
Centro nacional de supercomputación

-- cluster.uy --

Centro Nacional de Supercomputación

- Iniciativa académica para proporcionar poder de cómputo en el ámbito nacional.
- Arquitectura cluster: agregación de recursos de cómputo.
- Abierto a estudiantes, investigadores, técnicos, empresas e instituciones del país y del mundo.
- Sin fines de lucro, con una gestión autosustentable.

Especificaciones de hardware

- Powered by Linux
- Un servidor de 96 cores AMD EPYC 7642 con 256 GB de ram
- 28 servidores HPE DL380 Gen10:
 - 2 procesadores Intel Xeon Gold 6138 CPU.

Cada uno con 20 núcleos @ 2.00 GHz. (40 cpus por servidor)

- GPU Nvidia Tesla P100 con 12 GB de RAM.
- Conectividad 10 GbE.
- Linux CentOS 7.

Capacidad de almacenamiento: 300 TB.

Especificaciones de hardware

NOMBRE	PROCESADORES	# NÚCLEOS	MEM.	GPU/NODE	DISCO
node[01-14]	Xeon Gold 6138	40	128 GB	NVIDIA P100	300 GB SSD
node[15][26-28]	Xeon Gold 6138	40	128 GB		300 GB SSD
node[17-22]	Xeon Gold 6138	40	128 GB	NVIDIA P100 x 2	300 GB SSD
node23	Xeon Gold 6138	40	128 GB	NVIDIA P100 x 3	300 GB SSD
node[24-25]	Xeon Gold 6138	40	512 GB	2	300 GB SSD
node31	AMD EPYC 7642	96	256 GB		150 GB SSD

Solicitar un usuario

Para solicitar el alta de un usuario es necesario completar el formulario en http://cluster.uy/registro

- E-mail institucional (*muy importante!*).
- Nombre completo.
- Descripción de uso, docente responsable.
- Clave pública OpenSSH: RSA o ECDSA para autenticación.

Acceder a cluster.uy

A través de cualquier cliente de SSH que posea una clave privada generada previamente:

```
$ ssh usuario@cluster.uy
[usuario@login ~]$
```

"casi todas las distribuciones de Linux traen cliente OpenSSH de forma nativa"

Cuota de almacenamiento

- El espacio de almacenamiento en cluster.uy es limitado.
- Cada usuario tiene una cuota de 300 GB de almacenamiento asociada a su **HOME**.
- Se pueden crear otros grupos asociados a los usuarios.
 - Estos grupos funcionan como directorios compartidos con una cuota independiente.
 - Se solicitan a soporte@cluster.uy

Gestor de recursos

Simple Linux Utility for Resource Management (SLURM):

- Organiza la ejecución de los trabajos.
- Tipos de trabajos: interactivos y por lotes.
- Orientado al trabajo por lotes.

¿Cómo funciona SLURM?

Planifica y ejecuta el trabajo en el cluster

Archivo de salida

Describe los requerimientos de un trabajo

Tipos de trabajos

Trabajo interactivo

Se lanzan comandos interactivamente en el nodo de cómputo.

Ideales para compilar, testear y debuggear trabajos.

Son necesariamente cortos (hasta 30 minutos).

• Trabajo por lotes (batch)

El usuario trabaja *fuera de línea*.

Se obtiene toda la salida de la ejecución junta al finalizar.

Pueden ser de larga duración (hasta 5 días).

Trabajos interactivos

Se le asigna un nodo al usuario con un procesador. El usuario debe estar en línea y se trabaja directamente sobre el nodo de cómputo. El comando interactivo genera una instancia básica de 30 minutos, con un procesador solo.

```
$ interactivo -g
```

Trabajo interactivo (avanzado)

- Se *solicita* su inicio con el comando **srun**.
 - El comando se bloquea hasta que el trabajo pueda comenzar.
- Se debe especificar el tiempo de uso del cluster.
 - Transcurrido este tiempo el trabajo será terminado.
- Inicio de un trabajo interactivo:

```
$ srun --time=00:30:00 --pty bash -1
```

Tiempo máximo

Abrir una sesión de bash en una terminal

Ejemplo interactivo en R


```
$ ssh [usuario]@cluster.uy
[usuario@login ~]$ interactivo -g
[usuario@node15 ~]$ R
> mtscaled <- as.matrix(scale(mtcars))</pre>
> pdf("heatmap.pdf")
> heatmap(mtscaled, Colv=F, scale='none')
> dev.off()
  q()
```

Ejemplo interactivo en R


```
[usuario@node15 ~]$ ls *.pdf
heatmap.pdf
[usuario@node15 ~]$ exit
[usuario@login ~]$ exit
$ scp usuario@cluster.uy:heatmap.pdf
                             100% 7699 346.1KB/s 00:00
heatmap.pdf
```

el archivo pdf generado debe copiarse localmente para su visualización

Trabajos por lotes (batch)

El usuario genera un script solicitando recursos y el pipeline a ejecutar. No requiere que el usuario esté conectado mientras se

ejecuta.

```
$ sbatch script.sbatch
```

```
R CMD BATCH heatmap.r
```

Trabajo batch: ejemplo script sbatch

```
#!/bin/bash -1
#SBATCH --job-name=heatmap
                                         3 Gb de mem. física
#SBATCH --ntasks=1
                                         <u>por nodo</u>
#SBATCH --mem=3G
                                         20 min. de ejecución
#SBATCH --time=00:20:00
                                         Partición y QoS
#SBATCH --partition=normal
                                         donde ejecutará el
#SBATCH --qos=normal
                                        trabaio
#SBATCH --mail-type=ALL
                                         Programa a ejecutar
#SBATCH --mail-user=mail
     BATCH heatmap.r
```

Particiones utilizables y límites

NOMBRE	# NÚCLEOS DISPONIBLES	MAX. TIEMPO	MAX. TRABAJOS	OTROS LÍMITES
normal	560	5 días	30	60 núcleos, 512 GB RAM
besteffort	1120	5 días	60	60 núcleos, 1 TB RAM

Calidad de servicio (QOS, Quality of Service)

Qos	MAX. RECURSOS	MIN. RECURSOS	PARTICIÓN COMPATIBLE
gpu	60 núcleos, 512 GB RAM, 4 GPU	1 GPU	normal
rapida	8 núcleos, 8GB RAM	-	normal
normal	60 núcleos, 512 GB RAM, 0 GPU	-	normal
besteffort	60 núcleos, 1 TB RAM	12	besteffort

Calidad de servicio (QOS, Quality of Service)

- QoS normal:
 - o Tiempo máximo de ejecución 5 días.
 - Máximo 40 cpus y 500gb de RAM.
- QoS rapida:
 - Tiempo máximo de ejecución: 30 mins.
 - Prioridad superior a normal y gpu.
- QoS gpu:
 - Es necesaria cuando se solicita el uso de algún gpu.
- QoS besteffort:
 - Prioridad mínima.
 - Es expropiable por trabajos de otras QoS.

Control del espacio: quota

Se lista la cuota de *todos* los grupos asociados al usuario actual.

```
$ quota -qs
Disk quotas for group clusterusers (gid 10002): none
Disk quotas for group usuario (gid 10115):
Filesystem space quota limit grace files quota limit grace
fileserver:/home
             218G 300G 301G
                                       8552
                                        Cantidad de archivos
 Espacio usado
                      Máximo de gracia
                                        creados
     Máximo utilizable
                                                     Límite de cantidad
                                                     de archivos
```

Control de colas: squeue

Tiempo de ejecución hasta el momento. Formato: DD-HH:MM:SS

Razón por la que no está ejecutando

```
[arnoldo@login ~]$ squeue -u arnoldo
JOBID PARTITION
                                    TIME
                                        NODES NODELIST (REASON)
                 NAME
                           USER ST
493442
        normal FrCaso arnoldo PD
                                    0:00
                                             1 (Resources)
493443
                                    0:00
        normal FrCaso
                        arnoldo PD
                                               (Priority)
493444
                                    0:00
                                               (ReqNodeNotAvail)
        normal FrCaso
                        arnoldo PD
493445
        normal FrCaso
                                    0:00
                        arnoldo PD
                                               (QOSMaxJobsPerUserLimit)
491643
                        arnoldo
                                    0:06
                                              node18
                   рi
           gpu
493492
                        arnoldo R 46:59
                                             2 node[15-16]
        normal cbo006
       Estado: Pending (PD
                             Nodos asignados
       Running (R)
                             para la ejecución
```

Control de trabajos: scontrol show job

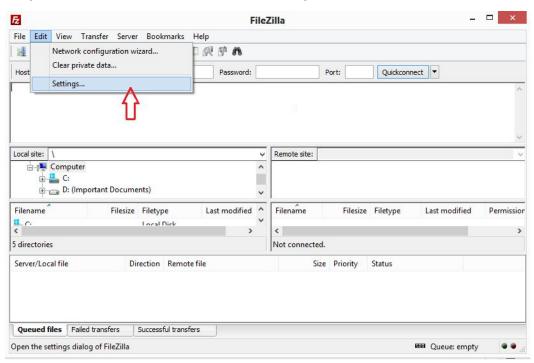
```
[arnoldo@login ~]$ scontrol show job 22644
JobId=22644 JobName=ejemplo
 UserId=arnoldo(10074) GroupId=users(10002) MCS label=N/A
 Priority=1 Nice=0 Account=udelar QOS=normal
 JobState=RUNNING Reason=None Dependency=(null)
 Requeue=1 Restarts=0 BatchFlag=1 Reboot=0 ExitCode=0:0
 RunTime=9-14:55:24 TimeLimit=9-23:50:00
 SubmitTime=2018-11-27T17:40:50
 EligibleTime=2018-11-27T17:40:50
 StartTime=2018-11-27T18:29:21 EndTime=2018-12-07T18:19:21
 PreemptTime=None SuspendTime=None Partition=normal
 NodeList=node26 BatchHost=node26
 NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1 ReqB:S:C:T=0:0:*:*
TRES=cpu=1, mem=2G, node=1, billing=1
 Socks/Node=* NtasksPerN:B:S:C=0:0:*:* CoreSpec=*
 MinCPUsNode=1 MinMemoryNode=2G MinTmpDiskNode=0
```

 Usando el comando scp puede copiar archivos desde cluster.uy a su máquina local o viceversa.

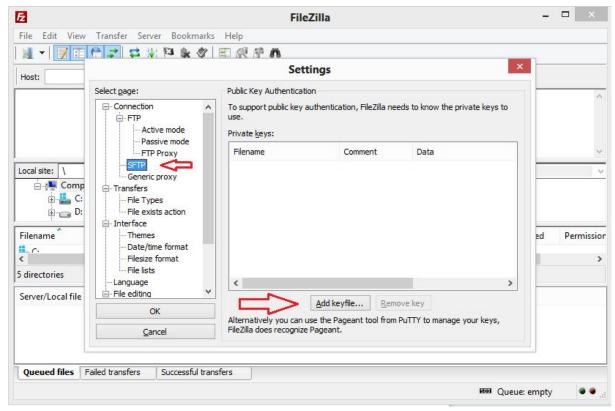
```
$ scp usuario@cluster.uy:heatmap.pdf .
heatmap.pdf 100% 7699 346.1KB/s 00:00
```

• *scp* ejemplo de copia de un archivo local hacia cluster.uy

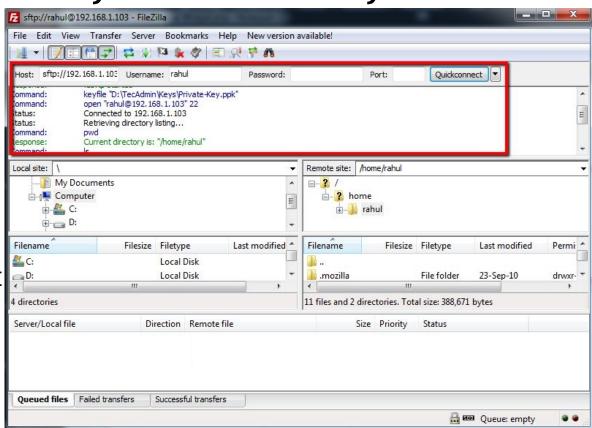
```
$ scp heatmap.r usuario@cluster.uy:
heatmap.r 100% 169 346.1KB/s 00:00
```


 Con rsync puede copiar y sincronizar directorios enteros de forma incremental desde cluster.uy a su máquina local y viceversa.

```
$ rsync -zvhr [directorio_local]/ cluster.uy:[directorio_remoto]
$ rsync -zvhr cluster.uy:[directorio_remoto] [directorio_local]
```


 Desde windows es recomendable que instale FileZilla si desea tener una alternativa gráfica para manejar archivos entre cluster.uy y su máquina local. También es compatible con otros sistemas operativos.

 Para usar FileZilla debe importar la clave privada generada.


 Para usar FileZilla debe importar la clave privada generada.

En el **Host** hay que ingresar:

sftp://cluster.uy

- Debe completar la casilla Username
- Click en Quickconnect

Los gestores de archivos de linux generalmente traen un cliente sftp incorporado. Por ejemplo:

Copia de gran volumen de datos

- Cuando se necesita copiar un gran volumen de datos y con el fin de ser solidario y no consumir ancho de banda en login se debe utilizar el puerto 10022 de cluster.uy.
- scp

```
$ scp -P 10022 [archivo origen] cluster.uy:[carpeta destino]
```

rsync

```
$ rsync --port=10022 [archivo origen] cluster.uy:[carpeta destino]
```

Parámetros de configuración

- SLURM tiene una gran cantidad de parámetros que permiten configurar la ejecución de trabajos.
- Existen parámetros para configurar:
 - o **Tiempo:** tiempo máximo, tiempo de inicio y fin, etc.
 - I/O: archivo de entrada o de salida, etc.
 - o **Tareas:** cantidad, localización, etc.
 - o **CPU:** total, por tarea, por gpu, localización, etc.
 - Memoria: total, por tarea, por cpu, por gpu, etc.
 - Partición, QoS y account
 - Notificaciones: casilla de correo y tipos de alertas a notificar.

Parámetros de configuración: Partición y QOS

- --partition=<nombre> especifica una partición.
 - Es posible indicar una lista de particiones separadas por coma.
 - El trabajo ejecutará en la primera partición de la lista que pueda ejecutarlo.
- --qos=<nombre> especifica una calidad de servicio.
- --account=<nombre> especifica una account trabajo.

Parámetros: tiempo

- --time=<time> límite de tiempo total de ejecución del trabajo.
 - Formato: DD-HH:MM:SS
 - Este parámetro es obligatorio!
- --begin=<time> el sistema garantiza que el trabajo no iniciará antes del momento especificado. Por ejemplo:
 - --begin=16:00
 - o --begin=now+1hour 0 --begin=now+60
 - o --begin=2010-01-20T12:34:00
- --deadline=<OPT> límite para la finalización de un trabajo.
 - El trabajo falla si el sistema no puede finalizarlo antes de su deadline, i.e. start > deadline - time

Parámetros: recursos de cómputo

- --ntasks=<número> cantidad de tareas a ejecutar.
 - Una tarea es indivisible y se ejecuta en un único nodo.
 - Este parámetro es obligatorio!
- --ntasks-per-node=<número> cantidad de tareas por nodo.
- --cpus-per-task=<número> cantidad de CPU por tarea.
 - Por defecto: --cpus-per-task=1
- --gres=gpu:<número> para solicitar un número de GPUs por nodo. Para solicitar una GPU por nodo: --gres=gpu:1

Parámetros: entrada/salida

- --output=<archivo> archivo donde se enviará la salida estándar de la ejecución. Por defecto: slurm-ID.out
- --error=<archivo> archivo donde se enviará la salida de error de la ejecución. Por defecto --output contiene ambas salidas.

Variables de entorno en SLURM

SLURM exporta un conjunto de variables que pueden ser usadas durante la ejecución de un trabajo. Por ejemplo:

- ID del trabajo: \$slurm_jobid
- Nombre del trabajo: \$slurm_job_name
- Nombre de la account donde ejecuta el trabajo: \$slurм_job_account
- Directorio de lanzamiento del trabajo: \$slurm_submit_dir
- Número de nodos asignados: \$slurm_nnodes
- Nombres de los nodos asignados: \$slurm_job_nodelist
- Número de cores asignados: \$slurm nprocs
- Número de tareas creadas: \$slurm ntasks
- Id de GPU asignada: \$cuda visible devices
- Muchas más...

Política de uso

- Cada usuario debe respaldar su información.
- Se recomienda no almacenar información sensible.
- Los datos y aplicaciones almacenados en el cluster son responsabilidad de cada usuario.
- El cluster está destinado a la investigación e innovación.

Políticas completas en:

https://www.cluster.uy/ayuda/politica_uso/

Política de uso

Las ejecuciones en login están PROHIBIDAS. Rogamos solicite un trabajo interactivo para realizar tareas como descomprimir archivos, copiar, editar, instalar o compilar.

¡Cuidado con VSCode!

Aplicaciones disponibles en cluster.uy

Lista (*incompleta*) de aplicaciones en:

https://www.cluster.uy/ayuda/lista_software/