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HIGHLIGHTS 

 

 Applications of some chemometric techniques to genetic epidemiology 

 Advantages of chemometric techniques over conventional techniques 

 Role of chemometrics in the future of genetic association studies 
 

ABSTRACT 

 
The field of chemometrics has its origin in chemistry and has been widely applied to the 

evaluation of analytical chemical data and quantitative structure-activity relationships. 

Chemometric techniques apply statistical and algorithmic methods to extract information from 

analytical multivariate data, including fused, heterogeneous data. These techniques are now 

widely applied across fields as varied as food technology, environmental chemistry, process 

control, medical diagnostics, and metabolomics. In the mid-1980s, cross-disciplinary interaction 

between genetics and epidemiology led to the emergence of genetic epidemiology as a new 

discipline. Chemometric techniques are extremely appropriate for, and have been widely applied 

to, this discipline. Here, we present a broad review of the application of chemometric techniques 

to the fields of genetic epidemiology and statistical genetics. We also consider some future 

directions. We focus on chemometrics-based regression methodologies in genetic association 

studies. 
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Statistical genetics 
Abbreviations: (to be set in normal style) 

 

ANOVA-simultaneous component analysis   ASCA 

Backward interval PLS     biPLS 

Basic Local Alignment Search Tool     BLAST 

Bayesian regression       Bayes-R 

Canonical correlation analysis    CCA 

Expression quantitative trait loci    eQTL 

False discovery rate               FDR 

Fixed regression-least squares     FR-LS 

Genome-wide association studies     GWAS 

Genetic algorithm      GA 

Heteroscedastic effects model     HEM 

Interval PLS       iPLS 

Joint Genetic Association of Multiple Phenotypes  JAMP 

Linkage disequilibrium     LD 

Molecular breeding value      MBV 

Multivariate analysis of variance    MANOVA 

Multivariate sparse partial least squares    M-SPLS 

National Center for Biotechnology Information  NCBI 

National Human Genome Research Institute   NHGRI 

Ordinary least squares      OLS 

Orthogonal projections to latent structures   OPLS 

Partial least squares                PLS 

Principal component analysis     PCA 

Principal Component of Heritability Association Test PCHAT 

Principal component regression          PCR 

Recursive weighted PLS     rPLS 

Quantitative trait loci       QTL 

Random regression best linear unbiased prediction   RR-BLUP 

Rare variant       RV 

Ride regression                RR 

Root mean square error of prediction    RMSEP 

Selectivity ratio      SR 

Single nucleotide polymorphism        SNP 

Singular value decomposition     SVD 

Support vector regression      SVR 

Synergy interval PLS      siPLS 

Trait-based Association Test that uses Extended Simes  TATES 

Variable importance for projection    VIP 
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1. Introduction 
 

Genetic epidemiology involves the study of the interaction of genes and the environment and 

how these factors influence disease in human populations and their patterns of inheritance in 

families [1,2]. In recent years, the field of genetic epidemiology has been broadly applied in a 

wide array of research fields. Here, we focus on biallelic single-nucleotide polymorphisms 

(SNPs), point mutations in the genome that can take on one of two possible alleles. In other 
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words, two allelic variants are segregating in the population [3]. For diploid organisms, this 

implies three possible genotypes at each polymorphic site. For example, an SNP with alleles A 

(adenine) and G (guanine) would lead to three possible genotypes in a diploid organism: AA, 

AG, and GG [4]. Statistical analysis of the effect of this type of polymorphism on a phenotype of 

interest would therefore involve representing the SNP as a three-category variable, though we 

discuss other modes of representation in this article. In general, the central goal of genetic 

epidemiology is the identification of SNPs (and consequently the genes in which they are 

located) known to be associated with a phenotype (e.g., disease) of interest. This process is 

carried out via genome-wide association studies (GWAS). With the discovery of these genes, 

scientists have gained a deeper understanding of the etiology of diseases suspected to have a 

genetic component. This has facilitated the development of drugs and treatments to counteract 

such diseases. 

The steadily increasing availability of genomic data has motivated the search for new and/or 

improved ways to uncover relationships between genotypes and phenotypes. The standard 

approach is GWAS, wherein the associations of a large number of SNPs (typically of the order 

of thousands or millions) with a phenotype of interest are tested separately for each SNP. This 

sidesteps the seemingly intractable high-dimensional problem by breaking it down into a series 

of univariate regressions, each of which tests the association of a particular SNP with the 

phenotype. Appropriate post hoc adjustments are then made for multiple testing. 

 Despite an inconsistent record of success, GWAS continue to be the “gold standard” in this 

area, and few studies have attempted to exploit the potential advantages of analyzing the 

multivariate relationships inherent in genotype-phenotype data [5]. Multivariate analyses have 

proved to be effective when working with complex datasets and have several advantages over 

univariate approaches. A common reason for employing a multivariate model is the ability to use 

multiple measurements of one underlying construct in order to achieve better construct validity. 

One advantage of using multivariate analysis is that Type I error rates are better controlled as 

compared to the inflation of Type I error that results when carrying out a series of univariate 

statistical tests. A second advantage of the multivariate approach is that it often has more power 

than the univariate approach, because the latter tends to focus on only marginal effects [6]. 

As mentioned above, the most common approach in GWAS is to analyze one SNP at a time, 

in an attempt to perform a genetic dissection of complex diseases in a holistic manner. However, 

this approach does not fully utilize the potential of GWAS to identify multiple causal variants in 

order to more fully predict the risk of disease. Several methods for joint analysis of GWAS data 

tend to miss causal SNPs that are by themselves weakly correlated with disease, and also suffer 

from a high false-discovery rate (FDR) [7]. 

Chemometrics is a multivariate data analysis approach with the primary aim of concentrating 

the significant variance in a mixed data structure (e.g., concentration data) onto a relatively small 

number of orthogonal (in the case of PCA) or nearly orthogonal (in the case of PLS) principal 

components or factors. In order to reduce a relatively large number of collinear variables that, in 

general, are expected to exhibit considerable mutual intercorrelation, to a smaller number of 

orthogonal or nearly orthogonal factors, the concentration data are treated by multivariate data 

analytical methods [8,9]. In this article, we review several chemometric regression techniques, 

which have been applied to genetic data. We focus on implementation of these techniques to a 

generic GWAS problem and discuss its pros and cons. 
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2. Regression-modeling approaches for the analysis of genetic data 
 

2.1. Univariate regression 

 

In a univariate regression model, the dependent variable (or response) is modeled by a single 

independent (explanatory) variable, x.  The equation below illustrates a univariate generalized 

regression model:  

 

                                 g(Ey) = β
0
 + β

1
x     (1) 

 

Here, β
0
 is the intercept, y is the dependent variable and g(.) is known as a link function, the 

exact formulation of which depends on the distribution of y, e.g., if y is normally distributed, 

then g(.) is an identity function, and if y is binary/dichotomous (i.e., follows a Bernoulli 

distribution), then g(.) may be a logit or probit function.  

GWAS utilize univariate regression for testing the association of each SNP with the trait or 

disease of interest [10]. As an illustration, typical GWAS will utilize a univariate regression 

model similar in form to Equation (1) above, wherein x is a particular SNP and y is the 

phenotype of interest. A separate univariate regression model is fit for each SNP in the GWAS 

[11]. Typically, GWAS would have hundreds of thousands to millions of SNPs, and hence the 

same number of univariate regression models.  

It is worthwhile to discuss exactly how SNPs are represented in statistical models utilized in 

GWAS. These representations are based on assumptions about the effect of the polymorphism on 

the phenotype. The most common representation assumes a dosage effect [i.e., the effect of the 

risk allele on the phenotype is additive/cumulative, so individuals who are heterozygous for the 

risk allele (possessing 1 copy) would have lower risk than those who are homozygous for the risk 

allele (possessing 2 copies)]. Conversely, those homozygous for the alternate allele (i.e., 

possessing 0 copies of the risk allele) would have non-existent risk. In this dosage effect model, 

the SNP is represented using a categorical coding of 0, 1, and 2, representing the allele counts of 

the risk allele. Other models (e.g., dominance or genotype) could be utilized. If a “risk” allele is 

not known a priori, a reference allele can be chosen. 

The statistical models covered here are by no means the only tools used in GWAS. For 

example, categorical data-analysis techniques, such as the Cochran-Armitage trend test, 

Pearson’s chi-square test and Fisher’s exact test, are ubiquitous in genetic epidemiology studies. 

The Cochran-Armitage trend test, in particular, has become a standard tool for association testing 

in genetic case-control studies, although logistic regression (particularly the Wald test) has been 

proposed as superior [12,13].   

Pearson’s chi-square test is one of the oldest statistical tests; typically applied to categorical 

data organized in contingency tables, the test examines the difference between the observed 

frequencies and their corresponding expected frequencies under the null hypothesis. The 

resulting statistic follows a chi-square distribution, which is used to determine the p-value. The 

Pearson’s chi-square test typically performs poorly with small sample sizes. 

Fisher’s exact test is also useful for categorical data; it is a permutation-based test for 

evaluating the association between two dichotomous variables. It is a particularly good 

alternative to Pearson’s chi-square test when sample size is small. In principle, Fisher’s exact test 

can be applied to any sample size, but, due to its computational demands, it is typically reserved 

as a small-sample test. There have been suggestions that this test is conservative, and Barnard’s 
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exact test [14] has been proposed as a similar, but less conservative, alternative. 

Although standard GWAS problems utilize SNPs as independent variables, it is genes, not 

SNPs, that are the functional units in the genome [15,16]. While this review primarily focuses on 

SNP-based analysis, we note here that there are also gene-based analyses for the univariate trait 

setting {e.g., GATES, VEGAS, and JAG, [16-18]}. This class of techniques offers another 

option to avoid the multiple testing problems inherent in univariate SNP-based analyses [11].  

As discussed above, since many genome-wide studies consist of a large number of SNPs 

(often on the order of millions), a large number of univariate tests (one for each SNP) must be 

performed. Performing such a large number of univariate tests has potential pitfalls because the 

greater the number of tests, the higher the likelihood of erroneously rejecting the null hypothesis 

when it is true. Special statistical procedures therefore have to be used to adjust for multiple 

testing, which will control the false-positive rate. [19]. Examples are the Bonferroni procedure, 

the Benjamini-Hochberg procedure, and the Tukey’s procedure. As a consequence, these 

univariate approaches require stringent significance thresholds (due to the large number of tests 

being undertaken) to control the false-positive rate (the adjusted α significance level for GWAS 

is typically a value of α = 5 x 10
-8

 [11]. This strict threshold is sometimes difficult to meet, and 

this is a key disadvantage of univariate approaches.  As mentioned above, univariate techniques 

also fail to take into account the combined effects of multiple SNPs for it is possible that the 

interactions among multiple genetic variants could contribute to the phenotype of interest 

[20,21]. Lastly, traits of interest are often multivariate in nature (i.e., multiple phenotypes are 

measured to cover the full extent of a trait). For example, cognitive ability is usually measured 

through batteries of tests covering various cognitive abilities (e.g., memory and vocabulary). In 

the GWAS context, this multivariate information is generally collapsed to a univariate score (i.e., 

a univariate full-scale IQ score, or a binary case-control index) [11].   

In order to circumvent the limitations of univariate regression techniques in genetic 

epidemiology, recent studies began to apply other approaches, including multiple linear 

regression (MLR), ridge regression (RR), principal-component regression (PCR), and partial 

least squares (PLS). These techniques are multivariate in nature, so they take into account the 

combined effects of multiple SNPs and also control for confounding variables [19].  

 

2.2. Multivariate regression 

 

While univariate regression has certain advantages (e.g., simplicity and computational 

feasibility), it is inadequate for modeling more complex relationships in genetic studies. In 

situations where the phenotype is best modeled by multiple SNPs and environmental factors, 

multivariate regression is the more appropriate tool to utilize. For this sort of situation, if 

phenotype Y is normally distributed, then a MLR model can be utilized: 

 

                                ,              (1) 

             

where βG is the parameter of interest quantifying the association between a matrix of genotypes 

G and the mean of the phenotype Y. The matrix G is typically an (n × m) matrix where n is the 

number of individuals and m is the number of SNPs genotyped in these individuals. Further, Z is 

a matrix of p covariates, representing variables to be adjusted (e.g., for age and gender). Denote 
X = (1, Z, G) and β = (βO,  βX,  βG). As long as the model (1) for the expected value of the 

outcome is correct, the ordinary least squares estimate   = (XTX)-1XTY is an unbiased estimator of 
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β [22]. It can be roughly thought of as a weighted average of the model outcome Y with weights 
that depend on the covariate set X [22]. 

Binary outcomes often arise in biomedical data, where they may, for example, represent cases 

and controls with respect to a disease or condition. Such phenotypes are modeled using logistic 

regression models. The typical logistic regression model has the following form: 

 

log
e

P(Y
i
=1)

1- P(Y
i
=1)

æ

è
çç

ö

ø
÷÷ = a + b

1
x
1,i

+ b
2
x
2,i

+ .....+ b
p
x
p,i

 

 

Here, x1,i,...,xp,i are the explanatory/predictor variables (e.g., SNPs or environmental variables) 

for the i
th

 individual. Yi is a Bernoulli random variable representing the outcome or phenotype for 

individual i. The outcome is usually coded numerically as 1 or 0 (e.g., cases or controls). 

Therefore P(Yi = 1) is the probability of the phenotype being equal to 1 (e.g., a case). Thus, the 

logistic regression simply relates the probability that the i
th 

individual is a case to the 

predictor/explanatory variables: 

 

                    
       

   

          
   

                                    (3) 

 

where β is a (p × 1) vector of parameters to be estimated. 

Traits of interest are often multivariate in nature, as mentioned in sub-section 2.1, and also 

genes, and not SNPs, are the functional unit in a genome [15,16]. In order to circumvent such 

limitations, a tool called MGAS was recently developed that allows gene-based testing of 

multivariate phenotypes in unrelated individuals. MGAS allows researchers to conduct their 

multivariate gene-based analyses efficiently, without the loss of power that is often associated 

with incorrectly specified genotype-phenotype models [11].  

A joint analysis of multiple, potentially correlated traits (i.e., a multivariate analysis) offers a 

number of advantages over the univariate approach [23]. Primarily, a multivariate analysis may 

have more power to detect association in situations where there is genetic correlation among 

different traits. This extra information that is provided by the cross-trait covariance is ignored in 

a typical univariate analysis [13, 24]. Second, most multivariate procedures offer the ability to 

perform a single test for association with a set of traits. This consequently reduces the number of 

tests performed and alleviates the multiple testing burden that applies when analyzing all traits 

separately [13,25] Most importantly, multivariate analysis is helpful in cases of pleiotropy, 

where a single genetic variant influences multiple phenotypes [26]. Multivariate methods for the 

genome-wide SNP-based analysis include MultiPhen, canonical correlation analysis (CCA), i.e. 

MANOVA (multivariate analysis of variance) with the SNP-effect treated as covariate, TATES 

(Trait-based Association Test that uses Extended Simes procedure) and JAMP (Joint Genetic 

Association of Multiple Phenotypes) [27–29]. Some popular software packages for performing 

multivariate GWAS include methods that are implemented in PLINK (the multivariate test of 

association MQFAM) [27], SNPTEST (a Bayesian multiple phenotype test) [30], BIMBAM (a 

Bayesian model comparison and model averaging for multivariate regression) [31], and PCHAT 

(Principal Component of Heritability Association Test) [25].  
Although MLR has been successfully applied in the context of GWAS, it is unreliable in the 

presence of multicollinearity, which occurs when there are strong correlations among the 
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independent variables. In such situations, multiple regression analysis produces inaccurate and 

unstable estimates, and generally fails to clarify the relationships among the predictor and the 

response variables [32]. Multiple logistic regression is equally susceptible to issues arising from 

multicollinearity [33]. Lastly, standard linear regression models are based on a number of 

assumptions {e.g., normality and constant variance of errors [homoscedasticity]}, which, if 

violated, may result in inefficient or biased estimates [34].  

 

2.3. Principal-component regression (PCR) 

 

Another robust chemometric approach applied in the area of genetic epidemiology is PCR. 

PCR is a powerful extension of standard ordinary least squares regression. It is ideal for 

situations where multicollinearity exists among independent variables. The basic idea behind 

PCR is to resolve the multicollinearity problem by performing an orthogonal transformation of 

the independent variables into a number of principal components. Once this is accomplished, 

multicollinearity is easily detected by examining the eigenvalues, and components associated 

with low eigenvalues can be removed (other methods exist for determining which components to 

exclude). Since principal components are, by definition, mutually uncorrelated, regressing the 

response vector (Y) unto them would solve the multicollinearity problem. The results can then be 

transformed back to the original scale of the independent variables. 

We now outline the formal procedure in mathematical terms. We begin with the standard 

regression model: 

               (6) 

 

where Y is the vector of responses, X is the matrix of independent variables (e.g., a matrix of 

SNPs) and   is the vector of unknown regression coefficients. The first step in PCR is to 

standardize the independent variables so that they have zero mean and unit standard deviation. 

Then, the resulting data matrix X can be factorized using singular value decomposition (SVD): 

 

                                                                                                                   (7) 

 

In the above expression, U and V are orthogonal matrices and W is a diagonal matrix with 

non-negative real numbers along its diagonal representing the singular values of X.  

X
T
X can therefore be expressed as: 

 

                                                                                         (8)

 

 

The matrix VDV
T
 is essentially the Eigen decomposition of X

T
X and the columns vj of V are 

the PCA loadings of X. PCA is the most popular multivariate statistical technique that helps to 

analyze datasets with highly related predictors. PCA is a data-compression technique that 

Y = X
Tb +e

XTX = (UWV T )T (UWV T )

=VW TUTUWV T

=VWUTUWV T

=VW 2V T

=VDV T
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reduces a larger set of predictor variables to a smaller set with a minimal loss of information 

[35]. The objective of the PCA is to extract the important information from the data table, which 

represents the observations reported as dependent variables, and expresses this information as a 

set of new orthogonal variables called principal components [36]. PCA is used in dietary studies, 

physical medicine, and in human kinematics and biomechanics studies [37]. The diagonal 

elements of matrix D are the eigenvalues of X
T
X. Each eigenvalue is equal to the total variance 

modelled by each respective principal component. PCA concentrates the significant variance 

onto the earlier components. After the significant variance is substantially modelled by the 

earlier components, the remaining variance that is modeled by the later components represents 

only noise and the respective eigenvalues for those components will be close to zero and the 

components with which they correspond can be discarded from the model. After this step, the 

remaining q columns of V can be combined into a matrix Vq and a new data matrix Zq = XVq can 

be obtained. The columns of this derived matrix are orthogonal so, using it in lieu of the original 

data matrix X would eliminate the multicollinearity problem. Ordinary least squares can then be 

applied to obtain an estimate using the derived data matrix Zq: 

 

                                                                                                (9)
 

 

The PCR estimate of   can then be obtained by transforming the above estimate back to the 

original scale of the X data matrix: 

 

                                                                                                                (10)
 

 

PCR provides an elegant solution to the problem of multicollinearity, so it is particularly 

useful in genomic association studies where SNPs tend to be highly intercorrelated. For example, 

Wang and Abbott [79] demonstrated how PCR can be used as a dimensionality-reduction 

technique in genomic association studies, and applied it to the problem of testing the association 

between expression of the gene CHI3L2 and SNPs within that gene. PCR was able to confirm 

significant associations of SNPs that had previously been reported in other studies. 

In a comparative study, Ballard et al. [38] assessed the performance of seven multi-marker 

association tests and found that PCR was the most powerful among them. 

Gauderman et al. [39] demonstrated through simulations that PCR is typically at least as 

powerful as other genotype- or haplotype-based techniques. Using PCR to test the association 

between a select group of SNPs (within the Glutathione-S-Transferase P1 gene) and childhood 

chronic bronchitis, they observed stronger evidence of association than what was observed using 

the more traditional genotype- and haplotype-based methods. 

  
2.4. Partial least squares (PLS)  

 

PCR is commonly used as an alternative to PLS [40]. PCR and PLS are both known to have 

no significant differences in the prediction errors except in cases when artificial constraints are 

placed on the number of latent variables retained [41,42], but PLS is a more commonly used 

standard tool in chemometrics [43]. Further PLS may concentrate the significant variance in the 

independent data onto fewer latent variables than PCR, but this does not appear to influence 

predictive ability [41,42]. For PLS in the context of genetic epidemiology, the association 

â = (Z
q

TZ
q
)-1Z

q

TY

b̂ =V
q
â
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between a phenotype vector y and the genotypes X is assumed to be explained by the following 

linear model: 

 

      E(y) = X’β          (4) 

 

where β is a p × 1 vector of regression coefficients. PLS then performs a simultaneous 

decomposition of X and y with the constraint that these components (“latent factors”) explain as 

much of the covariance between X and y as possible. The regression coefficients in the above 

model can be estimated via the PLS method, as follows [5]: 

 

               -1   
                                                (5)  

 

 

where    is the p × k matrix of X loadings,    
is the k × 1 vector of y loadings and    is the p × k 

matrix of loadings, as defined in references [8,9].  

The superiority of PLS over the classical methods is not surprising, since it was designed in 

situations where a large (relative to sample size) number of correlated predictors exist [44]. It is 

also known for its ability to handle huge data matrices, and is less apt to be overwhelmed by 

“noisy” variables. PLS is able to isolate the informative variance in the data by using only the 

significant latent variables. PLS retains only that variance in the independent variables that 

exhibits linear correlation to the dependent variables. The resulting reduction in the noise level in 

the data may improve predictive stability and produce more accurate models [45]. In a study 

conducted by Cassel et al. [46],  PLS was tested in the presence of the following three 

inadequacies, and the algorithm demonstrated remarkable robustness in face of them:  

(i) skewed (asymmetric) distributions for observed variables;  

(ii) multicollinearity within blocks of observed (manifest) variables and among latent variables; 

and,  

(iii) misspecification of the structural model (by omission of regressors). 

A number of studies have utilized PLS in the analysis of genetic data. PLS has been applied to 

predict molecular breeding values (MBVs) using genotypes at 7372 SNPs and very accurately 

estimated breeding values of 1945 dairy bulls. The algorithm produced MBV prediction (for 

genomic selection) accuracies that were similar to those of Bayesian regression (Bayes-R) [47–

49], random regression best linear unbiased prediction (RR-BLUP) [47–49], and non-parametric 

support vector regression (SVR) [50–52]. Fixed regression-least squares (FR-LS) [47,48,53] 

yielded poor performance in comparison [54].  

A similar application of the PLS in genomic selection was carried out by Colombani and 

colleagues, and involved computing a prediction equation from the estimated effects of a large 

number of DNA markers based on a limited number of genotyped animals with observed 

phenotypes [55]. PLS and sparse PLS were used with a reference population of 940 genotyped 

and phenotyped French Holstein bulls and 39,738 polymorphic SNP markers. Correlations 

between observed phenotypes and phenotypes predicted by PLS and sparse PLS were similar, 

but sparse PLS highlighted some genomic regions more clearly. Both PLS and sparse PLS were 

more accurate than pedigree-based BLUP and generally provided lower correlations between 

observed and predicted phenotypes than did genomic BLUP. 

Sarkis and colleagues utilized PLS to locate causal markers by treating the phenotype as the 

dependent variable and the genotype as the independent variable. Their study showed that the 

results obtained using their PLS-based approach were in good agreement with those obtained by 
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more standard techniques (e.g., 2
 and trend-regression tests). Also, PLS achieved higher 

accuracy, thus demonstrating the successful application of chemometrics to a problem in human 

genetics [56]. 

Another interesting application of PLS was proposed by Turkmen and colleagues, who 

introduced two PLS approaches to aggregate the signals of many SNPs within a gene to reveal 

possible genetic effects related to rare variants (RVs). The proposed methods were able to 

identify some rare SNPs that were missed by the standard SNP-based analysis [57].  

PLS has also been applied to mining for genotype-phenotype relations specifically from 

genomic sequences. Mehmood and colleagues introduced a methodology based on the Basic 
Local Alignment Search Tool (BLAST) approach for extracting information from genomic 

sequences and soft-threshold PLS for mapping genotype-phenotype relations. BLAST and PLS-
based multivariate approach produced results that showed good agreement with known yeast 
phylogeny and gene ontology. This confirmed that the methodology extracts a set of fast-
evolving genes that accurately capture the phylogeny of the yeast strains [5]. BLAST is a 
program designed to compare the similarity between nucleotide or protein sequences with the 
databases and calculates its match. It interprets relationship between sequences and also helps 
identify members of gene families. BLAST is popular due to its free availability on the Web 
through a large server at the National Center for Biotechnology Information (NCBI) [58]. 
 
2.5. Ridge regression (RR) 

 

Although less commonly used in chemometrics [59], RR is another chemometric technique 

that, in recent years, received considerable attention in quantitative genetics [60]. It is considered 

to be a particularly promising alternative regression procedure for the analysis of data in which 

the predictor variables are highly correlated [61]. PLS and PCR can be viewed as shrinkage 

methods, so they share interesting connections with RR. All three techniques shrink the 

regression coefficients away from the directions of low variation [62]. RR has been successfully 

applied to analyze genetic data especially in cases where the SNPs are in high linkage 

disequilibrium [63]. RR controls the variance inflation arising from multicollinearity by 

introducing a degree of bias to the regression estimates. The bias is introduced by imposing 

constraints on the regression parameters. It is therefore a very simple variant of standard MLR. 

As a reminder, below is the standard linear regression model: 

  

                   Y = X β + ε                 (11) 

 

As discussed above, matrix X could represent a matrix of genotypes, while vector y could be a 

vector of phenotypes for subjects in the sample. The ordinary least squares estimator of β is then  

given by: 

 

        = (X’X)
-1

X’Y     (12) 

 

In RR,    in Equation (12) is replaced by RR estimator   λ
 using the following modification to 

the OLS estimate [19]:  

      λ
 = (X’X + λI)

-1
X’y      (13) 
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where λ is a positive number (usually 0 <k <1) and I is the m x m identity matrix. Comparison of 

this expression with Equation (12) reveals that a constant is added to the diagonal elements of the 

X’X matrix of the normal equations. Setting λ = 0, we retrieve the standard OLS estimate given 

in Equation (12).  

Hoerl and Kennard [64] suggested selecting a value of λ by examining a ridge trace, which is 

a plot of the regression coefficients for different values of the ridge parameter. The value of λ 

ideally should be chosen at a point where the regression coefficients begin to stabilize and the 

root mean square error of prediction (RMSEP) begins to decrease. Other methods exist for 

choosing optimal values of the ridge parameter {e.g., Cule et al. proposed a simple modification 

to the trace plot that utilizes p-values of the regression coefficients rather than the coefficients 

themselves [19]}. 

Shen et al. [65] recently introduced a generalized RR method for large p, small n problems 

(i.e., problems wherein the number of parameters significantly exceeds the number of 

observations). Such problems are typically encountered in genomic studies (e.g., GWAS, whole-

genome sequencing). Their novel generalized RR method, referred to as the heteroscedastic 

effects model (HEM), is a more flexible version of standard RR that allows ridge parameter λ to 

vary across variables (SNPs in this case). The performance of HEM was compared to standard 

RR (which the authors demonstrated is equivalent to a linear mixed model/BLUP) using 

simulated datasets and real data. The latter was a publicly available genomic dataset consisting 

of 84 inbred Arabidopsis lines with ~200,000 SNPs, with the phenotype of interest being a 

bacteria-hypersensitive trait. HEM was shown to demonstrate superior performance to standard 

RR (i.e. SNP-BLUP) with respect to QTL mapping. The improvement in performance was 

attributed to HEM allowing λ to vary across SNPs, as opposed to SNP-BLUP, which assumes a 

common value. In addition to its superior performance, HEM was also shown to be highly 

computationally efficient. The computation of all SNP effects required <10 s using a single 2.7-

GHz core. This reduction in run time could be particularly advantageous for whole-genome 

models requiring computationally-intensive permutation tests. HEM is implemented in R 

package bigRR [65]. 

 

3. Model validation and variable selection 
  

3.1. Model validation 

 

Validation of a multivariate calibration model in chemometrics is a vital step that must be 

performed prior to widespread adoption and use of the calibration model for routine analysis. 

The purpose of model validation is to determine the reproducibility of a multivariate calibration 

[66]. Similarly, in the context of genetic association studies, model validation is understood to be 

an indispensable step for establishing the scientific credibility of the results [67]. 

“Validation” has a number of different uses within the wider context of genetic association 

studies. For example, before any genetic association is investigated in itself, quality control of 

the data plays a critical role. Here, one step is the validation of the marker genotypes (i.e., the 

genetic information) [67]. Validation of genotypes is often understood as the concordance 

between different genotyping methods [67,68]. However, our focus in this article is within the 

context of validating statistical models.  
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The gold standard for model validation of any genetic study is replication in additional 

independent samples. Replication of a GWAS result should be thought of as the replication of a 

specific statistical model (i.e., a given SNP predicting a specific phenotype effect). The National 

Human Genome Research Institute (NHGRI) has outlined several criteria for establishing a 

positive replication [69], some of which are discussed below. 

Sufficient sample size is critical in replication studies to detect the effect of the susceptibility 

allele. With replication, it is vital for the study to be well-powered to identify spuriously 

associated SNPs, or, in other words, to call the initial GWAS finding a false-positive result 

confidently [70]. 

Another important criterion for a good replication set is that it should be from the same 

population (i.e., same race/ethnicity) as that of the original GWAS,. Once the effect detected in 

the original GWAS has been confirmed in a similar but independent replication cohort, cohorts 

from other populations (e.g., races/ethnicities different from the original GWAS population) can 

be tested in order to determine if the effect is ethnicity-specific or not. Further, an identical 

phenotype should be used in both the original study and the replication studies. Lastly, a similar 

effect should also be seen in the replication set from the same SNP, or an SNP in high linkage 

disequilibrium (LD) with the GWAS-identified SNP. Overall, the general strategy for a 

replication study is to repeat the ascertainment and the design of the GWAS as closely as 

possible and then, consequently, to examine the specific genetic effects that were found to be 

significant in the GWAS [70]. Conforming to these general recommendations will facilitate both 

investigators to avoid bias and readers to evaluate reports (31). 

 

3.2. Variable selection 

 

One critical aspect in chemometrics is variable selection. As discussed in sub-section 2.2, for 

MLR, all available variables x1, x2, x3,… xm were used to build a linear model for the prediction 

of the y variable. This approach is useful as long as the number, m, of regressor variables is small 

(e.g., < 10). However, often in chemometrics, one has to deal with several hundred regressor 

variables. This consequently leads to problems, since ordinary least squares (OLS) regression is 

no longer computable in cases where the regressor variables are highly correlated, or where the 

number of objects is lower than the number of variables [71]. 

Although the widely-used regression methods, such as PCR and PLS, can handle such data 

without problems, there are several arguments as to why all available regressor variables should 

not be used. First, a regression model with large number of regressor variables is practically 

impossible to interpret. Second, reduction of the regressor variables can avoid the effects of 

overfitting and can lead to an improved prediction performance by removing irrelevant, noisy or 

unreliable variables [72]. Lastly, using a small number of regressor variables can considerably 

reduce the computational time [71]. There is much empirical evidence, which suggests that 

variable selection is a very important step when using methods such as PCR and PLS [73]. 

A number of variable-selection methods for regression-based calibration models are available, 

including genetic algorithms (GAs), interval PLS (iPLS), PLS for discrimination, jack-knifing, 

variable importance for projection (VIP), forward-interval PLS, backward-interval PLS (biPLS), 

synergy-interval PLS (siPLS), selectivity ratio (SR), and LASSO-type methods [74–76].  

Over the years, PLS has evolved to include several variable-selection variants, such as the 

jack-knifed PLS and multivariate-sparse PLS (M-SPLS) methods [77]. Jack-knifed PLS 

regression was utilized by Bjornstad and colleagues for a quantitative trait-loci (QTL) study in 
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which two matrices X (genetic markers) and Y (phenotypes) were decomposed into latent 

variables (PLS components or principal components) in a manner that enabled statistically sound 

and graphically interpretable model building. A very good feature of this approach is that it 

allows the simultaneous analysis of several traits, and the direct visualization of individuals with 

desirable marker genotypes [78]. 

Another variant of PLS-variable selection called M-SPLS was recently used for expression 

quantitative trait-loci (eQTL) analysis. Simulation studies were performed in order to assess the 

feasibility and the performance of M-SPLS as a dimension-reduction method for analyzing gene-

expression and genomic marker data, particularly in the presence of multicollinearity. The results 

indicated that the technique was able to control type-I error adequately, while demonstrating 

increased power for the analysis of multiple transcripts by multiple response regression. It also 

had higher computation efficiency than standard techniques [79]. 

While the intent of this article is to focus on the applications of chemometric regression 

models in the context of chemometrics, we recommend that readers refer to several manuscripts 

[74,77] regarding mathematical details and characteristics of the different variable-selection 

methods. In general, all these variable-selection methods have been found to improve model 

performance and can be used to visualize which parts of the data are assessed as important and 

which parts are not [74]. Overall, in the context of GWAS, variable-selection methods are 

particularly useful to determine multiple variants (i.e., SNPs) or interactions between variants 

known to be causes of genetic susceptibility to a particular disease [80–83].  

 

4. Conclusions, perspectives, and future directions 

  

The applications of chemometric regression techniques in genetic epidemiology are relatively 

recent but growing in number. In the past few years, technological innovations led to increased 

feasibility of large-scale genetic association studies. Though densely-typed genetic markers (i.e., 

SNPs) can be generated using SNP arrays, next-generation technologies and imputation, SNPs 

typed using these techniques tend to be highly correlated due to linkage disequilibrium. Thus, 

standard MLR techniques are often inadequate for analyzing these data due to the inherent high 

dimensionality and complex correlation structure [19].  

Since the advent of GWAS, thousands of common alleles and variants have been implicated 

in disease susceptibility. However, for most heritable diseases and complex traits, the common 

variants identified so far collectively explain only a small fraction of the total inferred genetic 

variance. This is the so-called “missing heritability problem” [84]. One proposed source of the 

missing heritability are RVs [84]. In the context of SNPs, RVs are those with a low allele 

frequency (typically <1%) in the population of interest. It is believed that such rare alleles may 

have a large impact on disease susceptibility; thus, over the last few years, there was a push to 

elucidate the role of rare alleles in disease susceptibility [84]. However, one key problem is that 

standard GWAS techniques are unsuited for analyzing variants with such low frequency so 

various novel methods were recently developed for testing RV association. Classical multivariate 

chemometric methods are promising for RV analysis, but they have received little attention. Xu 

and colleagues recently compared some chemometric techniques for testing RV associations. 

They found that RR, PCR, PLS, and sparse PLS are all adequately powered to detect associations 

of rare genetic variants with disease susceptibility, and can even substantially outperform several 

popular methods for RV analysis (e.g., burden tests) [85]. Studies have shown that most human 

genetic variants are rare, and that RVs are (statistically) more likely than common variants to 
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affect disease susceptibility [86]. With the increasing feasibility and affordability of whole-

genome sequencing that captures a wide spectrum of rare human genetic variation, RV analysis 

will continue to be an area of intense interest in genetic epidemiology. Chemometric methods 

have been shown to provide excellent performance for RV analysis and are a promising avenue 

of further research. 

Newer trends in chemometrics, such as the ANOVA-simultaneous component analysis 
(ASCA), orthogonal projections to latent structures (OPLS), recursive weighted PLS (rPLS) and 

data-fusion methods, can potentially have significant applications in GWAS. Similar to PCA, 
ASCA [87] is another interesting technique that has potential applications in genetic 
epidemiology, as in cases of modeling the relationship between genotype and/or samples to 
detect group differences. Such cases are characterized by datasets containing underlying factors, 
such as time, doses, or combinations thereof [87] The application of OPLS to genetic data 

analysis has started to evolve. OPLS-discriminant analysis (OPLS-DA) [88], in particular, has 

been useful for the selection of a set of gene transcripts discriminating two different types of 

mutated cells in a certain disease [89]. The main advantage of using OPLS is that the model 

results in a reduced complexity while retaining prediction ability [88]. 

rPLS is another chemometric method that has an interesting application in genetic 

epidemiology. It involves iteratively reweighing the variables using the regression coefficients 

calculated by PLS. In contrast to other variable-selection methods, it has the advantage in that 

only one parameter needs to be estimated: the number of latent factors used in the PLS model 

[90]. In the context of GWAS, this is particularly useful in converging to a very limited set of 

variables (e.g., genetic markers) that is useful for interpretation and prediction of a specific 

disease phenotype. Lastly, data fusion is a subclass of chemometrics procedures, wherein data or 
models are combined into one contiguous fused entity, which has proved useful in many 
disciplines. The value of data fusion can be attributed to its ability to fuse together different 
sources of information that may be measuring different parts of a process [91]. In the context of 
GWAS, data fusion is particularly useful in incorporating genetic, environmental, proteomics 
and transcriptomic data for use in predicting a specific disease phenotype. This can provide a 
holistic model predictive of an individual’s disease state. 

It is clear that chemometrics is rapidly growing and has major applications in GWAS. By 
integrating genetic epidemiology with chemometrics, it is anticipated that novel genetic variants 
with high phenotypic manifestations will be unveiled. Further, the growing application of well-
known chemometric techniques, such as PLS and PCR, to GWAS promises more robust 
approaches for genotype-phenotype disease modeling. 

This review highlights a number of chemometric regression algorithms that have been 

successfully applied to the problem of testing genotype-phenotype associations, with the ultimate 

goal of unraveling the etiology of specific diseases by identifying the genes that increase 

susceptibility to them. GWAS are the standard and popular approach to testing genotype-

phenotype relationships, but these studies are complicated by multiple statistical issues as a 

consequence of having more predictors/variables than units of observations. The use of separate 

univariate tests to analyze each predictor is the common solution to this particular problem, and 

other related problems arising from high dimensionality. However, this simplistic approach has 

multiple disadvantages that we discussed in this review. Chemometric regression algorithms, 

such as PLS and its variants, offer powerful alternatives, and have been successfully employed in 

multiple studies. These algorithms generally outperform the univariate regression techniques 

used in GWAS. More importantly, they are able to exploit multivariate information (e.g., the 

Page 14 of 25



 15 

effect of gene-gene interactions on the phenotype), which eludes the common univariate 

approaches. Further, such algorithms are computationally efficient and reduce noise that would 

typically confound standard regression techniques.  

With the recent development of more powerful supercomputers and next-generation 

sequencing techniques, it is reasonable to anticipate ever-increasing efforts to develop and to 

refine increasingly sophisticated techniques for mining relationships between genotypes and 

phenotypes. These efforts should lead to the discovery of rare and novel disease-associated genes 

or biomarkers that have so far eluded identification by traditional techniques. This may be 

expected to provide a more complete mapping of the genetic architecture of many diseases. The 

eventual exploitation of this knowledge to reveal new therapeutic avenues should have an 

immense positive impact on the lives of individuals affected by (or susceptible to) these diseases. 

The application of chemometric techniques in GWAS is a relatively new area of pursuit in 

genetic epidemiology. The future of chemometrics as a distinct discipline has been called into 

question, particularly its application to the physical sciences [92]. However, the recent and 

growing applications of chemometric techniques in the area of genetic epidemiology indicate 

that it may be poised to play a more prominent role in the future of genomics.  
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Table 1.  

Concise summary of selected applications of various chemometric regression techniques in 

statistical genetics 

Technique Application Field Phenotype Variables Comments Ref. 

Cochran-

Armitage 

test 

GWAS of 

Coronary 

Artery 

Disease 

Human 

Disease 

Genetics 

Coronary 

Artery Disease 
SNPs 

An additive 

genetic model 

was assumed, 

and the 

Cochran-

Armitage 

trend test 

gave 

conservative 

results 

[93] 

Fisher’s 

exact test 

Pathway-

based 

whole-

genome 

association 

study 

Human 

Disease 

Genetics 

Bipolar 

Disorder 
SNPs 

Pathway-

based analysis 

were carried 

out, with 

comparisons 

done using 

Fisher’s exact 

test 

[94] 

Partial 

least 

squares 

(PLS) 

Prediction 

of 

molecular 

breeding 

values 

(MBVs) 

Animal 

Breeding

/ 

Genetics 

Molecular 

Breeding 

Value 

SNPs 

Lowest 

computational 

time than 

linear, 

Bayesian, and 

support vector 

regression 

 

[54],[5

5] 

 

Quantitative 

trait loci 

(QTL) 

analysis 

Crop 

Science 
Tomato weight 

Genetic 

markers 

Provides 

statistically 

reliable and 

graphically 

interpretable 

model 

building 

[78],[9

5] 

 

Expression 

QTL 

mapping 

(using 

multi-

Disease 

Genetics 

Obesity & 

diabetes 

measures in 

mice 

Gene 

expression 

measureme

nts 

Computationa

lly efficient 

method for 

handling 

multicollinear

[79] 
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variate 

sparse PLS) 

ity and 

controlling 

Type I error 

 

Multilocus 

association 

testing 

(MLAS) of 

quantitative 

traits 

Disease 

Genetics 

Lean body 

mass in 

humans 

SNPs 

Improves 

power of 

PLS-based 

MLAS in 

disease genes 

mapping 

relative to 

other 

approaches 

[96] 

 

Genotype-

phenotype 

mapping (L-

PLS) 

Yeast 

Genetics 

Yeast 

genotype-

phenotype 

mapping 

Gene 

variations 

Improves the 

stability of 

selected genes 

and 

background 

information 

[97] 

PLS 

Discrimina

nt 

Analysis 

(PLS-DA) 

Proteomic 

analysis for 

identificatio

n of 

potential 

disease 

biomarkers 

Proteomi

cs 

Extent of 

Fibrosis 

(no/mild vs. 

advanced) 

Protein 

expression 

profile 

Can be used 

to rank 

individual 

differences in 

protein 

expression (or 

some other 

quantitative 

measure) 

between 2 or 

more groups. 

[98] 

 
Gene 

mapping 
Genetics 

Disease Status 

(cases versus 

controls) 

SNPs 

Combined 

with cross-

model 

validation, 

this technique 

offers a 

powerful 

method for 

identifying 

causal SNPs 

[56] 

Principal 

Componen

t 

Regression 

(PCR) 

Gene pleiotropy 

Genetics 

of 

Obesity 

Obesity-related 

traits 
SNPs 

Yields 

increased 

power while 

retaining 

computational 

efficiency 

[99] 

 QTL Bovine MAP SNPs Provides [100] 

Page 23 of 25



 24 

identificatio

n 

Genomic

s 

(Mycobacteriu

m avium spp. 

Paratuberculos

is) infection 

superior 

performance 

in the 

presence of 

linkage 

disequilibriu

m 

 
Multilocus 

genetic 

association 

Human 

Genetics 

Gene 

Expression 

level 

SNPs 

Higher power 

than some 

popular 

methods 

[101] 

 

Genetic 

associations 

with 

morphologi

cal brain 

differences 

Neuro-

genetics 

Regional brain 

volume 

difference 

SNPs 

Demonstrates 

higher 

statistical 

power than 

univariate 

statistical 

methods 

 

[102] 

 

Genetic 

association 

study of 

voxel-level 

volume 

differences 

in the brains 

of 

Alzheimer’s 

patients 

Imaging 

Genomic

s 

Voxel-level 

volume 

difference 

SNPs 

Boosts power 

and reduces 

number of 

statistical tests 

[103] 

 

Ridge 

Regression 

 

 

Genetic 

association 

studies 

Animal/ 

Plant 

genetics 

Disease/Trait SNPs 

In the 

presence of 

strong linkage 

disequilibriu

m (LD) 

among SNPs, 

this approach 

is able to 

tease out 

independent 

effects on the 

phenotype 

 

[104] 

 

Gene-

environmen

t 

interactions 

Animal 

Breeding 

Pre-weaning 

average daily 

gain 

Direct and 

maternal 

genetic 

effects, age, 

sex, date of 

birth 

Resolves 

multicollinear

ity and allows 

accommodate

s complex 

interactions 

[105] 
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among 

predictor 

variables 

 

 

 

 

 

GWAS of 

brain data 

from 

Alzheimer’s 

Disease 

Neuro-

genetics 

Hippocampal 

and temporal 

lobe volume 

measures 

SNPs 

Yields more 

significant 

associations 

than 

univariate 

analysis 

[106] 

 

Gene-set 

analysis of 

colon 

cancer data 

 
 

Human 

Disease 

Genetics 

Disease status 

(colon cancer) 

eigenSNPs: 

SNP sets 

collapsed 

into gene-

based 

groups 

Performs well 

in situations 

wherein the 

number of 

predictors 

exceeds the 

sample size. 

[107] 

 

 

 

 

 

 

 

Prediction 

of complex 

traits and 

diseases in 

plants, 

animals and 

humans 

Plant and 

Animal 

Breeding 

Disease/trait SNPs 

Demonstrates 

good 

predictive 

performance 

when applied 

to human 

populations 

 

[108] 

 

Genetic 

effect 

estimation 

in 

multibreed 

beef cattle 

evaluation 

Animal 

Science 

Pre-weaning 

weight gain of 

calves 

Fixed 

genetic 

effects 

More 

effective than 

ordinary least 

squares 

regression at 

decreasing 

multicollinear

ity 

 

[109] 
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