equipment,1); 3
begin caﬂse (3,e,normal(8,2,repair_time_seed));
:ol = red; urite _entity (x,y,current), end;
end; . !
give_ teil (q1,current); ends
end; end; > pr:::dgre display;
procedure end_removal; ¢ B2 ) be;i;cardinal;
be::Ce tail (q2,current): reset_colors;
ns; q ent); gotoxy (20,20);

with mechanic do . . -
write (number :1,':',number-num_avail :1);
gotoxy (60,20);d i : e
ith equipment do. i .
H'Hrltg (szmber :1,':', number-num_avail :1); -
for i := 1 to trunc ((tim-old tlm)/Z) do - deley, R

procedure end _repair; { B3 )
begin
return (mechanic M;
return (equipment 1),
- with current* do

begin old_tim ;=1t1m, te times
' U write_time;
:ol := blue; write_entity (x,y,current); eng?toxy (1, D;
end; _ N

if at_work then

un (duration :real; max_ c -tnteger),
cause (1,current, procedure run ( L  :

negexp(inter breek _down_ t)me breekdoun seed)) ve: tinteger;
S oegin b o te true;
.= r H
gotoxy (40,1); ::;:a:g .
write ('anished repelr at ')- . if calendar=calendar-.next then running>'= fﬁtse
. Write_time; else . 3
. end; begin L
. end; » tim := calendar”.next" .item .tlme.‘ -
_ display; S
7 { C events ) .. if 5uretron<t|m then running 2= false
. pr::e?ure start removel- ( C1 ) .else e
gin begin o
uh;lei(mechenic num evefl>0) end Cnot empty(q1)) do eghlle (caleﬂd°r<’°‘l°"d°r -next) and
egin

. acquire (mechanic 1;
:ause (2, take top(ql) normel(s 1 removel time seed)),

Lo @Ry - . B
Siooend; .

(tlm-celender .next .|tem .time) do
- begin _ .
: celender_tcp,rf_f,
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case current”.next_B of
0: ;
1: end_working;
2: end_removal;
3: end_repeir; .
end;
end;
for ¢ := 1 to max_C do
case ¢ of
1: start_removal;
2: start_repair;
end;
end;
end
until not running;
end ( run );

procedure initialize;

var )
i,j,k :cardinal;
e tentity;

begin
make_sim;
make_streams;
make | _bin (mechenic amount_of mechanlcs),
make_| _bin (equ:pment amount, _of_equipments);

- make _queue (q1); make_queue (q2); meke_queue. (q3);

€ set a shift working )
at_work := true;
{ set breakdown times for all machines )
j = 0;
for i_.- 0 to emount_of_machines-i do
begin
k := i mod 7; .
if k=0 then j := j+é;
e = new_entity(1,i+1);
cause (1,e,

negexp(tnter break _down_time,removal_time_seed));

with e do
begin
X = 10+k*10- = §;
Write entity (x Y.e);
write (i+1 :1);
i end;
end;
end ¢ initielize ),

procedure picture;

begin
make_screen;
enter_class (1,'m® blue),
. reset_ colors,
clear_screen; ) . ‘
gotoxy (10,17); write('mechanics -‘busy:),
gotoxy (50,17): urite('equ1pment busy );v
t 12,24) - ,
:::::z'glue-uorklng, red broken, yeltow=being mended');

end { picture ); /

begin

picture;
initialize;
old_tim := tim;
€ run for 8 hours, in minutes )
run(8+60,2);
{ close doun. :he shift )
at_work := false;
1); write (‘end of shift')'
20:32Yt550512uletion ‘out, ie. do all repairs left
10000 is arbitary large number ) .
run (10000,2);
reset_colors;

end.




11
Modelling Complexities

Simulations are made up of butldmg blocks of simple queueing systems
which can be linked in parallel or in series, or both, to describe complex
systems. However, the provision of links between simple queuemg systems
is not always adequate. Complcxlty in modelling terms arises when this
structure has to be adapted in vartous ways. For example, when:

(a)
®

arrival rates or resource prov;snons are dependent on the time of
day, _
feedback from one part of a model influences- activities in
another,
(c) -entities Jeave queues without taking part in the activity for which
they have been queueing, '
(d) entities have to be interrupted in the mlddle of one acttvnty in
- order to start another, :
(¢) an entity can take part in more than one activity at the same time.
These and other complexities may need to be introduced in order to in-
- crease the validity of a simulation. In this chapter we present some of the
~methods for dealing with these sorts of complexmes ’

1.1 'DEPENbENce ON TIME

The models built up in the prevnous chapters assume constant ‘average
arrival rates throughout the duration of the simulation. However, most
systems describing human behavior vary in a fairly predictable way with
time. Shops, banks, buses, traffic systems, and indeed hospitals and manu
- facturing processes, all have busy andslack tlmes ‘of the day and of the ;
~.week.

i . These cycles, if . not detected can result in fallac1ous snmulatlon
models Information about the arrival rates may either relate to a busy or a
slack penod or. they may be averaged indiscriminately over both. Simula

tions which are based on the former are obviously biased, and those based

-on the late ‘wnll un_derestlmate queue lengths in the busy periods and over-:
‘estimate: resource qunrements at other; tlmes.'

o
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If the client is concerned about the behavior of the system when it is
particularly busy, then a single average arrival rate (relating to the busy
time of day) may suffice. However, the simulation will only be helpful if
the ‘real life’ system has time to reach and maintain a steady state during
this busy period.

Thus frequently, in order to study the detailed changes in queue
length and resource use over time, it is necessary to vary the mean of the
arrival distribution with time. The obvious way to do this is to give the
sampling function a time-dependent parameter mean. Unfortunately, this
gives rise to bias because the change in the average arrival rate does not
take effect until after the next scheduled arrival has occurred. This delay is
likely to be long when there is a change from low frequency to high fre-
quency arrivals. .

The simplest solution to this problem is called thinning (Lewis and
Schedler 1979). The change inthe average arrival rate over time is assumed
to be a piecewise continuous function such as that shown in Fig. 11.1. Let

| -the function be f(r) with a maximum value “m. In the method of thinning,

fin A

' Figure 11.1": Example of typical plmwis tinuous | functlon,
: mpresanting changin rrivalrate oycrlime there maximum velue
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arrivals are generated at the maximum rate m and then some of these ar
pruned. The probability of an arrival being pruned depends on the value'o
f(1) at the time of the arrival. S : ’

The arrival rate at any point in time is assumed to be Poisson. Sam

ling is a two-stage iterative process as follows.

?rriv_al is due and not at the current simulation time. If the arriv
Is rejected, the time ¢ + u is set to 7 and the two stages are 1

peated until an arrival is generated.

Sunction thintime: real,
var
1, u: real;
begin
{ ;= tim; 8]
repeat
- u = negexp(1/m,s); ,
{ where s is the sampling stream and
and m is the maximum arrival rate }
=t 4+ ug
until rnd (s) < (fun(r)/m); : :
{ where fun is the function of arrival rate with time }
thintime := t — tim; ‘
end;

- Algorithms using techniques other. than thinning are also available.. One.
e?(amplF is that described by Klein and Roberts (1984) which is used in the
s:mulatlon package _INSI_GI-_IT (Roberts 1983). However, the advahtage o

thinning is that it is both efficient and easy to understand. ... ..

11.2 FEEDBACK

_the addition of entities to queues cc nditigna_l-;(m',;iuc@;c length

Oueue Behavior

Feedback occurs when the activities in one part of a model are dependent
on entity numbers or activities in another part of a model. For example, in
qucueing systems, servers may be withdrawn from a system when queues
are short (or vice versa) or in population models, the number of births will
invariably be dependent on the number of adult females in the system.

Although there are no standard techniques for describing feedback in
activity-flow diagrams, the logic is fairly straightforward; the variable
factor subject to feedback is made dependent on a count of the appropriate
group of entities.

Feedback often has the effect of stabilizing systems: keeping queue
lengths from becoming excessively long or preventing the severe underutil-
ization of resources. It will thus reduce the variance of key measurements.
However, the additional variables and their complex interactions make it
much more difficult to perform sensitivity analyses and to interpret the
results from simulation runs. ' :

11.3 QUEUE BEHAVIOR

In many 'sir‘nulations,vo'nce entities j'oin a queue_théy,remaih there until
they are served. However, if the simulation is to describe the activities of

-people, it may have to model queueing behavior. which is much less pre-

dictable. People fail to join queues, leave them to join other queues which
they perceive to be shorter and, quite unpredictably, leave queues. If these
activities are found to be relatively infrequent, or those running the simula-
tion are much more interested in resource use than'qeueing problems, then
it may be possible to ignore them without significantly affecting the results
of the simulation. However, if the simulation has to provide détailed in-
formation about -queue lengths and waiting times, some or all of these dif-
ferent queueing activities may-have to.be modelled. < :

11.3.1. Balking

Failure to join queues, called balking, is very common. People generally
exhibit-this behavior when a queue, or the perceived waiting time for
service, is long. It is, therefore, an example of feedback:in the system
which tends to stabilize it.and to.reduce:the -overall: nce.
- Balking can easily be incorporated in a simulation model by making




- who balk the queue on one occasion may well join it on a future occasion’

" each time beat. .

. .+.%.:Using event scheduling, a procedure called queue._swop can be pro-
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arise in deciding what queue length to choose, because it will vary from
individual to individual and from-day to day. Additional data may there-
fore be nceded to provide a distribution from which to sample. Balking is a:
more complicated phenomenon than appears at first sight because those:

when the queue is shorter. Those collecting data are likely to count thes
- people twice, thus inflating the number of potential arrivals in the system
This will certainly be misleading if the simulation is used to predict the effect
of changing certain factors, such as the number of servers in the system.:
This may be counterbalanced to some extent by undetected balking by:.
those passing by unnoticed or hearing from others about the long queues.

11.3.2 Queue swop;ing

Queue swopping occurs where people have a choice of queues. Assumin
people join the shortest queue, they may swop queues if another queu
moves faster and becomes shorter than the one they are in. One occasion
when it invariably occurs is when one server becomes free while there are °
still queues for the other servers. If queue swopping is ignored, server-busy
time will be underestimated and queueing time overestimated. It is parti
cularly important to take account of this phenomenon when assessing the
benefits of multiple queues as opposed to single queues in, for example
banks and similar institutions. i S

In the three-phase approach, queue swopping can be described in an
extra conditional event, which might be called queue_swop. This would
swop people between queues according to certain rules: for example, if a
server were free, or if the difference between the lengths of any two queues
were two or more people. This conditional event would be the last to be
tested in the executive in order to ensure that it took place at the end of

--i". This description of queue swopping is clearly a simplification of what
happens in practice because it assumes that people behave logically, that
they can see the length of the other queues, and that they base their actions
on queue length rather than on the perceived length of time they will take
to get served. If these assumptions are inappropriate, then the rules in the

. .

conditional event, queue_swop, can be changed accordingly.

d, :and. called from within any scheduled event whose execution
-state ‘changes ‘which give. rise to ‘queue swopping.” .

. simulation must remember the time remaining to
. This can be held as_an entity attribute :and

: _r_es,t_a_ftéd o
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the server, will depend on the time they have spent in the queue, whether
they are aware of their place in the queue (which is not true, for example,
of queueing, telephone calls) and, if so, where they are in the queue.

The probability of reneging must thus be related to the individual en-
tities. To describe this in a simulation, the program is given a bound event,
which might be called renege, whose function is to withdraw the entity from
the queue. On joining the queue, the entity is also put in the calendar to set
the time for reneging. If the bound event, renege takes place before the
entity reaches the server, then it is removed from the queue. If, on the
other hand, the entity reaches the server before renege takes place, then -
the entity is removed from the calendar instead. The removal of an entity
from the calendar is called ‘fetching’.

11.4 FETCHING

In some simulation models, activities must be prematurely terminated or
interrupted, such as reneging in the previous section. The entities are
Jetched, or descheduled, from the calendar. In the machine repair prob-
lem, for example, the mechanics may stop what they are doing for lunch. A
bound event would be set to identify lunch time, but at that point in the
simulation, ‘there might be repair activities already in progress. A pro-
cedure to fetch or deschedule an entity would have the following pseudo-
code: - ) - . L . S

procedure fetch (e entity); R -
begin : ‘
if < the first entity in the calendar does not equal e > then-
-repeat I A,
< look at the next entity in the calendar >0 -
until < the entity equals e >; ’ L
< take the entity out of the calendar >; -
wendyl . : T O S

When an éntity has been fetched, it must be put in a queue to await the
restarting of the activity or the start of a new activity and the resources
must also be released. .In the example described .aboyg_;’;_thg resources

would be committed to a new activity: eating_lunch. :: PN R
"~ If the -activity ‘is to_be - continued after .an _interruption, then  the
‘spent in that activity.
alled :whenth ivity is.
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providing the entity record with information about the location of th
entity in the queue, but this increases the complexity of the entity record
In Pascal_SIM, the entity can be made to point at the links in the queue, in
addition to the links pointing at entities. If the entity is only ever likely to
be in one queue, then the structure of the entity record is as follows:

Iype :
an_entity = packed record
avail :boolean;
attr, next B :cardinal;
class :class_num;
time :real;
q-place :link;
end;

The function g_place is set to point to nil in make_entity. In give, coding
must be included to set g_place to the link and in take it must be made to
point to nil again. Suppose we want to take the current entity from queue,
then the function take is called as follows: B

var y
e :entity; .
e :take(g,current”.q place)

where e is an entity. The problem becomes much more complex if an entity
is allowed to be on more than one queue at one time. The entity record
must allow enough pointers to links for all the queues that the entity may
be on. This can be done by providing an array of links, one for each queue
-in the simulation. : o : ' '

11.5 SHADOW ENTITIES

Sometimes entities must take part in two or more activities simullaneously.
Eor example, the theatre in the hospital simulation takes part in the opera-
tion activity, but is also scheduled to open or close. Thus the theatre can be
regarded as simultaneously taking part in two sets of activities: '
- (a) operation ) '
. (b) open or closed.
. Similarly, if the _r’,épaiij,shop' simulation was extended to m'odel': the actual :
. processing operation.of the machines, then_the machines need to be
‘modelled by.two sets of activities: .. 0 v v

‘ = (‘?). Pfqéesﬁing TN T
o '(l.,’) ‘working and @en down. -

" In the hospital example, if the theatre needs to be closed when an opera-
 tion is in progress, then the operation is allowed to continue until its sche-
* duled time of completion. As was seen in Chapter 6, this can be quite easily -
- modelled with a simple Boolean variable. However, this is not possible in
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an extension to the repair shop example; when a machine breaks down

* while it is processing, the processing activity must be halted immediately.

Two sets of concurrent activities like this can be modelled by using
two separate but related entity types. These are called the parent and the
shadow entities. The parent entities engage in the more frequent routine
activities .and each may have more than one shadow. The shadow entities
cngage-in the concurrent activities.

The shadow entities must have the facility to communicate with their
parent entities so that when something happens to the parent entity that
affects the shadow, or vice versa, the related entities can be found quickly
and descheduled or removed from queues. For instance, if a machine has a
parent entity engaged in an activity and a shadow entity scheduled for a .
breakdown time, then when a breakdown occurs the parent entity must be .
fetiched from the calendar. o S ;

To enable a shadow entity to find its parent entity, the shadow entity:
record is made to point to its parent. The parent entity similarly points to
its shadow. In a complex simulation, a parent entity may be on more than

.one list and have several shadows waiting to trigger events. The activities

of one shadow entity may thus affect the other shadows as well as the
parent. The parent entity will thus need to point to all the shadows. Fur-
thermore, when the entities are found they may need to be removed from
activities or queues. Davies and Davies (1987) describe how they used
pointers in Pascal_SIM for their simulation of patients with end-stage renal
failure. ' - e

11.6 CELLULAR SIMULATION .

In the three-phase approach, every conditional event is scanned at least
once in every time beat. This is inefficient because only a few will need to -
be activated, and sometimes none. On some occasions a C event activates a
B event in the same time beat, causing all the C events to be tried and re-
tried in one time beat. This redundancy is not present in the event schedul-
ing approach where all conditional events are .included in.the ‘scheduled
GVERLS. - o T O
The method of cellular. simulation, deviséd by Spinelli de Carvalho
(1976), overcomes these inefficiencies. In this:method,:each C event is
deemed to be either open or closed. When the-executive scans the events, it
will only test the conditions of those-that .are ‘open..Each B event must




198 , @odel/mg Comp/exme

open all the C events that could possibly be affected by its execution and;
close all others. This technique maintains the modularity of the three
phase method while considerably increasing its efficiency by ldenufymg th
relationship between ‘the B and C events.

Cellular simulation can be implemented with Pascal _SIM by. de
claring a Pascal set that can include all the conditional event numbers. Fo
example, in the hospital srmulatlon which was four conditional events, w
can declare: " -

type
C-event =1, .4;
var
open: set of C_event,;

Within the executive, open is initialized as empty after the A phase (the,
advance of the clock to the next time beat) thus: '

open := [ ];
and in the C phase of the executive, only condmonal events that have bee
opened are called: :

for c:=1to max_C do
" if ¢ is open then
' case cof
< etc. >
end,

» Within bound events, conditional event numbers are added to the open set

Table 11.1 Cellular simulation applied to hospital example show:ng .
condmonal events which must be opened following completlon of
: - 'a bound event

Bound event Conditional event ..

_ patientl_arrives - ‘ start-hospital_stay . _ i (1)
. patient2_arrives - - . - start_pre_operative.stay w2y
. end_hospnal_stay oo - Start_hospital_stay-

. srart_pre_operanve_slay e
«Stari_operation ... .

end_pre_operanve sray . . '
starl._operauon .

_ .end_operation -

,/
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For example, in the hospital simulation, in lhe B event patient] _
arrives, the C event s‘tart_hospttal_smy is opened thus:

open :=* open + []]

Table 11.1 shows the C events that need to be opened by edch bound
cvent. This table indicates that, if most B events occur at different points in
time, thqn the saving in scanning time is hkely to be more than 50 %.
The event close_theatre, for example, requires no C.event scanning at all.
However, if several different B events are likely to occur together on the
same time beat, the savings are likely to be reduced considerably.

11.7 SUMMARY
Discrete-event simulations can describe many different systems and are ex-
tremely flexible. From all points of view, including data collection, vari-
ance reduction, and sensitivity analysis, it is desirable to keep simulation
structures as simple as possible and to keep the humber of factors small.
The first attempts at describing-a system should certainly be as simple as
possible. However, some systems need the more complex techmques that
have been described in this chapter

Simulation models often require a time-varying arrival distribution,
since arrival rates can vary considerably across a day, week, or other time
period. Particularly in systems which involve humans queueing, it is neces-
sary to model different types of queue behavior including balkmg,
swopping, and reneging. In complex models, entities can take part in more
than. one activity concurrently. It becomes necessary to use. shadow
entities, and provide facilities for shadow and parent entities to fetch each
other from the calendar : S i

118 EXERCISES

The number of patlents admltted\ﬁo hosprtal varies’ by the time of day

70 % are admitted in the T mommg (9 a.m.’to 12 p:m.),; 25 % in the afternoon

(12 p.m. to 5 p.m.), and 5 % in the rest of the 24 hours. Adapt the simple

. hospital simulation program (using the version-developed in Exercise 3,
, “Chapter S) to take account of this, using the method of thmnmg _

2. - A baker used to make 100 white Joaves a day but decrdes to adjust the supply

-, of large white loaves according to the demand on the previous. day. If he has

.- n large white loaves remaining at the end of the day, then he makes n/2 fewer

.. (rounded up to,_the nearest mteger) to ssell. th next“day' f.he: has met

- demand then he makes an : xtra 10 J ) '
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Poisson distribution with an average of 98, compare the expected sales a
number of wasted loaves with those of his previous policy.

3. A hospital waiting list maintains an average of 100 patients. Of these, § | 1 2

"~ move house or die each year. Describe the reneging in pseudo
~ The Process View

the different assumptions:

for the admission rate and length of stay. State any assumptions that yo In Chapter 2 we introduced the reader to basic discrete-event simulation
: ' methodology and two world views: event scheduling and the three-phase
4. A man who is 2n accurate shot, shoots birds in flight and sends his dog t approach. ' - -
: In this chapter, an altogether different world view, the progess view,

; : is presented and explained. The process view can be split into two types:

that.tlme. Should the man shoot every bird if he wishes to maximize his ca process interaction, and a more restricted approach which we shall call -

of birds? State the assumptions you are making in answering this question * process description (sometimes called transaction-flow, and often wrongly
for the ) * called process interaction). Each of these is considered here. -

‘ The process description world view has descended from the Simula-
tion Programming Language (SPL) GPSS, which was originally developed
at IBM in the late 1950s. It is discussed in section 12.2.2, where it is used to
code a version of the hospital simulation. Process int'era'cti"c_)n started with
the SPL, SIMULA, developed at the Norwegian Computing Centre in the
mid 1960s. The facilities that distinguish process interaction from process

~ description are discussed in the following section. - _ , ,

Simple process description models can be built using Pascal. The hos-
pital simulation is recoded using the process view, drawing on some pro-
cess facilities provided in Pascal_SIM.. This is followed by a comparison
between the three world views and comments on the benefits. of each. . -

whereupon _tl'me washing has to be removed and put in another machine. U:
N shadow entities to describe the activities in this system. '

i\ 6. | Bank System - (Appendix 1.A.1). Use the code develdped' in Exer&Sé;
Ny / Chapter 6, to carry out the following. : L

(a) Implement the thinning method to describe the variable arrival ra
throughout the day.. : ‘ S A

(b) Improve the model still further by modelling queue swopping and se

- whether this affects the results and conclusions of the experimentatio
performed in the exercises at the end of 'Chapters 6 and 8. :

(c) Explain why is it more important to describe the queue swoppin,

rather than reneging or balking in this system.

7. Tr_aﬂif Lig(ﬂ System (Appendfx 1.A.2). Explain what feedback mechanism:
exist in this system and why it is difficult to model them. Discuss wha

12.1 - BASIC CONCEPTS
relevance they might have to the objectives of the study. ' L

In the process view, the actions taken by each class of entity are mapped
out as a process. The process is a description of the entity cycle or flow.
In the hospital case study, for example, there are’ three classes of
entity: hospital-stay-only patients (patienr1), operation patients (patiens2),
and the theatre. Beds can still be modelled as resources. The processes in
pseudo-code are:. - AR g S

8. lfnplerrl_enl cellular simulation in the three-phase version of the repair shop
simulation. - : o

. procedure patientl; 7
o begin oo
7 < cause the arrival of amew patient] >; -

201
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< acquire a
< stay >;
< return the bed >
< leave >;

end,

bed >,

. . procedure patient2;

begin .
< cause the arrival of a new patient2 >;
< acquire a bed >;
< pre-operative stay >;
< operation >;
< post-opegative stay >;
< return the bed > -
< leave >; :

end, '

procedure theatre;
begin .
repeat
© < open theatre >
< wait >
< close theatre >;
< wait > .
until < end of srmulatlon >;
end;

This appears very simple- c'ompared to the three-phase and event schedul-
ing approaches. Although there is no mention of queues and no explici
queue mampulanon this pseudo-code can be converted to a simulation
. model using a process—onented simulation language with little expansio
In this example, at any one time, there will be multiple instances of
entities of type patient1 and patient2 at some stage in their process descri
tion, whereas a single instance of the thearre will loop through the states
of open and closed until the simulation is halted. Each entity flows through
its process until it either leaves the simulation, or the simulation ends -
each stage of its process an entlty lS in one of two states :
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12.2 PROCESS DESCRIPTION

Most process-oriented languages and packages do not allow direct com-
munication between processes, since this demands facilities that are not
available in the common procedural languages on which they are based.
Interaction must be described through the use of shared data, normally

- global variables.

As an example, a global Boolean variable, called theatre could have
the value true when the theatre is open, and false otherwise. Its value
would be changed in the theatre process, and read within the process
patient2 to determine whether the theatre was open or not. This compro-
mise approach to process interaction is process description, since processes
can be described, but entities cannot expl:crtly interact wrth entities having
different processes.

i

12.2.1 Tilne flow mechanism

The simulation executive for process description or process interaction is
more complex than the mechanism for either event scheduling or the three-
phase approach, because it controls the allocation of resources to entities.
The burden of describing queue changes and resource allocation is thus
moved from the programmer to the executive. -

The process description executive works by maintaining two ordered
lists, the calendar of future events (like the calendar for the two- and three-
phase executive), and the chain of suspended entities. The latter is a chain
of entities which are blocked at some stage in their process description and
are waiting in queues. The chain is ordered by their time of arrival in the
queue or by priority (see the end of this sectnon) The executrve is then very

~ similar to the three-phase approach:

A < advance time >; . .
B: < execute bound events off the calendar >' '
C < scan through all suspended entmes >

At each trme beat any entlty that’ comes' off the calendar n the B phase
moves sequentlally through the actions specnﬁed in 1ts process description
untll elther A : :

“ (@) it leaves the s1mulat|on,

(b) ~1t is delayed "and thus. into the. calenda't agai_,n;

esource is not
spended
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In the C phase, the scan moves through the chain of suspended entities an
tries to execute the next part of their process description, such as engaging
them to an activity. Movement of cach entity on the suspended chain is:
tried in turn and when successful, it continues until one of the three condj.’
tions above occurs. '
A number of different algorithms for a simulation executive can be
developed from this and one version is: Y

A: < advance time to the time of the event
at the top of the calendar >;
B: while < an entity at the top of the calendar has this time > do
begin
< removg it >;
repeat
< execute its next action >;

until < it terminates, is entered back in the calendar,
or is put onto the end of the suspended chain >;
end,; ’ o
C: repeat :
<  start at top of suspended chain >
while < not at end of suspended chain > do

if < entity can execute its next action > then
 begin '

< remove it >;

repeat

< .execute its next action >; -

- until < it terminates, is entered back in the .
calendar, or is put onto the end of the o
. suspended chain >; I
 end; S
until < suspended chain not changed >;

It is usual for the executive to enter entities at the tail of the suspended
chain and to attempt to reactivate them from the top of the chain, thus
maintaining a simple FIFO policy. In more complex cases where queue-
priority rules are to be used, then a single measure of priority (as explained
in Chapter 7) must be associated with entities from a particular process, so
that they can be added to the suspended chain in priority order. Thus, for |
example, operation patients can be given priority for beds over hospital-

stay patients by assigning them a higher number. L

... Although programming is made easier by -us_in'g" a ;iiiglé gugy;ended
_chain rather than separate lists for each queue, it has severe disadvantages.
The suspended chain can beqdme:]g‘r'ge,‘ causing '_thef,ekccutivevtp be highly

inefficient. In addition, it makes statistics collection and the provision of

- Process Description

visual output much more difficult to impl‘emcnt. These difficulties are dis--
cussed in section 12.5. :

12.2.2 GPSS

GPSS (the General Purpose Simulation Language) is probably th—? mosf
widely used simulation programming language in the world. Sm'c? its co "
ception and initial development, it has undergone numerous revisions, and
there are versions-available for many different machines. This section utsc;
the hospital example to show how easy it is to convert the process-oriente i
pseudo-code given in section 12.1 into a simulation using a process

i d language. _
Oneml(:iguregu.% shows a GPSS program for thc.a hospita}l exa;n-ple_. Thci
appearance of GPSS is somewhat archaic, reflecting the time o 1ts‘ inven--

SIMULATE
STORAGE .- BED,20 - sthere are 20 beds
* " MODEL SEGMENT FOR HOSPITAL STAY ONLY PATIENTS
GENERATE 45,15 ;create patients
ENTER - BED,1 sacquire a bed
ADVANCE 30,10 :stay
. LEAVE BED,1 sreturn the bed
" : TERMINATE 2 leave
hd HODELVSEGNENT FOR OPERATION PATIENTS
GENERATE - . 16,4 ... screate patients
ENTER . . BED,1 sacquire a bed

. 10,5 ;pre-operative stay .
:g:;:ce : 'TuéATRE : ;queue for available the.atre )

* GATE LS . OPEN suse it if open -

: "~ ;operation
:g&::: ‘ ":HEATRE i ;r‘::urn'the'the-tre
-~ ADVANCE 7.5,2.5 - ;post-operative stay
.. TERMINATE - BN .. ileave .
* R THEATRE ~ = - -
v.:gagtlggclzfrifov ? 3creste 1. theatre
AGAIN LOGIC 8§ OPEN . -:set logic gate
ADVANCE = 8 - - :stheatre open
LOGIC R - OPEN - - . jreset logic.gate
ADVANCE . 40 .. stheatre closed
TRANSFER . AGAIN -~ - . ;goto agsin
" :;é:g:A$§G"E:;6 ' __;9enerate a dummy transsction.

TERMINATE 1 - sdecrement run control counter

CSTART - . 1
12.1 Hospital example in GPSS; lines that begin asterisks,
-+-:and text preceded by benﬂ-?olp‘q,:;am eomments

- Figure
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tion. All statements must be in upper-case and the column positions of
cach statement and its parameters are vital in most implementations.

In GPSS, a statement that can act upon entities (i.e., is part of a pro-

cess description) is called a block, and each process is called a segment.
Entities that flow through a segment are called fransactions. In Fig. 12.1
we have the following. » =

(a) Generate specifies the arrival distribution for the process, with
the first two parameters representing the mean and spread of
uniform distribution. I . _‘

(b) Enter and seize are equivalent to acquire in Pascal SIM, where
seize is applied to a single-server resource.

(c) Advance results in a time delay for the transaction.

(d) Leave and yelease are equivalent to return in Pascal_SIM , where
release is applied to a single server that has been seized.

(¢) Terminate has the same effect on a transaction as the Pascal_SIM
routine dis_entity has on an entity, i.e., it is removed from the
simulation and destroyed. _

Resources have to be declared if more than one resource is to be made:
available, using the statement storage. If only one resource is used, as with:
the theatre, no declaration is necessary. S
In the GPSS example, a logic gate (a GPSS construct similar to a
global Boolean variable in Pascal) called open, is used to control th
opening and closing of the theatre. The logic s block in the theatre segmen
puts open to set. The gate Is block in the segment for the operation patients,
requires than open is set for the transaction to continue. If this is true, the
~ transaction can proceed and try to seize the theatre. The theatre is closed
by the logic r block, which puts open to reset. Now transactions in the "
operation patients segment will be blocked by gate Is. Note how the theatre
is modelled by a transfer to a label called again. (GPSS does not provide .
any structured constructs, such as a repear. . .until loop.) . . T -
. A GPSS program usually has a special segment called a fimer segment _
- which controls the length of simulation run, statistics-collection, and other -
details. Figure 12.1 includes a timer segment and run control details for the “;
hospital example. A dummy transaction arrives after 336 hours (14 days of
simulated time), and its termination by terminate 1 decrements a run
control counter established with the start statement. When decremented
to zero, the simulation halts. Readers interested in learning more about
- GPSS should consult Schriber (1974). e i T

. ¥+ A true process interaction -language;:such asSIMULA (Birtwistle et al
Ll 1979);"prqyid¢5_ a number pf,»faci_l_itiers,hpt_, n!gm?uy found in.common high

~+.: Each process is writtenas a p{_(')f:t_:dure ontainin
_.where each arm of thé case statement is*
= ,the'proécdu(é-whi_lg;i'l_\'e'fexi_tit)'( is active and le
~pended;“When' an-éntity is'x :

- o P SRS S R I S R
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level languages, such as Pascal, or process description languages such as
GPSS. In particular they provide the following.

(a): Communication facilities, so that entities can inﬂu?nce enti.tics
from other processes without resorting to the use of mtermec?nate
data structures. In SIMULA, a process can dlrecl!y passivate
(i.e., suspend) or activate (i.e., set into a_ction again) another
process. In GPSS, transactions can only qnﬂuence.each other
through intermediate data structures such as the logic gate.

(b) A co-routine facility which allows entity attribute§ to })e declared
locally to a process and retained between activations (?f the
process. This contrasts markedly with GPSS, where atmbt.ne:s
are associated with a transaction rather than a segment. Th‘lS is
much less flexible, because every transaction gen_erated in a
segment has to have the same attributes and ther? is no way pf
telling what attributes are being used by transactions from dif-
ferent segments.

(c) Inheritance so that a process can inhe.rit the attripu.tes and the
local routines of other processes. For instance, partlcular. types
of patient (e.g., operation, hospital stay, emergency) can mpent
from a patient class all the attributes common to an. v-pavtlents
(e.g., name, weight, age, etc.). - I - :

An'y language which provides all of these is now referred to as object-
oriented, as the programming emphasis is plapefl on the object, not the
static flow of control. This is considered further in Chapter 14. Fgr simu-
lation purposes, the first two are far more important than Fhe tl'n'r(.i, and
these are not limited to object-oriented languages. The basic facilities for
co-routines and communication can be found in a qumber of recently de-
veloped general purpose high-level languages, pamcula_rly.Mvod‘ula—Z and
Ada. P e o

12.4 PROCESS bE'scmP'_r'loN WITH PASCAL . . -

Process’ deséription ﬁackégcs -have been written m __Pasc%.xl.‘_ PASSIM
(Uyenso and Vaessen 1980), for instance, is a fairly complete xmplemema-
tion of GPSS in Pascal. This section will show hov Pascal_SIM ‘ca_n:_big L_nsgd
‘to write process description simulations.

hain by calling the p:rvo"s:qt-iure,v
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should attempt. Using Pascal_SIM, the next block can be specified by 1hi
next_b field in the entity record, i.e., next_b now stands for next bloch :*"‘“
attempted rather than next bound event. A block may-correspohd“t(j
bound or conditional event, or a number of combined bound éiééhi

each entity taken off the calendar and every entity on the suspended chaig

’al:e ;nade current prior to attempted reactivation, then a process can
the form: . : s

procedure <process name>;
begin
case current”.next_b of
begin
1: < first block >;
2: <%econd block >;

.

etc.
end;
end < process description >;

In GP?S, the executive can work out when an entity is blocked'/'(l;
cannot continue to the next block of the process until some condition |
been specified) and add it to the suspended chain. Using Pascal_SIM,it
necessary to establish this within the procedure. This can be done by t’xs :

?hrepeat. - -until loop and a flag, using, for instance, a Boolean finishea
us: :

procedure <process name>;
finished :boolean;
begin
- Jfinished := false;
- repeat
case current”.next_b of
1: < first block. >;
2: < second block >;

etc.
end; T
- until finished, :
end < process description >;-

.- One _bloc;k_._(_:an move an enfity to the next block by._altegihg ns ney
value and leaving finished as false or it can suspend it by setting finis

mep_trvlhat_'_,r_rep;ese_msi.th.e block. The theatre process description d

The program shown in Appendix 12.B collects fio statistics a
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- nced a finished flag because the theatre never moves through a number of
blocks.

Some blocks can only be completed if sufficient resources are avail-

" able. Thesc blocks correspond to the conditional events of the three-phase

approach. The procedure cause is used where advance would be used in
GPSS. The first parameter of the cause statement is now a block rather
than a bound event number. o ‘ o

- Appendix 12.A gives detailed pscudo-code for a process description
version of the hospital simulation, using these ideas. To make process de-
scriptions slightly more readable, two procedures are provided in Pascal_
SIM specifically for process description simulations. The procedure:

procedure branch (next :cardinal)

can be used to move an entity to any other block in the case statement; s6
branch is the equivalent of rransfer in GPSS. Rather than use dis_entity
to terminate an entity, a procedure remove_entity is provided. This signals
to the executive that the entity has finished its process, and in disposing -
of it, the executive ensures that the entity is not left on the suspended,
chain. ' : : .

The complete program for the hospital simulation using the process
description world view is shown in Appendix 12.B. The executive is an
implementation of the time-flow mechanism algorithm presented in section
12.2.1. Whereas with the two- and three-phase approaches the program-
mer must enter the names of the bound and conditional events in the
executive, here the names of the procedures representing the process de-
scriptions must be entered. The class number of an entity is used to relate it
to the correct process. = L o

The Pascal_SIM process description program for the simulation is
fairly ungainly code and much of the easy comprehension that is evident in
GPSS is not apparent. The approach to process description in Pascal_SIM
is intended to be illustrative rather than definitive and could be much im-
proved. For instance: o ‘ TR e

(a) procedures that both check availability of resources and allocate
. them to entities could be developed, removing the need to use
i checks of the type if < resource available > then < allocate > in

: - the process descriptions; - . -~ 0 o0 e T :
(b) priorities could be added to the entity record, and initialized in
_-new_entity-so that the executive :could then be extended to

+ maintain the suspended chain in priority order. = =7« ol

nd produces

no visual output. Both of these are more difficult when using a process-
oriented view because the queues for resources are not. available for -




210 : ‘ - The Process View

counting or display. GPSS overcomes this problem by providing special
“queue statistics blocks, in particular gueue and depart, where an entity is
time stamped when it encounters a queue block. It then has the total time it
“spent between the queue and depart blocks added to statistics counts.:
- Similar procedures - ‘could be added to Pascal SIM and used with the:
hrstogram facilities. e

12,5 WHICH WORLD VIEW?

All three world views are widely used. However, the majority of simu- -
lation programmers tend to use the same approach for all modelling. Often
their choice is based solely upon their past education or fashion (event sche-
duling has predommated in the USA, whereas the three-phase approach
has been common in the UK). However, recently it has been realized that
each world view has its uses and many specialized simulation programming '
languages now provrde more than one world view. For instance, SIM
SCRIPT I1.5 (Russell 1983) provides both process description and event
scheduling, and SLAM II (Pritsker 1984) provides all three (although i
both SIMSCRIPT I1.5 and SLAM 11, process description is preferred).

1_2.5.1 Process view

For simple queueing simulations, where entities queue for services con
strained by resources, process description is probably best. It is easy to
comprehend and puts the emphasis on modelling the dominant entities in
the simulation. The programmer need not be concerned with arranging fo
entities to join, and to be taken from, queues. .

. Process interaction is very powerful for modelling systems which are
message based, where entities send messages and act on messages recei
ved. Problems arise when different types of entities compete for resources
Priority for access to resources by entities, when handled by assigning
priorities to different entity classes (as discussed in Chapter 7), is sufficient
for many applications. However, the complex assignment of resources to
entities can be difficuit to ‘model (and in some cases impossible), because
the programmer does not have easy access to the queues (which are sub
- sumed into the suspended events chain). Furthermore, the queues are not
. -readily available for, incorporation into_the .visual drsplay, such as, tho_
1. discussed in Chapter 9. The techmques discussed in Chapter 11, such:
;_._;_deschedulmg and shadow‘entmes are also difficult to program wrthm't
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12.5.2 Three-phase approach

The three-phase approach is most appropriate for modelling the complex
assignment of resources. Any decision rules regarding engagement are
collected into one place, namely the: appropriate conditional event. As
queues are handled explicitly, their manipulation is relatively easy. It is
excellent for providing simulations with visual output, because the screen
can be updated after scheduled occurrences (i.e., within bound events),
after conditional occurrences (i.e., within condmonal events) or after an
entire time beat.

The main disadvantage of the three-phase approach is its relative in-
efficiency. As the size of a model increases, the number of conditional
events increases and, thus, the number of wasted calls to conditional events
(where no action can take place) increases. This can be overcome by
cellular simulation, as described in Chapter 11, but this increases the
burden on the programmer. However, process-based approaches can also
be inefficient, because the size of the chain of suspended events increases
as the size of the model increases.

12.5.3 Event method

Event scheduling avoids the problems of computing inefficiency by placing
on the programmers the burden of working out when conditional actions
can take place. The resulting simulation is thus more efﬁcrent but less
modular

12.6 SUMMARY

Process descrrptron as evrdent in GPSS and process mteractron are two
types of process view, the third major discrete-event world view. By using
case statements to represent processes, process description models can be

_developed in Pascal_ SIM. However, the structure of the executive is rather

more complex than for the other world views. Process interaction is dis-
tinguished from process description by the provrsnon of commumcatron
facilities, a co-routine facmty, and inheritance. "

. The choice of a world view is confused by the termmology and the
subtle drfferences of approach yet each has.its advantages:

exrble approach for

(a) the 1hree—phase approach is. the most 4
oy ' x.in teractlon ‘between

- .modelling systems where there:’

'
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12.7 EXERCISES

~ entity attribute) and will calculate tim minus the entity’s Pprevious time stam
-.-and add this value to histogram, 4. (Note these are equwalent to the GPS
- blocks QUEUE and DEPART.)- B AR

: Hospual System. lmplement the process descnphon version of ‘the simul:

3.

(h) the process view may be the easiest approach for describing’
straightforward qucucing system with simple prmntles for th
use of resources; :

(c) a process interaction approach is particularly dppropnalevfo
message-oriented simulations;

(d) the event method should be considered when computing effi
ciency and the speed of execution is of the utmost 1mportan(

In using the process description world view in Pascal_SIM, the programme;
must check the availability of each resource, schedule the next block that the
entity enters and set a flag so that the process is terminated. For example:

2: begin
if bed.num_avail > 0 then
begin :
cause (3,current negexp(60 hosp:lal._stay_seed)),
acquire (bed, I)
end;
finished :=
end,;
. 3: < the next block >

true;

Develop new versions of acquire and release which work like the GPSS
blocks SEIZE and RELEASE so that the-availability of the resource is
checked and the entity is either suspended (when the resource is not avail:
able) or passed to the next block (when the resource is available). Thus the
above coding might look something like:

' 2: process_acquire (bed,ql),
3: cause (3,currenl negexp(60.hospital_stay_seed));

Using the. Pascal_SlM facilities for creating and updating hlstog
(make_hlstogram log_histogram) produce two new procedures '

- stat_queue (var e .entity),
and
slal_depart (h hlsmgmm e :entity);

where stat_queue will time stamp the entlty with time tim (usmg an addmo

(Appendix 12.B). Adapt it to collect the statistics shown in Chapter 6. (Hint
you wxll have to keep track of the lengths of the different queuss. )

Pseudo-code for Hospital Simulation using Process Descriptioh ) 213 :

4, Repair Shop System. Write a process dcscn'ptioh simulation of this system.

5. Assume that all entities in a queue are in the same class and have the same
color. Write a simplified version of write_queue, called:

write_q (t,y,qlen,max_length -'cardinal' cl 'class_num' b.f :color);

where clis the class number, fis thc foreground color and glen is the length of
the queue.

Use this procedure to write a process description version of the visual hos-
pital system simulation described in Chapter 10. Note that, as in Exercise 3,
you will have to keep track of the lengths of the different queues.

12.A PSEUDO-CODE FOR HOSPITAL SIMULATION USING - -
PROCESS DESCRIPTION

procedure patientl;
var -
finished :boolean;
begin - _
finished := false;
repeat
case current’.next_b of
1: begin ‘
< cause the arrival of a new patientl >;
< move onto block 2>;
end;
2. begin
if < bed available >
begin :
< acquire a bed.>; -
< hospital stay (cause entry to block 3) >,
end;
finished :=
_end;
3: begin
< return the bed >;
finished := true;
< terminate >;
end; '
. .end;
- until finished, e
. end < process descnptlon for panentl >

true, _

procedure patieni2;
var
. finished boalean,
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12.B HOSPITAL SIMULATION USING PROCESS DESCRIPTION

begin
finished ;= false; -~ ‘progrem simulate Coutput);
repeat
case current’ .nchb of conét
begin - emount_of_beds = 20;
1: begin . patienti_seed = 1;
< cause the arrival of a new patlent2 >; Eg:;:Q:f::::g_seed : §;
< move onto block 2 >; pre_op_stay_seed = 4;
end; i operation_seed = 5;
2: begin post_op_stay_seed = 6;
theatre_open_time = 4;
¥ < bed avallable > then theatre_closed_time = 26;
begin - -
< acquire a bed >; var
< pre-operative stay (cause entry to block 3) >; bed :bin;
end g;.qf.cﬁ =queue‘:’
o= . eatre :record,
finished : true body tentity;
end; open,available 'boolean, .
3: begin { true 1f theatre is open, avai lable )
lf < theatre open and available > then end;
' < operation (cause entry to block 4) >; procedure patientl;
finished := true; , ver
end; finished :boolean;
4: begin begin_
< theatre available again >; ftmstt\ed := false;
repea :
< post-operative. stay (cause entry to block 5) >; case current-.next_B of
- finished := true; 1: begin
- end; ... . cause (1,new_entity(1,1),
... 5: begin negexp(6,pat|ent1 seed)),
< return the bed >; ehzl:tmch ); -
. ,ﬁmshed_:= true; 2: begm )
"< terminate >; if (bed.num_avail>0) then :
end; begin :
. end; ceuse (3,current,
unulﬁmshed negexp(60 hospltal stay seed)),
. d . aequtre (bed,1); .. - -
end < process descnptlon for patlentZ >; end;
procedure theatre; en;fntshed = true;
begin . .3: begin
case current”.next_b of - return (bed, ‘l),
1: begin finished := true; -

remove_entity;

< open tnedtre >, .
p end-

-~ < cause closure (entry to block 2) >,
L iendy -

. 2' begm : L
< close theatre SF0 Co

< cause opemng (entry to block 1) >y
nd . ‘ .

end;
- until fmished' 8
end < process for patient 1 ),

end <fprocess descriptidn for theatr,e;-'>:‘_>,-
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procedure patient2:

var

finished : sbooleean;

begin

finished := false;

repeat
case
1:

end;

until finished; .
end { process for patient 2 );

current”.next B of
begin -
cause (1,new_entity(2,1),
negexp(12,pat;ent2_seed));
branch (2);
end;
begln
if (bed.num_avail>0) then
begin
cause (3,current,
negex (24, re_op _sta ;
_acquire (bed. 13; |~ r->toY-seed));
end; -
finwshed t= true;
end;
begln
with theatre do
if open and svailable then
begin
available := false;.
cause (4,current, :
normal(D 75,0.25,0peration seed))f

end;
flnlshed = true;
end;
begln
theatre.evailable := true;
cause (5,current,
negexp (72,post_op_stay seed));
finlshed = true; -
end;
begin
return (bed,1);
"finished := true;
remove entlty-
end; -

'Hbépita/ Simulation using Process Desch'pi/on

procedure schedule_theatre;
begin
with theatre do
case current’.next_B of
1: begin
open := true;
. cesuse (2,current,theatre_open_time);
" end;
2: begin .
open := false;
cause (1,current,theatre_closed_time);
end;

. end;
end { schedule theatre );

procedure run (duration :real);
var
c - zlink;
changed :boolean;
e tentity;
present :cardinal;
procedure resctivate;
begin.
on_calendar := false;
‘present := current”.next_B;
case current”.class of
1: patient;
2: patient2;
3: schedule_theatre;
~ end;
end ¢ reectuvete );
begin
running := true;
repeat
if celendar = calendar .next then running := false
else .

begin . .
tim := calendar-.next".item".time; ..

if duration<tim then runnlng := false

else

begin .
white (calender<>calender .next) and

(tim=calendar”.next“.item".time) .do

begin
" calendar top,
reactivate, !
if current’.next B = 0 then
dis_entity (current)
. else . .

begin )
if not on_calendar then

give_ tall (suspended chain,

;_current),

- . end; ¢
Ceeendg L
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o ‘end.

" repeat
changed := false;
¢ := suspended_chain”.next;
while c<>suspended chaln do
begin.
current := c”.item;
reactivate;_
€ := ¢".next;
if on calendar or
(present<>current .next B) then
" begin’
changed := true;
e := take (suspended chain,c .pre),-
end;
if current”.next_8 = 0 then
dis_entity (current) ‘
N else
if (not on_calendar) and
(present<>current”.next _B) then
give_teil (suspended_chain,
current);
end i
until not changed;
end; -
end
until not runntng,
end { run );

procedure initialize;
begin
make_sim;
make_streams;
make bin . (bed amount_of_beds);
make_queue (q1), make_queue (g2); make_queue (q3),
- With theatre do "¢ create theatre ).
begin
body := new entrty 3,1);
open :i= true; avellable'-= true; :
Sause (1,body, theatre_closed tlme)'
end;
-end € initrallze );

procedure report;
begin
end ¢ report_);»

begin ;
initialize; " o
cause (1,new_entity(1, 1. 0),
- cause (1,new ent)ty(z 1,0);
run (24*30*12)'
o report, - s

13

,Managers tesponsible for making. the. decision:ar »
:,,terested in the results produced by the model and m,_general -will want to .

Using $lmulatlon to Make
Dec:s:ons

The main purpose of building simulation models is to provide more infor-
mation for decision-making by management, unions, or whoever has com-
missioned the simulation. However, in the process of building the model,
of collecting and analysmg results, it is easy to lose sight of the purpose for
which it was designed.

~This chapter will show how to simplify our view of the model and to
look at it in the context of its environment. In particular, we discuss the
need for clear ob]ectlves credrble models, rehable input and pertinent

output

13.1 MODELS IN DECISION-MAKING PROCESS -

13.1.1 One—offmodels S

“Recent techmques with menus, vxsual and natural language interfaces,

such as those described in the next chapter, make models of all kinds' much
easier to develop and use. This, together with the avarlabxhty of micro-

_computer technology, has made mathematncal and s1mu]atnon models
-~much more accessible to the users.

* Therefore, managers are increasingly likely to use models for makmg

~small one-off decisions as.well as for large and lmportant ones. Models
leght for example be helpful in the followmg types of problem:

(a) whether and which new: equnpment ‘should be ‘bought,
(b) whether and how to rearrange customer facnlmes (such as service

tl"S in a bank)
. g

' the avallable . "'uipment to_ _make

re.lllcelytto be s very in-
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“be involved closely in the model’s development and validation, it is impbr.
tant, therefore, that the model should be credible and easy for them to us :
The data should be reliable and accurate but, because the modej 18

unlikely to be needed again, much of the data collection can be of an
hoc nature. ’

13.1.2 Models for long-term use

In most organizations there are classes of decision that have to be ma&

time and time again. Some examples are:

(a) decxzsim}s on budget allocations, based on past performance and:;
projections for the future; O
(b) the management of road traffic within a particular area coverin
one-way systems, traffic light timing, and major road works:
(c) manpower planning. ’

?;i957 ga)rea readers should refer to the book by Keen and Scott-Morton

13.1.3 Cost models

(;learly3 costs are a very important influence in decision-making. For som
simulations, it may be possible to summarize all the output measures i
terms of costs but it is not always feasible. Whereas the cost of providin;
the'_sal?r.y of a person to work_in a given role is clear cut the cost of:
;::smt:m;,ng lo?g. qfueues in a system is, inevitably, approximate. Neverthe

» such cost informatio i i is alw interest in an)
orman e n as is _av@able is always of interest in.an

| _ Advantages of Simulation Modelling ‘

_deterministic ‘modelling -techniques;: such - as:line

.- (b) The variable costs of treatment, drugs, and pathology tests, will
~ vary directly with the number of patients taking part in the activi-
tiés in the system. o _
(¢) The overheads, such as building maintenance and administra-
tion, may be regarded as being completely fixed, varying with
"none of the simulation factor Jevels. ‘ S

These assumptions form theé basis of a cost model which is related to, or
integrated with, the simulation model. There is, inevitably, a difference of
opinion about the correct balance between fixed and variable costs for any
particular process. It could be argued, for example, that nurses will not be
provided for an open but empty ward and therefore they should not be re-
lated to the number of beds. Where there is doubt, it is perhaps best to be
guided by the current actuarial practice of the organization for whom the
work is being done. . T

The cost model may either be incorporated in the structure and logic )
of the simulation program or else may be applied to the model output, !
Financial planning packages and spread sheets are extremely convenient
for performing cost calculations on model -output. However, the most .
satisfactory -approach for any problem will depend on the circumstances '
and the decisions that need to be made.

13.2 ADVANTAGES OF SIMULATION MODELLING

Previous chapters have emphasized that, after identifying the problem to
be solved, the first step in building a model is to define the objectives and
derive assumptions. In theory, the choice of modelling technique should
follow from this. In practice, most professional management scientists have
a strong preference for one type or class of technique and will decide on the
modelling approach at a very early stage in the project. In any case, in--
evitably, the choice of technique will affect the way in which the objectives
are worded, how. tightly they are defined, and the assumptions that are

13.2.1° .Defining object{ves a;u_:l makin§ isiglﬁptiqps
Chapter 1 pointed out that simulation is’ii'dés'cripﬁve mod
which is effective for portraying stochastic systems. Unli
mechanics of simulation do not:require the definition and solution of an
objective function. However, a-simulation*project “dbes: Tequire clearly
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- -worded objectives in order to determine the model’s structure, input.and
" output (see section 13.3). . e -
~ All mathematical and simulation models are based on assumption
‘Some of these are derived from the objectives and are natural simplifi
tions of the system while others are dictated by the chosen modelling tec
'nique. Mathematical models require much more restrictive assumptio:
" than simulation models. Davies (1985a), for example, describes assui_ﬁ'
tions that have to be made for analytical stochastic models but not fc
simulation models. These include: ‘ ;

(@) arrival and service time distributions have to fit the mould of.
well-known parametric distributions, i

(b) individual entity characteristics cannot influence their progres
through the System, ' i

(c) events are assumed to happen at discrete and equally spa’t_':q
points in time. :

There is a danger that, because of their flexibility, simulation models ar
made much too complicated. However, this can be avoided if they are buil

. up from simple to more complex structures in the way described in Chap-
ter 8. ‘ T el

13.2.2 Credibility

5

In order to have confidence in a model, thosg using it should not only,|
“able to appreciate the model assumptions 'an§‘ (ﬁgir implications, but also
-understand in some detail how the model works. They are then abl
" check to their satisfaction that the model behaves in all important respects

as the system does in practice. This is particularly important for one-of
‘models where management staff are likely to want to be involved inits
development. : o o

- The simple deterministic models, the simple stochastic models (such

as the Markov models), and synchronous simulations (which move forward

in equal time slices) are.easy to understand but often system descriptions:

are pressed into the mould of unsuitable techniques. These models the

lose credibility because of thieir poor reflection of system properties. Fu
_thermore, the greater the effort that is made to develop analytic model

match the'system and meet assumptions, the more complex and difficult t

‘understand they. become. =5t 5 e e S
The great advantage of discrete-event simulation is that it can foll
very closely the logic-and flow. of the system being modelled. If it ref
. system pri well and is written-or-documented in ‘a way, that i
s ©

understand; then it:should be very ‘credible’;:

g
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-13.2.3 BRobustness

If a model is used at different points in time or at other locations from
where it was devéloped originally, changes to the input data or to the struc-
ture may be needed. Robustness is particularly important for models which
are to be used on a long term basis. _ o v )
‘Changingvthe logic and introducing complexme.s into .mathematlcal
models is difficult -and, often, impossible. However, simulations are mlfch
more fléxible. Chapters 7 and 11 have described techniques for changing
the internal structure and logic of a simulation model. The three-phase
approach, in particular, is very robust to changes (Crookes 1982).

13.2.4 Ease of use

The portability of microcomputers has facilitated the use of models by the
decision-makers themselves and therefore it is importa_n_t that mod.cls
should be easy to use. Although ease of use relate:s to_th? lmplt?mentanon
of the modelling method rather than the method 1tse.lf, simulation ,r.n'odels
with independent entry of distribution data.‘and with .the possnbx}lty of.
interactive facilities are particularly appropriate. - o

13.3 TYPES OF SIMULATION MODEL

Simulation modelling is a powerful and flexible technique Whi.C_l.l facilitates
the development of credible and robust mo;dels. Its adaptabxl.lt)" hagcer-
tainly given rise to a wide range of applica?lons. Chap?er. 1 dlstmgqlshed .
three types of simulation model each of which play a dlffelf?ﬂf role in thg

decision-making. process. .-~ .

13.3.1 ’Predicti.v'e' sim_ulatiqns .

Pred;ctivc simulations are used to. de‘ter‘mir_i’e»vaveragc':reSults—f'g‘nd -confi-
dence limits of a simulation run which has specific factor levels. Although
the factor levels may be changed, ihteresg will focus on absolute outcome

._measures rather than;'on ‘comparative ones.’ Predictive ‘simulations. are
. usually' most appropriate for-sim
-;steady state..Several runs will invariabl
" obtain accurate estimates of results. The 2
~ :be increased. by variance-reduction metho
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‘Erovw'sh‘ o :

This type of approach has been used 1 predict numbers of patients.
necding treatment for irreversible renal fgilure (Davies 1985b) where it is
more appropriate’ than traditional foreZasting techniques because the
simulation can describe the increasing demand for treatment, improving
survival rates, and the complex way in which treatments are allocated and
changed. ‘

Models of this type are likely to have specific and well-defined objec- -
tives and are likely to be needed on a long-term basis. They may thus be -
integrated in a decision-support system. Reliable current and historical -
input data will certainly be needed for accurate” QOrecaSTfs.\") “)amwo ok

A

13.3.2 Comparative simulations
L

Simulations are often used to determine whether one option is ‘better’ than
another. For example, it may be important to determine whether a one-
queue system in a bank is better than the traditional system of having a
queue for.each server. C . .
" Vague objectives like this have to be made more specific so that it is
possible to define appropriate output measures. It is often thought by those
who are in the habit of waiting in queues, rather than managing them, that
the most important objective is to keep queues as short as possible. ‘Better’. -
would therefore mean ‘has shorter queues’. However, there is a trade-off
between server time and queue length, and servers invariably cost the man-
agement money. Nevertheless, long queues block up systems, discourage
custom, and usually require space to accommodate them. If the objectives’
- cannot be made specific at the outset, the simulation can provide a range of
output measures. However, this only delays the time when the decision-
maker must decide on their relative importance. : L
-~ Where the output measures are clear, statistical hypothesis techni-
- ques may be used to analyse results (see Chapter 5). This type of model
may be used on a long term or one-off basis and, in pither case, it will need
accurate input data to provide reliable output for \\decision-making. "

, _ _ AN

13.3.3 Investigative simulations R :

An investigativev simulation should indicate the major factors which affect -
_the flow of entities in a system but it is not required to provide precise
- answers. Therefore, the quality of the input data is of less importance than -
tremely suitable, enabling management to explore the effects of changing

: _factorﬂlgygls_while a simulation is running. Such -simulations should pro-

- vide a good understanding of system characteristics which is necessary for

+. informed decision-making. S oL T

. shown in Fig. 13.1 may be needed. :

- distributions L

- - characteristics .

. Decisions on -
“.. branching -

" Starting conditions”

Clarifying Objectives . ks i

When more accurate answers are required, simulation results
collected in histograms or analysed statistically. However, [ -ha‘
showed that it is difficult to repeat and compare results from: infera
simulation runs. :

13.4 CLARIFYING OBJECTIVES
1 3.4;1 " Simulation model as a black box

Sometimes, in order to consider a model as part of a decision-making pro
cess, it is helpful to close your mind to the complicated intefna!.lo_gic pf th :
model. It is thus regarded as a black box. Figure 13.1 shows a snmula_tlo_na
a black box together with the inputs to and the outputs fromthe model.
The inputs and outputs are for a general queueing model and are based on
those discussed -Chapters 4 and 5. L . e
In any particular system, the output arrows showing the simulation.
results are derived directly from the objectives and may differ considerably.
from one problem to another. The input arrows are more closely related to*
the model assumptions and, in a simple- model, only a subset of those

In Chapter 6, the objectives of the hospital system are: ‘to investigate
the effect of bed and operating theatre provision on patient waiting t‘imes’. _
Figure 13.2 shows the output measurements which are derived directly
from the objectives. The input side of the diagram includes all tl.le factors
that may be varied in this problem. The decision variables are derived from
the objectives and are underlined. Factors which are assumed to have no

input S : -Output .
Resources - . N S Resource
available S— Guse” .-
Entity arrival a Lo
rates . _>

S I ‘. ————> ‘Queue lengths
Activity time T . S e

' L — ‘Queueing times
Entity _ e ik

™ States of enﬁﬁéé

Flgure 131 Anput-output diag‘mnir_fo‘_r‘ggneralﬁgeyqlpg_'s_y_s'ten‘r. S -
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Input : ' Output
Beds are theatres o
available v : Bed utilization -

Patient arrival -

rates -~ - \

Length of stay
dlstnbutlons ._->

Theatre opening
times /

Starting conditions ¥

. - Queue I.engths:_f_o

admission

\ Queueing times

foroperation . -

Figure 13.2 Input—output diagram showing factors, decision
variables, and measurements for hospital system described in
Chapter 6 with decision variables underiined

‘effect on the model output (such as enttty charactensttcs) are omitted from
the diagram. :

Input output dtagrams are thus very simple modelling aids whrch are
helpful in the following ways:

(a) to identify input data requxrements and decision variables,

(b) to provide mformatton on data collection requrrements for
validation,

“ (o) to determme the output requtrements of the model

1342 Difﬁéultobiectives

B Often objectives are phrased in a way that appears mapproprlate for a

simulation approach. For example, an. objectlve in the machme repalr
example might be to: :

’

(a) provrde sufﬁcrent repair-staff to enable at least 10 machmes to
.be working for 90 % of the tlme, or S :

(b) provide the number of repair staff that wrll mmlmtze the oost of
lost productton, '_ -

c) glven hat we have a eertam allocatton of money to run thts ward
and.theatre, determme the ‘best. number' f. eds an

: V, 13 5 PROVIDING SIMULATION INPUT AND OUTPUT

' Chapter 4 descnbed the dlfﬁculttes in. collectmg data for” simulation
. models. One-off models may use estimated values. and ’
) _,,n/.eys However, when modéls are tor long term
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Input S " Output

Money : )

available \ / . Number of beds

1

r——-]
’ -Theatre openmg

Patient
arrival rates

Length of . times
stay |

distributions - _ ‘ _
Starting / ' \ Number of patients

conditions treated

Figure 13.3 Input—output diagram of hospital system where

objectives are: ‘given that we have a certain allocation of money to

run this ward and theatre, determine the best number of beds and
theatre sessions to treat the most patients’

In all these examples, some of the normal inputs become outputs and vice
versa. Some of the arrows.on the input-output diagram are thus reversed.
In the first example, server utilization, which is normally an output, has
become an input. The second two examples involve costs and a require-
ment for an optimization approach. Figure 13.3 shows the mput output
diagram for the last one.

The ‘discrete-event simulation techniques that have been discussed ;;
are not very appropriate for optimizing problems. However, an experi-
mental approach may be adopted, by ‘trying’ different staffing or resource
levels until one is found that appears to meet the criteria. Resource levels
at around this level can then be explored more closely wih different
random number streams. Using this approach we are turning the arrows in
the input—output diagram back round again so that resources.or staffing
levels are the input, and server busy time or workload and the related costs
become the output. The next chapter will discuss some prescriptive simu-
lation, techmques which can sometimes be used for thts typ of problem

'he results of specxal i
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Figure 13.4 Simulation program as part of decision support system
where entity data is held on a database; visual output, statistical
analyses, and costs are provided

Statistical information may be analysed by a statistical computer package.
Costs, which are a particularly useful output measure, require the inte-
gration of a cost model and may be analysed with a financial package or
spread sheet. ' T ;
Figure 13.4 shows a simulation as part of a decision support system.:
The database holds entity information' and provides the simulation with
starting conditions and activity times. Decision variables such as resource -
levels and current operating policies are supplied separately. Although this '
simulation provides visual output, results are also fed to statistical and
financial packages for detailed analysis. . I '

13.5.1 Decision variables ,

Any utility program offering the ability to change decision variables should
be provided with default values and be robust to user errors. If the pro-
gram is screen driven, users should have the opportunity to go back and i
change screens if they do not like the look of what they have written. The
same variables may need to be changed several times during the course of
an interactive simulation. L o . o
. .7 "The most common factors that may need to be changed in a simu-
- lation program are asfollows: = . -0 =
-+ (a) Tesource availability,” @A oabilided - CoL

- “"(b) ‘arrival rates and service times," "

- 13.5.3 :Starting conditions .

- Some simulation programs, particularly those used for forecasting pur-.

Providing Simuiation Input and Output

() probabilities of taking different decision paths within" the
simulation.. ' -

Resource availability, such as the number of hospital beds or the number .
of repair staff for the machine breakdowns, is an exact integer value which
can be chosen from a prescribed range. Scheduled resources, such as opera-
ting theatre timetables, are more difficult to present on a computer screen.’

 Where interarrival rates or service rates are described by parame-
tric distributions, the parameters, usually the distribution means, are the
factors of interest. These can be varied quite easily. Non-parametric distri-
butions cannot easily be varied-in a systematic way and any change will
usually require a completely new set of histogram values.

13.5.2 Historicaldata

If the simulation is to be used on a long-term basis, factors other than the
decision variables will almost certainly need to be changed at some time.
For example, operating practices and staff changes in the organization
affect decision paths and activity time distributions. Therefore, to avoid.
‘amending and recompiling programs, it is advisable to keep the data in disk
files and to have separate programs for updating the data and reading them
into the simulation program. ’

poses, need ‘up-to-date’ information to set the simulation starting condi-
tions. Where these consist of simple counts. of entities in different states,
they can be entered in the simulation in the same way as the decision vari- -
ables. If, however, they require the entry of individual entity data showing

their characteristics or history, then it is more useful to maintain this in-

formation on a database than to enter it by hand on each occasion.

In order to use the entity information in the simulation to set the
starting conditions, each entity must be put either in a list or else in the
calendar together with information abdut the time and number of its next
bound or scheduled event. ' ' o

1.3.5.4_- .. Dhtabnses

. Databases can be used to'i)r'di}i;aé_‘i‘nfdﬁﬁa_ﬁbh aﬁdd‘t-fﬁé,éuﬁem state of
- entities, -activity times and decisions within the organization. Some data-

bases have query languages which interface -with Pascal. Therefore, a
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(4) Write down the objectives and draw an input~output diagram. If you
are to use discrete-event simulation to model this system, show how
you will usc this descriptive technique to meet the objectives.

'(b) Design an experimentation plan. Write and run the simulation to

o solve the problem.
(c) List the model assumptions and limitations.

simulation program in Pascal could call directly on the database for input.
information. Where this facility is-not available, then the database query
languages must be used to write files of data which can be read by the simu-
lation program. Much of the data entry for the simulation program is thus’
completely automated. . L o ' b

 Even though the data on the database may be accurate, it is impor
tant to introduce additional validation checks. It is necessary, for example;;:
to check that there are sufficient data points to derive the distribution para-:
meter estimates and for the production of histograms based on empirical
distributions. It is no longer possible to do these on the ad hgc\pasis‘which;

2. Bank System. Using the case study description in Chapter 1 (Appendix
1.A.1) and the work done in the exercises at the end of previous chaplers,
design and write a simulation program which the bank manager can validate
and experiment with,

is adequate for most one-off simulations.

3. Traffic Light System (Appendix 1.A.2). Discuss the problems inhe.rem in
using a simulation model to predict the traffic flow on a long-term basis. Sug-
gest practical solutions to these problems.

S
[ 4

13.6 SUMMARY

St

Simulation is a very powerful technique which can be used for many dif-

~ ferent types of problem. Clear objectives enable decision variables and

output measures to be determined. However, some simulations may be

written simply to understand how a system works. Simulations which pro-

- duce graphical and visual output are useful for meeting these rather vague
“objectives and help the user to form more ‘precise objectives. =

© - Simulations which are used on a long-term rather than a one-off basis

- need reliable and regularly updated input and output which is comprehen-

- sive and flexible. A cost model may need to be incorporated in the simu

- lation model to provide a unique: measure of performance or profit.

13.7 . EXERCISES

~1. - Ms Smalltime buys a certain model of computer for £5778 and sells it for
. £7500. She makes an additional profit of approximately £300 on software,-on*
; each computer sale. She buys the computers on borrowed money which costs
=, her approximately £20 per computer per week. Computers may be ordered:
each week but there is a minimum order size of five computers. It takes thr.
i weeks to receive a new ‘shipment of computers after an order is placed. Th
- cost of placing an order is £50. If there is a demand for a computer when sh
:-- has run out of stock she loses the sale of, ‘not only the computer, but:also

he.additional software. .- = o

:Suppose she has 20 computers in stock, Her current re-order policy i ¢
rder 15 computers when the inventory has fallen to 10 or fewer. ‘The arrival
f tustomers requiring this'type of «computer follows a Poisson distribui
vith a mean of 2:84 customers per we: ' nts yc
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Advances in Computing and
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:I‘he major advantage of using Pascal_SIM for writing simulation programs
is that it employs a commonly used structured high-level language. It is
thus easy to learn for those with some Pascal experience, is very portable,
and extremely adaptable. However, the ambitious modeller may wish to
describe structures, provide or use interfaces and tools, or use techniques
that are not readily available in Pascal or Pascal_SIM. These include:

(a) a separation of the instructions for the visual output from the
simulation logic, so as to keep the program modules small and to
allow ease of maintenance; S

(b) more realistic modelling of the decision mechanisms of entities,
rather than depending solely on probabilities determined by -
prior observation and sampling; -

(¢) the development of simulations which automatically optimize
results; ' : .

(d) the use of an interface which makes it possible for the user to
describe and model systems without having to program it in
Pascal or any other language; -

(¢) the use of fast and efficient simulation packages tailored to

_ specific industries or institutions; - ' ‘

(/) use of a total computer system or environment for simulation

modlelling, including data input, analysis and presentation of
results. :

This..chapter describes how advances in computing and simulation are
making these facilities, among others, available to the modeller.

14.1. PROGRAMMING LANGUAGES

“"g"l'_‘_here arﬁé a number of diSci#t,é—éygnt
" . example, see the.work of Bryant (1982)

Program‘ming'L‘anguages_ _

include: ECSL (Clementson 1978), SIMSCRIPT (Russell 1983), GPSS and
SIMULA (see Chapter 12). The advantage of using an SPL, rather than a
high-level language, is that: o
-(a) most provide comprehensive facilities for sampling, list control,
and entity definitions; o '
_(b) the simulation executive is hidden from the user and never needs
to be altered; ' .

(c) most provide good report-writing facilities.

«

However, the disadvantages are that:

(a) animplementation may not be available on a particular machine;

(b) they lack flexibility — it can be impossible to provide for user
interaction or for more complex structures (for example, the
shadow entities described in Chapter 11); )

(c) -run-time efficiency can be very poor;

(d) the limitations of a commercial package may not become
‘apparent for some time, whereas the use of a tool-kit of facilities
in a high-level language allows complete flexibility and adapt-
ability. - S . o ’ .

More édvanced"faciiities are now beihg built on some-SPLs. For example,
SLAM Il is at the heart of the TESS environiment (see section 14.6 below)
and recent versions of SIMSCRIPT provide animation (see section 14.2).

141 -2 i\lev&er géneral purﬁosé languages . -

An attractive alternative to using an SPL or a set of facilities such as
Pascal_SIM, is to use a tool-kit developed in a newer general purpose
language. Candidates include Wirth’s successor to Pascal, entitled Modula-
2 (Wirth 1985), and Ada. - B e R e

Both Modula-2 and Ada have two advantages over Pascal. -

(a) Both allow the programming of interacting processes. Thus a true
process interaction package can be developed. '~

" (b) ‘All the provided facilities can be collected into one place, called a

:module in Modula-2 and a package in Ada. Data shared by the

- simulation routines can be hidden from the simulation program-

-mer. In Ada, @ generic package can be' defined, such that an

. instance of it can be generated with specific.data structures. Thus

- :a simulation package does not have to be redefined €ach time the

" entity type changes, as with Pascal_SIM.

imulation packages for Ada, for




234 _ Advances in Computing and Simulation

. 14.2  ANIMATION
~Chapter 10 showed how to provide simple visual displays in Pascal_SIM by:
coding individual statements within each event. However, these statements
confuse the simulation logic and greatly increase the length of programs.’
An alternative approach is to design an animator which is driven by output:
from the simulation logic. : '
-Figure 14.1 shows that the modeller or developer designs the picture .
and writes the simulation as two separate exercises. He uses a software too]
to design the picture, usually employing a high quality graphics terminal.’
In designing the static background, he must select icons to represent the
cntities (perhaps designing ncw ones as required) and-position the queues
or activities in the pictyre. The simulation program is written as if there =~
were no visual output. : ;
When the simulation runs, it produces formatted output which is -
decoded by the animator. Consider, for example, the simulation logic -
which states that a particular entity finishes an activity and is put on the end
of a queue. The output produced by the running simulation, coupled with
the information for the separately designed display, enables the animato
to identify the position of the activity and queue on the screen and move an -
icon representing the entity from one to the other. e
~ This approach has the considerable advantage that the formatted
output can be saved to file and run independently of the simulation pro-
gram. However, animation is much less flexible than the direct program-
ming method described in Chapter 9. It will only cope with a standard -
range of pictures and simulation logic. : cs
~.--Animators are normally designed to work with a specific SPL or
package. _C(?mmercial examples of animation systems include CINEMA

o f}"_-Developer _. Picture .
B : ) development_
. < |
- Simulstion - Ani A o . Animated
_ Program Animator = T output
Oy

Standard -

_acti

K how/edge Representation _ 255

‘(Pegden et al. 1985) which is an animator for simulations written in the

SIMAN language, and the facilities of the TESS environment (Standridge
1985) which animates simulations written in SLAM I1. Others have been

developed in-house for Speciﬁ_c purposes.

14.3 KNOWLEDGE REPRESENTATION

Chapter 7 showed that entities may be given characteristics that influence
their progress through the system. Activity time distributions, for example,
may be related to the attributes of an entity, or branching probabilities may
depend on the previous activities that the entity completed.

However, in modelling some systems, such facilities are inadequate.
Entities can take autonomous decisions, based on some complex decision-
making mechanism. For example, a manufacturing simulation may de-
scribe a robot cell whose choice of task sequence is dependent upon
available materials, the production schedule, a scheduled maintenance,
and other factors. ‘ .

‘One approach to modelling complex decision-making - mechanisms in
simulation is to use the methods of knowledge representation developed in
artificial intelligence (Al). Knowledge representation is concerned with
describing information about a system, or the details of a system, as a com-

_putational structure. Within Al systems, this knowledge can then be used

by a computer program, for example, to provide answers to questions,
guidance to users or suggest courses of action. Knowledge differs from
simple factual data that might be stored in a database, in that the structure
may be variable, dynamic, and may indicate degrees of uncertainty about
the knowledge. IR A .

14.3.1 Rule-based approaches -

The commonest knowledge represéntation method is production of situa-
tion—action rules, where chunks of knowledge are expressed in the form:

o {f_{s,;sz,s3,. 8} thén'_{c,,cz,._.';_,ck}

--where s),. . .,s; are facts, or conclusions from other rules, and can be com-

. bined.with the logical operators and, or, and not. If the result of the logical
“operation is true, we can conclude that ¢, ;. . .,Cx ar

- reasons of implementation, it is useful to use only rule
~. conclusion. - :

- Ci ATE ‘tjt'yé‘;'___F{équcpt‘ly, for
es that.have a single

In simulation, ‘conditional ‘events.can be considered as situation—
ntroduced’in Chapter 1-and

6}i"'tulés. ‘Cori's‘igiéi the hospital system;
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¢

programmed in Chapter 3. The conditional event that starts a hospital stay
is: : ' : :

if < not (queue empty) >
and < a bed is available >

then < admit the patient >
< start a hospital stay >;

L.Jsing the three-phase approach, it is quite straightforward to program a .
simulation in a rule-oriented language (for example, see Bruno et al. 1986,
on programming a simulation in OPSS5). ’ '-'

More importantly, complex decision mechanisms can be expressed as
a set of rules. Rather than using simple queueing priority rules, or using a
single probability to express behavior following an activity, a set of rules
can be developed. The course of action that an entity takes can then be

determined by access to this rule-base. -

14.3.2 Object-oriented approaches

An altema.tive to rule-based knowledge representation ‘is object-oriented - -
programming. In an object-oriented representation, there is a one-to-one
correspondence between items in the representation system, and items in
t!le ‘rea.l’ system. The first object-oriented programming language was the-

vsnmulat.lon programming language SIMULA (Birtwistle er al. 1979), which -
was briefly discussed in Chapter 12. More recent approaches to bbjeét-
oriented programming include the following. : :

.. (@) Frame-based representation (Minsky 1977), where kndwledge is -
stored as a hierarchy of frames. Each frame is a ‘record’ of infor-
- mation about an item, or class of items, and can inherit attributes -
from other frames. Thus each patient will have an individual
height and weight, but will inherit attributes about the illness
they possess from a frame that represents that illness.
(b) Smalitalk (Goldberg and Robsorni'1983), where items are repre-
.sented as objects that interact by sending and receiving messages.
Each object includes the details, called ‘methods’, of what to
do when a particular message is received. Objects can inherit
attributes and methods from other objects. -

If a simu[atio_n package is developed in an Al language that is object- i
~oriented, then the simulation developer can take advantage of any facilities

 of the language or the environment in which it runs. For example, the fol-
lowingapply. .- - Or cxampre, the fol-

.. i {a) ".-Ménjfobjeél-;iriénted Al lgnguages_éllow rules t;> be"attaf:hed i6 :

‘Prescriptive Simulation

objects. Thus rules.can be used to model complexity, as discussed
“above. :
(b) Animations can be developed separately using graphical objects
which can be activated by message-passing. -~ '
 (¢) Classes of entities can be developed for a number of different
simulations; each individual simulation can inherit the attribute
of the class, yet modify it as necessary. ’

Thus, a number of simulation packages have been developed using object-
oriented Al. Examples include SimKit, written in the knowledge engineer- |
ing environment (KEE) and developed at Intellicorp (Fraught 1986), the
Rand Corporation’s ROSS (McArthur et al. 1986), and the knowledge
based simulation system (KBS) from Carnegie~Mellon (Reddy ef al.
1986). _ '

There have been a number of attempts to produce extensions to
Pascal that include some elements of object-oriented programming. For
example, SIMONE (Kaubish et al. 1976) employs some of the concepts
found in SIMULA. . ' :

" 14.4 PRESCRIPTIVE SIMULATION

Normally, a simulation is used as a descriptive modelling tool. Chapter 13
showed that the modelling objectives enable the modeller to determine the
simulation structure, assumptions, output analysis, and experimentation.
The objectives are not usually used directly by the simulation program.
However, where experimentation has very clear and specific objectives it
would seem advisable that the simulation runs should move automatically
towards achieving them. Such a simulation is called prescriptive..”

. The simplest way of achieving a type of prescriptive simulation is by
producing and programming a method of automatic analysis. The earliest
attempts used heuristic. methods, such as surface response techniques.
Here an objective is specified for the system under study as a function of
measurable outcomes (for example, utilization rates, queue lengths, etc.),
and the simulation is run with different parameters under the control of a |
monitor which attempts to maximize or minimize this function. (Some of .

. the necessary mathematics can be found in Law and Kelton (1'.'982).- How-
. ever, such methods have been little used, largely because the expression
- of an objective as a function is usually very difficult, and frequently im-

possible.

", . An alternative to automatic_ analysis is.goal-directed: simulation,

where an overall goal is specified for the study, and the controlling monitor

. . tries ‘toproduce a design. that.best satisfies:that .goal.:This -heuristic .
- - approach differs from the automatic.analysis-approach.in that;:

at }.!_e_ast
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in theory, a goal can be symbolrc (for example, ‘don’t keep the customers
‘waiting too long’) but, in practice; such goals must often be reduced to a
measurable quanuty (for example, how long is ‘too long’ 7). Goal-directed -
~simulations require the use of an appropriate symbolic language such as-”’
Prolog. For example, T-Prolog (Futo and Szeredi 1982) is a snmple simu-
lation system that allows some goal -oriented programming.

‘14.5 DEVELOPMENT TOOLS

Programming a simulation in Pascal can be time-consuming and difficult, -
particularly for the inexperienced programmer. Developers are turning -
to more sophisticated development tools that reduce, or even remove, the -
need to do any programmlng

14.5.1 Program generators

With a program generator such as CAPS (Clementson 1978) or DRAFI‘
(Mathewson 1984),  the user undertakes a hlghly structured dialog with
the generator, at the end of which a program is generated in a simulation
programming language. For instance, CAPS generates programs in ECSL,
whereas DRAFT can generate programs in a number of languages. The'
Pascal based package eLSE (Crookes ef al. 1986) includes a program gen-
erator which generates three-phase simulations in Pascal. Typically, the'
dialog with the generator is based on ‘a formal or semi-formal descnptton,_
of the simulation model such as the activity-cycle diagram. i

Although program generators greatly reduce the initial programming
effort, they demand a linear thought process which experienced program- .
mers may find rather tedious (although this is probably a function of the:
present generators, and not necessarily a ‘function of the method). More
importantly, the system to be programmed has to be described in the struc- -
tured way required by the method. This is inevitably inflexible, and thus -
the developer has frequently to extend the generated code so as to produce
the desnred model. -

" The. major advantage is. that this method will produce a workmg B
simulation program which needs to be valtdated but not vertﬁed and can be _
- .extended, if necessary, \© e :

~ /14.6 ; DOMAIN DEPENDENT TOOL

Domain Dependent Tools : : 239

important exceptions. First, no program is generated, and the description
is immediatcly interpreted (for example, this happens with Inter_SIM), or
is converted to some immediately executable form (this happens with
HOCUS). Second, the model is described by some semi-formal method of

~ specification, rather than following a dialog_. For example, in Inter_SIM N

the user specifies all the activities, resources, classes and queues, together
with any necessary data (e.g., activity duration distributions, arrival rates)
in a menu environment similar to a spreadsheet

Descriptive tools are generally easier to use than program generators
and where the description is interpreted, interaction with the running simu-
lation can be very natural. They have the disadvantage that, unlike gen-
erators, there is no program available for alteration. Most systems allow
extensions to be programmed in a common procedural language, normally
FORTRAN or Pascal, and for these extensions to be used from within the
method of specification. For example, a new queue priority_ rule‘ can be
programmed, given a name, and then used within the specification lan-
guage. However, this is usually more difficult than extendxng a simulation
language to do the same thing.

14.5.3 Natural Ianguage interfaces :

As humans can describe a system to be srmulated in English, it seems rea-
sonable to investigate methods that allow this description to be accepted
by computer. Doukidis and Paul (1985) have’ produced an expenmental :
system which allows models to be expressed in a constramed form' of

English. For example, given .
' THE CAT SAT ON THE MAT

their system assumes that CAT is an entity, which requnres a MAT for the
activity of SITTING. A dialog is then pursued by the system, which will
aim to construct activity-cycles for both CAT and MAT. -

‘The system can produce a skeletal model, which. can then be ex-
tended as desired. It is unlikely that natural language development inter-

* faces can ever do much more than this (at least general purpose ones). The

need for a specific language in simulation is like the need for mathematics;
English, or any other natural language is too general to capture the neces-_
sary level of detail. . T TR . :
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traffic flow, etc.) can overcome many of the disadvantages of general pur-:~
posc simulation tools, since:

(a) the range of model types that need to be dealt with is limited, -

(b) the technical language of that domain can be used within the
tool, rather than an abstract language (e.g., ‘machines’ or ‘ships’
rather than ‘entities’),

(¢) methods of analysis apphcable to the partlcular domain can be
embodied in the tool.

Thus it is not surprising that a number of domain-dependent development
tools exist. Many of these have been developed for the simulation of manu-
facturing systems. For example, see the work by Haddock (1987) on a
program generator for SlMAN His system also executes the model, and .
automatically performs some steady-state analyses. Readers interested in =
developing domain-dependent tools, should consider using a package. .
based on a high-level language such as Pascal_SIM because the code is
available to be adapted for specific purposes

14.7 MODEL DEVELOPMENT ENVIRONMENTS :

Chapter 13 showed that a simulation program must be regarded as just one
part of a computer system for decision-making. A system must be analy-.
sed, data collected, and distributions fitted to the data; the program must B
be verified; the model must be validated; experiments must be run, and the .
results analysed and displayed. These parts of the simulation process; -
which are as important as programming the model logic, also need soft-
ware support. i

Sometimes, readily avallable software can be employed Chapter 13
recommended the use of spreadsheets and statistical packages and con-
sidered the advantages of using a database with a simulation. | '

However, there are a number of advantages to using a smgle environ-
ment for all of the simulation process. All data can reside in one format in -
one place, and the developer can use a single set of commands across ail of
the simulation tasks. Thus there are a number of attempts to construct gen- -
eral purpose simulation development environments which provide tools for
the entire process of srmulatlon modelling and development These could .-
include: : : .

(a) programmmg tools, such asa s1mulatxon programmmg language,

(b) data analysis tools, mcludmg a distribution fitting tool; - v

(c) data_management . tools, allowmg for the: -analysis and use’ of
both collected data and data generated by the. snmulatlon

" ling approaches. Moreover, for the most
-~ been made mdependently of each other; 1
. software.

Summary

(d) model management tools, - providing facilities for sz
reusing all or part of previously developed models;

(e) documentation tools, which aid the easy prOduction of co
documentation;

(f) animation tools, for the desrgn management, and reuse (i
simulation models) of pictures.

For a complete discussion of the concept, see Balci (1986)
The only commercially available environment is TESS (Standri
1985), which is based upon the SLAM 11 simulation language. TESS p
vides facilities for data management, model development (which can b
done through a network diagram interface), and animation. It is likely tha
a number of environments will appear in the future, hosted on high qualit
work stations. Like TESS, many will be based upon existing simulatio;
languages. : ‘

148 SUMMARY

Advances in computing and sunulatlon have produced significant devel- -
opments for the simulation developer and user:.

(a) visual output can be designed and produced using an animator;
. (b) complex decision mechanisms can be modelled with knowledge
representation techniques;
- (c) prescriptive simulation techniques can free the user from the
need to design, run, and analyse experiments; -
(d) advanced development tools make the development of some
simulations easier and faster; ...
(e) packages are available for specific apphcatton areas,
(f) model development environments give the user a complete set
of tools to support the entire sxmulatlon prooess

At their present stage of development some of these advances have cer-
tain drawbacks. New ideas are being evolved which link knowledge repre-
sentation with simulation, prescriptive simulation, and model development
environments. Present implementations tend.to.be both restricted . in
scope, and inefficient. The present range of animators and advanced devel-
opment tools are only appropriate for a limited set of situations and model-
"rt,\these developments have -
smg dnfferent hardware ,and

A comprehensnve package f facilities mcoxporatmg most of the -

: above could be developed in Pascal "The res _ tmg system could be runon
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many differcnt compulcrs The major problem is that Pascal is unsuitable

for knowledge representation work. However, it would be possible, and

might be more efficient, to query Prolog from a Pascal snmulatlon rather
than construct the entire simulation-in Prolog. - :

Whatever advances take place in simulation, the discrete structures
taught in' this book are fundamental to all discrete-event simulation pro-

gramming work. Pascal_SIM is simple, fast, and efficient, and may be used
as it stands, or built upon to provide more complex facilities. Alternatively

the theory and structures taught here may be translated to another pack- -
age, or may be used to develop simulation facilities in a different program-

ming language. _ -

S e et

~

A1.3 __;siru'ctJ‘r‘;_Bi Pascal.SIM program

Appendix A

Pascal_SIM Documentation

A.1 INTRODUCTION

- A.1.1 1SOPascal

For the most part, the Pascal facilities provided in the package called Pascal SIM,
follow the ISO standard for Pascal (Wilson and Addyman 1982) These are three
areas where this standard is not adhered to:

(a) the use of a string type, :

(b) the use of built-in string manipulation functions concar and Ienglh in the
procedure print_histogram,

(c) the use of the underscore character in variable names.

However, most implementations provide a strmg type with associated routines, and
(if necessary) underscores can be easily edited out. Implementation details, rela-
ting to specific systems, are covered in Appendix C. :

A,1 .2 Multiplé copies

Note that amongst the code appearing in Appendix B there are‘t\'vo copies of:

(a) function rnd (s :stream_num) :real — one for 16—blt mteger machines,
one for 32-bit integer machines, ’
(b) procedure set_foreground (c :color) and procedure -set_background (c
-:color) —-one copy of - each implements - user-mstalled screen -control
“- .« -codes, presently set for extended ANSI, and one copy of each translates
' into calls to Turbo Pascal built-in routines. -..* -
(c) procedure run (duration :real; max c :cardinal) — one for programs that
use the three-phase and event approaches .and one for programs usmg
= the process descnptlon approach :




y Introduction

244 - ' Pascal.SIM Documer; tation

{ B events } uses the three-phase approach thus:

procedure B1;
procedure B2;

R

A: < advance time to the time of the next bound event >
. B: <for any bound events due to happen at this time >
nod : < take the entity off the calendar >;

T < execute the event >;

{ C events }

procedure C1; C: < attempt all conditional events >;
procedure C2; ‘ ' o s The process intéraction executive,
_ Lo procedure run (duration :real); _

4 rocedure display; ‘ o : is based upon the executive found in GPSS. Here an entity is always either on the
procedure run (duration :real; max_C cardmal), : next cvent calendar or on a chain of suspended processes. The conditional event
procedure inltmlrze, : scan is replaced by a scan of the chain of suspended processes:
procedure picture; - - .
procedure report; 1 A: < advance time to the time of the next event >;

begin : B: < for any events due to happen at this time >

: < take the entity off the calendar >;
initialize; < reactivate the entity’s process >; -
picture; if < it has’finished its process >

then < dispose of the entity >
else _ ‘ . ) .
if < the entity is not on the calendar > then

< put it on the end of the chain of suspended processes >;

(..., ...);
report; .
I-JO ’ C: repeal
- for < each entlty on the suspended cham >
" < reactivate it >;

- if < it has advanced > or < is on the calendar >

then < remove it from the suspended chain >;
< dispose of the‘entity if it has finished its process >

end.
Where: .

(a) procedure display is called after every advance of the clock, and contains
details of visual display changes necessary after every clock advance, »

(b) procedures initialize and picture should each be called just once at the
start of a simulation to initialize the simulation data structures and the
static visual display respectively, .

(c) procedure report should be called after completron of the srmulatlon to
produce the statistics, . '

(d) the user needs to enter the exact titles and parameter hsts of each bound
event and conditional event in the executwe :

. else
if < it is not on the calendar > and
-<it has advanced > - = . .
“'then < put it on the end of the chain
- of suspended processes >;

until < the chain has been scanned > .
) and <.no. processes have been activated >; _ ] :
If a pure event-based approach is used; the structure is the same except that no - Note that each executive will cycle through the two or ‘three’ phases until either:
conditional events will be present. For process description models, a procedure will
be programmed for each process rather than each event and the process version of
the executwe must be used. : . - .

. (a) the next B event is be)ond the duratlon of the stmulatron run, or
'(b) the calendar is empty ‘ : :

A4 ,Executlve mechanisms A-1 5 5"0"“0888903

A number of error messages can be produced by the PascaLSlM routmes ‘Most
* ‘are concerned with detectmg undesirable parameters, (such as *nil’ pomters) when
the simulation is running. In each case the simulation is brought to an orderly halt
The possrble messages. and therr eauses, are as follows .

Here the time ﬂow mechamsms used by the two executlves are presented The
main executive, . S

procedure run (duranon sreal; - max_c. .cardinal)
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(a) Adding a non-existent entity (parameter i is nil in give).

(b) Taking a nil link (parameter ¢is nil in take).

(¢) Taking a queue head (parameter ¢ is the queue head in take).

(d) Drsposmg of a busy entity (parameter e points to an entity that is not:

. available in dis_entity).

(¢) Causing a non-existent entity (parameter e is nil in cause).

(f) Causing an entity already entered in the calendar.

(8) Causing time negative (parameter ¢ is negative in cause).

(h)  Acquiring from bin (a request for more resources than presently avail-
able in acquire).

() Returning to bin (an attempt to return more resources than are out in

- return).

() Sample file finishéd (the end of the sample has been reached prior to the
proper creation of a Jookup_table in make_sample).

(k) Size of cell in sample (make_sample has encountered a cell in the

. provided sample file with a value less than 0-0 or greater than 1-0).
() Order of sample ﬁle (cell values are not in ascendmg order in make_
+. sample).

(m) Histogram is empty (an attempt to print an empty hrstogram in print_
~ histogram).

(n) Moving vertical entity (first y ordmate y1 is less than or equal to second
ordinate y2 in move_v).-

(0) - Moving horizontal entity (ﬁrsl x ordinate xJ is greater than or equal to
second ordinate x2 in move_h).

In addition, most Pascal systems have range checking facilities which automati-
cally check, when the program is running, whether scalar values are within the
range specified by the programmer. Note, however, that a number of compilers
have the range checkmg turned off as the default option.

A2 DOCUME'NTATI(.)NV L

Every constant type global vanable functron and procedure is documented
below. The mformatron has the followrng format. :

(a) Meanmg a brlef descnptron Where appropnate, |nd|vrdual ﬁelds ‘of
~records and parameters.are described. .

(b) ‘Uses (functions and procedures only) —‘any global vanables used

(c) . Errors (functions and procedures only) — any error messages that may be
produced are presented in the form description (actual message).

(d) Calls. (functlons ‘and procedures ,only)-— any functlons or procedures

Sl e
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A.2.1 Constants

max_cell_num = 16; :
meaning : the maximum number of cells in a hrstogram
used by : celLnum
used in : resei_histogram, prml_hislogram log_histogram
max_stream_num = 32;
meaning : the maximum number of streams
used by : stream_num
used in : make_streams
max_class.num = 256;
meaning : the maximum number of classes in the class table
used by : class_num
max_samplc_num = 20;
meaning : the maximum number of samples in a lookup table
used in : make_sample
max_string_length 80;
- meaning : the maximum number of characters in a stnng
used by : a_string
delay_num = 2000; ‘
meaning : the delay of the visual display
used in : delay '

A.2.2 Types

a_string = string [mnx_stnng_length], ‘
meaning : a string of max_string_length characters .
used in : sim_error, pnnt_hlstogram
cardinal = 0..maxint; o
meaning : non-negative integer
- used by : an_entity, bin, onglnaLseeds seeds : .
. used in : count, make_dass, branch, make_streams, poisson prmL.hlsto-
gram log_lnstogram delay, make_class_table wnte_block write_
;- time ' . .

“color = (nul black red green yellow blue Jmagenta, cyan,whlte),

.~ meaning : colors used for both foreground and background in visual displays
" used by an_entity, class_table S
‘ -'__‘used in set_foreground set._background write_queue enter_class write_
o7 7. bleck, move_v, move_h
stream_num = 1. max stream num;
meamng random number- stream
X origanseeds seeds
:xnd, - make_streams

negexlr s
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number max_cell_num is for overflow

used by : histogram

used in : reset_histogram, prmL_hlslog,ram
class_num = 1. .max_class_num;

meaning : number of classes in the class table

used by : an_entity, class_table

used in : make_class_table, enter_class
sample_num = 1. .max_sample_num;

meaning : number of samples in a lookup table

used by : lookup_table »

Documentation

meaning : the record for an entity

used by : entity
used in : new_entity, dls_enhty, count, calendar top, branch, remove_

avail — false if the enfity is entered in the calendar

class -~ where the entity is entered in the class_table if the class
table is used

col ~ the entity’s present color

attr - the entity’s individual attribute number

next_b — the next bound event or block that the enmy will emer

entity, write_entity

used in : make_sample, sample - bin = record
string length = 1. .max_string_length : number,num_avail :cardinal;
meaning : permissible number of characters in a string end,;
used in : print_histogram meaning : a bin of resources
entity = “an_entity; . : : ‘ o . ) - number - the total number of resources in the bin
meaning : pointer to an entity - : - ' : num_avail - the number of resources presently available
used by : a_link, current ' 3 used in : make_bin, acquire, return
used in : give, take, give_top, give_tail, take_top, take..tall new_entity, hlstogram packed record
dis_entity, make class, calendar_top, write_entity, move_v, cell " :array [cell.num) of real,
move_h s count,width,base, :
link = “a_link; _ ) _ total ;sosq, _
meaning : pointer to a link 4 . min,max,expended- :real;
used by : a_link | ' 1 state Lo :boolean;
used in- : give, take, count, make_class, cause, write_queue L ‘ ~ end; '
a link = record : meaning ‘a hlstogram used for statistics collection
next,pre :link; cell .~ the histogram cells _
item :entity; o v count - the number of observations
end,; ' o . width - —the cell width
meaning : links from which queues are built ' base. - the cell base °
mext — the next link in the queue total — the total of all observations
pre — the previous link in the queue sosq - sum of square of all observations
item ~ the enmy connected to the lmk min .= the minimum observation -
- used b)’ : link . max — the maximum observation.~ . . .
- used in : (fields of record) o . expended — the last time at which an observatlon was logged
- make_queue, give, take, count, makLclass, cause : . _ -state . —true if a state hlstogram, false if a time weighted

queune = link; 3 : . v " histogram.
meaning : dqueue (although |dent|cal toa Imk used where an entire queue o s used in . reseL.hislogram, make..lnslogram, prlnt_lustogram, .log_histo-
is implied) ‘ gram
used by : calendar, suspended_chain : . , lookup_table array [1:.max_sample_num,1..2] of real
" used in : make_queue, glve, take, glve_top, give_tail, lake_!op, take_tail - meaning : an empirical distribution
an_entity = packed record used in: make_sample, sample

avail . :boolean; o
elass . . :class_num;
col - :color; 4
" attr next_b :cardinal; SR e
time " :real; o e

' end




'
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A.2.3 Global variables

tim :real; :
meaning : the present clock time
. used in : run, cause, write_time S
current :entity; T
meaning :-the entlty that has caused the most recent bound event or whose
process is active
- used in - calen_dar_top, ‘cause, run
calendar :queue; .
meaning : the calendar of future events
(sometimes known as the next event set)
used in : make_sim, calendar_top, cause, run
on_calendar boolean, -
meaning : true if the current entity has been placed on the calendar
used in : cause, run (process version only)
suspended_chain :queue; i
meaning : the chain of suspended entities in a process descnpt)on model
used in -: run (process version only)
running boolean, P
- meaning : true if the srmulatlon is runmng, can be set to false to bring the
simulation to an orderly halt
used in : sim_error,run
original seeds :array [stream_num] of cardmal
‘meaning : the original seeds used by the random number generator
used in -: make_streams ' - S
seeds :array [stream_num] of cardmal
meamng the present values of the seeds, as updated by the random number
* .generator - .
used in . : make_streams; rnd
class_table array [class_num] of "
record :
. et .char, col color
) C’ld Y : . .
; meanmg the table of letters and base colors used to dlsp]ay entities from a
» . w2 class in the visual dlsplay i
Iet letter :
_ e —.color
- used in 2 mnke..class'_table, enter_class, write_entity

. funcnon take_tarl (q. queue) .entlty,
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A.2.4 FUNCTIONS AND PROCEDURES
A.2.4.1 Queue processing

procedure make_queue (var g :queue);
meaning : make a new queue
q — a previously declared queue
" calls : new_entity :
used in : make_class, make_sim
procedure give (q :queue; ¢ :link; i :entity);
meaning : give an entity to a queue
q — a previously declared queue
¢ — a link in g; new link is placed immediately after ¢
{ — an active entity
errors  : i=nil (giving a nil entity)
used in : give_top, give_tail, cause
calls : sim_error )
function take (q :queue; 7 :link) entlty,
meamng remove a link from a’'queue, and return the connected entlty
q — a previously declared qucue
- errors  :tis nil (taking a nil link),
» . t=q (taking a queue head)
used in : take_top, take_tail, calendar_top
calls . - : sim_error _ _
procedure give_top (q :queue; i :entity);
meaning : give an entity to the top of a queue
q — a previously declared queue -
i — an active entity ‘
calls : give
procedure give_tail (g :queue; i :entity); :
meaning : glve an entity to the tail of a queue
— a previously declared queue
a —.an active nmy
used in : run (process version only)
‘calls  _:give: .
function take_top (g .queue) .entlty,
: meamng remove-the link at the top of a queue. and retum the connected
: entlty : o :
L g-a prewously declared queue
- used in calendar_top »
S calls . gitake

meanmg -Temove the link from the tall of a queue and retum the connected

:': £ entlty : S
. ' q= prevrously declar _ queu
caIls B take kS
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A.2.4.2 Entities and classes

Junction new_entity (c :class_num; a allr_num) ‘entity; -
meaning : create and return a new entity record
€ - required class_table entry
a — required attribute number
used in : make_class, make_queue
procedure dis_enllly (e :entity);
meaning : dispose of an entity
€ — entity to be disposed of
errors  : e is entered in the calendar (disposing of a busy enmy)
procedure make_class (var ¢ :queue; n,size :cardinal);
meaning : make a class of entities
¢ - qugue to hold class
r - number of entry in class_table
size — number of entities in the class;
attribute numbers are assigned from 1 ton
calls : make_queue, new_entity
. function count (var g ‘queue) :cardinal;
meaning : return the number of entities on a queue
g-a prevnously declared queue

A.2.4.3 Timing and executive

procedure make_sim;
meaning : initialize the simulation data structures;
create the calendar, set tim to 0
uses : calendar, tim
procedure cause (nb :cardinal; e :entity; 1 :real);
meaning : cause an event or entry to a block to happen
nb — number of the event or block: _
¢ — the entity that is entered in the calendar
! —the event occurs at time tim+¢ - ’
on_calendar is set to true if e is the current entity
uses :calcndar. tim, on_calendar, current
errors e is a nil pointer (causing a non-existent entity)
1 is less than zero (causing time negatlve)
. calls : give
procedure calendar —top; :
" meaning : remove the entity that enters the next event from the calendar;
- this entity becomes the currenl enmy and is set to available
used in : run (both vers:ons) o

" procedure branch (next :'cardinal);

functlon rnd (s :stream_num) :real;

Functions and Procedures

A.2.4.4 Facilities for process executive

meaning : set the next block that the cirrent entity should immediately
' attempt
next ~ the number of the next block
uses : current
procedure remove_entity, ) ]
meaning : mark the current entity for removal from the simulation

uses . current

A.2.4.5 Resources

procedure make_bin (var from :bin; n :cardinal);
meaning : create a bin of resources
from — a previously declared bin
n - the number of resources in the bin, all of whlch are initially
- available
procedure acquire (var from :bin; n :cardinal); )
meaning : acquire a number of resources from a bin
from —'a previously declared bin
— the number to be acquired . :
errors less than n resources are presently avallable (acqumng from bin)
procedure return’ (var from :bin; n n :cardinal); - -
meaning : return a number of resources to a bm
from — a previously declared bin
n — number to be returned
errors  : less than n resources are presently in use (returmng to bin)

A.2.4.6 Error messages

procedure sim_error (s a_string),
meaning : halt the simulation (by setting runmng to false)

- s=usedin €rror message
_ uses _  : running T

A.2.4.7 _ Ran_dom nuntber genereior and st’re.al'ns

procedure make_streams; R
- meamng create the random ‘num ams; streams numbered 1 to max_

: 7 ! stream_num are ass:gneci th seeds ]007 2007 3007 etc._ -
uses . ::.original_seeds, seeds <. S ._ o

meaning : returns a continuous umfon'n pseudo-random number m the
. .. closed rangeOOtol '
ouses | :seeds 7. e
used in : normal, polsson.‘.neeexn;..unlform. sample
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A.2.4.8 ‘Sampling distributions

Junction normal (m,sd :real; s 'stream_num) ‘real;
“Mmeaning :-returns a normal variate . ‘
m — mean of normal distribution
sd — standard deviation of the distribution
) § - random number stream
calls :rnd
Junction log_normal (m,sd :real; s stream_num) :real;
meaning : returns a log normal variate
m —~ mean of log normal distribution -
sd — standard deviation of the distribution
s — random number stream
calls : normal
SJunction poisson (m :renl; s stream_num) :cardinal;
meaning : returns a Poisson variate
m — mean of Poisson distribution
.5 - random number stream
calls - :rnd
function negexp (m :real; s .stream_num) sreal;
meaning : returns a negative exponential variate
m — mean of negative exponential dlsmbutlon
s - random number stream
calls :rnd
function uniform (1,h wreal; s .stream_num) 'reaI _
meaning : returns a continuous uniform vanate
! — lower bound value '
h — higher bound value
‘ s - random number stream
calls " :rmna =
Pprocedure make_sample (var sampleJiIe stext; var table Iookup_table);
meaning : creates a discrete lookup table - :
sample_file — a previously opened file containing the values .
table — a previously declared lookup table :
errors (a) the end of file marker is encountered before the lookup table
'is complete (sample file finished) i :
(b) a cell value has been found that is less than 0-0 or greater than
1-0 (size of cell in sample) - S e '
(c) a cell value has been found that 1s smaller than the previous
-cell (order of sample file) - : :
Junction sample (rable :lookup_table; s »‘slream_num) .real
.. meaning : return a sample from ‘a lookup- table - I
w. .. table - a previously declared and created. lool\up table
-5 .. random. number stream

LAY
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A.2.4.9 Histograms

procedure reset_hlstogram (var h :histogram);
meaning : reset a ‘histogram; all cells and accumulators are set to zero,

expended is set to the present clock time tim -
procedure make_histogram (var h :histogram; cell_base, cell.w:dlh :real,

s:boolean);
meaning : create a new histogram _
h ~ a previously declared histogram

cell_base - the base value of first cell
cell_width — width of each cell
state -setto S
calls : reset_histogram )
procedure print_histogram (var pr :text; h :histogram; len :string_length);
meaning : print a histogram
pr — a previously opened text ﬁle
h -~ the hlstogram to be printed
len — the maximum number of asterisks in a cell
errors : h count is 0 (histogram is empty) .
procedure Iog_histogram (var h :histogra:n; x,y :real);
meaning : log an observation to a histogram .
h — the histogram - =
. x - identifies the cell
“y-— identifies what is added . .
(for a state histogram, y is added to the appropnate cell for a time
weighted histogram, tlm-expended is added and expended is set to
the new clock .time tim) Jar

A.2.4.10 Screen control

procedure make_screen; B
. meaning : initialize the console e
rocedure otoxy (x,y :cardinal); . e
d meanglng move the console cursor to co ordmates (x,y) ‘where (1,1) is the:
" .top left to the screen - “.i.,
used in -: write_entity, - wrile_.queue, write._block move..v, move__h
procedure clear_screen; . . .- Do
- meaning : clear the screen
procedure sel_foreground (c :color);
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procedure reset_colors;
meaning :'set the foreground and background colors to the dcfdull state
(white forcground black back{_.,round)
used in - : write_queue,’ write_block, move_v, move_h

A.2.4.11 Visual displays

procedure delay;
meaning : delay the whole program, and hence the display, for delay_num
empty for loops
used in : move_v, move_h
procedure make_class_table:
meaning : initialize the class_table
uses : class_lable
procedure enter_class (n sclass_num; / char c:color);
meaning : enler a class in the class table
- the number of the class
I —letter to be used to represent entities from a class on the vnsual
display
¢ — color for letters representmg entmes, unless an entity’s own
col field has been set ‘
uses : class_table
procedure wnle_entlty (x,y :cardinal; ¢ :entity);
' meaning : display an entity on the console
X,y — co-ordinate pair
e -~ the entity
uses . : class_table
- calls : gotoxy, set_foreground
- used in : write_queue, ‘move_v, move_h
procedure wrlle_queue (x.y :cardinal; b :color; q :quene;
- .max_length :cardinal);
meanmg dlsplay a queue on the console
X,y - . - co-ordinate pair ‘ E
b .~ background color for the queue :
9 - - —the queue - .
- - max_Jength — the maximum length of dlsplay
calls * set_background, write_entity, gotoxy, reset_colors
procedure write_block (x1,y1 x2,y2 :cardinal; b :color);
mcamng display a background block of color
- x1,yI - co-ordinate pair : ¥ '
x2y2 -~ co-ordinate pair; - where x1<x2 and yl<y2
RN background color B
-sel_backg' und gotoxy. resel_colors

o calls“ ;

Functions and Procedures

procedure move_v (x,yl »y2 :cardinal; ¢ :entity; b :color);
meaning : move an entity in the dlsplay vertically
X —vertical file . o i
yI ~ from - R
y2 - to, where yl<y2
- b - background color _
errors 1 yI>=y2 (moving vertical entity)
calls . : set_background, write_entity, gotoxy
procedure move_h (yxI x2 :cardinal; e :entity; b :color);
meanmg move an entityin the display honzontally
y =~ horizontal file
xI] —- from -
x2 - to, where xI<x2
b - background color
errors  :xI1>=x2 (moving horizontal entity)
calls : set_background; write_éntity, gotoxy -

procedure write_time;
meanmg wnte the present clock time in the form day: hour: minute

A.z.4.1z .Userhvuritten rbutines

These are all routines that are to be provrded by the user.

procedure display; S o :

meaning: visual dlsplay alteratlons performed pnor to advancmg the ume to

thencxtevent B A ST

procedure lniuahze,

meaning : initialize the srmulatlon o

~ calls make_sun, make_streams

procedure picture; .- .

meanmg : lmtlallze the statlc part of the vnsual dlsplay

calls make..class_table" B .

procedure report; i St
' meaning : ﬁnal repOrt and statlstlcs from a simulation run

A.z.a.ia .Sinrhlatibn 'sixéehtivé"'

procedure run (durauon .real max_c cardinal);
(or for the process descnpuon executwe. .

rocedure run (duration: ireal;) . ’
d meamng - run the srmulatlon unul duration is reached or ﬁnished has been »

. ‘current, ‘calendar,  fim, runnlng B
on_calendar {process’ erslon only)

. uses

. calls
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Appendix B

Pascal_SIM

const
max_cell_num = 16;
max_stream_num = 32;
max_class_nium o = 256;
max_sampte_num £ 20;
max string length = 80;°
delay_num = 2000;

type

a_string = string [max _string_length];
cardinal = 0..maxint; -
color = (nul black, red,green yellow,blue, magenta,cyan,

uhite), -
stream_num = 1..max_stream _num;
cell_num - * = 0..max_cell’ _hum;
class_num - = 1._.max_ class_num;
sample_num - = = 1..max_sample_num;

string_ length = 1..max _string_length;
entrty = “an_entity; i
tink = “a_Llink;
a_link = record .
. " -next,;pre :link;
.+ ftem . sentity;

] - end; . P
queUe = link"" )
an entlty = packed record

- avail . sboolean;
< class ".. .. :class_num;
oeol LT seolorg

. attr, next 8 -cordinel'

time’ o .real'
end- Lo

*bln = record o C -
. number, num_ ovail -cordinol-v e
. cnd- R ) L S
'histogram = record - SRS R
o o ecell o 7 Lzarray’ [cell_num) -’
count width base,’ '7f':' B e e

lookup_table = array [somple_num,1.,2] of real;

var

tim : o :real;.
- current - zentity;
calendar - - .- squeue;
on_calendar. - - tboolean;
suspended_chain: .. 1queue;
running - - - sboolean;
original ceeds seeds :array [stream_num} of curdinal-
class_teble . tarray. [closs _num) of :
R ‘record -
let char- col -color,
end;

{ available routines are

- error messages -
procedure sim_error (s :a string),

-~ queue processing - .
procedure make_queue (var g -
procedure give (q :queue; t ink;. i,:entlty),
function take (q :queue; slink) sentity;
procedure give_top (q.:queue; i :entity);
procedure 9ive tail (g :queue; § sentity);
function .toke _top (q :queue) :entity;
function take tail (q :queue) :zentity;
function .empty (q -queue) -booleen,

q ue).
1
ti

- entlttes and classes - : SRR T
function - new entlty (c zclass num, a :cordinal).:entity;
procedure ‘dis_entity (e :entity); :

function - count (q :queue) :cardinal;

procedure nake closs (var c 'queue, n,size .cardlnel), -

.- timing ond the executlve--
procedure calendar _top;
procedure make sim, - R
procedure cause (nb -cordinol- e .entity, t _real)-,

- fecilities for process executive - S
procedure branch (next. scardinal); .. ...
procedure remove entity,,$m;. B

- resources -. - : is Sl s
procedure make_| bin (var from .bin, n :cardinal)
procedure acquire (var from :bin; n :cardinal)
procedure-return (ver from *bin;.n':cordincg):euﬁr

- rondom number seneratlon ond treoms':
- procedure .make_streams; . -
”function rnd (s - sstream_num)- .reol- :
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- distribution sampling - : :

function normal (m,sd :real; s :stream_num) sreal;
function log_normal (m,sd :real; s sstream_num) sreal;
function poisson (m :real; s _:stream_num) :cardinal;
function negexp (m :real; s sstream_num) :real;
function uniform (L,h :real; s tetream_num) :real;

. procedure make_sample (var sample_file :text;

_ var table :lookup_table);
function sample (table tlookup_table; s istream_num) :real;

- histogrems - :
procedure reset_histogram (var h chistogram);
procedure make_histogrem (var h thistogram; ’
cell_base,cell_width sreal; s :boolean);
procedure print_histogram (var pr:text;h:histogram;
len :string_length);

procedure log_higtogram (var h :histogram; X,y :real);

- screen control - -
procedure make_screen;

procedure gotoxy (x,y tcardinal);
procedure clear_screen;

procedure set_foreground (c zcolor);
procedure set_background (c :color);
procedure reset_colors;

- visual display -
procedure delay;

" procedure make_class_table;

procedure enter_class (n sclass_num; q :char; ¢ tcolor);
procedure write_entity (x,y scardinal; e sentity); -
procedure write_queue (x,y :cardinal; b scolor; q :queue;
- max_length.:cardinal);
procedure write_block (x1,y1,x2,y2 scardinal; b :color);
procedure move_v (x,y1,y2 scardinal; e :entity; b scolor);
procedure move_h (y,x1,x2 scardinal; e :entity; b scolor);
procedure write_time; : ; : o

- dummy procedures -
procedure display;
procedure inftialize;
procedure picture;
procedure report;

- simulation executive - . .
procedure run (duration treal; max_C :cardinal); )

{ error messages )
procedure sim_error (s ta_string); »

begin S
swriteln ('**%x ERpoR '.8,' "%y ‘running := false;
end ( eimulation error ); : o >
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{ queue processing )
procedure make_queue (var q :queue);

{ note :’new_entity must be forward declared )
begin o -
new (q);
with q° do
begin
item := new_entity (1,0);
nhext := q; pre := q;
end; :
end { make queue );

procedure give (q :queue; t slink; 1 :entity);
var
new_pt :link;
begin :
if i = nil then sim_error(*adding a non-existent entity!)
else begin ) : ’
new (new_pt);
with t° do
begin -
neWw_pt-.next := next; next".pre := new_pt;
next := neW_pt; new_pt-.pre := t;
end; . )
new_pt-.item := i;
end;
end { give );

function: take (q :queue; t slink) :entity;

begin : . )

if t = nil then sim_error (‘teking a nil link')
else ) : . "
if t = g then sim_error ('taking a queue head!)
else begin S
with t~ do
begin T _
pre-.next := next; next".pre := pre;
end; e

. take = t°.item;
dispose (t);

end; .

end ¢ tske );

procedure give_top (q :queue; i tentity); .
begin . . e
. give (q,q%,1);
end € give top );

procedure give_tail (q :queue; § sentity); -
begin - . : -
give (q,q".pre,i);
end ¢ give tail ); - -,
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function - take top (q :queue)-:entity;
begin :
take_top := take (q,q . next);
end ( take top );

function tske tail (q :queu : ity;
begin q :q e) sentity;
-take_tail := take ¢ Q" .pre):
end  take taijl ;. a.97-p S

function empty q :queue) :booleen;'
begin : ’
empty := (q = q -next);
end ( empty );

€ entities and classes ) ’ :
fuc::ion new entity (c :class_num; a scardinal) :entity;
e sentijt
begin vé
new (e);
With e° do
begin
time := 0. 0- evail H true, cless L -H
col := nul; attr := a;-next_B := 0;.
end;
new entity = e-
end { new entity )'

procedure dis entity (e 'entityi;
begin o
if ?ot e .avail then
- S$Im_error ('dlspostng of a bus tity!?
. else dispose (e); - y enti y g
end < dispose entity );

function count. (q .queue) -cardtnal-

var
. total tcardinal;
ot - .link-
w;besin'

-total := O; t = q°.next;
while qo>t do
begin
- total := total+1' t = t «next; :
end; _' P
count := toteal; '
end ¢ count ):
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procedure make_ class (var .c 'queue, n,size :cardinal);
var
t :link;
i :cardinal;
e entity;

begin
make_gueue (c);
t := ¢c;
for i := 1 to size do
begin

e := new_entity (n,i);
give (c,t,e); )
t := t° .next-
end;
end { make class );

{ timing and the executive )
procedure calendar top,
var
e zentity;
begin
e := take (calendar,calendar- .next);
e“.avail := true;
current := e;
end calendar top }; -

procedure make_sim;
- begin N
make_queue (calendar);
" make_queue (suspended_chain);
calendar.item := new_entity (1 0).
tim := 0.0;
end ( make sim ),

procedure cause (nb -cardinal- e ~ent|ty, t -reel),

var
L stink;
new_tim :real; -

begin ' _

if e = nil then- ’
sim_error ('causing a non—existent entity')

else
if not e .avail then
sim_error
('ccusing an entity alreedy entered in the calendar')
else
if t<0.0 then sim_error ('causlny time negattve')
else begin
neu_tim = tim+t;
.with e’-do
begin :

- time *=-neu tim, next_Bf:- nb;
: ‘avail.:=: felse;:; L : :
end;
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t := calendar- -hext;
while (new_tim>|- .item .time)
and (l<>calendar)

do |
L= ("

= ".next;
.pre;

give (calendar,t e),
if e=current then on_catender :=

end;
end { cause );

C facilities for process executfive )
Procedure branch (next scardinal);

begin
with current” do next_B
end ¢ branch );

procedure remove_entity;
begin *
current”.next_g := 0;
end ¢ remove entity ):

{ resources )

3= next;

procedure make_bin (var from :bin; n :cardfnel);

begin
with from do
begin

number := p; num_avail := p;

end;
end { make bin 3;

procedure acquire (var from :bin; n :cardinel)}

begin
with from do

if n>num_avail then sim_error ('ecQufrinn from‘bin')

else num_avail := num aveil -n;

end { acquire 3

procedure return (var from sbin; n tcardinat);

begin
with from do

if (nenum _eavail>number) or (n<0) then
sim_error ('returning to bint)
else num _avail := pum _availen;

end ¢ return . b H

true;
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{ random number generation and stieams )
function rnd (s :stream_num) :real; ;
{ for 16 bit integers - assumes nho detect1on of ove

const
mult = 3993;
divid = maxint;
add = 1;
begin

seeds (s} := (seeds[sl'mult+add) mod divid- .
if seeds[s)<0 then seeds{s) := seeds[s]+maxint+1-
rnd := seeds[s]/divid-

end { random number generator b H

function rnd (s :stream_num) :real;
{ generator for 32 bit integers )
const
mult = 16807.0;
divid = 2147483647.0-
var :
r,quotient .real-
begin
r = pult*seedsis);

quotient := r/divid;. i
seeds([s] := trunc (r- (trunc(quotient)*dlvid)),

rnd := seedssl)/divid;
end ( rendom number generator ),

procedure make streams'
var
i : stream_ num; -

. begin-
for i := 1 to max_ stream _num do

original_ seeds[i] := i*1000+7-
seeds :=- orlg1nal _seeds; -
end { make streams ); :

¢ distribution sampling ). _ RN
function normal (m sd :real; s :stream_num) :rea(;”

const -
tpi = : 6. 2831852;

begin ' ‘
normal := sin (tpi*rnd(s))*sqrt(-2*in (rnd ‘S))’*Sd+m'

end { normal b H

function log normal (m,sd .real- s °stream num) -real-
var o
X,xs,xm sreal;
begin
X = ln (sd/m+1);
xs = sqrt (x); .
- Xm 3= tn (m)-0.5*x;
-log_normal := exp (normal(xm,xs 8));
end ( log normal I HEE
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function poisson (m treal; s :stream num) :cardinal:
— ’

var
p,f,u :real;
X :cardinal;

begin
P = exp (-m);
f = p; x 1= 0;
= rnd (s);
uhile wf do
begin
X i x+1;
P = (m/x)*p;
f := fep;
end;
poisson HI ¥
end { poisson );

function negeib (m :real; s :
bt tstream_num) :real; -

negexp := -ln (rnd(s))*m;
end { negexp );

f - -
ug:;::n uniform (l,h real 8 :stream num) .real-

uniform z= l+(h- l)*rnd
end € uniform 3; ‘S)'

procedure make sample :
(var sample_file -text' var table :lookup table);

var
i . ssample _num;
last sreal;
finished -boolean;
begin
for i := 1 to max sample num do

begin -
table[i 1] s= 0; tableri,2) := 0

end; ) g
1 = 1; lest := 0; '
finlshed H false'
: repeat
if eof (sample file) then -
- begin . :
finished := true, e
en;im error ('sample file finished')'
else- '
.begin o
- readln (sample flle toble[i 1. table[i 21)'»

if (tablefi, 1J<0 0
begin ) or (table[i 1J>1 0) then

.finished := true°:~L

‘_i_en;im‘error t'size of cell in sample'),
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“if tebleli,1) <= last then
begin
finished := true;
. sim_error ('order of sample file');
end
else
begin
last := teble(i,1];
f := §+1; )
if last = 1.0 then finished := true;
end;
end;

until finished;
end { make sample );

function sample (table :lookup_table; & :stream_num) :real;

var

§ ssample_num;

u sreal;
begin

s= rnd (8); § = 1;

) uhile tebleld, 1l<u do i 3 i+1-
- sample :z= table[i 21,
end ¢ sample b H :

iR ¢ histograms b )
" procedure reset histogram (var ‘h .histogram),

.. var

i scell_num;

begin
with h do
. begin . .
total := 0; sosq := 0; count := 0;
~min := maxint; max := 0; expended := tim;

for § := 0 to max_cell_num do cellli]l := 0;
end; :
. end ( reset histogram ),

-procedure make histogram (vsr h 'histogram,.s

w_cell bose cell: utdth»-real- 5 -boolean),

begin R . . e
uith h do ) _y~ g
- begin

-width = cell uldth base = cell base- state := s;
end- - T LA

- reset hlstogram Ch)y;
end { make histogram );
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procedure print_histogram (var pr :ttext; h thistogram;
. len :string_length);

const
W [ 7,-
rd = 2;
asterix = 1w,
space = ¢ ;
var
max_value,m,v :real;
1 scardinal;

procedure lines;
var
line :a_string;
i,k :cardinal;
begin
with h do,
for { := 0 to max_cell_num do
begin
line := 19,
for k := 1 to trunc (len*cell[i1/max_value)
do tine := concat (line,asterix);
while length (line)<ten do :
line := concat (line,space);
if § = 0 then write (pr,'under 1)
else . .
if i = max_cell_num then write (pr,'over Y
etse write (pr,base+((i-1)*width) srwsrd);
writeln (pr,' 1, line,cell(i] trwzrd);.
end;
end { lines );
begin
with h do : .
if count = 0 then sim_error ('histogram is empty')
else S
begin
-max_value := 0;
~for i := 0 to max_cell_num do . ,
if cellfi)>max_value then mex_value := cell[i);
m := total/count; ' :
‘§f count>Y then v := (sosq-total*m)/(count-1) .
else v := 0; . C
-if state then .
write (pr,'processed = ', trunc(count) :5);
suriteln (pr); . AR Co ,
writeln (pr,‘mean = ‘om srusrd,! varfance = ¢,
. vorrwird,' sd = 9 gqrt(v) irusrd);
writeln (pr,'min = 1 min strszrd,'. max = ¥,
: max :rw:rd); : )
writeln (pr);
lines;
- end; :
end { print histogram ); -
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procedure log_histogram (var h :his#ogram; g,y.:real);
var : . .
i :cell_num;
begin - -
with h do

begin
H := trunc ((x-base)/width+1);

if i<0 then § := 0; e

;: ;>max_cell_num then i := max_cell_num;
" if x>max then max := Xx;

if x<min then min := Xx;

if not state then’

begin :
3 :c tim-expended; expended := tim;

d; .
cet?[i] := cell{il+y; total := total+y*x;

s0sg := SOSGFX*X*y; count := count+y:~.
. end; .
end { log histogram );

{ screen control )
procedure make_screen;
const :
ESC = 27;
begin
swrite (chr(ESc),*l=3h');

end ( make screen );

prbcedure gotoxy (Xx,y :cardinal):
const )
ESC = 27; » ) »
begin .. .
write (chr(ESC), L', y-1 21,°%;*,x-1.:1,'K);

end { gotoxy };

procedure clear_screen; o L B

const
ESC = 27;
_ begin : :
gotoxy (0,0); . ]
- srfte (chr(ESC),*124%);
end { clear screen };
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procedure set_fore

{ set for
const
ESC = 2
begin
write ¢
case ¢
black
red
green
yellow
blue
magenta
cyan
white
end;
end ¢ set

extended ANS]! )
7;

chr(escy);
of
twrite ' [30m');
swrite (V[31m');
sWrite (*[32m');
swrite ('(33m*);
swrite ('[34m*);
swrite €' [35m*);
twrite ('[36m');
swrite ('[37me);

foreground );
¥

procedure set_background (c
€ set for extended ANS]) p

const

ESC = 27;

begin

write (chr(ESC));
case ¢ of

black

red

green

yellow

blue

magenta

cyan

-white
end;

end ( set

procedure set_foreground (c :color);fiTurbb Pascai version )

begin

sWrite ('[40m');
Nrite ('[41m');
:write ('[42m');
swrite ('[43m?);
tWrite ('[44m');
twrite (*[45me);
surite (' [46m');
swrite (' [47mr);

background 3;

case ¢ of

black

red

green
yellow
blue

©- magenta
cyan
white-

- end;
-end { set.

stextcolor (0);
stextcolor (4);
stextcolor (2);
stextcolor (14);
stextcolor (1);
ttexteolor (5);
stextcolor (3);
ttextcolor (15);

foreground 3;

ground (c :color);

tcolor);
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prbcedufe set_background (c :color);{ Turbo Pescal version )
begin
case ¢ of

bleck :textbackground (0);
red :textbackground (4);
green :textbackground (2);
yellow stextbackground (14);
blue :textbackground (1);
magenta :textbackground (5);
cyan :textbackground (3);
white :textbackground (15);
end;
end { set background );

procedure reset_colors;
begin
set_background (black);
set_foreground (white);

end ( reset colors );

{ visual display )
procedure delay;

var
scardinal;
; begin ' S
for i := 1 to delay_num do write ('');

end ( delay };

procedure make_class_table;
‘var A :
i sclass_num;

begin : : .
for i := 1 to max_class_num do

with class_tablelil do

begin
o let :z=itab; col-:= white;

end; g
end { make class table );

sclass_num; :éhur;>c :Eoior);

procedure enter_class (n

begin
with class_tableIn] do
begin
let := l; col :=¢; -
end; - .

end { enter class ); °
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procedure write_entity (x,y -cardinal- e :entity);
begin

gotoxy (x,y);
uith e do
‘begin

if col<>nul then set foreground (col)
else set foreground (class_table[class]. col);

write (class _tablefclass). let),
- end;

end € urite_entity );

procedure write_queue (x,y scardinal; b :color;

q :queue; max_length :cardinal);
const
space = ¢ .
var
xx :integep;
p :slink;
begin ‘
set_background (b);
XX :E X; p = q°.next;

uhile (p<>q) and (xx>0) and (x-xx<max_length) do
‘begin

write_entity (xx,y,p" .item);
XX == xx-1- i= p-.next;
end;

while (xx>0) and (x- Xx<max _length) do
begin

.. gotoxy (xx,y), urlte (space);
XX z= xx-1-

) end- . :
reset_colors;
delay;

end { write queue );

procedure write block (x1,y1 x2,y2 .cardlnal- b :color);
const
space = ' 1.
var
- 1,) scardinal; .
begln
set_background (b);
for i := x1 to x2 do
for J := y1 to y2 -do
.- begin -
gotoxy: (i J); write (space),
end;
reset colors- S
end { write block )-
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procedure move_v (x,y1,y2 'cardtnal- e zentity; b :color);
const

space = ' '»
var
i -lnteger,
be?;ny1 >= y2 then slm error (‘moving vertical entnty')
else
be:é: _background (b), write entlty (x,yl,e);
for i := _y1+1 to y2 do :
begin
delay;
write ent1ty (x,1,e);
gotoxy (x,i-1); write (space);
end; - . .
gotoxy (x,y2); write (space);
reset_| colors- )
end; .
end ¢ move_verttcal entity );

procedure move_h (y,x1 x2 :cardinal; e :entity; o zcolor);
const
space = ' ‘5
var
sinteger;
beg;nx1 >z x2 then sim_error ('moving horizontal entity*)
else
begin
set background (b).
write_entity (x1,y,e);
for § = x1+%1 to x2 do
begIT L
delay;
urite'entity (i.Yae). : -
gotoxy (i-1,y); write (space),'. o i
end; o N
gotoxy (xZ,y), ‘write (space)rvh_;
reset_colors;
end;
end { move horizontal enttty ):

' procedure write_time; '.LE!' iv =1:
- var ) _ ez : :
h scardinal;
begin :
‘eg :x trunc (tim) mod (24*60); e
write (trunc (tim) div (24%*60) :3,' :
~ Ch mod 60)+ (t\m-trunc (tim)) s
end { urite time )..

',h div 60 :2,% 3,
5:2); ,
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{ user written procedures )
procedure display;
procedure initialize;
procedure picture;
procedure report;

{ simulation executive - three phase and event )
procedure run (duration treal; mex_C scardinal);
var
c -cardinal-
begin
running := true;
repeat . . :
if felendar:calender‘.next then running := false
else
begin
display-
tim := chlendar-.next” .item . time;
if duration<tim then running := false
else
begin
while (calendar<>calendar* .next) and
(tim-calendar -next .item“.time) do

begin
calendar_top;
case current”.next_B of
L
end;
end;
for ¢ := 1 to max _C do
case ¢ of
Pl
end;
end;

end
unt:l not runntng,
end { run - three- ~-phase and event 3;

procedure run (duration sreal); - { process view )
var
. stink;
vchanged tboolean;
e tentity; -
. present :cardinal;
. procedure reactivate,
begin :
:on_calendar = false,
:-present := current” .next B;
~Case current .cless of

end-
. end (reectiyate);

Pascel_S‘;M

begin
running := true;
repeat .
.,if calendar = catendar”.next then running := false
else
begin .
-display;.- K .
tim := calendar”.next”.item".time;
if duration<tim then running := false
else
begin
while (calendar<>calendar”.next) and
(tim=calendar”.next".item".time) do
begin
calendar_top;
reactivate; .
if current”.next_B = 0 then dis_entity
(current)-
else
begin
if not on_calendar then.
" give_ tail
(suspended chain, current),
_end;
end;
repeat
.changed := false,
¢ := suspended_chain-.next;
while c<>suspended_ cheln do
' begln -
. _-current := ¢”.item;
resctivate; -
e = c”.next;
if on_calendar or
-(present<>current .next_B) then
begin ) ,
" changed := true, :
e = take (suspended chaln c .pre),
~end; -
,if current”.next 8 0 then dls ent:ty
.(current)
else
lf (not on calendar) and
(present<>current” .next _B) then
give_tail; .. :
- (suspended chain current),
end - R
until not changed- .
‘end; .
- end
until not running'
end {run );
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Implementing Pascal_SIM l

The Pascal_SIM facilities listed in Appendix B need to be implemented by a par-
ticular system (i.e., compuler, operating system, Pascal compiler and run-time
system). This generally involves two steps: slight alteration to the routines, parti-
cularly to the screen control codes, followed by the storage of the routines in a
library or linkable module so that they do not have to be recompiled each time with
the simulation program. :

General implementation points are, followed by detailed implementation in- -
structions for five different Pascal systems: -

(a) Borland’s Turbo Pascal 3 running-under PC-DOS,
(b) Prospero’s Pro Pascal 2 running under MS-DOS,
(c) DEC VAX/VMS Pascal running under. VMS,

(d) UCSD Pascal, :

(e) Sorrento Valley Associates’ (SVS) Pascal ruﬁning under UNIX.

These were chosen simply because the authors have experience of implementing
Pascal_SIM with these systems. However, similar principles will apply to other
Pascal systems. e S :

If you are implementing Appendix B from the text, it may be useful to imple- -
ment Pascal_SIM without the visual facilities, at least initially (See Appendix D).
The procedures and functions under the headings screen control and visual displays

are left out which saves typing, since they account for about 50 % of the total _
amount of code. ' : : :

C.1 POSSIBLE ALTERATIONS
C.1.1 Random number generator

As the pseudo-random number generator is at the heart of any simulation program,
the implementation of a sound generator is fundamentally important. While many
- Pascal implementations will provide a built-in generator, frequently these cannot

:be seeded, and thus any sequence of random numbers generated cannot be re-
peated, or they are of poor quality, = :

7 Two generators are provided in Appendix B, one for 16-bit macﬁines, and
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the other for 32-bit machines. The 16-bit generator uses ;)hc ox;c(rﬂm\f o:czun(')rl(x:f 3wg) :
i [ ite ith Turbo Pascal (version 2-( 3.
‘modulo operation. It works quite well wit Pascal (y ! 3
::1':1 r(,:1an be usgg with UCSD Pascal by disabling overflow detection with a compiler
derCll’},'le);a 32-bit generator works well on any 32-bit machine, provideld t:;?l ‘:,h;e]
constants mult and divid can be stored with complete accuracy. Frequen} y, ! |sbl| ‘
mean altering mult and divid to be double-precision constants, and using dou _ef
precision arithmetic for the statement: :

quotient := ridivid;

i.e., quotient-and r must be declared as double-precision.
€.,

C.1.2 Screen control

The procedures:

make_screen

gotoxy

clear_screen

set_foreground (two versions)
set_background (two versions)

contain all the necessary screen control codes. The codes mtg;eeirtsetng::eA [;:gl
cedures and in the first versions of the other two are set .tcl: e A e
lor codes used by the IBM-PC. They should also work with any Dlack and whi
?NSI terminal, for example the VT100, but of ozt;rs_:k no ¢:ol;)ra\.:r:3 fo‘: (:1 o wm;
econd versions of set_fore'groul.id_ and set_background a
E:bcs). If you are using a Pascal with existing gotoxy, rnrakelssl‘c)reen_];nt(:1 zlﬁl;sct:;:z
functions or their equivalents (for.instance Turbo or UCS asca » the

- instead. .

c.1‘_.3' : .New,eniitv

: The p'réée"du‘rés and functions are grouped 'in a log.lcal or.der.—Hoy%el:';,g:;e n'l‘::;
that the declaration of new_entity follows I.ts use in make_..q:el;e;ward depending
on the method of implementation. new_entity ml_gh.t have t_ol, e forw sa, declared o

_ moved to a position preceeding make_queue. This is certain )é {‘I?;Sas chI or Tur ali
Pro, and VAX/VMS Pascal, but unnecessary for UCSD or . , W

.- procedure and function headings have to be dgclan_ad ,_sgparat_e)j _iljl«::n ixjterface

- are§. if 'f11.e Iehtity.'type‘ ns chéngéd to provide addmonal _ﬁé_ldé‘ or variant records,

néw_entity also needs to be altered. _'I_‘he‘-'_lattér"i_S'_gkﬁlai;iéH in‘Appendix 7.A.°A
.; ::: cﬁﬁhgc to thé entity type means that' Pag -
- _-piled if itis in a separated pre-compiled module

. simulation program. R

cal:SIM has to be dltered, and also recom-
It is thus tdilored to the -i_ndny:d_ugl .
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C.1.4 Other alterations

Other alterations may be necessary. Some Pascal implementations do not llow th
u‘lidcrjscorcf characters, so they will have to be edited out. Str’ings.are im li::m t g
dnffcrent_ly in different Pascal implementations (although there "is a de _;,bcloe't]'e
dard which has descended from UCSD Pascal), and so some 'alteratién . dl;h
necessary (this is true for VAX/VMS Pascal).. - o S mayne
cary. ;‘hh;g:rrng:ls constants at the start of Pasca!_SlM, may be altered as neces

max_cell_num number of cells in a histogram

max_s:ream_num number of available random number streams
max_class_num number of different entity classes allowed .

max_sal.nple_num qumber of empirical distributions allowed
:mx_slrmg_lengllv size of strings in error messages
elay_num the dummy delay used by visual routines

The constant delay_num. in i i
: » In particular, will have to be altered so that vis i
©On a specific system advance at the desired rate. - el dlplays

C.2 SPECIFIC PASCAL SYSTEMS -

€.2.1" Turbo Pascal 3

- (a) .ﬁse' the 16-bit random number »
. generator (delete the 32-bit generator
, _(b) Delete the _rot'mnes make_screen, gotoxy and clear_screen. In fheir placg
use the built in Turbo Pascal functions crtinit, gotoxy an
(c) Use the special Turbo Pascal versior '

lation prcy
- as,an include file.
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C.2.2 ProPascal 2

Prospero’s Pro Pascal is a high-quality optimizing compiler for MS-DOS and CP/M
machines. While the three-pass compiler is comparatively slow, and link times can
also be large, the resulting code is fast and real number precision is good. Thus it is

a good medium for running simulation experiments. ,
Few alterations are necessary and the Pascal_SIM routines can be compiled

as a separate module. To prepare for use with Pro Pascal do the following.

(a) Delete the 16-bit machine generator. The 32-bit generator will work with
Pro Pascal if the constants divid and mult are declared as integer (since
maxint in Pro Pascal is 2147483647), and r and quotient are declared as
longreal types (longreal is the Pro Pascal double precision real type).
Thus use as a generator: '

Sunction rnd (s :stream_num) :real;
{ generator for 32-bit integers )
const
mult = 16807;
divid = 2147483647;
var

7 .
- r,quotient :longreal;

begin :

r := multsseedsls); -
quotient := ridivid,
seeds[s] := trunc (r—(trunc(quotient)sdivid)); .-
rnd := seeds[s]/divid; ,

o end { random number generator }; .

.- (b) Delete the versions of set_foreground and set_background for Turbo

: Pascal... .. . . - BT S S
(c) Pro Pascal provides a built-in keyboard polling function called cstat,

.. which returns true when a key is pressed. (This is useful for programming
..o user-determined interaction.) .. oucoge ia im0 )

To implement with Pro Pascal: =~ * B L R
(a) Prepare a file containing all of Pascal_SIM called PSIM.PAS. ‘Declare all
Pascal_SIM variables to be common. (This is a Pro Pascal extension that
allows a program to share variables with a modaule). This is done by using

. common in place of var.. . R T ST
(b) Compile Pascal SIM as a Pro Pa
7 ‘PSIM.PAS with o

o segrhem chaIJIM§

scal _sggméni. ‘ Ttus 1s done by_ starting

_v(wh;_r'éuPéég:val‘-_"SII.\;l is fthév,h;m_q-gﬂiycn_to the
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The result of the compilation is an object file called PSIM.OBJ.
(c) Now within any simulation program:

(i) the Pascal_SIM constants and types will ‘have to be newly de-
clared alongside the program constants and types,

(ii) the Pascal_SIM variables must be declared as common; any pro-

gram variables can be declared as var, - ' o

(iii) all Pascal_SIM functions and procedures must be declared as

external. ‘ ' .
(d) The compiled program must be linked with PSIM.OBJ, and the Pro
Pascal standard library. This must be done with the Prospero linker, e.g.

prolink sim,psim,paslibsls

where sim is a previously compiled simulated program, and /s means

that the standand library is selectively scanned. An executable file .
sim.exe is produced.

(¢) Note that on an IBM-PCit is necesﬁary to prepare bPC-DOS for extended

ANSI screen control by installing the appropriate screen driver. This is
done by adding the line ) :

device = ansi.sys

to the config.sys file, and putting the provided driver ansi.sys on the boot
disk. ‘

C.2.3 VAX/VMS Pascal

Those with access to a DEC VAX computer will probably have access to VAX/
VMS Pascal. Implementation in "VAX/VMS Pascal is fairly painless, although
VAX/VMS Pascal handles strings rather differently from other Pascal imple--.
mentations. A good module facility is provided; Pascal_SIM can be compiled and
established so that it does not have to be compiled with the simulation program.
Pascal_SIM can be implemented easily on some black and white terminals, such as -
a VT100, although you may wish to remove all references to color, other than black -
and white before you start. Other types of terminals need different strings of -
characters for screen control: However, there is no problem in implement_ing the
simple version of Pascal SIM shown in Appendix D.- S R

~ The rest of this section will assume you have a VT100, or similar terminal,
available for use. To prepare for use with VAX/VMS Pascal note the following’

(a) The string type is implememed in VAX/_V-M_S fascal asvarying [...] of
" char. Thus the type declaration PR : :

a_string = string [max.string.lenﬁih]; o
is replaced with T L
.a_string = l'arying:[hiagslringJéhglh] of char;

(b) The concatenation of strings is achieved with the plus ‘oéerétor. -fhfhe
- than the concat function. Thus Where : : v
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line := concat (line,asterix);

appears in print_histogram, it must be replaced will?

line := line+asterix;

(c) The ‘make_screen procedure should be removed (it is unnecessary when
i ' inals). . - o
(d) 'lll'st:zgco?xign:e;:;ay_m):m will almost certainly _havc to be reduced dm sxzc;
if Pascal_SIM is being implemented for a m.ultx-user V/.\X. A glool g‘\;ecsj
at an appropriate value is 100. (However, if tht? VAXis hcaYl yl qa"e.: ,
you might as well set delay_num to be zero, since the te{m;na polling
will negate the effect of trying to neatly time slice .thc disp tay.l) How.
(¢) The 32-bit generator should be used (delete the 16-bit genera :).13-;‘“0
ever, single precision arithmetic in VAX/VMS Pascal is unsati ry.

Alter the generator to:

function rnd (s :étre’am.num) :real;

{ generator for 32-bit integers }
conss :

" mult = 16807-0d0;

divid = 2]47483647-0d0;

var -

r,quotient :double;

begin :

_ T i=multsseeds[s]; _

" quotient := ridivid; o :
-Zeeds[s] = trun_c(r-—(rrunc(quotiem);du{ld));. )
rnd := sngl (seeds[s})/divid); -

end { random number generator ).

where double is the VAX/VMS double-precision type, and sngl isa built-
-in function that converts double-precision back to smgle-prefc:sno;. o
" (f) Delete the versions of set foreground _and..seLPadtgrquqq, or. Tur
: (g) l\>'al‘\!l$csals.toies output in a buffer, which is emptied whel} a w.'nle.ln 15'; ;s;:;e‘;i.
' " Thus a visual simulation that only uses gotoxy and write will simp 1?"1 f ';:
'» the buffer. Eventually, a ‘buffer full’ error messzj\ge will occur is ca
be overcome by making gotoxy do a du_mmy.,:wrugl_n thus S

procedure gotoxy (x.y :cardinal); -

const »
esc = 27;

“ begin U

©owriteln;

write (chr(esc),

.. .. :end{ goloxy )i S
o implement with VAX/VMS Pascal do the following, .~ * L
o (a) Prepare a module file ‘called PSIM.PAS containing all of Pascal SIM




. ©®) Delete the versions of sel

L3 G ot et e R

282 . ing
Implementing Pascal_SiM

(the constant, type, and variable declarations,

c lus all ¥
functions). The file should have P & procedures and

[environmcnt Cpsim.pen’)] module Pascal_SiM ‘((.)utp‘ul);

" as a header line (where Pascal

_SIM is the name g ‘
and fish i M € name given to the n)gdulc),

end.
which-terminates the module. Each outer-
should be prefaced by the qualifier [globa
[global) procedure make_sim;

This allows Pascal_SIM to be used by a simulation program simply by

g
"]hel'"" an e"V"o""le"t ﬁ'e a"»d h"kl" wlth 1t a"y fO"OWuI
’ g g .

b) Co_mpile psim.pqs.. This produces an environment file psim.pen, and an -
object. file containing the routines called psim.obj. ,
(c) Any simulation program can now inherit the environment, e.g.
[inherit Cpsim.pen’)) program simulation; .

(d) The environment file must be Jj . )
' . nked with the co : .
program, e.g., o » mpiled simulation

level function and procedure
1], e.g., :

link sim,psim

where sim is a previously compiled simulation prografn. '

C.2.4 UCSD Pascal

following.

(@) On a 16-bit- machine, the 16
integer overflow can be disabl
checking with a

{$R-}

bit gé'{lerator will work if detection of
ed. This can be done by disabling range’

comp.iler flag placed at the start"of the rnd procedure. On 32-6i
machm?s, check the precision of the particular UCSD implementation’
before implementing the 32-bit generator.” = Sl

. oex
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(¢) Dclete the Pascal _SIM version of gotoxy, because UCSD Pascal provides
a built in gotoxy procedure.
(d) UCSD Pascal provides a built in keyboard polling function called key-
' press, which returns true when a key is pressed. (This is useful for pro-
gramming user-determined interaction.)

To implement with UCSD Pascal note the following.

(a) Pascal_SIM must be prepared as an intrinsic unit for insertion in the
library. Prepare a text file of the form:

unit Pascal_SIM;
intrinsic code 23 data 24;
interface

<A>
implementation
- <B>

begin

end.

where A contains the Pascal_SIM constant, type, and variable declara-
tions, and all function and procedure heads; B contains all function and _
procedure bodies but no. parameter declarations as these have already
appeared in the unit interface. Slots in the library must be specified by
number - use any two slots that are not in use (23 and 24 are usually
available). R

(b) “The unit can be compiled, and put into the UCSD system library using
the library utility. o . ' :

(c) Anyprogram can now use Pascal_SIM by using the UCSD specification:

uses Pascal_SIM,

immediately after the program heading.
(d) Later versions of UCSD Pascal (version 4 onwards) allow for function
and procedure calls to be placed in the dummy main program body.
" These are then invoked when a program that uses the unit is executed.
Thus calls to make_screen, make_. streams and make_sim can be put
here, rather than in the simulation program. '

c.z.s SVS Pascal

SVS Pascal runs under \UNIX on a numbci:‘r,' of 'UNIX. wofl_cslations and mini-
computers. It provides a unit facility similar to UCSD Pascal, and close adherence

to ISO Pascal. To prepare for use with SVS Pascal ,r_ndtp_the_ followingT

.: ’v(a)'._Thef'32;b‘i_fn generatorshouldbe used qélpffe;tﬁé_ l&bit generator).
" Double-precision a'!—irhm_evtic‘_Sho “be used thus: - !
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Junction rnd (s stream_num) :real,

*

{ gencrator for 32-bit integers }

Lconst
mult
divid

var

16807-0d0);
2147483647-0d0);

r.quotient :long;

begin

r = muliseeds|s];

quotient
seeds[s] :

= rldivid,
= frunc (r—(lrum:(quoticm)-divid));

rnd := secds|s)/divid;
end { random number generator )

where long is

the SVS double-precision type.

() As maxint is 32 768 in SVS Pascal, a
nd seeds need to cover the enti
range of the divisor divid, the SVS type longint must be used. Both 2:2

seeds and the

Alternatively,
(c) Delete the ve

Pascal.

original seeds should be declared as an array of /

o .
cardinal can be declared as 0. .2147483647. ¢ e
rsions of set_foreground and set_background for Turbo

Appendlx D

Pascal_SIM w:thout V:sual
Facllltles

s
s

This appendix shows the deélarationé, procedures, and functions needed for
Pascal_SIM non-visual simulations. The new_entity procedure which is different
from the one in Appendlx B is shown in full.

const .
max_cell_num = 16;
max_stream_num - = 32;
max_class_num - - = 256;
‘max_sample_num = 20; -

max_string_tength = 80;

type
a_string = string [max _string_ length],
cardinal = 0..maxint;
stream_num = 1..max_stream_num;
cetll_num 0..max_cetll_num;
class_num 1. .max_ cless num;
sample_num - =°1..max sample num;
“string_tength = 1..max_string_length;
entity = fan_entity;‘
link - = “a_link; -
a_link = record
next,pre .link' .
item -entity,
- end; o :
Queue = ltnk-
an entity = packed record L
- avail .. sboolean;

class . . sclass_num;
attr,next_B :cardinal;
time . ireal;

. end; ’

bin = record
number, num_, avail scardinal;
end;
histogram = record T
cell - sarray [cell_num} of.real;
count,width base,_ ; — o
totel +508q, . el
min,nax,expended sreal; -
stete - u;.boplegn: g

-lookup table . array {semple num,l..ZJ of. reel-"
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var
tim ireal;
current sentity;
calendar iqueue;
on_calendar tboolean;
suspended_chain tqueue;
running tboolean;

original_seeds,seeds ;errey [stream_num] of cardinal-

< aveileole routines are

- error messages - '
procedure sim_error (s :a string),

- queue processing -

procedure make_queue (var q :queue);

procedure give_(q :queue; t :link; i sentity);
function take¥(q :queue; t .link) sentity;
procedure give_top (q :queuve; i :entity);
procedure give_tail (q :queuve; i :entity);
function take_ _top (q :queue) :entity;
function teke tail (q :queue) :entity;
function empty (q :queue) :boolean;

- entities and classes -
function new_entity. (c :class _num; a :cardinal) tentity;
procedure dis _entity (e :entity);

function  count (q :queue) :cardinal;

procedure make cless (var c .queue, n,size -cardinal),

- timing .and the executive -

‘procedure calendar_top; ’

procedure make_sim; : .
procedure cause (nb :cardinal; e tentity; t :real);

- facilities for process executrve -
procedure branch (next :cardinal);
procedure remove enttty,

. = resources -’
- procedure . make_ bin (ver from sbin; n scardinal);
"-procedure acquire (var from tbin; n :cardinal);
procedure return (var from :bin; n .cerd|nel),

- random number 9eneret\on and streems -
procedure make_streams;
function rnd (& :stream num) :real;
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- distribution sampling -
function normal (m,sd :real; s :stream_num) :real;
function log_normal (m,sd :real; s :stream_num)_:real;
function poisson (m :real; s :stream_num) :cardinal;
function negexp (m :real; s tstream_num) :real;
function uniform (l,h :real; s ist;::m _num) :real;
make sam| le C(var sample e :text;
procedure P var table 'lookup teble)—
functlon sample (teble :lookup_teble; s :stream_num) :real;
‘histograms -
procedure reset_histogram (varhh h?istogrem),
ke h:stogram (var stogram;
procedure ma cell_base,cell_width :real; s :boolean);
rint histogrem (ver pr: text h: hlstogram,
procedure p ten :string_ length),
procedure log_histogram (ver h .histogram- X,y :real);
procedure~urite time;

- dummy procedures -
procedure display;
procedure initialize;
procedure picture;
procedure report;

- simulation executive - : : .
procedure run (duration :real; max_c scardinal); )
< chenged‘neu entity procedure )

functton new_entity (c 'class _num; a :cardinal) :entity;

- var
e 'entnty,
- begin i
" new (e);
with e~ do
- begin . ) . : : .
time := 0 0; evell = true; class := ¢;
col := nul'.attr := a; next B := 0- o
" end; : . Lot T e

. new_entity := e; -
;. end { new entity };

LY
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