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region is included in that for which p = 1 pl, and further for 
p 2 0 each region is included in that obtained by using P, 
and Pz, the maximum values of uf and ~2. Therefore Cfb 
is given by (3), as desired. 

IV. DISCUSSION 

We have demonstrated a feedback coding scheme for the 
additive white Gaussian MAC which allows reliable com- 
munication at all points in the capacity region of the 
channel. The scheme is intrinsically interesting since it is 
deterministic and provides doubly exponential error decay, 
at least for the scheme described in Section II with (Y = 0. 
In addition, along the way we have constructively shown 
what the capacity region is. The outer bound C, given by 
(23) is relatively simple to obtain, but in no other case has 
it been shown to be achievable. The largest achievable 
region for the discrete or Gaussian MAC with feedback to 
date is that of Cover and Leung [7], which for the Gaussian 
case is strictly smaller than the region obtained here. It 
remains to be seen when, for general discrete channels, C, 
is achievable. Willems [8] has shown that for a class of 
discrete MAC’s, the region of Cover and Leung is optimal. 
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Universal Coding, Information, 
Prediction, and Estimation 

JORMA RISSANEN 

Abstract-A connection between universal codes and the problems of 
prediction and statistical estimation is established. A‘known lower bound 
for the mean length of universal codes is sharpened and generalized, and 
optimum universal codes constructed. The bound is defined to give the 
information in strings relative to the considered class of processes. The 
earlier derived minimum description length criterion for estimation of 
parameters, including their number, is given a fundamental information, 
theoretic justification by showing that its estimators achieve the informa- 
tion in the strings. It is also shown that one cannot do prediction in 
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Gaussian autoregressive moving average (ARMA) processes below a bound, 
which is determined by the information in the data. 

I. INTRODUCTION 

T HERE are three main problems in signal processing: 
prediction, data compression, and estimation. In the 

first, we are given a string of observed data points x,, 
* = I,... n, one after another, and the objective is to 
predict for each t the next outcome xI+r from what we 
have seen so far. In the data compression problem we are 
given a similar sequence of observations, each truncated to 
some finite precision, and the objective is to redescribe the 
data with a suitably designed code as efficiently as possi- 
ble, i.e., with a short code length. 
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Finally, in estimation-the most fundamental and im- 
portant problem of them all-we seek an “explanation” of 
the observations, or, rather, of the underlying mechanism, 
which we believe has generated the data. More precisely, 
we select a parametrically defined statistical model PO(x) 
for the data x, and try to estimate the vector parameter 
8 = (t9,; * * ,/3,,,) from the observations, where the number 
of the parameters m  is also to be estimated. 

We show that these problems are intimately related, with 
the common link being the information in the string. This 
information is defined as 

%  { -logPO(x) + fmlogn}, (1.1) 

where n denotes the number of observed data points. (In 
this paper, we denote the binary logarithm by “log” and 
the natural logarithm by “ln”.) This definition of informa- 
tion in x, relative to a class of parametrically defined 
processes, is justified by a theorem, which generalizes and 
strengthens the m inimax bounds for universal codes de- 
rived in the series of important papers by Davisson [4], [5], 
Davisson, McEliece, Pursley, Wallace [6], Krichevskii and 
Trofimov [9], and others. In essence, this theorem states 
that no matter which universal code one uses, the mean 
code length is bounded from below by the mean informa- 
tion, given by the expression - E, log P@(x) + $k log n, for 
“practically all” processes defined by 19 = (6,, . . a, 6,). To 
emphasize that the mean is taken relative to the indicated 
process, we used the subindex 8. Moreover, we demon- 
strate that optimum universal codes exist, for which the 
lower bound is reached for every process in the considered 
class. 

Inspired by Akaike’s pioneering work [l] on criteria that 
would allow estimation of parameters along with their 
number without a separate hypothesis testing, this author 
developed in [14] and [15] an estimation principle based on 
the purely information theoretic idea: pick the parameters 
so that the model they define permits the shortest possible 
representation of the observed sequence. Following a par- 
ticular recipe of coding steps, involving a rather delicate 
way of dealing with the prior knowledge about the parame- 
ters, or, rather, the lack of it, we were able to derive a 
closed form expression for the criterion, which turns out to 
be identical with (1.1). Accordingly, our theorem stated 
above gives a fundamental justification for the resulting 
m inimum description length (MDL) estimates; they allow 
the most efficient coding of the observed sequence among 
all universal codes. 

Turning finally to the remaining problem, prediction, we 
show that in the class of Gaussian autoregressive moving 
average (ARMA) processes the mean per symbol predic- 
tion error of any measurable predictor of the past data is 
bounded from below by a2(e)(l + ((p + 4)/n) In n), 
where the first factor gives the variance of the innovation 
sequence of a process with p + 4 + 1 parameters 8. As 
above, the inequality holds for practically all processes 
defined by 8. Because this variance is the reachable lower 
bound for predictors, provided that the process parameters 
are known, we see that something has to be paid for not 

knowing them. Perhaps not too surprisingly, the predictor 
bound is seen to be a function of the information in the 
string, and hence completely determined by it. 

II. MAIN THEOREM 

We consider stationary random processes X(0) = { X,]t 
= 1,2, *** } depending on a vector 8 = (8,, . . . ,0,) of 
real-valued parameters. When the range of the random 
variables X, is a finite or a countable set, the process is 
assumed to be specified by a time invariant joint probabil- 
ity function P&x”), defined for all observations x” = 
Xl,’ * -3 x,, n = 1,2; * ., and satisfying the necessary com- 
patibility condition, namely, that the sum of PO(xu) over 
the range of the symbol variable u immediately following 
the string x, is P@(x). When the range of X, is the real line, 
the process is assumed to be defined by a density function fe (x “), which, in turn, determines a probability Pe (x * ) for 
the sequence of the observations x, truncated to some 
number (Y of fractional digits in their binary representa- 
tion. In this regard, we do not consider the problem of how 
to truncate a continuous signal optimally in the sense of 
rate-distortion theory. Instead, we begin with already 
truncated numbers. The process-defining function is as- 
sumed to be a twice continuously differentiable function of 
8 in a compact k-dimensional set SZk. Without repeating 
the above given description, we speak about the “process 
or source defined by 0 “, or even of the “process 8”. 
Finally, the given parametric class generalizes in a 
straightforward manner to a class of conditional probabili- 
ties Pe (x “/v ” ), where typically y m  results from an “input” 
sequence to a system and x” from its “output” sequence. 

The following two types of processes are particularly 
important. 

Example 1: Let X, take the values 0 and 1, and con- 
sider a stationary m th order Markov process. It is defined 
by the k = 2” conditional probabilities P(O/xm), which, 
in turn, determine the state probabilities P(x”). Upon the 
selection of an initial state, the probability PO(x) for every 
string gets defined in the usual fashion. We let each param- 
eter range over a closed interval [a, b], a > 0 and b -c 1. 

Example 2: Let the range of X, be the real line, and 
consider a stationary ARMA( p, 4) process 
x, + a,x,-, + . . * +a,x,-p 

= b,,e, + bletel + - . . + b4etdq, (2.1) 

where { e, } is the Wold decomposition of the process x. It 
is an uncorrelated, zero-mean process. The process x is 
defined up to the second moments by the p + q + 1 
parameters 8 = (a,, . * . , up, b,, . . . , $), restricted such that 
the roots of the two polynomials u(z) = 1 + uiz 
+ 0.0 +u,z( and b(z) = b, + b,z + . e . + bqz4 are 
strictly outside the unit circle. For a m inimal parameteriza- 
tion we must further require that the two polynomials have 
no common factors. An appropriate probability density 
function to go with such a process results if we specify e, to 
be Gaussian of zero-mean and unit variance. This in turn 
defines a Gaussian density function for x”. The compact 
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set @ , k = p + q + 1, may be taken as any closed and 
bounded set with a nonempty interior such that the param- 
eter combinations giving cancelable factors are excluded. 
Another, almost equally simple but more general, class 
results if we replace the Gaussian density by an exponen- 
tial one of type Kexp - lx]P, where p is an additional 
parameter to be estimated. 

We consider the problem of how well strings x as 
samples from a process of the considered type can be 
compressed, when the only thing known about the process 
is its type. By compression we mean a coding of a string 
such that it can be decoded from its code. Such problems 
have been studied by Davisson, [4], and others, who con- 
sidered a countable sequence of codes, one for the set of 
strings of each length n, such that each code is a prefix 
code satisfying the Kraft inequality. Such a code is called 
(weakly) universal if the mean per symbol code length 
approaches the per symbol entropy for every source in the 
class, as the length of the string tends to infinity. More- 
over, for the class of independent sources, (Davisson et al. 
[6]) and for the class of mth order Markov sources (Davis- 
son [5]), a tight lower bound has been found for the 
minimax code redundancy 

where H,,( 0) denotes the entropy of the source for se- 
quences of length n. In both cases the proof is based on a 
clever use of Shannon’s rate distortion theory. 

For our purposes it is more natural to replace a sequence 
of codes by one code with the length L(x) of the codeword 
for string x satisfying the Kraft inequality 

52- Ux”) < 1 _ , forall n. (2.2) 

We call a code regular, if in addition to (2.2) also L(xu) 2 
L(x), for all strings x = xi;-., x,, where xu = 
Xl,’ . ., x,, u. Although one can construct a nonregular 
code, we are not aware of any code actually discussed in 
the literature which would not satisfy this additional re- 
quirement. We can then associate with any regular code, 
satisfying (2.2) with equality, a statistical model, which we 
take to be a probability function Q(x), such that Q(h) = 1, 
where A denotes the empty string and 

c Qb) = Q (x). (2.3) " 
Indeed, put Q(x) = 2-L(X) and define Q(u]x) = 
Q(xu)/Q(x) I 1. Then from 

c Qh> = 1 = c Q(x>C Q(ulx) 
xu x u 

and the fact that XQ(x) = 1 we observe by subtraction 
that the mean of a nonnegative quantity is zero, which 
gives 

c Q(u]x) = 1, for all x. 
u 

This immediately implies (2.3). 

The relationship between the code length of a regular 
code and a model becomes one-to-one if we let the length 
be a positive, real-valued function. Indeed, for any model 
Q(x) we can put L(x) = -loge(x), and the Kraft in- 
equality (2.2) holds with equality. To distinguish this ab- 
stract length function from the integer-valued length func- 
tion, we call it the ideal code length, as was done in [13]. 
The difference is quite irrelevant, because from any ideal 
code length a regular prefix code can be designed in a 
routine manner such that the mean per symbol length 
deviates insignificantly from the mean ideal per symbol 
length. The justification, then, for the use of the ideal code 
length is its simplicity. For example, in these terms the 
code redundancy turns out to be Kullback’s information 
&5(x”) - H,(8) = Elog(P,(x”)/Q(x’)). We might say 
that the notions of a regular code and its ideal length 
satisfying (2.2) with equality is a coding theoretic equiva- 
lent of a random process. But although they are logically 
equivalent, the code length interpretation is preferable for 
the reason that it is valid even when the objects we are 
coding are “deterministic” parameters, admitting no tradi- 
tional probabilistic interpretation. In fact, the code length 
defines a probability, which, therefore, always can be inter- 
preted in the same coding theoretic manner. 

There are two particularly important types of parametri- 
cally defined models and the associated code length func- 
tions. The first is a model Pe(x”), where the parameter 
vector 8 = 0(x’) is estimated from the observed sequence 
x”. When such a model is used to compress strings, a 
description of the parameters must be attached to the code 
string as a preamble. This type of model may be called 
“nonadaptive”, because the entire string must be available 
before the parameters can be estimated, and once they 
have been estimated they will not change as the string is 
being encoded. The other basic type of model, called 
“adaptive”, is defined by a conditional probability func- 
tion PBCxl)(xI+ilxf), thus 

n-l 

Ux) = - c  l~c3&,+1l4 (2.4) r=o 
Here we set x0 arbitrarily to some constant, say 0. This 
length is seen to be regular. Observe that there is no 
preamble in the code string to include the coding of the 
parameters. No such preamble is needed, because the de- 
coder is thought to know the rule for calculation of the 
estimated parameters. 

Using quite different arguments from the above cited 
authors on universal codes, we prove a basic inequality for 
classes of parametrically defined processes, which gener- 
alizes and in a crucial way strengthens the earlier minimax 
results. In order to shorten the statement of the theorem, 
we first list the background definitions and conventions, 
and include in the theorem only the more restricting condi- 
tions. We consider a stationary random process { XJt = 
1,2, *** } defined by a probability function Pe(x”), where 
the parameter 8 ranges over a compact subset SZk of Rk 
with a nonempty interior for every k = 1,2, . . . . For Part 
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b) we also need the smoothness condition that Pe(x”) be 
twice continuously differentiable in Qk, for each k. This 
condition is satisfied for many important classes of 
processes. 

Theorem I: Let the central lim it theorem hold for the 
maximum likelihood (ML) estimators B*(xn) of each B in 
the interior of Ok, so that the distribution of (8*(x”) - 
e)fi converges to the normal distribution with zero-mean 
and a covariance matrix C(0). 

4 

b) 

If L(x”) is a length function satisfying the Kraft 
inequality for each n, then for all k and all positive e 

n-‘&%(x”) 

2 n-lEI,(B) +($ - c)(k/n)logn, (2.5) 

for all points B except in a set A,(n) whose volume 
goes to zero as n + cc. H,( t9) denotes the entropy of 
strings of length n. 
There exist optimum length functions for which the 
opposite inequality “ < ” holds for all negative c 
when n > n,, and for all 0 in Q, the union of Qk 
over k. 

Proof: Part a) is proved in Appendix A, while part b) 
is shown in Section III. 

Remarks: The central lim it theorem requirement holds 
for many important classes of processes. For Markov 
processes the ML estimates are the count ratios of the 
symbols at each state, and they are efficient estimators of 
the transition probabilities. For them the central lim it 
theorem due to De Moivre is a classical result. Also, for 
Gaussian ARMA processes all the requirements hold, and 
even in the non-Gaussian case only m ild additional regu- 
larity conditions are needed (Ljung and Caines [ll], 
Hannan, [S]). 

If we subtract the first term in the right-hand side of 
(2.5) from the left-hand side, we get Kullback’s measure for 
the difference between two distributions (assuming of 
course that the Kraft inequality holds with equality). Hence, 
we may interpret (2.5) as a generalization of the basic 
inequality stating the nonnegativity of Kullback’s measure, 
the generalization being the inclusion of the term measur- 
ing the complexity of the system that generates the signal. 
Because of this, one use of the inequality (2.5) is to provide 
a measure of the distance between two signals, whose 
generating mechanisms are not known but must be esti- 
mated. But (2.5) has other uses as well and, in fact, it turns 
out to play a central role in modeling and related contexts. 

The statement of the inequality (2.5) is, unfortunately, 
somewhat complex, and we would clearly like to select the 
various qualifications so as to have the maximum strength 
for it. That the inequality cannot hold for all parameters 8 
(except in the degenerate case of Kullback’s where k, the 
number of free parameters subject to estimation, is zero), is 
clear, because a length function defined by - log PO(x) for 
some fixed 8 will, of course, have the entropy as the mean 
for that single process, determined by the same 8. We may 
view the earlier m inimax bounds for universal codes as 

weak forms of the inequality (2.5) in that the strict inequal- 
ity “ < ” (with E = 0) could hold for the optimum codes 
for all but one value of 8. The current form strengthens 
this, because parts a) and b) together imply that for the 
optimum length functions the right-hand side bound with 
E = 0 is asymptotically reachable for every 8; it cannot be 
beaten in the sense that the strict inequality “ < ” holds 
except for relatively rare points 8. (Note, however, that 
Davisson’s [5] m inimax bound is not a corollary of ours for 
the reason that his bound is exact rather than asymptotic.) 

One may wonder whether the statement in part a) could 
be further strengthened to the form that not only the 
volume of A,(n) tends to zero but even the union of these 
sets over n 2 N tends to zero as N tends to infinity. In 
other words, the measure of limsup of the relevant sets is 
zero. This turns out to be tied to the rate at which the 
distribution of the ML estimates approaches the lim it. And 
in the case of Markov sources such a strengthening, indeed, 
can be achieved. Because such sources are of primary 
interest only in coding theory rather than in general predic- 
tion and estimation and, because the proof for them is 
difficult, we leave the study of such an ultimate statement 
of the theorem to another paper. 

Another, perhaps more desirable, form of the theorem 
m ight result if we add the requirement that the length 
function L(x, e*(x)) be defined by an unbiased estimator 
8*. Then the inequality (2.5) even with e = 0 m ight hold 
for all values of f?. However, we have been unable to carry 
out the proof for the general case. 

III. OPTIMUM CODES AND MODELS 

In accordance with an optimum code we call a model 
optimum, when its ideal code length is optimum in the 
sense of part b), Theorem 1. We show now that an opti- 
mum model exists, first for the case with fixed k and then 
for the general case. 

Proof: Let e,l’(x”) be the ML estimate 0:(x”), trun- 
cated to q(n) = floor(log fi) fractional binary digits, where 
floor(x) denotes the greatest integer equal to or smaller 
than x. Now define 

L(x”) = -logP,,,,,, (x”) + iklogn + C(n), (3.1) 

where C(n) is a normalizing constant, determined so that 
the Kraft equality holds. In this section, we show that this 
length is optimum. 

When 8* = e*(x), where x refers to a string of length n, 
falls within the interior of ok, we can expand 

-i0gP&) = -iOgp,,(x) + + (e/J - e*)’ 

a( e**)( 8” - e*) 

I -logP,(x) +(k/n)K, 

where 0** is a point between 8* and f3”, and K is the 
maximum norm of the Hessian matrix M(B) in pk. Ob- 
serve that -log P&x) I -log P@(x) by the definition of 
8*; we also used the upper bound 2/ fi for the compo- 
nents of the difference between 8” = e”(Y) and 8* = 
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0*(x’). When again 8* falls on the boundary, we can write 
with the same substitutions 

-iOgpe~r(x) = -i0gp&) + D(e**)(e’f - e*> 

I -logP,(x) + 2D/l, 

where D denotes the maximum norm of D(e) in Qk, and 
again e** is a point between B* and (9”. Using (3.1) we 
then get in any case 

(l/n)EL(x”) I H,(B)/n +(k/2n)logn 

+c(n)/n + 0(1/n*). 

We must show that C(n)/logn + 0. We do it by demon- 
strating that there is a prefix code for the truncated param- 
eters 0” with length L(f3”) I 3 k log n + O(log log n). The 
code is obtained as follows. First, each fly is converted to 
an integer mi = ey2q@), which is encoded with Elias’ 
universal representation of the integers [7], for the reason 
that the codeword for the parameters could be separated 
from the rest of the code. This assigns to integer m the 
length c + log* m, where the function log* m is defined as 
the sum log m + log log m + . . * until the last nonnegative 
term, and %  is a constant. In Leung-Yan-Cheung and 
Cover [lo] it was shown that 2-10s*m is summable; for 
other interesting properties of this function we refer also to 
Bentley and Yao [2], and Rissanen [15]. 

Because tik is compact, there is a uniform upper bound 
for the mis, and the code length for all the parameters is 
L’( 0”) = kq(n) + O(loglog n), which also includes the 
length of encoding the integer q(n). We have shown that 
2-c(e”), when summed over all values of e”, does not 
exceed 1, By putting L*(x) = -log PO,,(,,(x) + L’(O”), 
we have 

x2- 
L*(x) s ? 2- 

L’(e) 
x 

c P@(X) I ; 2-L’(e) I 1, 
XEX, 

where x runs through all strings of length n in the first 
sum, but only through strings such that e”(x) = 8, defined 
as the set X,, in the third sum. The parameter 8, in turn, 
runs through all values such that each component is trun- 
cated to q(n) fractional binary digits. By comparing L*(x) 
with L(x) in (3.1), we see that C(n) is of the order of 
log log n, which in turn implies the optimality of (3.1). 

It turns out to be a simple matter to modify the length 
definition (3.1), which we now denote by Lk(x) to indicate 
its dependence on the number of parameters k, such that 
the result is optimum over the entire class G  of sources. 
Indeed, put 

L(x) = min {L,(x) + log*m + c}, (3.2) m 
where log* ,‘= log m + O(log log m) and c is a constant. 
We then have 

C 2-Ur) < C 2-c-10g*m C 2-Lm(x) 5 1, 
x m x 

where x runs through all the sequences of length n, and m 
runs through all positive integers. 

By the definition of L(x), L(x) I Lk(x) + log*k + c, 
where k denotes the number of the components in the 

process-generating parameter 8. Hence with the optimality 
O f Lk(X), 

EL(x”) I H,(8) + f klogn + nr(n), (3.3) 

where nr( n)/log n + 0 as n + cc. This completes the 
proof of part b) of Theorem 1. 

The optimum model we constructed is clearly nonadap- 
tive, which leaves the question whether adaptive optimum 
models exist. Such models are required in prediction, while 
both types are of use in data compression. At the moment 
we can construct optimum adaptive models for Markov 
processes and autoregressive (AR) processes only. In Sec- 
tion V, where we discuss prediction, we demonstrate an 
optimum adaptive model for the AR class while conjectur- 
ing its existence for the larger ARMA class. 

IV. INFORMATION 

In view of Theorem 1 we define the quantity 

1(x”) = 9; { - logP@(x”) + 3 klogn) 

= -‘logP,,(,.,(x”) + * k*(x”)logn (4.1) 

to be the information in the string x”, relative to the class 
D of processes. Indeed, our definition is justified, because 
by Theorem 1 the mean information, EI( x”) = H,( 0) 
+ 4 k log n, with the mean taken relative to the process 
defined by 8 in Stk for every k, then provides an asymptot- 
ically reachable lower bound for virtually all processes. 
This notion of information is seen to be a mixture of 
Shannon’s probabilistic and Kolmogorov’s algorithmic no- 
tions of information, the former referring to the observa- 
tions x generated by the modeled source, and the latter 
belonging to the nonrandom selection of the models or 
parameters. 

The mean of the second part 3 k*(x”) log n in the infor- 
mation, taken relative to a B in a’, is seen to represent the 
length needed to describe the parameters in the optimum 
nonadaptive model as constructed in Section III. In the 
adaptive models no such length is needed, but nevertheless 
the same length penalizing cost gets added to any optimum 
model, and possibly more with others. Intuitively speaking, 
the source of that cost term is the estimation errors that 
accrue when the model parameters are estimated from the 
past string. It is still a perplexing fact that the cost is the 
same in both kinds of models, and we call the term 
4 k*(x”) logn optimum model cost. This cost term is seen to 
be a refinement of the measure of model complexity in 
Rissanen and Langdon [13], which was taken just as the 
number of parameters. In effect, the refinement takes into 
account the fact that the optimum precision in writing the 
parameters grows with the number of observations. 

The derived expression for the optimum model cost is of 
central importance in applications, where it often is re- 
placed by various ad hoc expressions. We illustrate one of 
its less obvious uses, obtaining an adaptive universal data 
compression system; in Rissanen [16], where some of these 
results were anticipated. Suppose that we wish to fit Markov 
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models, but we do not want to restrict the states to be of 
any fixed order. It seems first that in order to find the 
optimum state space and the associated model complexity, 
we must according to (3.2) perform a multiple parallel 
encoding process for every t = 1, * . *, n, one encoding for 
each possible choice of a state space. However, a much 
simpler way is to collect in a binary tree each conceivable 
state of any order found in the past string, and gather the 
occurrence counts of the “next” symbol in each. The actual 
state, among the many possible ones, which is to be used to 
encode the next symbol, can then be determined as that 
state which permits the shortest incremental ideal code 
length for the next symbol. This state is not simply the 
state with the shortest ideal code length log ( c/co), where c 
denotes the state count and co the number of times the 
symbol has been 0 at that state, but rather is the state with 
the least predicted length, the information log (c/co) + 
(log c)/2c, in which the effect of the parameter estimates is 
included. The result of this procedure was shown to be 
successful in [16]. 

We conclude this section with a generalization of the 
just-defined information, which was done by Wax and 
Rissanen [18]. Let x” and y” be two strings such that the 
components are truncated to a finite precision. Define the 
relative information in the string x” given the string y ” 
to be 

I(x”ly”) = E { -logP,(x”]y*) + f klogn}, 

(4.2) 
where P,Jx”~y”) = Pe(x”, y”)/P,(y”) denotes the condi- 
tional probability, parameterized by 8. Further, define the 
information in the stringy”’ about the string xn to be 

1(x”, y”) = 1(x”) - I(x”ly”). (4.3) 

To justify these definitions we prove that the mean of the 
generalized mutual information (4.3) is nonnegative with 
the same qualifications as in Theorem 1. If we substitute in 
the expression of the relative information the “true” pro- 
cess-generating parameters 8’ and k” for 0 and k, we get 
a value I’(x”] y”) which is not smaller than the m inimum, 
i.e., the relative information. by Theorem 1 and the non- 
negativity of Shannon’s mutual information, 

EI(x”, y”) 2 E[l(x”) - I’(x”ly”)] 2 0, 

for virtually all points 8’ in 52 as described in Theorem 1. 
An application of these notions in measuring the amount 
of feedback between two processes, where again, the cost 
of the required models is included, is given in Wax and 
Rissanen [18]. 

V. ESTIMATION 

The right-hand side expression in (4.1) was derived in 
Rissanen [14], [15] as the so-called MDL criterion for 
estimation purposes. The criterion extends the classical 
maximum likelihood criterion by the second model cost 
term, and it permits estimation of the number of parame- 
ters without the need to use a separate hypothesis test. 

Unlike the estimates obtained by Akaike’s AIC criterion, 
the MDL estimates e*(xn) and k*(x”) are (strongly) 
consistent for a wide class of cases, including the ARMA 
processes [8]. This last case is hard to prove, because the 
Fisher-information matrix becomes singular with over- 
parameterization. For a thorough study of Akaike’s crite- 
rion we refer to Shibata [17]. Although consistency is an 
asymptotic property and does not in itself guarantee good 
estimation results for small samples, it certainly is a desir- 
able one, and without it the soundness of any criterion 
appears to us to be suspect. 

The MDL criterion, as originally derived, produces 
estimates which m inimize the total code length for x” 
when a particular coding process is used. Theorem 1, 
however, removes this arbitrariness and gives the criterion 
a fundamental justification: no parameter estimates exist 
which would permit a shorter mean code for the string 
regardless of the coding technique used, except for processes 
defined by parameters in a set of small volume. In other 
words, its estimates produce the information in the strings 
relative to the class P of processes. 

Theorem 1 provides a more general way to assess the 
goodness of estimators than the Cramer-Rao inequality in 
that the number of the parameters is included. Indeed, 
given any estimator of 0, we may calculate the length 
function (2.4) and compare it with the optimum length, 
that is, the information. It seems to us that ultimately such 
a comparison is all we can meaningfully do in order to get 
an idea of how “valid” and reliable our estimates are. 

One m ight argue that there is no reason why a criterion 
should m inimize information, except when the resulting 
model is used for data compression. In fact, if there is one 
single measure of a model’s performance, it ought to be in 
terms of its capability to predict, since this is what most 
models ultimately are used for. But we show in Section VI 
that information and prediction error are virtually mea- 
sured by the same expression, at least in the Gaussian case, 
and there is no conflict between the two. 

VI. PREDICTION BOUND 

In this section we study the question of how well one can 
predict the numbers xt+i from the past sequence x’ = 
Xl,‘. *9 x,, t = O,l;**, with x0 = 0, when the only addi- 
tional information is that some Gaussian ARMA process 
(2.1) has generated the data. In the past, Davisson [3], has 
studied a related problem, where he fitted an autoregres- 
sive model with p parameters to N observations, and he 
derived the asymptotic expression a*(1 + p/N) for the 
mean-square prediction error of the associated optimum 
predictor. Moreover, he also proposed to find the optimum 
value for p, which amounts to the first statement of the 
“final prediction error” criterion and the closely related 
AIC criterion for order estimation. As we shall see, this 
problem formulation is almost the “right” one, but not 
quite, because it can be shown that the resulting order 
estimates of p are not consistent. 

We propose to measure the prediction error in the 
accumulated mean square errors along the length of the 
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data sequence by order O(logn). It is clearly also regular. Further 

n-l 

b(n) = C +G+~ - X,*,IJ”~ 
EL(x”) = nElog [(&GG)s(xn)] 

(6-l) n-1 

r=o +&logn - nlogS - c logK,(6), 

where the predictor xF+ilt is a measurable function g( t, x’) 
of the past data. We indicate with a subindex 8 that the 
expectation is to be taken relative to an ARMA process 
with the ‘k = p + q + 1 parameters 8 = (a,;. ., up, 
b . * *, b,). This measure is meant to incorporate not only 
tie best prediction error at the end of the data, but also the 
errors along the way, which necessarily are larger because 
they result from predictions calculated from fewer data 
points. 

Theorem 2: Consider a set of Gaussian ARMA 
processes, where the k = p + q + 1 parameters 8 = 
(a,,. . ., up> 4,;. 0, b,) range over a compact set Qk  with 
nonempty interior for each k. Then for all p, q, positive z, 
and any predictor xT+ilt = g(t, x’) which is measurable 
function of the past observations x’, 

G(n)/n 2 u”(e)[l +((p + 1 - c)/n)lnn], (6.2) 

for all points B except in a set A,(n) whose volume goes to 
zero as n --) cc. Here a*(e) denotes the variance of the 
stationary Wold decomposition {e,} of the process defined 
by 8. 

Proof: Consider the sum 

2(x”) = n-l 2 u;, 
f=l 

where ut = x, - g(t - 1, x’-l) is the prediction error cor- 
responding to a predictor g. Next, let f(x,+ljx’) denote 
the conditional Gaussian density function with mean 
g(t, x’) and the variance parameter defined as s2(xn). If 
the observations and the predictions are written with preci- 
sion 6 = 2-*, this density defines for the truncated ob- 
servation xt+ 1 a conditional probability 

Ps(n+r+ll~‘) = Kt(~)f(x,+1Ix’)~- 
The first factor on the right is a normalizing constant such 
that the sum of these probabilities over all values of x~+~ is 
unity. Clearly, K,(S) + 1 as S + 0. When we multiply 
these conditional probabilities over t = 0,. * . , n - 1, we 
get a function P,(,.,(x”), which does not add to unity 
when summed over all the truncated strings x”, because 
the parameter s(x”) is not constant. However, if we add 
the optimum code length 4 log n needed to encode this 
parameter, to the quantity -log PSc,,,(x”), we get a length 
function 

L(x”) = n[log((Jz;;)s(x’)) + iloge] 
n-l 

+ilogn - nlogQ - c logK,(6), 
t=o 

which does satisfy the Kraft inequality to within terms of 

1=0 

while the per symbol entropy in bits of the truncated 
x-process generated by 8 is given by log[(&)a(B)] - 
log 6 - C(6), where C(6) accounts for the adjustment due 
to the truncation. Clearly, C(6) --f 0 as 6 + 0. 

By Theorem 1, on the nonexceptional points mentioned 
in the theorem, 

Elog[s(x”)/a(t9)] 2 (+ - c)(p + q)n-‘logn 

-n-lx logK,(6) + C(6). 

By Jensen’s inequality, applied to (6.1) 

log(&(n)/n) = logEs*(x”) 2 Elogs*(x”). 

Use this in the previous inequality, and let 6 go to zero, to 
get 

10g(Ve(n)/n~*(d)) 2 (p + q - r)n-llogn. 

The right-hand side, call it y, is an upper bound for 
In (1 + y) = log(1 + y) ln2. By expanding the binomial, and 
by retaining the two first terms, we deduce the inequality 
(6.2). q 

The issue remains whether the right-hand side bound in 
(6.2) this time with E < 0, can be reached by some estima- 
tor, for example, by the ML estimator. It is readily seen 
from the above cited result of Davisson that this is true at 
least for the AR processes. Indeed, let a*(e) denote the 
variance of the innovation sequence of an AR process 
defined by the p-component parameter 0. When a pth 
order AR model is fitted to a sequence of length N and the 
result is applied to predicting the next symbol generated by 
the same process, then the mean prediction error is given 
by a particular instance of the Davisson estimate [3] as 
a’(e)(l + p/N) + 0(1/N), where o(l/N)N + 0. Now 
replace N by t and add the result from t = 0 to t = n - 1 
in accordance with (6.1) which gives the sum of a harmonic 
series 

Ve(n)/n = u2(e)[i +(p/n)lnn] + o(n-‘Inn). 

This shows first that the bound in (6.2) can be reached, 
and, further, that the model so obtained is optimum. 

As a final remark, the mean square prediction error 
measure is universally accepted for Gaussian processes, but 
for others its justification is less convincing. Because of the 
similarity of the information and the prediction bounds, 
the former being just the logarithm of the latter, we are 
tempted to propose the information as the primary mea- 
sure of prediction, In the Gaussian case this will give 
virtually the old measure, and the difference will become 
relevant only in other cases. Perhaps the greatest advantage 
of the proposed measure is that it makes sense even for 
discrete random variables, such as those occurring in 
weather prediction, where as a matter of fact, prediction 
error is measured in terms of probabilities. 
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APPENDIX A 

Proof of Theorem 1, Part a): For each parameter 0 in Ok let 
I+$,( 0) denote a neighborhood of radius r, = c/ fi with 0 as its 
center. Define for the process determined by 0 the set of its 
“B-typical” strings of length II, 

x,(e) = {qeyxn) E E,(e)). 

Let P,,(e) denote the sum of Pe( x) over x in X,( 0). Observe 
that P,( 0) also gives the probability that (8*(x”) - 0)& falls 
within a neighborhood with radius c centered at the origin. By 
the assumption, this probability converges to the probability 
mass of the normal distribution N(O,C(B)) that falls within such 
a neighborhood. This mass therefore exceeds a number 1 - 6(c), 
6(c) tending to zero as c grows, uniformly in 8 in the compact 
set Ok. Hence the probability of the B-typical sequences is 
bounded by 

Pn(e) 2 i - 6(c) 

for all n greater than some number n,, uniformly in 8. 
Let L(x) be any length function satisfying the Kraft inequality 

(2.2) and denote by Q,(0) the sum of q(x) = 2-L(x) over x in 
X,( 0). Then by the basic inequality (McEliece [12, p. 278]), 

xt$cs, pewOdfwhdx)l 2 pn(e)lOg[pnte)/ente)l. 
” 

(Ml 
Pick a positive number E, and let A,(n) be the set of 0 such 

that the left-hand side of (A2), denoted T,(e), satisfies the 
inequality 

q(e) < (I - f)iOgnk? G43) 

We wish to calculate an upper bound for the volume of A,(n). 
For this purpose let N, denote the maximal number of disjoint 
neighborhoods E,(O) that can be constructed such that the 
centers 0 lie in A,(n). Let C, denote the set of the center points. 
Of course, these neighborhoods may not cover A,(n), because 
there may be points in A,(n) that are too close to some of the 
constructed neighborhoods, without being covered by any. How- 
ever, if we expand each neighborhood in the maximal collection 
by doubling the radius, we get a cover for A,(n). Hence the 
volume V, of A,(n) is bound by 

V, I KN,,r,k, 644) 

where K is a constant. 
From (A2) and (A3) we conclude that 

-logQn(e> 
< [(I - g/p,(e) -(i0gPn(e))/logn(1/2)k] i0gn(1/2)k 

for 0 in A,(n). Pick c so large that 6(c) in (Al) gets small 
enough to make the expression within the brackets less than a 
number (Y, such that 0 < (Y < 1, for all sufficiently large n. Hence 

Q,(e) > n-(1/2)kn for 0 in A,(n) b45) 

for n larger than some number. 

The neighborhoods E,,(e) for B in C, are disjoint by construc- 
tion, which makes the sets X,( 0) disjoint. By the Kraft inequality 
(2.2) 

12 c Q,(e). 646) 
@EC, 

From (Ah), (A5), and (A6) we get 
v < K&‘/W-‘) n 

which holds for all sufficiently large values for n. Clearly, V, + 0. 
To finish the proof, let 0 be in Ok - A,(n). Then the opposite 
inequality “ 2 ” in (A3) holds. By letting x in (A2) range over 
the set of all strings of length n, which does not reduce the 
left-hand side, we see that the claim holds. Cl 

REFERENCES 

PI 

PI 

131 

[41 

[51 

WI 

[71 

PI 

[91 

WI 

WI 

WI 

[I31 

[I41 

[I51 

WI 

v71 

WI 

H. Akaike, “A new look at the statistical model identification,” 
IEEE Trans. Automat. Co&r., vol. AC-19, pp. 716-723,1974. 
.I. L. Bentley and A. C. Yao, “An almost optimal algorithm for 
unbounded searching,” Inform. Processing Letters, vol. 5, pp. 82-87, 
1976. 
L. D. Davisson, “The prediction error of stationary Gaussian time 
series of unknown covariance,” IEEE Trans. Inform. Theory, vol. 
IT-11, pp. 527-532, Oct. 1965. 
_ “Universal noiseless coding,” IEEE Trans. Inform. Theory, 
vol. iT-19, pp. 783-795, Nov. 1973. 
-, “Minimax noiseless universal coding for Markov sources,” 
IEEE Trans. Inform. Theory, vol. IT-29, no. 2, pp. 211-215, 1983. 
L. D. Davisson. R. J. McEliece. M. B. Purslev. and M. S. Wallace. 
“Efficient u&&al noiseless s&rce codes,” YEEE Trans. Inform: 
Theory, vol. IT-27, no. 3, pp. 269-279, May 1981. 
P. E&as “Universal co&word sets and- representations of the 
integers,” IEEE Trans. Inform. Theory, vol. IT-21, no. 2, pp. 
194-203,1975. 
E. J. Hannan, “The estimation of the order of an ARMA process,” 
Ann. Statist.. vol. 8. no. 5. DD. 1071-1081. 1980. 
R. E. Kricheiskii id V. I(.“?rofimov, “Tie performance of univer- 
sal encoding,” IEEE Trans. Inform. Theory, vol. IT-27, no. 2, pp. 
199-207,198l. 
S. K. Leung-Yan-Cheong and T. Cover, “Some equivalences be- 
tween Shannon entropy and Kolmogorov complexity,” IEEE Trans. 
Inform. Theory, vol. IT-24, no. 3, pp. 331-338, 1978. 
L. Ljung and P. C&es, “Asymptotic normality of prediction error 
estimators for approximate system models,” Stochastics, vol. 3, pp. 
29-46,1979. 
R. J. McEliece, The Theory of Information and Coding. Reading, 
MA: Addison-Wesley, 1977. 
J. Rissanen and G. G. Langdon, Jr., “Universal modeling and 
coding,” IEEE Trans. Inform. Theory, vol. IT-27, no. 1, pp. 12-23, 
Jan. 1981. 
J. Rissanen, “Modeling by shortest data description,” Automatica, 
vol. 14, pp. 465-471, 1978. 
-, “A universal prior for integers and estimation by minimum 
description length,” Ann. Statist., vol. 11, no. 2, pp. 416-431, June 
1983. 
-, “A universal data compression system,” IEEE Trans. Inform. 
Theory, vol. IT-29, no. 5, pp. 656-664, Sept. 1983. 
R. Shibata, “Asymptotically efficient selection of the order of the 
model for estimating parameters of a linear process,” Ann. Statist., 
vol. 8, pp. 147-164, 1980. 
M. Wax and J. R&men, “Information theoretic measures for 
feedback between time series,” (to appear in J. Amer. Statist. 
Assn J. 


