

MINISTERIO DE CIENCIA E INNOVACIÓN

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

UNIVERSIDAD DE LA REPÚBLICA URUGUAY

TECNOLOGÍAS, OPERACIÓN Y APLICACIÓN DEL ALMACENAMIENTO DE ENERGÍA EN SISTEMAS ELÉCTRICOS

23 MAYO - 03 JUNIO DE 2022

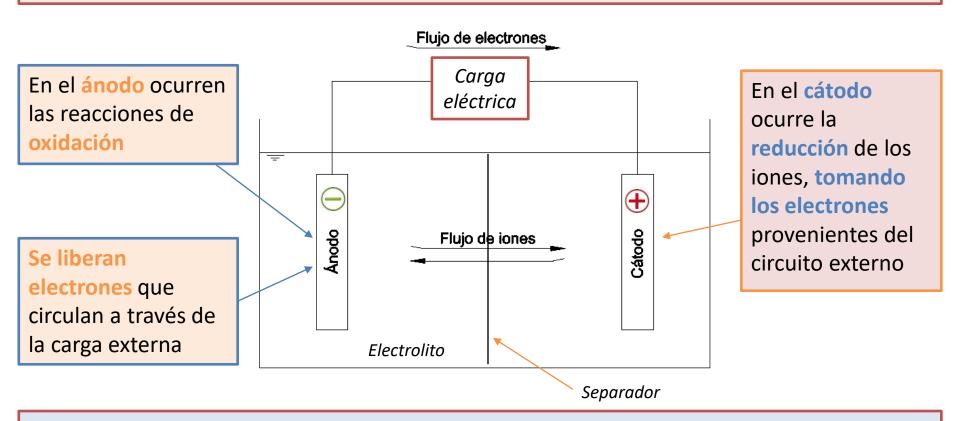
Baterías Li-ion: principios básicos

Juan Pedro Carriquiry 24 de mayo de 2022

Contenidos:

- Fundamentos de las celdas electroquímicas
- Características eléctricas de celdas y baterías
- Características de las celdas de iones de Litio

Fundamentos y características de las celdas



Construcción de una celda galvánica

Típicamente consta de **dos metales** diferentes (**electrodos**) inmersos en una solución salina del propio metal (**electrolito**), conectados por un puente salino o separados por una membrana porosa (**separador**)

La energía eléctrica se produce a partir de reacciones oxidación-reducción que tienen lugar espontáneamente durante la descarga. (reacción es espontánea si ΔG<0 o ΔV>0)

Potencial estándar de reducción

- Es la tendencia a adquirir electrones
- Se toma como referencia "cero" la reducción del H₂

Par redox	E°
$2H_2SO_3 + 2H^+ + 4e \Longrightarrow S_2O_3^{2-} + 3H_2O$	0.40
$Fe(CN)_6^{3-} + e \Longrightarrow Fe(CN)_6^{4-}$	0.36
$VO^{2+} + 2H^+ + e \Longrightarrow V^{3+} + H_2O$	0.36
$Cu^{2+} + 2e \rightleftharpoons Cu$	0.34
$Hg_2Cl_2 + 2e \Longrightarrow 2Hg + 2Cl$	0.28
$IO_3^- + 3H_2O + 6e \rightleftharpoons I^- + 6OH^-$	0.26
$AgCl + e \Longrightarrow Ag + Cl^{-}$	0.22
$HgBr_4^{2-} + 2e \Longrightarrow Hg + 4Br_1^{-}$	0.21
$Cu^{2+} + e \rightleftharpoons Cu^{+}$	0.15
$Sn^{4+} + 2e \Longrightarrow Sn^{2+}$	0.15
$S + 2H^{+} + 2e \Longrightarrow H_{2}S$	0.14
$CuCl + e \rightleftharpoons Cu + Cl$	0.14
$AgBr + e \Longrightarrow Ag + Br$	0.10
$S_4O_6^{2-} + 2e \Longrightarrow 2S_2O_3^{2-}$	0.08
$CuBr + e \Longrightarrow Cu + Br^-$	0.03
$2H^+ + 2e \rightleftharpoons H_2$	0.00
$HgL_a^{2-} + 2e \Longrightarrow Hg + 4I^-$	-0.04
$Pb^{2+} + 2e \Longrightarrow Pb$	-0.13
$CrO_4^{2-} + 4H_2O + 3e \rightleftharpoons Cr(OH)_3 + 5OH^-$	-0.13
$\operatorname{Sn}^{2+} + 2e \Longrightarrow \operatorname{Sn}$	-0.14
$AgI + e \Longrightarrow Ag + I^-$	-0.15
$CuI + e \Longrightarrow Cu + I^-$	-0.19
$Ni^{2+} + 2e \Longrightarrow Ni$	-0.25
$V^{3+} + e \Longrightarrow V^{2+}$	-0.26
$PbCl_2 + 2e \Longrightarrow Pb + 2Cl^-$	-0.27
$Co^{2+} + 2e \Longrightarrow Co$	-0.28
$PbBr_2 + 2e \Longrightarrow Pb + 2Br$	-0.28
$PbSO_4 + 2e \Longrightarrow Pb + SO_4^{2-}$	-0.36
$PbI_2 + 2e \Longrightarrow Pb + 2I$	-0.37
$Cd^{2+} + 2e \Longrightarrow Cd$	-0.40
$Cr^{3+} + e \Longrightarrow Cr^{2+}$	-0.41
$Fe^{2+} + 2e \Longrightarrow Fe$	-0.44
$2CO_2(g) + 2H^+ + 2e \Longrightarrow H_2C_2O_4(aq)$	-0.49
$\frac{\operatorname{Cr}^{3+} + 3e}{\operatorname{Cr}} = \frac{\operatorname{H}_2\operatorname{C}_2\operatorname{O4}(\operatorname{ad})}{\operatorname{Cr}^{3+}}$	-0.74
$Zn^{2+} + 2e \rightleftharpoons Zn$	-0.76
$H_2O + e \rightleftharpoons \frac{1}{2}H_2 + OH$	-0.83
$Cr^{2+} + 2c \Longrightarrow Cr$	-0.91
CI 120 CI	•

-1.18

-1.66

-2.37

-2.71

 $Mn^{2+} + 2e \Longrightarrow Mn$

 $Mg^{2+} + 2e \Longrightarrow Mg$

 $Al^{3+} + 3e \Longrightarrow Al$

 $Na^+ + e \Longrightarrow Na$

 $Ca^{2+} + 2e \Longrightarrow Ca$

 $Ba^{2+} + 2e \Longrightarrow Ba$

 $Sr^{2+} + 2e \Longrightarrow Sr$

 $K^+ + e \Longrightarrow K$

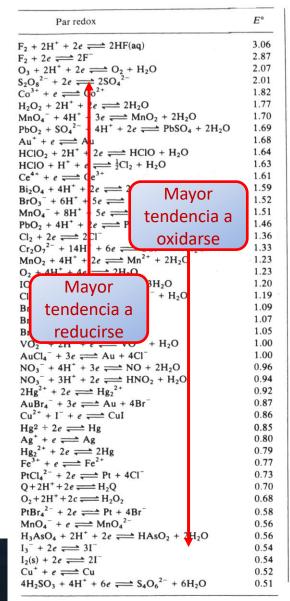
Li⁺ + e 💳 Li

Ejemplo: celda Cobre-Zinc

Cátodo (se reduce)

 $Cu^{2+} + 2e^{-} \longrightarrow Cu (+0.34V)$

Anodo (se oxida)


 $Zn \longrightarrow Zn^{2+} + 2e^{-}(-0.76V)$

Tensión de celda:

 $(V_{c{\text{átodo}}} - V_{{\text{ánodo}}}) = 1,1V$

Energía libre de Gibbs $\Delta G = - nF\Delta V_0$

- Si $\Delta G < 0$ ($\Delta V > 0$): la reacción es espontánea
- Si $\Delta G > 0$ ($\Delta V < 0$): la reacción no es espontánea

Par redox

 $S_2O_8^{2-} + 2e \implies 2SO_4$ $Co^{3+} + e \rightleftharpoons Co^{2+}$

 $F_2 + 2e \rightleftharpoons 2F$

 $PbO_2 + SO_4^{2-}$

 $Au^+ + e \rightleftharpoons A$

 $F_2 + 2H^+ + 2e \Longrightarrow 2HF(aq)$

 $O_3 + 2H^+ + 2e \rightleftharpoons O_2 + H_2O$

 $H_2O_2 + 2H^+ + e \rightleftharpoons 2H_2O$

 $MnO_4^- + 4H^+ - 3e \rightleftharpoons MnO_2 + 2H_2O$

 $HClO_2 + 2H^+ + 2e \rightleftharpoons HClO + H_2O$

 $MnO_2 + 4H^+ + 2e \rightleftharpoons Mn^{2+} + 2H_2C$

Mayor

tendencia a

reducirse

 $NO_3^- + 4H^+ + 3e \Longrightarrow NO + 2H_2O$

 $NO_3^- + 3H^+ + 2e \Longrightarrow HNO_2 + H_2O$

 $AuCl_4 + 3e \Longrightarrow Au + 4Cl$

AuBr4 + 3e = Au + 4Br

 $PtCl_4^{2-} + 2e \Longrightarrow Pt + 4Cl^{-}$

 $PtBr_4^{2-} + 2e \rightleftharpoons Pt + 4Br_1^{-}$

 $H_3AsO_4 + 2H^+ + 2e \Longrightarrow HAsO_2 + 2H_2O$

 $4H_2SO_3 + 4H^+ + 6e \implies S_4O_6^{2-} + 6H_2O$

 $2Hg^{2+} + 2e \Longrightarrow Hg_2^{2+}$

 $Cu^{2+} + I^{-} + e \Longrightarrow CuI$

 $Hg^2 + 2e \Longrightarrow Hg$

 $Ag^+ + e \Longrightarrow Ag$ $^{2+} + 2e \Longrightarrow 2Hg$

 $Fe^{3+} + e \Longrightarrow Fe^{2+}$

 $I_3 + 2e \rightleftharpoons 3I$

 $I_2(s) + 2e \rightleftharpoons 2I$

 $Cu^+ + e \rightleftharpoons Cu$

 $Q + 2H^+ + 2e \Longrightarrow H_2Q$

 $O_2 + 2H^+ + 2c \rightleftharpoons H_2O_2$

 $MnO_4 + e \rightleftharpoons MnO_4^2$

 $HCIO + H^+ + e \rightleftharpoons \frac{1}{2}CI_2 + H_2O$ $Ce^{4+} + e \rightleftharpoons Ce^{3+}$

 $Bi_2O_4 + 4H^+ + 2e \rightleftharpoons 2$

BrO₃ + 6H⁺ + 5e ===

MnO₄ + 8H⁺ + 5e ===

 $PbO_2 + 4H^+ + e \rightleftharpoons P$

 $Cr_2O_7^{2-} + 14H + 6e =$

 $Cl_2 + 2e \rightleftharpoons 2Cl$

 $4H^+ + 2e \Longrightarrow PbSO_4 + 2H_2O$

H₂O + H2O

Mayor

tendencia a

oxidarse

 E°

3.06

2.87

2.07

2.01

1.82

1.77

1.70

1.69 1.68

1.64

1.63

1.61 1.59

1.52

1.51

1.46

1.36

1.33

1.23

1.23

1.20

1.19

1.09

1.07

1.05

1.00

1.00

0.96

0.94

0.92

0.87

0.86 0.85

0.80

0.79

0.77

0.73

0.70

0.68

0.58

0.56

0.56

0.54

0.54

0.52

0.51

 $Ca^{2+} + 2e \Longrightarrow Ca$

 $Ba^{2+} + 2e \Longrightarrow Ba$

 $Sr^{2+} + 2e \Longrightarrow Sr$

 $K^+ + e \Longrightarrow K$

Li⁺ + e ≓ Li

 E°

0.40

0.36

0.36

0.34

0.28

0.26

0.22

0.21

0.15

0.15

0.14

0.14

0.10

0.08

0.03

-0.04

-0.13

-0.13

-0.14

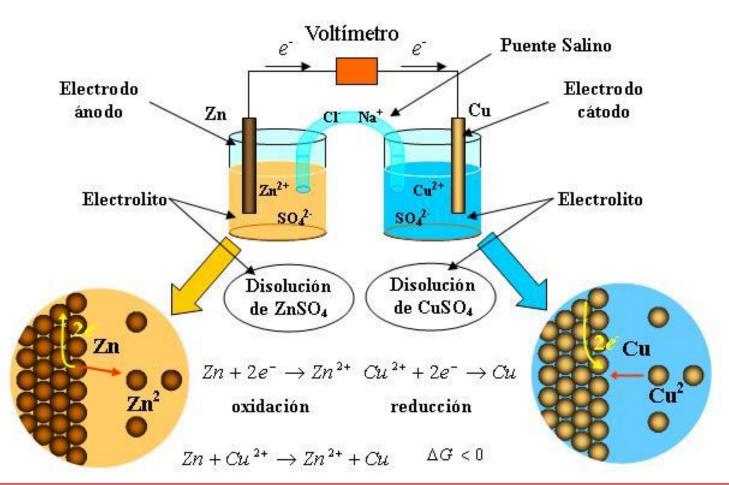
Energéticas, Medioambientales y Tecnológicas

Potencial estándar de reducción

El potencial estándar está determinado para condiciones dadas de temperatura y concentración (25°C/1M/1atm.)

> Para condiciones distintas de las estándar, el potencial de celda se ajusta siguiendo la **ecuación de Nerst**

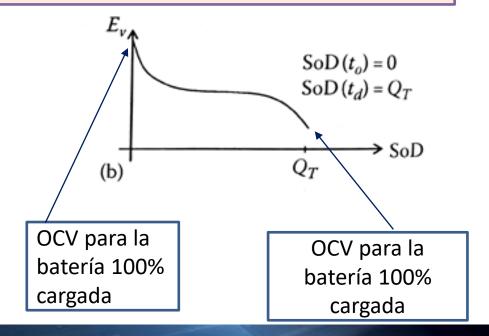
$$aA + bB \rightarrow cC + dD$$


Par redox
$2H_2SO_3 + 2H^+ + 4e \Longrightarrow S_2O_3^{2-} + 3H_2O$ $Fe(CN)_6^{3-} + e \Longrightarrow Fe(CN)_6^{4-}$
$Fe(CN)_6^3 + e \Longrightarrow Fe(CN)_6^4$
$VO^{-} + 2H + e \rightleftharpoons V^{-} + H_2O$
$Cu^{2+} + 2e \Longrightarrow Cu$
$Hg_2Cl_2 + 2e \Longrightarrow 2Hg + 2Cl^-$
$IO_3 + 3H_2O + 6e \rightleftharpoons I + 6OH$
$AgCl + e \Longrightarrow Ag + Cl^{-}$
$HgBr_4^{2-} + 2e \Longrightarrow Hg + 4Br^{-}$
$Cu^{2+} + e \Longrightarrow Cu^{+}$
$\operatorname{Sn}^{4+} + 2e \Longrightarrow \operatorname{Sn}^{2+}$
$S + 2H^{+} + 2e \Longrightarrow H_{2}S$
$CuCl + e \rightleftharpoons Cu + Cl^{-}$
$AgBr + e \Longrightarrow Ag + Br$
$S_4O_6^{2-} + 2e \Longrightarrow 2S_2O_3^{2-}$
$CuBr + e \rightleftharpoons Cu + Br^-$
$2H^{+} + 2e \Longrightarrow H_{2}$
$HgI_4^{2-} + 2e \Longrightarrow Hg + 4I^-$
$Pb^2 + 2e \rightleftharpoons Pb$
$CrO_4^{2-} + 4H_2O + 3e \rightleftharpoons Cr(OH)_3 + 5OH^-$
$\operatorname{Sn}^{2+} + 2e \Longrightarrow \operatorname{Sn}$
$AgI + e \Longrightarrow Ag + I^-$
$CuI + e \rightleftharpoons Cu + I^-$
$Ni^{2+} + 2e \rightleftharpoons Ni$
$V^{3+} + e \Longrightarrow V^{2+}$
$PbCl_2 + 2e \Longrightarrow Pb + 2Cl$
$Co^{2+} + 2e \Longrightarrow Co$
$PbBr_2 + 2e \Longrightarrow Pb + 2Br_2$
$PbSO_4 + 2e \Longrightarrow Pb + SO_4^{2-}$
$PbI_2 + 2e \Longrightarrow Pb + 2I$
$Cd^{2+} + 2e \rightleftharpoons Cd$
$\operatorname{Cr}^{3+} + e \rightleftharpoons \operatorname{Cr}^{2+}$
$Fe^{2+} + 2e \Longrightarrow Fe$
$2CO_2(g) + 2H^+ + 2e \Longrightarrow H_2C_2O_4(s)$
$Cr^{3+} + 3e \rightleftharpoons Cr$
$Zn^{2+} + 2e \Longrightarrow Zn$
$H_2O + e \rightleftharpoons \frac{1}{2}H_2 + OH^-$
$Cr^{2+} + 2c \Longrightarrow Cr$
$Mn^{2+} + 2e \Longrightarrow Mn$
$Al^{3+} + 3e \Longrightarrow Al$
$Mg^{2+} + 2e \Longrightarrow Mg$ $Na^{+} + e \Longrightarrow Na$

Ejemplo: celda Cu/Zn

Electrodo (signo)	Proceso químico	Semirreaccion	Potencial (V)
Ánodo (electrodo negativo)	Oxidación del Zn	$Zn(s) \rightarrow Zn^{2+}(aq) + 2 e^{-}$	E°=+0,76 V
Cátodo (electrodo positivo)	Reducción del Cu ²⁺	$Cu^{2+}(aq) + 2 e^- \rightarrow Cu(s)$	E°=+0,34 V

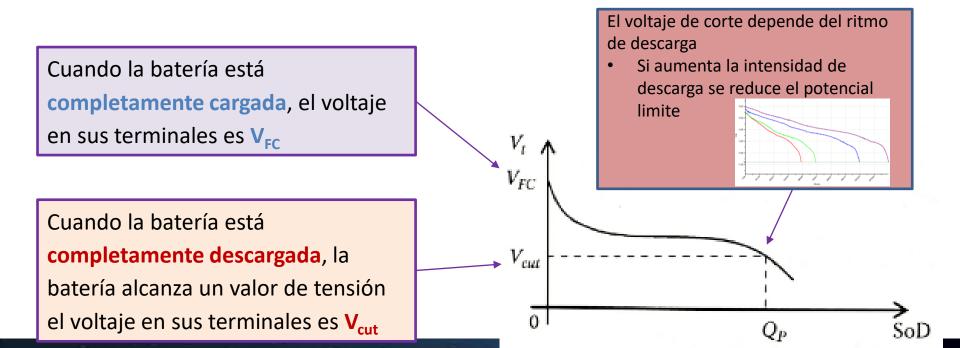
Características eléctricas de celdas y baterías



Tensión de Circuito Abierto / OCV – Open Circuit Voltage

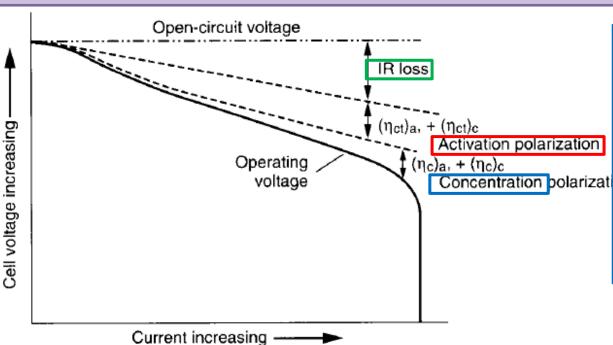
- Se trata del voltaje de la celda cuando no existe carga conectada en sus terminales
- Depende del SOC, Temperatura, historial carga/descarga, etc.

- OCV cae bruscamente cuando la celda o batería ha sido completamente descargada
- Salvo en algunos tipos particulares de baterías, el OCV no es un buen indicador de estado de carga de una batería



Tensión de Celda

Se trata del voltaje de la celda cuando hay carga eléctrica conectada en sus terminales (entregando potencia), o bien cuando se está cargando (consumiendo potencia)



Tensión de Celda

La tensión de operación cae conforme aumenta la corriente, debido a mecanismos de polarización por activación, concentración y caída Óhmica.

Activación

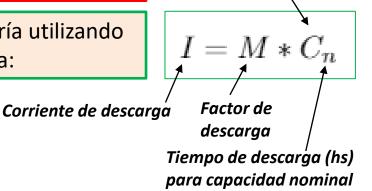
Corresponde a la barrera de potencial que deben vencer las reacciones en la interfase electrodo / electrolito.

Concentración

Se produce en el electrolito y corresponde a energía necesaria para provocar la difusión de iones en el seno del electrolito para alcanzar los electrodos.

Polarización Óhmica: se produce en el electrolito y corresponde a la reducción de potencial óhmico ocasionada por la resistencia del electrolito.

Intensidad de descarga - C_{rate}


Representa la intensidad de corriente de descarga en forma de fracción de la capacidad.

i.e. para una batería de capacidad C = 100 Ah.

- C/5 representa una intensidad de descarga de 100Ah / 5 = 20A.
- 2C representa una intensidad de descarga de 100Ah / 0,5 = 200A

Algunos fabricantes especifican la capacidad de la batería utilizando la siguiente nomenclatura para la velocidad de descarga:

Capacidad nominal

Ejemplo:

Nominal Capacity, 1400 mAh 0.5 C5A

Tener en cuenta que esta notación contiene información redundante eventualmente contradictoria

Capacidad - Ah

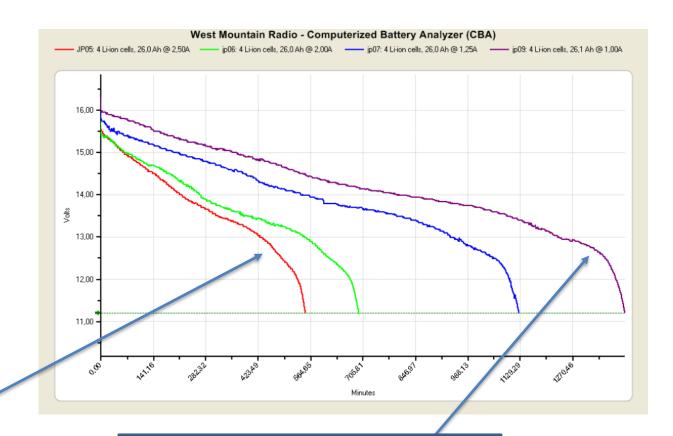
- Es la cantidad de carga que entrega una celda, medida en Coulombios (C) o en Ampre-hora (Ah)
- Habitualmente, los fabricantes informan la capacidad en Ampere-hora y no en Coulombios (1 Coulombio = 1 Ampere*segundo)
- Se obtiene a partir de un ensayo de descarga a *corriente constante* (lo cual nunca se da en la práctica)
- Se debe informar la intensidad de descarga (a mayor intensidad, menor capacidad)

La capacidad teórica de una batería (en Ah) se obtiene a partir de la ley de Faraday:

- m_R es la masa del electrodo limitante
- n es el número de electrones producido por cada ion
- M_m es la masa molar

$$Q_T=0.278Frac{m_Rn}{M_m}$$

En la práctica, la capacidad real termina siendo menor que la teórica



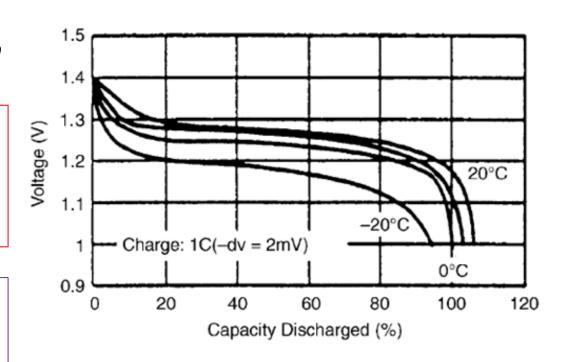
Capacidad - Ah

$$C_p = \int_{t_0}^{t_c} i(t) dt$$

La cantidad de carga se obtiene a partir de la integral de la corriente en el tiempo

- Mayor intensidad de descarga
- Tensión de corte ocurre antes
- Menor capacidad (Ah) entregada

- Menor intensidad de descarga
- Tensión de corte ocurre luego
- Mayor capacidad (Ah) entregada



Efecto de la temperatura

El voltaje durante la descarga depende de la temperatura: a *mayores T* → *mayor tensión* de operación.

Dada una tensión de corte especificada por el fabricante, la cantidad de carga entregada por la batería será menor a menor temperatura.

Ejemplo:	
Usable Energy	22 kWh (25°C, BOL)
Energy at low	19 kWh at 0°C
temperature	11,5 kWh at -20°C

Estado de Carga – SOC / State of Charge

SOC representa la *capacidad disponible* en la batería en un instante
 de tiempo *t*, indicado en % de la

capacidad total de una celda o batería.

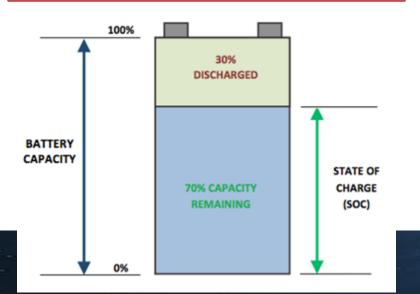
Existen diferentes *mecanismos para determinar el SOC*, muchos de los cuales emplean mediciones de la tensión y corriente de cada celda.

Cantidad de carga *remanente* en la batería (Ah) en el instante de tiempo *t*.

$$SOC(t) = rac{C(t)}{C_0}$$

Cantidad de carga (Ah) de la batería completamente cargada.

Ciemat


Parámetros de celdas y baterías

Estado de Carga – SOC / State of Charge

El SOC de una celda o batería en un instante cualquiera, se obtiene contabilizando la cantidad de carga extraída durante el período de uso integrando la corriente en el tiempo, y se la compara con la capacidad inicial

Capacidad de la celda 100% cargada Cantidad de carga extraída entre el instante inicial y el instante t

$$SOC(t) = \frac{C_0 - \int_0^t i(t)dt}{C_0} \times 100$$

El SOC varía con:

- Voltaje
- C rate
- Autodescarga
- Temperatura
- Envejecimiento
- Degradación

Estado de Carga – SOC / State of Charge

Típicamente, el SOC puede ser obtenido por el *método basado en voltaje* o por el método basado en corriente (*Coulomb counting*)

El método basado en voltaje

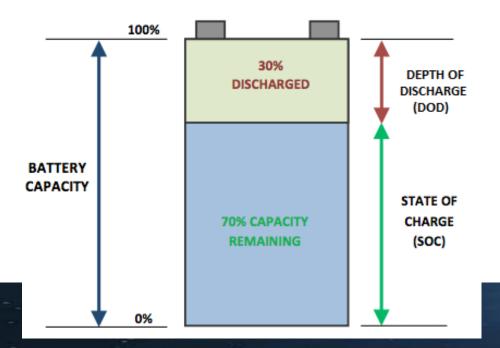
Puede ser *aplicado solamente* en aquellos tipos de baterías en los que exista una relación entre el **SOC** y la tensión de celda **V**.

La *relación* entre ambas variables (*V-SOC*) debe ser previamente *conocida* si se quiere emplear este método

El método basado en corriente

implementa un loop en el que se mide la corriente y se aplica la *integral* en el tiempo, obteniendo de este modo el **DOD** y calculando a partir de este el **SOC** (SOC + DOD = C)

Para ser *mejorado*, es habitual incorporar a este modelo una *medida de tensión*, que permite implementar un loop cerrado que mejora la precisión.



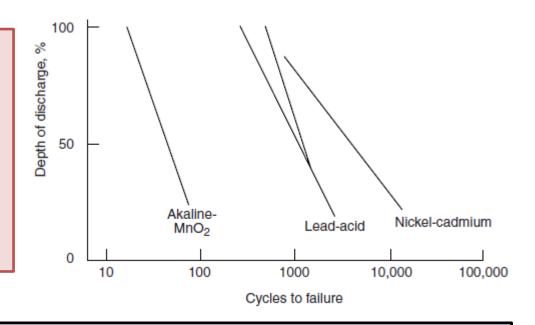
Profundidad de Descarga – DOD / Depth of Discharge

Es una medida de la cantidad de carga eléctrica (Ah) que es extraída de una celda o batería durante la descarga, a partir del estado inicial 100% cargado.

$$DOD(t) = \int_0^t i(t)dt = \Delta q$$

$$SOC(t) + DOD(t) = C_0$$

El SOC y el DOD de una batería sumados representan la cantidad total de carga disponible en la batería (Ah)



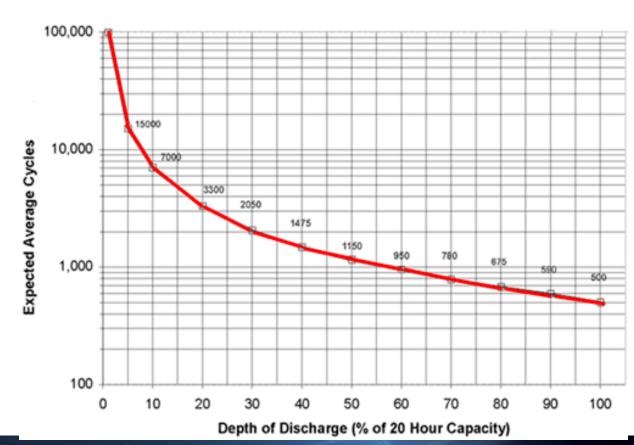
Ciclabilidad o durabilidad (ciclos de vida)

La durabilidad de la batería representa la **vida útil** de la misma en *función del número de ciclos de carga y descarga*.

Generalmente se expresa en *número* de ciclos a cierta profundidad de descarga.

Por ejemplo: **2000@80%DOD** significa que si se descarga la batería hasta un SOC=20% y se vuelve a cargar hasta el 100 %, la misma dura al menos 2000 ciclos.

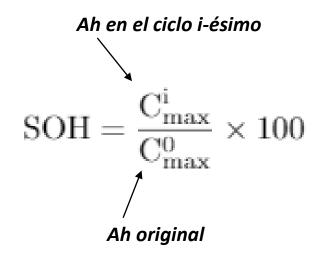
La **vida de la batería se reduce con el DOD debido a** mayores <u>niveles de estrés inducidos</u> <u>en los electrodos</u>, expansión y contracción <u>mecánica</u>, problemas <u>electroquímicos</u>, etc.



Ciclabilidad o durabilidad (ciclos de vida)

Para el caso de baterías de Litio-ion la dependencia no es lineal sino que tiene forma de hipérbola.

Se observa que el impacto del DOD sobre la expectativa de vida es relevante, debiéndose evitar profundidades pronunciadas.



Estado de Salud – SOH / State of Health

Es una medida de la *máxima cantidad de carga* eléctrica (Ah) que puede ser extraída de una batería en el *ciclo i-ésimo*, en comparación con la cantidad de carga máxima que entrega la batería en su estado original.

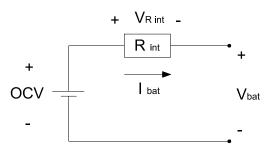
El detrimento del SOH está asociado a procesos de *degradación y envejecimiento*, sobre los que influyen varios factores:

- Corriente de carga y descarga
- Temperatura de operación
- Sobrecarga y sobredescarga
- Condiciones de almacenamiento

Batería nueva: SOH=100%

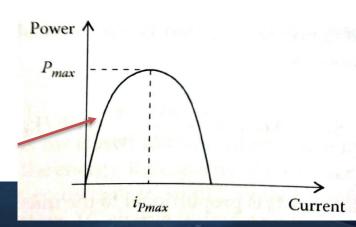
Energía Específica (Wh/kg)

System	Specific Energy (Wh/kg)	Peak Power (V/kg)	Energy Efficiency (%)	Cycle Life	S
Acidic Aqueous Solution					
Lead/acid	35-50	150-400	>80	500-1000	
Alkaline Aqueous Solution	170				
Nickel/cadmium	50–60 Wh/l	80–15 0	75	800	
Nickel/iron	50-60	80-150	75	1500-2000	
Nickel/zinc	55-75	170-260	65	300	
Ni-MH	70-95	200-300	70	750-1200+	
Aluminum/air	2 00– 3 00 38	7 160	<50	?	
Iron/air	80–120 Wh/	kg 90	60	500+	
Zinc/air	100-220	30-80	60	600+	
Flow					
Zinc/bromine	70-85	90-110	65–70	500-2000	
Vanadium redox	20-30	110	75–85	_	
Molten Salt					
Sodium/sulfur	150-240	230	80	800+	
Sodium/nickel chloride	90-120	130-160	80	1200+	
Lithium/iron sulfide (FeS)	100–130	150-250	80	1000+	
Organic/Lithium	32 Wh,				
Li–I	80–130	200-300	>95	1000+	2



Potencia de la batería (W)

La potencia instantánea se calcula como el producto de la tensión instantánea por la corriente instantánea.


$$P(t) = V_{bat}.I$$

Teniendo en cuenta el circuito eléctrico equivalente del modelo básico: $V_{bat} = OCV - R_{int} * I_{bat}$

$$P(t) = OCV.I_{bat} - R_{int}.I_{bat}^{2}$$

La curva de potencia es parabólica con la corriente

Potencia de la batería (W)

La **potencia nominal** es la potencia que puede ser extraída de forma continua de la batería por períodos prolongados sin ocasionar daños, la cual no necesariamente coincide con P_{max}

La **potencia máxima** que puede entregar una batería **debe ser especificada** por el fabricante, **indicando** las condiciones de **temperatura**, **SOC** y **tiempo** (segundos).

Max peak discharge power

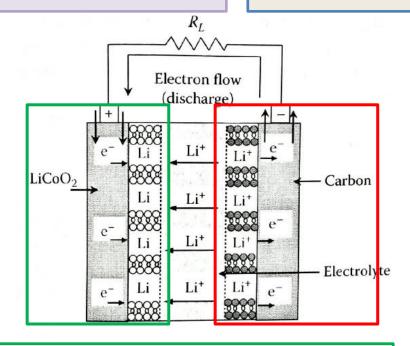
| > 85 kW 10 sec, 25°C, SOC 20 %

Bajo ciertas *condiciones* se produce un *detrimento* de *potencia*, como por ejemplo condiciones extremas de temperatura.

Power derating

Max discharge and charge power can be reduced when the battery temperature is too high. (at 48° C $100\% \rightarrow$ at 60° C 0%)

Características de las celdas de iones de Litio



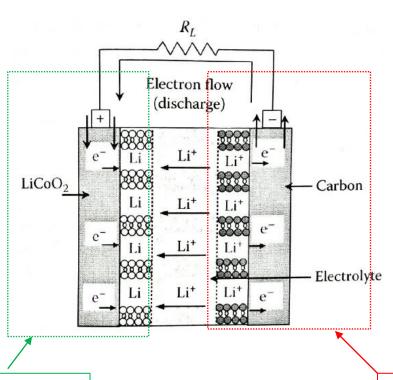
El Litio tiene muy *alto potencial electroquímico* de reducción en relación al H₂ (3.045V) y muy *baja masa atómica*, lo que lo ha hecho muy atractivo para uso en baterías.

Es *muy inestable* y reacciona con facilidad en presencia de *agua o humedad*, lo que ha representado un desafío importante para su utilización.

En la década de 1970 se encontró que el litio podía ser intercalado en una red cristalina de óxido de Niquel o de Cobalto para ser usado como material del cátodo.

El litio metálico (inestable) como material para el ánodo fue sustituido por *Carbono con intercalación de iones de litio*, en el cual los iones de litio se intercalan.

Desde entonces, los óxidos de metales de transición han sido utilizados ampliamente como material de electrodos.



En el electrodo positivo los iones Li⁺ son incorporados *alojándose* en el material compuesto *durante la descarga*.

En el electrodo
negativo, los *iones de litio son liberados*durante la descarga,
moviéndose a través
del electrolito hacia
el electrodo positivo.

$$LiCoO_2 \rightleftharpoons Li_{1-x}CoO_2 + xLi^+ + xe^-$$

$$xLi^+ + xe^- + 6C \rightleftharpoons_{\text{descarga}} Li_x C_6$$

Algunos valores típicos de la celda Li-

Energía específica	90-160 Wh/kg
Potencia específica	200-350 W/kg
Tensión de celda	3.6 V
Eficiencia	>90%
Número de ciclos	>1000@80%DOD

Ventajas

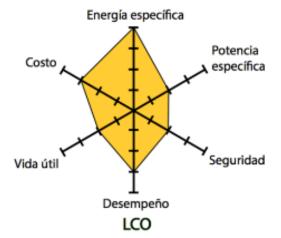
- Alta energía específica
- Elevada tensión de celda
- Elevada eficiencia
- Elevada vida útil (ciclos)
- Componentes reciclables
- Buen desempeño a alta temperatura
- Baja autodescarga

Desventajas

- Muy sensible a sobretensión
- Muy sensible a sobredescarga
- Existe riesgo de ignición como consecuencia del daño en celdas
- La recarga a baja temperatura puede ocasionar degradación de las celdas

Con el fin de exaltar las ventajas y minimizar las desventajas, han sido desarrollados distintos *materiales empleados tanto en el ánodo como en el cátodo* que han permitido mejoras sustantivas en varios aspectos.

Los materiales desarrollados para ser utilizados principalmente en el cátodo adquieren su denominación en función de los materiales que los componen.



Compuestos empleados en los electrodos

Ventajas y desventajas de la utilización de distintos compuestos

LCO

Compuesta por un ánodo de grafito (C₆) y cátodo de LiCoO₂

LMO Compuesta

por un ánodo de grafito (C₆) y cátodo de LiMnO₂

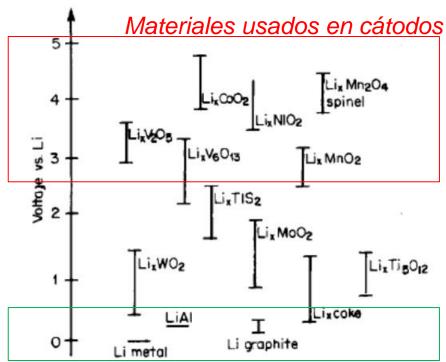
LFP

Compuesta por un ánodo de grafito (C₆) y cátodo de **LiFePO**

NCA

Compuesta por un ánodo de grafito (C₆) y cátodo de LiNiCoAlO₂


NMC


Compuesta por un ánodo de grafito (C₆) y cátodo de *LiNiMnCoO*₂

LTO

Compuesta
por un *ánodo*LiTi₅O₁₂ y
cátodo de
algún otro
óxido de metal
de transición

Materiales usados en ánodos

Típicamente, materiales como carbono litiado (Li_xC₆) o LTO han sido empleados como materiales para el electrodo negativo mientras que los restantes óxidos metálicos como el NMC son utilizados en el electrodo positivo

Batería Li-Polímero

La celda Li-P ha evolucionado a partir del desarrollo de electrolitos de estado sólido, como *resultado de investigaciones* sobre *conducción iónica en polímeros*.

Reacción global (→descarga):

$$\text{Li}_x + \text{V}_6\text{O}_{13} + x\text{e}^- \leftrightarrow \text{Li}_x\text{V}_6\text{O}_{13}$$

Estas baterías son consideradas de estado sólido ya que *sus electrolitos son polímeros sólidos*.

El *electrodo positivo* más promisorio es el *Óxido de Vanadio (V_6O_{13}),* el cual intercala hasta 8 iones de Litio por cada molécula.

Ventajas:

- Tienen energía específica y potencia específica muy alta.
- El electrolito polímero *tolera temperaturas* más *elevadas* que otros electrolitos (>60°).
- Las formas planas de las celdas permiten ajustar la disposición para optimizar el espacio en el VH o VE.
- Es más *segura* en caso de accidente.
- Muy baja autodescarga (0,5% por mes)

Desventaja:

Desempeño
 relativamente
 pobre a bajas
 temperaturas
 debido a mala
 conductividad
 iónica.

¡Muchas gracias!