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It has been repeatedly conjectured that the brain retrieves sta-
tistical regularities from stimuli, so that their structural features are
separated from noise. Here we present a new statistical approach al-
lowing to address this conjecture. This approach is based on a new
class of stochastic processes driven by context tree models. Also, it as-
sociates to a new experimental protocol in which structured auditory
sequences are presented to volunteers while electroencephalographic
signals are recorded from their scalp. A statistical model selection
procedure for functional data is presented to analyze the electrophys-
iological signals. This procedure is proved to be consistent. Applied
to samples of electrophysiological trajectories collected during struc-
tured auditory stimuli presentation, it produces results supporting
the conjecture that the brain effectively identifies the context tree
characterizing the source.

1. Introduction. This paper can be summarized as follows.

• We present a new statistical approach allowing to address the con-
jecture that the brain operates as statistician, assigning models to
external stimuli.
• This is done through the introduction of a new class of stochastic

processes driven by context tree models.
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2 DUARTE ET AL.

• This approach leads to a new experimental protocol to test this con-
jecture.
• In order to analyze the electrophysiological signals collected using our

experimental protocol we introduce a new statistical model selection
procedure for functional data.
• We also prove that this procedure is consistent. This is exemplified

with an application to simulated data reproducing some of the features
of the experimental data.
• Applied to samples of electrophysiological trajectories collected by our

team this new functional data statistical selection procedure finds re-
sults which support the conjecture that the brain effectively identifies
the context tree characterizing the source.

Since the pioneer work of von Helmholtz (1867) it has been widely con-
jectured that the brain does statistical model selection by assigning prob-
abilistic models to samples of stimuli. Contemporary neuroscience has ex-
haustively attempted to address this fundamental issue (see for instance
Mumford (1992), Wolpert, Ghahramani and Flanagan (2001), Wolpert and
Flanagan (2001), Lee and Mumford (2003), Kersten, Mamassian and Yuille
(2004), Friston (2005), Summerfield et al. (2006), Körding and Wolpert
(2006), Doya et al. (2007), Friston and Kiebel (2009), Tenenbaum et al.
(2011), Orbán and Wolpert (2011), Meyer and Olson (2011), Friston (2012)
and references herein).

Early evidence that the brain performs probabilistic modeling comes mostly
from behavioral experiments (see, among others, Wolpert, Doya and Kawato
(2003) for a review). There is also evidence that the brain employs predic-
tive coding through the identification of markers of prediction and deviance
detection (Friston (2005), Garrido et al. (2009), Wacongne et al. (2011) and
Wacongne, Changeux and Dehaene (2012)). However, to the best of our
knowledge, none of these papers succeeded in presenting a new statistical
framework in which model selection was rigorously employed to test the
conjecture that the brain assigns probabilistic models to samples of stimuli.
This is precisely what we do in the present paper.

Our approach is based in the introduction of a new class of stochastic
processes driven by context models. Using this new class of stochastic pro-
cesses it is possible to establish a formal relationship between structured
sequences of random stimuli and the stochastic process associated to the
brain processing of the stimuli.

This new framework suggests a new experimental protocol which can
be summarized as follows. A volunteer is exposed to sequences of auditory
stimuli. The sequences are generated step by step by a random source. Elec-
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troencephalographic (EEG) signals are recorded during the exposure to the
auditory sequence of stimuli. The conjecture is that the volonteers’ brain
automatically identifies the context tree characterizing the source. If this is
the case, a signature of the structure of the source should be encoded in the
brain activity. The question is whether this signature can be identified in
the EEG data recorded during the experiment. This is the challenge faced
here.

Considering the electroencephalogram as the realization of a stochastic
process means that we have a problem of statistical model selection with
functional data which is in general a difficult and unsolved issue. However
the stochastic process driven by a context tree model approach adopted
here makes the question treatable. This is done by the introduction of a
new model selection procedure for functional data driven by a context tree
model. This procedure is proved to be consistent. The effective application
of the procedure to EEG data uses the projective method introduced in
Cuesta-Albertos, Fraiman and Ransford (2006).

Let us describe briefly the structure of the random source generating the
auditory stimuli. This source is defined by an algorithm which sets the prob-
abilities of occurrence of each next unit. The algorithm has two components.

• The first component describes a partition of the set of all possible
sequences of past units. This partition is defined using only the final
past units. The number of units used to define the partition is variable
and changes as a function of the past itself.
• The second component is a family of probability measures in the set

of auditory units. This family of measures is indexed by the elements
of the partition. In other terms, the probability of occurrence of a next
unit depends on the element of the partition to which the past up to
that point belongs.

Random sources of this type have been introduced by Rissanen (1983)
under the name of context tree models (CTM). The reason of this name is
the following. Partitions of the past as described above can be represented
by a rooted and labeled tree. In this tree, each element of the partition is
described as a leaf of the tree. Rissanen called each element of the partition,
each leaf, a context.

Introduced by Rissanen (1983) as a universal system for data compression,
the context tree models become known in the statistics community through
Bühlmann and Wyner (1999) in which they appear with the name of variable
length Markov chains (VLMC). Context tree models are stochastic chains
with memory of variable length which is the name adopted in the review
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paper by Galves and Löcherbach (2008) to which we refer the reader for a
self-contained presentation of the field.

This article is organized as follows. In Section 2 we introduce the notation
and basic definitions, including the notion of context tree model, presented
in Subsection 2.1 and the notion of stochastic process driven by a context
tree model presented in Subsection 2.3. The random sources used in our
experimental protocol are examples of context tree models. They are pre-
sented in Subsection 2.2. Our new procedure for statistical model selection
is presented in Section 3. Theorem 3.1 on the consistency of the model se-
lection procedure is also presented in Section 3. The case study with data
obtained using our experimental protocol is presented in Section 4. In par-
ticular in Subsection 4.3 we state Theorem 4.1 on the consistency of the
statistical model selection using the projective method. A simulation study
is presented in Section 5. The proofs of Theorems 3.1 and 4.1 are presented in
Appendices A.1 and A.2 respectively. In Appendix A.3 is proved a technical
lemma needed in Subsection 4.4.

2. Stochastic processes driven by context tree models.

2.1. Context tree models. Let A be a finite alphabet. Given two integers
m,n ∈ Z with m ≤ n, the string (um, . . . , un) of symbols in A is often
denoted by unm; its length is `(unm) = n−m+1. The empty string is denoted
by ∅ and its length is `(∅) = 0. Fixed two strings u and v of elements of A,
we denote by uv the string in A`(u)+`(v) obtained by the concatenation of
u and v. By definition u∅ = ∅u = u for any string u ∈ A`(u). The string u
is said to be a suffix of v if there exists a string s satisfying v = su. This
relation will be denoted by u � v. When v 6= u we say that u is a proper
suffix of v and write u ≺ v. Hereafter, the set of all finite strings of symbols
in A is denoted by A∗ :=

⋃∞
k=1A

k.

Definition 1. A finite subset τ of A∗ is a context tree if it satisfies the
following conditions:

1. Suffix Property. For no w ∈ τ we have u ∈ τ with u ≺ w .
2. Irreducibility. No string belonging to τ can be replaced by a proper

suffix without violating the suffix property.

The set τ can be easily identified with the set of leaves of a rooted tree
with a finite set of labeled branches. The elements of τ will be always denoted
by w.
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Definition 2. The height of the context tree τ is defined as

`(τ) = max{`(w) : w ∈ τ}.

Given a context tree τ , let p = {p(· | w) : w ∈ τ} be a family of probability
measures on A indexed by the elements of τ .

Definition 3. The pair (τ, p) will be called a probabilistic context tree
on A. Each element of τ will be called a context.

Definition 4. Let τ and τ ′ be two context trees. We say that τ is
smaller than τ ′ and write τ � τ ′, if for every w′ ∈ τ ′ there exists w ∈ τ such
that w � w′. If τ 6= τ ′ we write τ ≺ τ ′ and say that τ is strictly smaller than
τ ′.

Definition 5. Let (τ, p) be a probabilistic context tree on A. A time-
homogeneous irreducible stochastic chain (Xn)n∈Z taking values in A is
called a context tree model compatible with (τ, p) if

1. For each integer n ≥ `(τ) and any finite string x−1
−n ∈ An such that

P
(
X−1
−n = x−1

−n

)
> 0, it holds that

(2.1) P
(
X0 = a | X−1

−n = x−1
−n

)
= p
(
a | cτ

(
x−1
−n
))

for all a ∈ A,

where cτ
(
x−1
−n
)

is the only context in τ which is a suffix of x−1
−n.

2. No proper suffix of cτ
(
x−1
−n
)

satisfies (2.1).

Context tree models will also be called stochastic chains with memory of
variable length .

2.2. The random sources used in our experimental protocol. We can now
formally define the two random sources producing the auditory stimuli in
our experimental protocol. Both sources are examples of context tree models
generating random sequences of strong beats, weak beats and silent units.
We use the symbols 0, 1 and 2 to represent respectively silent units, weak
beats and strong beats, so that the alphabet of the two sources is the set
A = {0, 1, 2}.

The sources can be described as follows:
(i) Consider the deterministic sequence (sn)n∈Z either

. . . 2 1 1 2 1 1 2 1 1 2 . . .

or
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. . . 2 1 0 1 2 1 0 1 2 1 0 1 2 . . .

(ii) Fix ε > 0 and denote by (ξn)n∈Z a sequence of independent and
identically distributed Bernoulli random variables such that

(2.2) P (ξn = 0) = 1− P (ξn = 1) = ε.

The parameter ε is the omission probability of the weak beats. For each
n ∈ Z we define

Xn =

{
sn, if sn ∈ {0, 2}
ξn if sn = 1.

The stochastic chain derived from the first deterministic sequence with pe-
riod 3 will be called Ternary random source. The stochastic chain derived
from the second deterministic sequence with period 4 will be called Quater-
nary random source.

It is an easy exercise to check that the Quaternary and Ternary random
sources are context tree models with context trees given respectively by

(2.3) τquat = {000, 100, 200, 10, 20, 01, 21, 2} and τter = {00, 10, 20, 01, 11, 21, 2}.

The graphical representation of these trees is given in Figure 1 and the
associated family of transition probabilities are presented in Table 1.

000100200

10 20 01 21

2

00 10 20 01 11 21

2

Fig 1: Context trees of the Quaternary (left) and Ternary (right) CTM

2.3. Stochastic processes driven by context tree models. In the experi-
mental protocol described in Section 1, we record a segment of EEG for
each single acoustic beat or silent unit generated by the random source. The
conjecture is that the distribution of the EEG chunk depends on the context
associated to the sequence of acoustic units generated up to the present time
step. This suggests the following definition.
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Quaternary CTM

context w p(1|w) p(2|w)

2 1− ε 0
21 0 0
20 0 0
10 1− ε 0
01 0 1
200 1− ε 0
100 0 1
000 0 1

Ternary CTM

context w p(1|w) p(2|w)

2 1− ε 0
21 1− ε 0
20 1− ε 0
11 0 1
10 0 1
01 0 1
00 0 1

Table 1
Transition probabilities of the Quaternary (left) and Ternary (right) context tree models,

for each context.

Definition 6. Let A be a finite alphabet, (τ, p) a probabilistic context
tree on A, (F,F) a measurable space and (Qw : w ∈ τ) a family of probability
measures on (F,F). The bivariate stochastic chain (Xn, Yn)n∈Z taking values
in A × F is a stochastic process driven by a context tree model compatible
with (τ, p) and (Qw : w ∈ τ) if the following conditions are satisfied,

1. (Xn)n∈Z is a stochastic chain with memory of variable length compat-
ible with (τ, p).

2. For any integers m ≤ n, any string xnm−`(τ)+1 ∈ A
n−m−`(τ) and any

sequence Jm, . . . , Jn of F-measurable sets,

P
(
Ym ∈ Jm, . . . , Yn ∈ Jn|Xn

m−`(τ)+1 = xnm−`(τ)+1

)
=

n∏
k=m

Qcτ (x
k
k−`(τ)+1)(Jk),

where cτ (xkk−`(τ)+1) is the context in τ assigned to the string of sym-

bols xkk−`(τ)+1.

The process (Xn)n∈Z will be called the source chain and (Yn)n∈Z will be
called the response chain.

Example 1. Our experimental protocol can be presented in the frame-
work of stochastic processes driven by context tree models. This is done as
follows.

• The source chain (Xn)n∈Z represents the sequence of units of the au-
ditory stimuli. This chain takes values in the alphabet {0, 1, 2} where
1 (respectively 2) indicates that the auditory unit is a weak (respec-
tively strong) beat and 0 indicates a silent unit. The chain (Xn)n∈Z
represents either the sequence of the stimuli produced by the Ternary
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or the Quaternary random source which have the context trees defined
in (2.3) and graphically represented in Figure 1.
• The response chain (Yn)n∈Z is constituted by the successive chunks of

EEG data, each chunk corresponding to an auditory unit. This means
that each Yn is a real function Yn = (Yn(t), t ∈ [0, T ]), where T is the
time distance between the onsets of two consecutive auditory stimuli.
The sample space F is the space L2([0, T ]) and F is the Borel σ-algebra
on F .
• Finally, (Qw, w ∈ τ) is a family of probability measures on L2([0, T ]).

The goal of the experimental protocol sketched in Section 1 is to produce
empirical evidence supporting the conjecture that the brain does statistical
model selection. In our case, this means checking whether it is possible to
retrieve the structure of the source producing the auditory stimuli from
a statistical analysis of the EEG data. Using the formalism of stochastic
processes driven by context tree models described above this question can
be formulated as follows. Is it possible to recover the context tree τ defining
the random source generating the chain (Xn)n∈Z from the observable sample
Y1, . . . , Yn? The statistical framework to address this question is presented
in the next section.

3. Statistical model selection. In this section we address the prob-
lem of statistical model selection in the class of the stochastic processes
driven by context tree models. More precisely, let (F,F) be a measur-
able space, (τ̄ , p̄) be a probabilistic context tree on a finite alphabet A
and (Q̄w : w ∈ τ̄) a family of probability measures on (F,F). Finally,
let (X1, Y1), . . . , (Xn, Yn), with Xk ∈ A and Yk ∈ F for 1 ≤ k ≤ n, be a
sample produced by a stochastic process driven by the context tree model
compatible with (τ̄ , p̄) and (Q̄w : w ∈ τ̄). Our task is to present a statistical
procedure to select a context tree from the sample (X1, Y1), . . . , (Xn, Yn).
Before presenting our statistical selection procedure we need two more def-
initions.

Definition 7. Let τ be a context tree and s a finite string of symbols
in A. We define the branch in τ induced by s as the set Bτ (s) = {w ∈ τ :
w = as for some a ∈ A}.

Given a sample (X1, . . . , Xn) of symbols in A and a finite string u ∈ A∗,
we write Nn(u) to denote the number of occurrences of the string u in the
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sample (X1, . . . , Xn), that is

Nn(u) =

n∑
m=l(u)

1{Xm
m−`(u)+1 = u}.

Definition 8. Given integers n > L ≥ 1, an admissible context tree
of maximal height L, for the sample (X1, . . . , Xn) of symbols in A, is any
context tree τ such that

1. w ∈ τ if and only if `(w) ≤ L and Nn(w) ≥ 1.
2. Any string u ∈ A∗ with Nn(u) ≥ 1 is a suffix of some w ∈ τ or has a

suffix w ∈ τ .

For any pair of integers n > L ≥ 1 and any string u ∈ A∗ with `(u) ≤ L,
the set of indexes belonging to {L, . . . , n} in which the string u appears in
sample (X1, . . . , Xn) is denoted by In(u), that is

In(u) = {L ≤ m ≤ n : Xm
m−`(u)+1 = u}.

Observe that by definition |In(u)| = Nn(u). If In(u) = {m1, . . . ,mNn(u)},
for each mk ∈ In(u), we set Y

(u)
k = Ymk , so that (Y

(u)
1 , . . . , Y

(u)
Nn(u)) is the

subsample of Y n
1 induced by the string u.

Finally, let D be a measurable function D :
⋃∞
m1=1,m2=1 F

m1×Fm2 → R+

and (cn)n≥1 be a sequence of positive real numbers satisfying, for any pair
of strings u, v ∈ A∗ with max{`(u), `(v)} ≤ L, the following conditions

C.1 if there exists w ∈ τ̄ such that w � u and w � v, it holds

lim
n→∞

P (D
(
(Y

(u)
1 , . . . , Y

(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))

)
> cn) = 0,

C.2 if u, v ∈ Bτ̄ (s) for some s ∈ A∗ and Q̄u 6= Q̄v, then

lim
n→∞

P (D((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) ≤ cn) = 0.

Our selection procedure can be now described as follows. For given inte-
gers 1 ≤ L < n, let Tn be the largest admissible context tree of maximal
height L for the sample (X1, . . . , Xn). The largest means that if τ is any other
admissible context tree of maximal height L for the sample Xn

1 , then τ � Tn.
For any string s ∈ A∗ with maximal length and such that |BTn(s)| ≥ 2, we
test the null hypothesis

H
(s)
0 : L

(
Y

(as)
1 , . . . , Y

(as)
Nn(as)

)
= L

(
Y

(bs)
1 , . . . , Y

(bs)
Nn(bs)

)
, for all a, b ∈ A,
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using the test statistic

(3.1) ∆n(s) = max
a,b∈A

D((Y
(as)

1 , . . . , Y
(as)
Nn(as)), (Y

(bs)
1 , . . . , Y

(bs)
Nn(bs))).

We reject the null hypothesis H
(s)
0 when ∆n(s) > cn. When the null hypoth-

esis H
(s)
0 is not rejected, we prune the branch BTn(s) in Tn and set as a new

candidate tree
Tn =

(
Tn \ BTn(s)

)
∪ {s}.

On the other hand, if the null hypothesis H
(s)
0 is rejected, we keep BTn(s) in

Tn and H
(u)
0 is not tested any longer for all other strings u ∈ A∗ such that

u � s.
In each pruning step take always the largest string s ∈ A∗ which has not

been tested yet. This pruning procedure is repeated until no more pruning is
performed. We denote by τ̂n the final context tree obtained by this pruning
procedure. The formal description of the above procedure is provided in
Algorithm 1 as a pseudo code.

Algorithm 1

Input: A sample (X1, Y1), . . . , (Xn, Yn) with Xn ∈ A and Yn ∈ F , a measurable function
D and the sequence (cn)n≥1 fulfilling conditions C.1 and C.2, and a positive integer
L.

Output: A tree τ̂n
1: τ ← Tn
2: Flag(s)← “not visited” for all internal node s of τ such that |Bτ (s)| ≥ 2
3: for k in L to 1 do
4: while ∃s: `(s) = k, Flag(s) = “not visited” and |Bτ (s)| ≥ 2 do
5: take s such that `(s) = k, Flag(s) = “not visited” with |Bτ (s)| ≥ 2

6: compute the test statistic ∆n(s) to test H
(s)
0

7: if ∆n(s) > cn then
8: Flag(u)← “visited” ∀u � s such that |Bτ (u)| ≥ 2
9: else

10: Flag(s)← “visited”
11: τ ← (τ \Bτ (s)) ∪ {s}
12: end if
13: end while
14: end for
15: Return τ̂n = τ.

The consistency of Algorithm 1 is the content of our first theorem.

Theorem 3.1. Let (Xn
1 , Y

n
1 ) be a sample produced by a stochastic process

driven by a context tree model compatible with (τ̄ , p̄) and (Q̄w : w ∈ τ̄) and let
τ̂n be the context tree selected from the sample by Algorithm 1 with L ≥ `(τ).
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If the statistic D and the threshold sequence (cn)n≥1 satisfy conditions C.1
and C.2 then

lim
n→∞

P (τ̂n 6= τ̄) = 0.

4. Case study: retrieving context trees from EEG data. A total
of 20 healthy volunteers (9 female, mean age 30, standard deviation 6.8, 18
right handed) was evaluated. All the volunteers did not have any neuro-
logical pathology. The volunteers signed a informed consent term, after the
nature of the study and the protocol to be performed had been completely
understood. This experimental protocol was approved by the local ethical
research committee (process number 22047613.2.0000.5261).

4.1. Experimental protocol. The experimental protocol is the one briefly
sketched in Section 1. The experiment consisted in exposing volunteers to
sequences of auditory stimuli defined as strong beats, weak beats and silent
units, indicated respectively by symbols 2, 1 and 0. The sequence of auditory
stimuli were produced by the context tree models called in Subsection 2.2
Ternary and Quaternary random sources. Herein, the omission probability
ε (see equation (2.2)) took the value 0.2.

A third random source was employed to separate the samples generated
by the Ternary and Quaternary random sources. This third random source
produced sequences of independent auditory stimuli taking the values 0, 1
and 2 with probability 1/3. The corresponding context tree reduces to the
single root with no branches. The goal of introducing this unpredictable se-
quence was to shuffle cards before the volunteer is exposed to a next sample.

The volunteer was exposed to two 12 min blocks of samples generated by
each of the random sources. The blocks were separated from each other by
a period of time ranging from 5 to 10 min, during which data collection was
interrupted. Each sample was a concatenation of three 1 min sequences of
auditory units generated independently by the same random source. Each
sequence of auditory units was separated from the next one by a 15 seconds
silent interval.

All volunteers were exposed to two different orderings, either Ternary,
Independent, Quaternary or Quaternary, Independent, Ternary. For half of
the volunteers the starting block was Ternary, Independent, Quaternary and
the second block was Quaternary, Independent and Ternary. The inverse
ordering was used with the other half, to balance possible order effects.

Presentation software (Presentation Mixer as a Primary Buffer and a
Sound card: SoundMAX HD Audio) was used to play the auditory sequences
through a headset. The loudness of the stimuli was individually regulated
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before the experiment start by presenting the strong beat and asking the
volunteer to adjust it up to a comfortable level (Range: 0.1-0.3 dB).

4.2. Data acquisition and pre-processing. Electroencephalographic record-
ing was performed by means of a 128 channels system (Geodesic HidroCel
GSN 128 EGI, Electrical Geodesic Inc.) during the exposure to the auditory
sequence of stimuli. The electrode cap, previously immersed in saline solu-
tion (KCl), was dressed into the volunteer’s scalp. Volunteers were instructed
to close their eyes and remain quiet throughout the experiment.

The EEG signal was amplified with a nominal gain of 20 times. The acqui-
sition was performed in a sampling frequency of 250Hz. During acquisition
the signal was analogically filtered (Butterworth first order band-pass fil-
ter of 0.1-200Hz; Geodesic EEG System 300, Electrical Geodesic Inc.). The
electrode positioned on the vertex (Cz) was used as reference.

The data was preprocessed offline using EEGLAB (Delorme and S.Makeig
(2004)) running in MATLAB environment (MathWorks, Natick, MA, ver-
sion R2012a). Signals were filtered with a Butterworth fourth order band-
pass filter of 1-30 Hz. Artifacts above and below 100 µV were removed. The
data was then segmented into events of 450ms, each one indexed by the cor-
responding auditory unit. Finally, baseline correction was performed using
the signal collected 50 ms before each event start (see figure 2).

Fig 2: EEG time evolution recorded in seven electrodes during the exposure
to auditory units produced by the Quaternary source. Solid vertical lines
indicate the beginning of the successive auditory units indexed by the sym-
bols 2, 1 and 0. Dashed lines indicate the boundaries of successive chunks of
EEG signals constituting the sequence (Yn)n∈Z. The distance between each
dashed line and the next solid line is 50ms. The amplitude scale of 45 µV is
indicated as a vertical interval on right-hand side of the figure.
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4.3. Statistical framework. In this section we discuss how to apply the
theoretical framework presented in Section 3 for the case where the driven
process (Yn)n∈Z is a sequence of chunks of EEG signals produced by our
experimental protocol as described in Example 1.

The framework is the following. The stochastic process driven by a context
tree model (Xn, Yn)n∈Z is such that Yn ∈ L2([0, T ]) for some T > 0. To use
Theorem 3.1 we need to define a statistic for samples of elements of L2([0, T ])
and a threshold sequence (cn)n≥1 satisfying both conditions C.1 and C.2.
This will be done by using the projective method (Cuesta-Albertos, Fraiman
and Ransford (2006)) as follows.

Let 1 ≤ L < n be positive fixed integers and (X1, Y1), . . . , (Xn, Yn) be a
sample produced by a stochastic process driven by a context tree model with
Yk ∈ L2([0, T ]), for 1 ≤ k ≤ n, for some T > 0. Given a string u ∈ A∗ with
`(u) ≤ L and an element h ∈ L2([0, T ]) define the empirical distribution
associated to string u and direction h as

Q̂u,hn (t) :=
1

Nn(u)

Nn(u)∑
m=1

1(−∞,t](〈Y (u)
m , h〉), t ∈ R,

where for any pair of functions f, h ∈ L2([0, T ]),

〈f, h〉 =

∫ T

0
f(t)h(t)dt.

For a given pair of finite strings u and v with max{`(u), `(v)} ≤ L and
h ∈ L2([0, T ]), the Kolmogorov-Smirnov distance between the empirical dis-

tributions Q̂u,hn and Q̂v,hn is denoted by

KS(Q̂u,hn , Q̂v,hn ) := sup
t∈R
|Q̂u,hn (t)− Q̂v,hn (t)|.

Let us then define for any pair of strings w, s ∈ A∗ with {`(u), `(v)} ≤ L
and h ∈ L2([0, T ]),

Dh((Y
(u)
1 , . . . , Y

(u)
Nn(u)

), (Y
(v)
1 , . . . , Y

(v)
Nn(v)

)) =

√
Nn(u)Nn(v)

Nn(u) +Nn(v)
KS(Q̂u,hn , Q̂v,hn ).

Under some assumptions on the family of probability measures gener-
ating the response process (Yn)n∈Z, it will be proved that if the direc-
tion h appearing in Dh is chosen as a realization of a Brownian motion
W = (W (t) : 0 ≤ t ≤ T ) then the statistic DW satisfies conditions (C.1)
and (C.2) for almost all realizations W = (W (t) : 0 ≤ t ≤ T ). These are
the contents of Propositions 1 and 2 in the Appendix A.2.
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For this reason, for any string s ∈ A∗ and any realization of a Brownian
motion W , we define

(4.1) ∆n(s) := ∆W
n (s) = max

a,b∈A
DW ((Y

(as)
1 , . . . , Y

(as)
Nn(as)

), (Y
(bs)
1 , . . . , Y

(bs)
Nn(bs)

)).

To state the consistency theorem in this framework we need the following
assumption.

Assumption 1. The associated family (Q̄w : w ∈ τ̄) of probability mea-
sures on (L2([0, T ]),B(L2([0, T ]))) is non-atomic and, for any string s ∈ A
such that |Bτ̄ (s)| ≥ 2, there exist w,w′ ∈ Bτ̄ (s) such that Q̄w 6= Q̄w

′
and

either Q̄w or Q̄w
′

satisfy the Carleman condition.

For the sake of completeness we recall the Carleman condition, as well
as the notion of family of non-atomic probability measures for probability
measures on (L2([0, T ]),B(L2([0, T ]))). A probability measure P defined on
(L2([0, T ]),B(L2([0, T ]))) is said to satisfy the Carleman condition if all the
absolute moments mn :=

∫
||h||nP (dh), n ≥ 1 are finite and∑
n≥1

m−1/n
n =∞.

A probability measure P on (L2([0, T ]),B(L2([0, T ]))) is non-atomic if for
any h ∈ L2([0, T ]), the distribution P h is non-atomic. Let V be a finite
set of indexes and (Pi : i ∈ V ) be a family of probability measures on
(L2([0, T ]),B(L2([0, T ]))). We say that (Pi : i ∈ V ) is non-atomic if for all
i ∈ V , the probability measure Pi is non-atomic.

Theorem 4.1. Let (X1, Y1), . . . , (Xn, Yn) be a sample produced by a
stochastic process driven by a context tree model compatible with (τ̄ , p̄) and
(Q̄w : w ∈ τ̄) and let τ̂n be the context tree selected from the sample by
Algorithm 1 with L ≥ `(τ). If (Q̄w : w ∈ τ̄) satisfies Assumption 1 and the
threshold sequence (cn)n≥1 is such that cn →∞ and cnn

−1/2 → 0 as n→∞,
then

lim
n→∞

P (τ̂n 6= τ̄) = 0.

The proof of Theorem 4.1 is postponed to Appendix A.2.

4.4. Data analysis. In what follows the application of the statistical pro-
cedure described in Section 4.3 is detailed. The analysed data set may be
summarized as follows. Let V = {v1, v2, . . . , v20} denote the set of 20 volun-
teers under consideration, E = {e1, e2, . . . , e18} the set of all electrodes be-
longing to the system 10-20 but the reference electrode Cz, and S ={Ternary,
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Quaternary} the set of possible random sources. In the sequel, to avoid a
cumbersome notation, we shall describe the data set as well as the applica-
tion of the statistical procedure used to select a context tree from this data
set for a fixed volunteer v ∈ V and random source s ∈ S.

The sample of the auditory sequence produced by the random source
s ∈ S exposed to the volunteer v ∈ V is then denoted by

X1, . . . , Xn

where n is the sample size. Since the time of exposure (which is the same
for all volunteers) of each random source is 6 min and the length of the
interval between two consecutive auditory units is 450ms, it follows that the
sample size n = 800. The corresponding EEG recording restricted to the set
of electrodes E is denoted by

Y1, . . . , Yn,

where [0, T ] ∈ t 7→ Yk(t) =
(
Y e
k (t) : e ∈ E

)
, with T = 450ms, is the vector of

EEG chunks associated to the k-th auditory unit Xk, with 1 ≤ k ≤ n. Being
250Hz the sampling frequency of the EEG acquisition and T = 450ms, all
the EEG chunks have 113 values. This requires that all the computations
necessary to numerically implement our statistical procedure are done with
discrete time t = 1, . . . 113. Therefore, the sample data set is

(4.2) (X1, Y1) . . . , (Xn, Yn),

where n = 800 and Yk ∈ R113×18, for all 1 ≤ k ≤ n.
An extension of the Algorithm 1 (henceforward called Algorithm 2) is

then employed to select a context tree from the sample appearing in (4.2).
The algorithm 2 works as follows. For each electrode e ∈ E , apply Algorithm
1 to the data (X1, Y

e
1 ) . . . , (Xn, Y

e
n ) replacing the steps 6, 7 and 8 by the

following procedure. Hereafter fix an integer N ≥ 1.

• Generate N independent realizations W1, . . . ,WN of the Brownian mo-
tion W = (W (t) : t ∈ [0, T ]).
• Compute the test statistics ∆W1

n (s), . . . ,∆WN
n (s).

• Define the statistic

∆̃n(s) =
N∑
m=1

1{∆Wm
n (s) > cn}

and if ∆̃n(s) is large, that is ∆̃n(s) > C1 for some constant C1 > 0,
perform step 8 of Algorithm 1 . Otherwise, perform steps 10 and 11 of
Algorithm 1.
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Using more than one random projection we increase the power of the test. We
denote by τ̂ en the context tree selected from the sample (X1, Y

e
1 ) . . . , (Xn, Y

e
n )

by applying this powerful version of Algorithm 1. Finally, setting for any
w ∈ A∗,

Zn(w) =
∑
e∈E

1{w ∈ τ̂ en},

the context tree assigned τ̂n to sample (4.2) is then defined as

τ̂n = {w ∈ A∗ : Zn(w) > C2},

for some constant C2 > 0.
The threshold values cn, C1 and C2 are chosen in such a way

P (τ̄ � τ̂n) ≤ 0.1 ,

where τ̄ is the context tree defining the stochastic chain (Xn)n∈Z. The proof
of the existence of such a triple is the content of Lemma 1. Its proof is
postponed to Appendix A.3. The boundedness of the EEG signals (after the
pre-processing step) implies that their underlying family of probability dis-
tributions satisfies Carleman condition. Thus the consistency of Algorithm
2 follows immediately from Theorem 4.1.

4.5. Results. The results obtained from the analysis of the EEG recorded
while the volunteers were exposed to the Quaternary and Ternary sources
are summarized in Figures 3 and 4.

In the Quaternary case this summary shows that

- 15 of the context trees correctly have 2 as a context;
- 19 of the context trees correctly do not have 1 as a context;
- 18 of the context trees correctly do not have 0 as a context;
- 12 of the context trees correctly satisfy the 3 features above. This

means that 12 of the twenty volunteers successfully identify the correct
context tree truncated at height 2.

In the Ternary case the summary shows that

- only 3 of the context trees correctly have 2 as a context;
- 16 of the context trees correctly do not have 1 as a context;
- 11 of the context trees correctly do not have 0 as a context.

A main reason for context misidentifications in the data analysis could be
the small set of samples of EEG signals used in each prune-or-keep decision.
For instance in the case of the Quaternary source, 14 volunteers failed to
identify 000 as a context and 7 volunteers incorrectly decide not to prune the
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Fig 3: Context tree summary for the Quaternary data. This con-
text tree summarizes the twenty context trees obtained from the EEG data
recorded while the volunteers are exposed to the Quaternary source. White
nodes indicate the number of subjects which correctly identify the node as
not being a context. Black nodes indicate the number of subjects which
correctly identify the node as a context.

Fig 4: Context tree summary for the Ternary data. This context tree
summarizes the twenty context trees obtained from the EEG data recorded
while the volunteers are exposed to the Ternary source. White nodes indicate
the number of subjects which correctly identify the node as not being a
context. Black nodes indicate the number of subjects which correctly identify
the node as a context.

branch 020. This is not surprising when we observe that for each volunteer,
the strings 000 and 020 appear at most 14 and 15 times respectively in
the sample. In the Ternary source, the strings 020 and 002 appear at most
17 and 15 times with average number occurrences equal to 10.3 and 10.7
respectively per volunteer.

In general, the results obtained in the Ternary case are less impressive
than those obtained for the Quaternary case. This could be a consequence
of the fact that in the Ternary case the two random units (which could take
the values 0 or 1) occur successively, while in the Quaternary case the two
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random units are separated by deterministic units.
In general, the question of the importance of the specific features of the

context trees used in our experimental setup should be better discussed.
This will be done in forthcoming article.

5. Simulation study. We perform simulation studies for stochastic
processes driven by Quaternary and Ternary context tree models presented
in Figure 1 and Table 1. Throughout this section, τ̄ is either the Quaternary
or Ternary context tree. For each of the two context tree models we con-
sider two different possibilities, P1 and P2 to define the family of probability
measures (Q̄w : w ∈ τ̄).

If we chose a random function h ∈ L2([0, T ]) according to a probability
measure Q on L2([0, T ]) and then project h on a realization of a Brown-
ian motion W = (W (t) : t ∈ [0, T ]), the resulting variable has a normal
distribution with mean 0 and whose variance is given by

(5.1) V (h) =

∫ T

0

∫ T

0
min{s, t}h(s)h(t)dsdt.

In particular, the elements of set Vw = {V1, . . . , VNn(w)}, where for each

1 ≤ k ≤ Nn(w), Vk = V (Y
(w)
k ) (recall the definition of Y

(w)
k in Subsection 3)

have normal distribution whose variance depends on the context w through
the distribution Qw ◦ V −1. Although the distribution Qw is unknown we
always can compute the set of variances through formula (5.1) from our
data set. This set of variances is used to define the two possibilities P1 and
P2 considered in the simulation study. In this way, we incorporate some of
the features of the experimental data in the simulated data.

For each context tree model, we choose an electrode of a specific volunteer.
For either model the electrode and volunteer chosen were the ones with best
performance in the statistical analysis. In the simulation associated to the
Quaternary context tree model EEG signals recorded from the electrode
E58 of the volunteer V 19 were used. In the Ternary case, the electrode E92
of volunteer V 05 was chosen. For each context w ∈ τ̄ we compute, using
(5.1), the set of variances Vw of the EEG signals associated to w.

The choices P1 and P2 defining the family of probability measures (Q̄w :
w ∈ τ̄) are given now. In P1, for each context w ∈ τ̄ , Q̄w is a Gaussian
distribution where the mean µw is the average value over the set Vw, and the
variance is σ2 = 10−4. The right (left) side of the Table 2 shows the empirical
averages of Vw, for each context w ∈ τ̄ , in the Quaternary (Ternary) case.
In P2, for each w ∈ τ̄ , we take Qw as the Uniform distribution over the set
Vw. All the algorithms are provided as supplementary materials.



RETRIEVING A CONTEXT TREE FROM EEG DATA 19

Transition probabilities of the response chain on P1

V05 Electrode 92 V19 Electrode 58

context(w) µw context(w) µw

2 1.2721 2 3.4438
21 1.2699 21 3.1380
11 1.4476 01 3.5653
01 0.8367 20 3.6105
20 1.0585 10 3.7674
10 1.2667 200 4.7640
00 1.2264 100 2.9685

000 3.5353

Table 2
Transition probabilities of the Quaternary (right) and Ternary (left) stochastic processes
in the P1 protocol, when Qw = N (µw, 104) and µw is the empirical average of the set of

variances of the EEG signals associated to each context

We considered four choices of samples size n: 50 000, 100 000, 150 000 and
200 000 for each one of the two scenarios, P1 and P2. For each value of
n we simulated 100 samples. Then, for each sample we selected a context
tree according the statistical model selection described in Section 3, starting
from the complete admissible context tree of maximal length 3.

The right (left) side of the Tables 3 and 4, indicates the number of times
that, within the 100 simulated samples, the Quaternary (Ternary) context
tree was correctly selected by the algorithm under the possibilities P1 and P2
respectively. We also report the number of times the second most selected
context tree was chosen by the algorithm. In the Quaternary case in all
simulation protocols the second most selected context tree is the Quaternary
context tree with the contexts {21, 01} replaced by the symbol 1. In the
Ternary case, in all simulation protocols the second most selected context
tree is the one which has the symbol 0 as a context, instead of {00, 10, 20},
and keeps all the other contexts of the Ternary context tree.

APPENDIX A: MATHEMATICAL PROOFS

A.1. Proof of Theorem 3.1.

Proof of Theorem 1. Define Cτ̄ = {w ∈ τ̄ : |Bτ̄ (suf(w))| ≥ 2} where
suf(w) ∈ A∗ is the string obtained from the string w by removing its last
symbol. If w = w−1

−k for some k ≥ 1, then suf(w) = w−1
−(k−1) with the

convention that w−1
0 = ∅. Define also the following events

Un =
⋃
w∈Cτ̄

{∆n(suf(w)) ≤ cn} and On =
⋃
w∈τ̄

⋃
s�w:
`(s)≤L

{∆n(s) > cn}.
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Number of times each context tree was selected in 100 repetitions in P1

Ternary proportions Quaternary proportions

Sample
size

Sample
size

50.000 11 82 50.000 30 63
100.000 43 54 100.000 84 12
150.000 74 15 150.000 96 1
200.000 90 3 200.000 96 0

Table 3
Number of times, within 100 repetitions, in which each context tree was selected by the
algorithm in the Ternary (left) and Quaternary (right) hidden processes under the P1

protocol

Number of times each context tree was selected in 100 repetitions in P2

Ternary proportions Quaternary proportions

Sample
size

Sample
size

50.000 7 88 50.000 26 36
100.000 31 64 100.000 84 9
150.000 71 25 150.000 95 0
200.000 97 0 200.000 99 0

Table 4
Number of times, within 100 repetitions, in which each context tree was selected by the
algorithm in the Ternary (left) and Quaternary (right) hidden processes under the P2

protocol

It follows from the definition of the Algorithm 1 that P (τ̂n 6= τ̄) = P (Un) +
P (On). Thus, we need to prove that both P (Un) and P (On) converge to 0
as n → ∞. We start by proving that P (Un) → 0 as n → ∞. By the union
bound, we see that

(A.1) P (Un) ≤
∑
w∈τ̄

P (∆n(suf(w)) ≤ cn).

Since |Bτ̄ (suf(w))| ≥ 2, there exits a pair u, v ∈ Bτ̄ (suf(w)) whose the
associated distributions Q̄u and Q̄v on F are different. Observing that

{∆n(suf(w)) ≤ cn} ⊂ {D((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v)) ≤ cn},

the Condition C.2 then implies that P (Un)→ 0 as n→∞.
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To conclude the proof it remains to show that P (On) → 0 as n → ∞.
Using again the union bound, we have

(A.2) P (On) ≤
∑
w∈τ̄

∑
s�w:
`(s)≤L

P (∆n(s) > cn).

Observing that

{∆n(s) > cn} =
⋃
a,b∈A

{D((Y
(as)

1 , . . . , Y
(as)
Nn(as)), (Y

(bs)
1 , . . . , Y

(bs)
Nn(bs)) > cn},

we deduce from Condition C.1 and inequality (A.2) that P (On) → 0 as
n→∞.

A.2. Proof of Theorem 4.1. Theorem 4.1 will follow easily from the
two propositions below. The first proposition states that if the family {Q̄w :
w ∈ τ̄} is continuous and the threshold sequence (cn)n≥1 satisfies cn → ∞
as n→∞, we have that for each h ∈ L2([0, T ]), the statistic Dh and (cn)n≥1

fulfill the condition C.1. More precisely,

Proposition 1. Let τ̄ be a context tree and {Q̄w : w ∈ τ̄} be a family
of continuous probability distributions on (F,F). For any positive integer

L ≥ `(τ), context w ∈ τ̄ , strings u, v ∈ ∪L−`(w)
k=1 Ak such that such that w � u

and w � v , h ∈ F \ {0} and (cn)n≥1 such that cn →∞ as n→∞, it holds
that

lim
n→∞

P (Dh((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) > cn) = 0.

Proof. Indeed, by recurrence the random variables Nn(u) and Nn(v)
diverge as n → ∞. Hence, Theorem 3.1(a) of Cuesta-Albertos, Fraiman
and Ransford (2006) implies that the distribution of the random variable

Dh((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) is independent of the strings u and

v, and also of the direction h ∈ F \ {0}. Moreover, for each t > 0, it holds
that

(A.3) lim
n→∞

P (Dh((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) > t) := G(t),

where G(t) = 2
∑∞

k=1(−1)k+1e−2k2t2 . Given ε > 0, let t0 be a positive real
number such that G(t) < ε/2 for all t ≥ t0. Such t0 exits since t 7→ G(t) is
an non-decreasing function such that G(t) → 0 as t → ∞. Hence, for all n
sufficiently large so that cn ≥ t0 and

|P (Dh((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) > t0)−G(t0)| < ε/2.
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As a consequence for all n large enough

P (Dh((Y
(u)

1 , . . . , Y
(u)
Nn(u)), (Y

(v)
1 , . . . , Y

(v)
Nn(v))) > cn) < ε,

which concludes the proof.

We will now show that under Assumption 1 and assuming that (cn)n≥1

is such that cn →∞ and cnn
−1/2 → 0 as n→∞, for almost all realizations

of a Brownian motion W = (W (t) : t ∈ [0, T ]), the statistic DW and the
threshold sequence (cn)n≥1 also fulfill Condition C.2. This is the content of
the second proposition.

Proposition 2. For any (cn)n≥1 satisfying cn → ∞ and cnn
−1/2 → 0

as n → ∞, and any family {Q̄w : w ∈ τ̄} of probability distributions on
(L2([0, T ]),B(L2([0, T ]))) verifying Assumption 1, there exists a pair w,w′ ∈
τ̄ such that for almost all realization of a Brownian motion W = (W (t) :
t ∈ [0, T ]) on [0, T ],

lim
n→∞

P (DW ((Y
(w)

1 , . . . , Y
(w)
Nn(w)), (Y

(w′)
1 , . . . , Y

(w′)
Nn(w′))) ≤ cn) = 0.

Proof. For each n ≥ 1 and h ∈ L2([0, T ]) \ {0}, define

Nn :=

√
Nn(w) +Nn(w′)

Nn(w)Nn(w′)
and Zhn :=

δn

KS(Q̂h,wn , Q̂h,w
′

n )
Nn,

if min{Nn(w), Nn(w)} ≥ 1 and KS(Q̂h,wn , Q̂h,w
′

n ) > 0. Otherwise, we set
Nn = Zhn = 0. Notice that for any h ∈ L2([0, T ]) \ {0},

{DW ((Y
(w)

1 , . . . , Y
(w)
Nn(w)), (Y

(w′)
1 , . . . , Y

(w′)
Nn(w′))) ≤ cn} = {Zhn ≥ 1},

so that the result will follow immediately once we prove that for almost all
realization of a Brownian motion W on [0, T ], P-almost surely ZWn → 0 as
n→∞.

By the strong law of large number for context tree models, we have P-
almost surely

(A.4) lim
n→∞

n1/2Nn =
p(w) + p(w′)

p(w)p(w′)
.

Now Theorem 3.1(b) of Cuesta-Albertos, Fraiman and Ransford (2006) im-
plies that for almost all realization of a Brownian motion W on L2([0, T ]),
P-almost surely

(A.5) lim inf
n→∞

KS(Q̂h,wn , Q̂h,w
′

n ) > 0.
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Since cnn
−1/2 → 0 as n→∞, it follows from (A.4) and (A.5) that for almost

all realization of a Brownian motion W on [0, T ], P-almost surely

ZBn =
(n−1/2δn)

KS(Q̂B,wn , Q̂B,w
′

n )
(n1/2Nn)→ 0 as n→∞.

The proof of Theorem 4.1 is now easy.

Proof of Theorem 4.1.. Indeed, proceed as in the proof of Theorem
3.1. Propositions 1 implies that the right-hand side of (A.1) vanishes as
n → ∞, while the right-hand side of (A.2) vanishes as n → ∞ thanks to
Propositions 2.

A.3. Lemma 1. In what follows, for each n ≥ 1, let τ̂n be the context
tree selected by applying Algorithm 2 to the sample data

(X1, Y1), . . . (Xn, Yn),

where for each 1 ≤ m ≤ n, Ym = (Y e
m : e ∈ E) for some finite set of indexes E ,

and for e ∈ E , the sample (X1, Y
e

1 ), . . . (Xn, Y
e
n ) is produced by a stochastic

process driven by a context tree compatible with a probabilistic context tree
(τ̄ , p̄) (recall the setup presented in Subsection (4.4)). The Theorem 1 reads
the following.

Lemma 1. Given α ∈ (0, 1] and n ≥ 1, there exit cn, C1 and C2 such
that

P (τ̄ � τ̂n) ≤ α.

Proof. Given α1 ∈ (0, 1], using Kolmogorov-Smirnov statistic properties
we may find a threshold value cn such that for any finite string s ∈ A∗ with
s /∈ τ̄ and any realization of a Brownian motion W = (W (t) : t ∈ [0, T ]), it
holds

P (∆W
n (s) > cn) ≤ α1.

In the sequel we write ∆̃n(s) = ∆̃e
n(s) to stress the dependence on e ∈ E . By

the independence of W1, . . . ,WN , it follows that conditioning on Y e
1 , . . . Y

e
n ,

the random variable ∆̃e
n(s) is stochastically dominated by a Binomial ran-

dom variable B(N,α1). From this it is straightforward to deduce that for
any given α2 ∈ (0, 1], it is possible to find a constant C1 such that for any
finite string s /∈ τ̄ ,

P (∆̃e
n(s) > C1) ≤ α2.
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Since for any s ∈ A∗, {s ∈ τ̂ en} ⊂ {∆̃e
n(suf(s)) > C1} (recall the definition

of τ̂ en given in Subsection 4.4), it follows from the inequality above that for
any s /∈ τ̄ ,

P (s ∈ τ̂ en) ≤ α2.

Notice that in Algorithm 2 all the Brownian random directions chosen to
compute τ̂ en and τ̂ e

′
n are independent for each e, e′ ∈ E . We may deduce

(similarly as above) that conditioning on (Y1, . . . Yn), the random variable
Zn(s) with s /∈ τ̄ is stochastically bounded a Binomial random variable
B(|E|, α2). It follows then that given any α ∈ (0, 1], we may chose C2 in
such a way that

P (τ̄ � τ̂n) ≤
∑
w∈τ̄

∑
s�w:
`(s)≤L

P (Zn(s) > C2) ≤ α.
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SUPPLEMENTARY MATERIAL

Supplement A: Data and Scripts
(http://www.e-publications.org). The directory SUPPLEMENT contains the
subdirectories DATASET and SCRIPTS. The data files for each volunteer
as well as a Readme file which contains the data description are available in
the directory DATASET. The SCRIPTS directory contains three subdirec-
tories PRE-PROCESSING, SIMULATION and PROJECTIVE-METHOD.
In the PRE-PROCESSING directory is placed all the scripts concerning
the pre-processing of the dataset, briefly described in Subsection 4.2. In
the SIMULATION directory the scripts used in Section 5 are provided. The

http://www.e-publications.org
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PROJECTIVE-METHOD directory contains all the scripts used in the data
analysis. Each one of theses subdirectories include also a Readme files ex-
plaining how to use the scripts.
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