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Abstract: In this paper, we present two approaches to analyzing pass event data to uncover sometimes-nonobvious insights
into the game of soccer. We illustrate the utility of our methods by applying them to data from the 2012–2013 La Liga season.
We first show that teams are characterized by where on the pitch they attempt passes, and can be identified by their passing
styles. Using heatmaps of pass locations as features, we achieved a mean accuracy of 87% in a 20-team classification task. We
also investigated using pass locations over the course of a possession to predict shots. For this task, we achieved an area under
the receiver operating characteristic (AUROC) of 0.785. Finally, we used the weights of the predictive model to rank players
by the value of their passes. Shockingly, Cristiano Ronaldo and Lionel Messi topped the rankings. © 2016 Wiley Periodicals, Inc.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 2016
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1. INTRODUCTION

Although soccer is by far the world’s most popular
sport [1], published work in soccer analytics has yet to
achieve the same level of sophistication as analytics being
performed in other professional sports. There has been
work on developing new summary statistics to measure
and confirm traditional beliefs about the game [2]. But
such analyses do not fully leverage the newly available rich
datasets in soccer, such as the dataset of ball-events we use
in this paper. In this paper, we describe and evaluate two
applications of machine learning to build predictive models
from these kinds of data.

One of the key problems in building predictive models
from soccer data is the sparseness of positive outcomes. In
high-scoring sports such as basketball, there are unambigu-
ous and frequent positive outcomes (e.g. a basket) to relate
to sequences of events through statistical models. In soccer,
goals are so rare that such direct associations are hard or
impossible to establish. A team may completely dominate
statistical measures such as possessions in the offensive
area or even shots, and fail to score even one goal. This
weak correlation implies that more data is needed to build
models than is typically needed for other sports.
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Despite this problem, we demonstrate in this paper that
by using machine learning techniques on passing data from
the 2012–2013 La Liga season, we could uncover relevant
data-driven insights into soccer.

1. We show that heatmaps built using only the
origins of passes provide fingerprints that can be
used to identify teams with 87% accuracy.

2. We further show that even when we only consider
passes originating from the midfield, the resulting
heatmaps can still be used to identify teams.

3. We construct a model relating pass origins
and destinations during a possession with the
probability of a shot. The resulting weights offer
insights into the offensive utility of passes.

4. We utilize this model to rank players by the
frequency with which their passes are highly
valued by the model.

The rest of the paper is organized as follows. In Section
2, we outline some previous related work on using machine
learning for knowledge discovery in soccer and other sports.
In Section 3, we describe the event-based dataset we used
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in the reported work. We describe our experiments for
classifying teams by their passes in Section 4. In Section
5, we present our work on predicting possessions ending
in shots. Finally, in Section 6 we summarize the overall
contributions of this paper and discuss possible future work.

2. RELATED WORK

Much of the published research in sports analytics,
especially research that utilizes spatiotemporal data, has
focused on sports that are easily discretized, such as
baseball, American football, and tennis [3]. These sports
are easily broken up into individual events (at bats, plays,
or points) that have obvious immediate outcomes, such
as hits, yards gained, or a point won. For example,
Intille and Bobick used player tracking data to recognize
different plays in American football [4]. It is more
difficult to perform similar work for sports that are not as
easily discretized, such as basketball and soccer, because
the continuous nature of play makes the connections to
outcomes less obvious. In both [5] and [6], the authors
were able to utilize player tracking data for basketball
to classify offensive plays and the movement patterns of
offensive players. Similar work in soccer has proven to be
more difficult because it is not obvious how to break up
gameplay to understand strategy.

Soccer analytics has focused on building probabilistic
models to simulate game actions and predict the outcomes
of matches. Reep and Benjamin developed models for the
success rates of different length passing sequences [7]. This
work was limited by the lack of access to data about
the location of passes. More recently, both [8] and [9]
predicted the outcome of matches by using possession
rates of different teams and other historical statistics to
develop probabilistic models. In contrast, our work focuses
on developing insights into styles of play rather than on
predicting outcomes of games, extending previous work
done by Kerr [10]. In [11], the authors investigated the
frequency of passing that occurs immediately before and
after a goal has been scored. They found that in the 5
minutes preceding a goal, the team that scores makes a
significantly greater frequency of successful passes than
their average for the half, whereas the conceding team
played significantly fewer successful passes.

As the amount of spatiotemporal soccer data has
increased, there has been more work that leverages the
information the datasets provide. Spatiotemporal data
allows analysts to study the underlying mechanics of the
game, such as style or player movements. Bloomfield et al.
used player tracking information to investigate the physical
demands of soccer and the work rates of different players
[12]. In [13], the authors leveraged ball-event data and

passing sequences to cluster the playing styles of different
teams but not, as we do, to classify teams. They described a
passing sequence by the number of unique players involved
in the sequence, and observed that different teams use
different sequences at different rates. Lucey et al. used ball-
event data to infer the location of the ball throughout a
game. Using this information, they constructed ‘entropy-
maps’ to characterize how different teams move the ball
during a match [14]. Using entropy-maps and in-game
statistics, they were able to classify teams with 47%
accuracy. In more recent work, the authors combine match
statistics, event data, and player tracking data to identify
the teams playing in a given game with 70% accuracy in
[15]. Since their data and task formulation differ from ours,
no direct comparison with our results is possible.

3. THE DATA

The dataset we use throughout all of the experiments
presented in this paper was collected by Opta Sports [16].
The data are hand-labeled annotations of each ball-event
that took place during the course of a match, for example,
each pass, tackle, shot, etc. A ball-event is recorded any
time a player makes a play on the ball, apart from dribbling.
The dataset also includes additional information for each
ball-event such as the location, the player involved, and
the outcome. We refer to these as ‘descriptors’. Some
descriptors, such as location, time of event, and player
involved, are common for each ball-event type. Other
descriptors, such as pass length, exist only for specific
kinds of ball-events. We assume that the data are clean and
accurate, since it was collected by a professional enterprise
dedicated to collecting sports data. In this paper, we use data
collected from the 2012–2013 La Liga season. La Liga is
the premier league in Spain and is comprised of 20 teams.

3.1. Passes

We utilize the following information recorded about each
pass in the dataset:

1. In which game the pass was attempted

2. The time of the pass

3. Which team attempted the pass

4. Which player attempted the pass

5. The intended recipient of the pass

6. The origin of the pass
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Fig. 1 Total number of passes attempted by each team during the 2012–2013 La Liga season. The teams are ordered from top to bottom
by their final league standing. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

7. The destination of the pass

8. The outcome of the pass (was it successful or not).

On average, each team in La Liga attempted ∼18,000
passes during the entire season, with Barcelona making
the most passes by a wide margin at 30,283, and Levante
attempting the smallest number of passes at 13,094.
Figure 1 shows the number of passes each team attempted
during the season. The teams are also ordered from top
to bottom by their final position in the league (Barcelona
finished first).

3.2. Pitch Discretization

For all the work we describe in this paper, we focused on
the locations of passes because we hypothesized that pass
location is a strong indicator of team strategy and person-
nel. To generalize between passes that are near each other
but not in the same location, we discretized the pitch into
18 zones, as shown in Fig. 2. This representation has pre-
viously been shown to identify critical zones on the pitch
associated with offensive outcomes such as shots and goals
[17].

4. CHARACTERISTIC PASSING STYLES

In this section, we present our investigation of whether
teams have a characteristic passing style. We first visualize
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Fig. 2 Playing area split up into 18 zones. The left side of
the pitch (zones 1–3) is the defensive side of the pitch, and
the right side (zones 16–18) is the offensive area. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

the similarity of the passing styles of different teams. We
then solve the following classification task: given a random
sample of passes made by a single team, identify which
team attempted those passes.

4.1. Pass Heatmaps

For a given set of attempted passes, we counted how
many passes originated from each zone in our discretized
pitch and normalized by the total number of passes to
produce a heatmap of the origins of passes. The heatmap
can be represented by a 3 × 6 matrix of frequency values.
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Fig. 3 Each figure is a 3 × 6 heatmap showing the locations of the origins of a set of passes. Starting from the top left and moving in a
clockwise direction, the heatmaps represent (a) the set of all of the passes attempted during the 2012–2013 La Liga Season by every team,
(b) the set of all of the passes attempted by Barcelona, (c) the set of all of the passes attempted by Real Madrid, and (d) the set of all of
the passes attempted by Atletico Madrid. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

We only included the origins of passes, since we believed
that this was the best representation of a team’s intended
style. We did not include the destinations of passes since
passes could be intercepted or badly executed, which
would not be representative of a team’s intended style. We
anticipate that future work will include the analysis of pass
destinations; indeed, the second experiment highlighted in
this paper includes pass destination.

In Fig. 3, we have plotted several heatmaps. Each
heatmap plots the origins of all the passes that were
attempted during the 2012–2013 La Liga season either by
every team in the league combined or by an individual
team.

We use the heatmaps as the basis for the visualization
and classification experiments we present in this section.

4.2. Visualizing Style Similarity

In Fig. 4, we present a visualization of the similarity of
the heatmaps for different teams to investigate how their
passing styles are related.

To investigate the variance in passing style for a single
team across a season, we first split the set of passes
attempted by a team into smaller subsets. For each team
in the dataset, we randomly assign each pass attempted
during the season to one of 10 smaller subsets, creating
10 randomly constructed subsets of passes per team. Each
subset is then used to construct a heatmap, i.e. there are 10
heatmaps per team.

We then calculate the average distance between the
different heatmaps of all pairs of teams to construct a

distance matrix M . In more detail, each i, j entry, where
i �= j , is equal to the average distance between all the
different heatmaps of team i and team j :

Mi,j = 1

|Hi ||Hj |
∑

(hx ,hy)∈(Hi ,Hj )

‖hx − hy‖

where Hi is the set of all the heatmaps constructed for
a team i. Recall that we partitioned the set of all passes
attempted during a season for a single team into 10 random
subsets, i.e. |Hi | = 10,∀i. Each i, j entry, where i = j ,
is the average distance between each of the 10 heatmaps
constructed for a single team i. The entries of the final
distance matrix are averages of 10 repetitions of splitting
the set of passes into random subsets and calculating a new
M each time.

After creating the distance matrix M , we plot the
visualization that is presented in Fig. 4. It is a 20 × 20
distance heatmap that plots the inverse of the entries of M ,
i.e. a darker color indicates a smaller distance between the
heatmaps of two teams. The distances are also scaled to a
range [0, 1] using the min and max entries of M . The teams
are ordered by their final position in the league. Because
Mi,j = Mj,i , the heatmap is symmetrical.

In Fig. 4, we observe that the diagonal is of a darker
shade than the rest of the heatmap. This is not surprising;
we expect the distances between heatmaps of the same team
to be relatively small. This suggests that dividing the set
of all passes for a single team over the course of a season
into 10 random subsets results in heatmaps that are similar
and are characteristic of a team. The heatmap also indicates
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Fig. 4 Visualization of the Euclidean distances between pass heatmaps of teams. A 20 × 20 distance heatmap that plots the inverse of
the average distance between the heatmaps of teams. The distances are scaled to the range [0, 1]. A darker shade indicates a smaller
distance. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

that some teams are more consistent in their style of play
that others.

We also observe that the distances between Barcelona’s
heatmaps and those of the rest of the teams in the La Liga
are relatively large. This suggests that Barcelona’s passing
style is the most distinctive, which is a popular comment
among soccer observers. This result is further supported
by the results found in the classification task (presented
in Section 4.3). Barcelona attains a perfect F -score during
classification, which suggests that it is very easy to classify
heatmaps of Barcelona because they are distinctive. It is
interesting to note that the distinctiveness of a team is not
correlated with a team’s success. Recall that the teams are
ordered by their final position in the league. However apart
from Barcelona, there is no obvious relationship between
success and the heatmap.

4.3. Team Classification

To determine whether the heatmaps were representative
of a team’s passing style, we conducted the following

classification experiment: As in the visualization task, for
all the teams we first split the set of all passes attempted
by a team during the season into 10 randomly constructed
subsets to construct 10 heatmaps per team. We chose 10
because it offered a balance between ensuring the size of
a subset was still large enough to be representative of a
team’s passing style and providing enough examples for
classification. Each heatmap is treated as an example, and
its respective label is the team that attempted the passes. To
use the heatmaps as features, we flatten the 3 × 6 matrix
into a single vector of values, creating a model that has
feature dimensionality of 18.

After constructing the heatmaps, we take a 70–30
training/test split stratified by team, thus ensuring that the
class balance is equal in both the training set and test set.
We then construct a K-nearest neighbor (K-NN) classifier
to perform the classification task. We chose to use a K-NN
classifier because of the interpretability it offers, and also
because it showed strong performance during preliminary
experiments. To choose a value for K , we performed
threefold cross-validation on the training set and selected a
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Table 1. Mean precision and recall values for each team. The
table is ordered by the final league positions of the teams.

Team Mean precision Mean recall

Barcelona 1.00 ± 0.000 1.00 ± 0.000
Real Madrid 0.996 ± 0.0310 0.996 ± 0.0378
Atl. Madrid 0.988 ± 0.0551 0.981 ± 0.0766
Real Sociedad 0.921 ± 0.135 0.944 ± 0.139
Valencia CF 0.731 ± 0.215 0.818 ± 0.223
Malaga 0.959 ± 0.0972 0.958 ± 0.123
Real Betis 0.967 ± 0.0882 0.971 ± 0.0989
Rayo Vallecano 0.709 ± 0.211 0.805 ± 0.222
Sevilla 0.937 ± 0.135 0.885 ± 0.191
Getafe 0.637 ± 0.316 0.559 ± 0.300
Levante 0.954 ± 0.117 0.868 ± 0.203
Atl. Bilbao 0.967 ± 0.0863 0.997 ± 0.0297
Espanyol 0.660 ± 0.305 0.587 ± 0.309
Real Vall. 0.975 ± 0.0777 0.992 ± 0.0505
Granada CF 0.888 ± 0.179 0.909 ± 0.234
Osasuna 0.740 ± 0.258 0.700 ± 0.276
Celta 0.956 ± 0.103 0.943 ± 0.127
Mallorca 0.871 ± 0.201 0.774 ± 0.244
Dep. Coruna 0.995 ± 0.0353 0.994 ± 0.0449
Real Zaragoza 0.968 ± 0.0958 0.878 ± 0.18

value for K from the set {2, 3, 4, 5, 6, 7}—we chose the
value that resulted in the highest mean accuracy across
the folds. The classifier uses a weighted voting scheme;
when classifying a single example, each of the K nearest
neighbors will have a weighted vote proportional to the
inverse of its Euclidean distance from the example.

After choosing a value for K , we classify each example
in the test set and calculate the overall accuracy, as well
as the precision and recall for each class. We repeat the
70–30 training/test split 200 times, and repeat the entire
experiment 10 times. The results presented in Section 4.4
are the mean values taken over all of the repetitions.

One of the alternatives to splitting the set of passes
randomly would have been to split the dataset contiguously,
i.e. create a subset of passes for each single game, or for a
collection of sequential games. However, in this experiment
we wished to explore the typical style of a team; we
believed that a team’s characteristic playing style is more
identifiable when their play is looked at across an entire
season. Teams will often change their tactics depending
upon whom they are playing and the score of the game,
introducing more variation. We attempted to smooth this
variation by randomly sampling across the entire season
when constructing each subset of passes.

4.4. Classification Results

After repeating the experiment 2000 times as described,
we obtained a mean accuracy of 0.873 on the test set, with a
standard deviation of 0.0384. The mean value of K for each
of the 2000 classifiers was 5.78, with a standard deviation

of 1.3. We calculated accuracy as the percentage of all the
examples that we correctly classified. We also calculated
the mean precision and recall values for each team, and
present them in Table 1. The precision of a given class
C is calculated as: p = t

t+f
, where t is the number of

true positives, and f is the number of false positives. The
recall of a class is calculated as r = t

t+n
, where t is still

the number of true positives and n is the number of false
negatives. In Fig. 5, we plot the mean F -score for each
team. The F -score is the weighted average of a precision
and recall for an individual label and has the range [0, 1]. A
greater value suggests that a team is more distinguishable
and therefore is easier to classify.

Given that there are 20 teams in La Liga, a random
classifier would have an accuracy rate of 5%. Our accuracy
rate of 87.3% strongly suggests that a team’s passing style
is highly characteristic of the team and that the heatmaps
of just the pass origins are able to effectively capture the
different styles. It also further suggests that a team’s passing
style is consistent across a season, since the heatmaps are
constructed using passes from different games.

In Section 4.5, we show that even if we limit the set of
passes to only those that originated in midfield, we are still
able to identify teams accurately using the same features.

4.5. Midfield Passing Style

In this section we present our results from repeating the
same experiment described in Section 4.1, but using only
passes that originated from the six midfield zones (zones
7–12). By filtering out passes that did not occur in the
midfield, we reduced the set of passes by roughly 50%
(from 358,202 to 185,069).

We obtained a mean accuracy rate of 0.518 with a
standard deviation of 0.0537. The mean value of K was
5.88 with a standard deviation of 1.23 across the 2000
classifiers. We present the mean F -score of each team in
Fig. 6.

Although the accuracy rate is much smaller than that
obtained during the initial experiment, it is still much higher
than the 5% accuracy of a random classifier. This suggests
that although passes in the midfield do not characterize
teams to the same extent as all passes, they are still
indicative of a team’s style.

After comparing the results shown in Figs 5 and 6,
we observed that the change in classification performance
varied for different teams. For example, the F -score of
Barcelona remained high in the second experiment, whereas
the F -score of Real Madrid dropped enormously from
0.996 to 0.376. This is not a result of different teams
making more or fewer passes in the midfield. The reduction
in the number of passes for each team was fairly uniform
(∼50%) and the heatmaps are normalized by the number of
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Fig. 5 Mean F -score value for each team that participated in the 2012–2013 La Liga season. A higher F -score value indicates
better separation. The teams are ordered by their respective F -score. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

passes. The results suggest that some teams retain a strong,
easily identifiable passing style in the midfield but other
teams become more difficult to distinguish. A more detailed
investigation of midfield passes is required to fully explore
this phenomenon.

5. SHOT PREDICTION USING PASSING DATA

We now look at how passing strategy within a game
relates to positive outcomes for the offensive team.

5.1. Feature Extraction

To extract the features that we used to build our
predictive models, we first segment each game into a
discrete sequence of observations. We chose to segment the
game at the level of possessions. A possession in soccer is
defined as a period of time that a single team retains the ball
among their own players without an interruption in play or
loss of the ball to the opposing team. We filtered out any
possessions that did not contain at least three passes in order
to remove regions of play where a team only had a few

touches on the ball, since we hypothesized that these epochs
of play are less likely to reveal useful strategic elements.

After segmenting each game into a discrete sequence
of observations, we extracted features from each of these
observations to construct feature vectors. All of the features
that we utilized are based on an abstract representation of
passing strategy, which we call pass grids.

We constructed three types of pass grids for each
possession:

Origin grid: Percentage of passes in a possession that
originate in a particular zone

Destination grid: Percentage of passes in a possession that
have a destination in a particular zone

Origin-Destination grid: Percentage of passes in a pos-
session from one zone to another zone

We then constructed the feature vectors by concatenating
all the values from each of the three grids. The origin and
destination grids have one value per zone, so each accounts
for 18 features, and the origin–destination grid has a value
for each origin–destination pair, and thus is 18 × 18 = 324

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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Fig. 6 Mean F -score value for each team that participated in the 2012–2013 La Liga season, using only midfield passes. A higher
F -score indicates better separation. The teams are ordered by their respective F -score. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

features. As a result, each possession was converted into a
feature vector of length 360.

Each feature vector is labeled according to how the
possession ended. Possessions that ended in a shot taken
by the offensive team were assigned a label of 1, and all
others were assigned a label of −1. We chose shots instead
of other positive offensive outcomes such as goals because
they are less sparse and less influenced by factors such as
luck and the skill of the goalkeeper.

5.2. Method, Experimental Design, and Testing

Upon converting each possession in a game to a fixed-
length feature vector, we then used these feature vectors to
train models to relate passing strategy in a possession to
shots taken. We first split the data by using the first 80%
of games chronologically as the training set, and setting
aside the final 20% as the holdout set. We did this split
to simulate the scenario of applying our models to unseen
data.

Using the training set, we trained an L2-regularized sup-
port vector machine (SVM) model using the LIBLINEAR
package [18]. We used class-specific cost parameters in
order to account for the extreme class imbalance between
positive and negative examples in the training set. We
utilized a two-dimensional grid search and fivefold cross-
validation to find the optimal class-specific cost parameters
on the training set. We searched for cost parameters over
the range {10−6, 10−5, . . . , 102, 103}. The folds were con-
structed at the game level so possessions in a single game
were not split across multiple folds. We chose the cost
parameters that had the maximum average area under the
curve (AUC) on the five test folds, and used those param-
eters to train the final model. We found the optimal costs
to be {1, 0.1} for the positive and negative classes, respec-
tively. The final model was then tested on the holdout set.

5.3. Classification Results

Our model that predicts when a possession will end in a
shot has an area under the receiver operating characteristic

Statistical Analysis and Data Mining: The ASA Data Science Journal DOI:10.1002/sam
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Fig. 7 Ten of the most influential features for predicting when a possession will end in a shot. The top chart includes the five features with
the greatest positive weights and the bottom chart includes the five features with the most negative weights. All features are normalized
by the total sum of absolute weights. Each number corresponds to a zone. ‘OR’ designates pass origin features, ‘DT’ designates pass
destination features, and features labeled with two zones, ‘Z1 –Z2,’ designate an origin–destination feature to Z1 from Z2. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

(AUROC) of 0.785 and an F -score of 0.311. We used this
model to investigate the relationship between our features
and shots by looking at the relative importance of each
zone. We show the feature weights for the top five positively
and negatively associated features in Fig. 7. The weights
presented in the figure are normalized by the total sum of
the absolute value of all the weights to better understand
a given feature’s relative importance. We can see that no
single feature dominates and that there are both positive and
negative features with relatively high model weights. This
provides further evidence that our model captures a tradeoff
between where passes are more likely or less likely to lead
to shot opportunities in the future, and is not based solely
on simple rules such as ‘shots happen when there are passes
near the opposing team’s goal.’

Looking at the relative feature importance provides
insight into what passing strategies generally lead to shot
opportunities. The top two most important features are both
pass destination features to zones 17 and 14, respectively.
These are the ‘critical zones’ usually identified as being
strongly associated with positive offensive outcomes [17].

This represents a simple relationship between shot oppor-
tunities and passes within a possession: simply get the
ball into the critical zones. The fact that getting the ball
into these zones leads to shots is not surprising. How-
ever, other features in this set of 10 provide less obvious
insights. The next two most important features are both ori-
gin–destination pair features: a pass from zone 11 to zone
15 and a pass from zone 13 to zone 14. The first represents
a pass from the center of the midfield to the left side of the
attacking third. It suggests that moving the ball from the
center of the pitch to the wingers on the outside is asso-
ciated with an eventual shot opportunity. The next most
important feature is a pass from the right side of the attack-
ing third to zone 14, one of the ‘critical zones’ right in front
of the opposing team’s penalty box. This could be repre-
sentative of passes, such as crosses, from the outside into
the dangerous areas, which is one of the most identifiable
offensive strategies in soccer.

Two of the three most negatively associated features are a
pass from a player in zone 18 to a target also in zone 18, and
a pass from zone 16 to zone 16. This could be representative
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Fig. 8 Average pass shot value (APSV) for all players with more than 200 passes in the 2012–13 La Liga season. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

of a team getting trapped by the defense in the corner,
unable to further advance it toward the defending team’s
goal. It is interesting to note that passes from zone 14 to
18, and vice versa, are both are positively associated with
shot opportunities. Therefore, in general, it is advantageous
to get the ball to and from the corner offensive zones, but
it seems that it is detrimental to linger there.

Finally, while most of the top features involving the
‘critical zone’ 14 are positively associated with shot
opportunities, there are a few for which the opposite holds
true. For example, passes from zones 2, 5, or 7 to zone
14 are all negatively associated with shot opportunities.
These could be representative of goal kicks, punts, or other
long-balls that are sent from defensive areas deep into the
offensive area. This suggests that while zone 14 is generally
a ‘critical zone’ with a strong positive association with
shots, it is not beneficial to advance the ball from defensive
areas to zone 14 without a coordinated offensive attack.

5.4. Player Rankings by Shot Prediction Models

In the previous section, we described how we trained
a model relating a possession to the outcome of the
possession ending in a shot. As a result, this model has a
feature weight associated with a pass origin and destination
for each zone on the pitch, as well as a weight for each
origin–destination pair. This provides a map of the pitch
that suggests which passes are most likely to lead to a shot
opportunity later in the possession. We can use this map to
rate a given pass by its association with shot opportunities
using our model.

Table 2. Top 10 players in the 2012–2013 La Liga season by
average pass shot value (APSV).

Rank Player

1 Cristiano Ronaldo
2 Lionel Messi
3 Iago Aspas
4 Sergio Garcia de la Fuente
5 Giovani dos Santos
6 Alvaro Cejudo
7 Carlos Reina Aranda
8 Mesut Ozil
9 Karim Benzema
10 Gonzalo Higuain

We took every completed pass in the La Liga 2012–13,
and using our model computed an estimate of its relative
importance for generating a shot. This importance, called
the pass shot value (PSV), is computed for a pass p as

PSV (p) = wop + wdp + wodp

where wop and wdp are the model weights for the origin
and destination of p, respectively, and wodp, is the model
weight for the pair of the origin and destination of p. For
example, a pass from zone 3 to zone 4 would have a PSV
of the sum of the model weight for an origin in zone 3,
the weight for the destination in zone 4, and the weight
of the pair of having an origin of 3 and a destination of
4. We then computed the average pass shot value (APSV)
for all players in La Liga who had over 200 completed
passes in the 2012–13 season. Since this metric is heavily
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biased toward players who are positioned in the offensive
ends of the field, we excluded all backs and goalkeepers
from this analysis. We plot the APSV for these players
in Fig. 8, which shows how our model would rank each
player by their average tendency to complete passes that
are conducive to leading to a shot. It is not surprising that
this value is almost always negative. Most possessions do
not end in a shot, and thus most of the model’s features
are negatively associated with a shot opportunity being
generated. Therefore, players make passes with a negative
PSV the vast majority of the time. In spite of this, Cristiano
Ronaldo has a positive APSV, and as such is the highest
ranked player by APSV in La Liga for the 2012–2013
season. This suggests that generally his passes were rated by
the model to be positively associated with shot opportunities
later in the possession. We present the top ten players for
the 2012–13 season of La Liga in Table 2. The top two,
Ronaldo and Messi, were universally considered among the
best players in the world at that time, seen by the fact
that Ronaldo won the 2013 FIFA Ballon d’Or trophy and
Messi was the runner-up. They were also the number 2 and
number 1 scorers, respectively, in La Liga that season, and
they both finished the season in the top 10 for assists as
well. Others in Table 2 were also successful that season,
including offensive-oriented midfielders, such as Mesut
Ozil. Although APSV is derived only by examining passes,
there seems to be a strong relationship between this metric
and overall offensive performance.

6. CONCLUSION

In this paper we presented two approaches to deriving
insights into soccer by analyzing characteristics of passing.
We first presented a method for characterizing the passing
style of a team. We used the locations of the origins
of passes to create heatmaps for each team in La Liga
2012–2013 over the course of the season. This distribution
of passes creates a ‘fingerprint’ that can be used to identify
teams with a high-degree of accuracy. Using a KNN model,
we were able to identify teams from the heatmaps of
their pass-origin locations with 87% accuracy in a 20-way
classification task. We also showed that a ‘fingerprint’ was
still evident even when we restricted the set of passes to
those that originated from the midfield. These results imply
that most teams have a characteristic passing style that is
consistent throughout a season.

We also showed that the locations of the origins and
destinations of passes in a possession relate strongly
to whether that possession will end in a shot. Using
supervised machine learning techniques, we built a model
for predicting whether a possession will end in a shot.
The model had an AUROC of 0.785. The features of this

model provide a map to understand the relative importance
for generating shot opportunities of passing from one
location to another. We also used this map to build a
simple data-driven ranking of players by weighing a pass
by its relative importance for generating a shot later in
the possession. When we ranked all offensive players in
La Liga 2012–2013 with more than 200 passes with this
metric, Cristiano Ronaldo and Lionel Messi, winner and
runner-up of the 2013 FIFA Ballon d’Or trophy, came
out on top. This ranking also seems to correlate well
with standard offensive box score metrics such as goals
and assists, even though neither was directly used in its
computation. We believe this warrants further investigation
into its utility as a player comparison tool.

We believe that our results show that appropriate anal-
yses of pass-event data in soccer can provide interesting
and sometimes nonobvious insights. However, soccer is
a complicated sport with constantly changing game situ-
ations. Incorporating temporal information in any analysis
would provide more situation-specific insights. Also, uti-
lizing player-tracking data as a source dataset would better
allow investigation into the strategic aspects of the game
that are not directly involved with the ball. Expanding our
features to include sequential information could give a more
detailed understanding of how passing strategy relates to
outcomes. Lastly, if a team had a large collection of event
data from their own games, they could build team-specific
models that would perhaps provide a better analysis of
which strategies are most promising in their system. Fur-
ther investigation will better reveal how useful this type of
analysis can be for gaining a deeper understanding of the
world’s most popular game.
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