

Programa de Aplicaciones de Teoría de la Información al Procesamiento de Imágenes

1. NOMBRE DE LA UNIDAD CURRICULAR

Aplicaciones de Teoría de la Información al Procesamiento de Imágenes.

2. CRÉDITOS

6 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

El objetivo académico de esta unidad curricular es que el estudiante se familiarice con la reducción a la práctica de principios teóricos básicos en modelado estadístico de datos, y cómo se toman en cuenta dichos principios en el diseño de algoritmos prácticos en el área de procesamiento de imágenes.

4. METODOLOGÍA DE ENSEÑANZA

Se dictarán seis charlas teóricas de tres horas cada una. Habrá dos clases de práctico/consultas durante el período de dictado de las charlas (4 horas en total). Durante la realización del proyecto de evaluación existirán horarios de consulta a pedido de los estudiantes; las consultas también pueden hacerse a través de Internet (EVA, email, o teleconferencias). Las clases de consulta serán llevadas a cabo por docentes locales del NTI. Las horas de dedicación se dividen entonces de la siguiente manera.

Horas de teórico: 18
Horas de práctico/consultas: 4
Subtotal horas de clase: 22

Horas de laboratorio: 40 Horas de trabajo personal: 25 Horas de evaluación: 4

Total de horas de dedicación del estudiante: 91

- 1. Repaso de nociones básicas de teoría de la información, modelos estadísticos, costo de modelo, propiedades de imágenes digitales, denoising.
- 2. Dificultades en la aplicación directa de modelos de contexto a fuentes con alfabetos grandes.
- 3. Técnicas generales para la reducción del tamaño de modelo en imágenes.
- 4. Aplicaciones en compresión sin pérdida de imágenes: ejemplos teóricos y prácticos de algoritmos (universal image context modeling, LOCO-I).
- 5. Aplicaciones en denoising: el algoritmo DUDE I.
- 6. Otras aplicaciones: simulación de texturas, modelos dispersos.

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Repaso de nociones básicas de Teoría de la Información	(1)	
Dificultades en la aplicación directa de modelos de contexto a	(2)	(5)
fuentes con alfabetos grandes		
Técnicas generales para la reducción del tamaño de modelo en	(2)	(5)
imágenes.		
Aplicaciones en compresión sin pérdida de imágenes: ejemplos	(2)	(5)
teóricos y prácticos de algoritmos (universal image context		
modeling, LOCO-I).		
Aplicaciones en denoising: el algoritmo DUDE I.	(3), (4)	(5)
Otras aplicaciones: simulación de texturas, modelos dispersos.	(5)	

6.1 Básica

- 1. Cover, Thomas & Thomas, Joy. (2006). Elements of Information Theory. Segunda edición. New Jersey: Wiley-Interscience.
- 2. M. J. Weinberger, G. Seroussi and G. Sapiro, "The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS," in IEEE Transactions on Image Processing, vol. 9, no. 8, pp. 1309-1324, Aug 2000.
- 3. T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu and M. J. Weinberger, "Universal discrete denoising: known channel," in IEEE Transactions on Information Theory, vol. 51, no. 1, pp. 5-28, Jan. 2005.
- 4. G. Motta, E. Ordentlich, I. Ramirez, G. Seroussi and M. J. Weinberger, "The iDUDE Framework for Grayscale Image Denoising," in IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 1-21, Jan. 2011.

6.2 Complementaria

5. Artículos específicos de la bibliografía seleccionados en cada edición del curso.

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Nociones básicas de álgebra lineal. Nociones de sistemas digitales y programación. Nociones básicas de teoría de la probabilidad.
- 7.2 Conocimientos Previos Recomendados: Nociones básicas de álgebra moderna (grupos, anillos, cuerpos).

ANEXO A
Para todas las Carreras

A1) INSTITUTO

Instituto de Computación e Instituto de Ingeniería Eléctrica.

A2) CRONOGRAMA TENTATIVO

Semana 1	Teórico: Repaso, modelos estadísticos, costo de modelo, imágenes (3hs presenciales).
	Teórico: Dificultades en la aplicación directa de modelos de contexto (3hs presenciales)
Semana 2	Teórico: Reducción del tamaño de modelo en imágenes (3hs presenciales).
	Teórico: Aplicaciones en compresión sin pérdida de imágenes (3hs presenciales).
	Práctico: Compresión con LOCO-1 (2hs presenciales).
Semana 3	Teórico: Aplicaciones en denoising (DUDE I). Otras aplicaciones (6hs presenciales),
	Primera prueba (2hs presenciales)
Semana 4	Práctico: denoising (2hs presenciales).
	Segunda prueba (2hs presenciales).
Semana 5 a	Realización de proyecto de evaluación.
Semana 15	

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

La evaluación consistirá en la realización dos pruebas escritas y un trabajo final. Las pruebas escritas tendrán una duración de dos horas cada una y serán de aprobación obligatoria para poder acceder a la realización del trabajo final. Cada prueba vale 10 puntos y se aprueba con un mínimo de 6 puntos. El trabajo final vale 80 puntos y se aprueba con un mínimo de 50 puntos. La aprobación global del curso se alcanza aprobando las tres instancias de evaluación y la nota se determina en función del puntaje total acumulado.

A4) CALIDAD DE LIBRE

Los estudiantes no podrán acceder a la Calidad de Libre,

A5) CUPOS DE LA UNIDAD CURRICULAR

No tiene cupo.

ANEXO B para la carrera Ingeniería Eléctrica

B1) ÁREA DE FORMACIÓN

Fundamentos de Ingeniería eléctrica (Plan 97) Procesamiento de la información (Plan 2023)

B2) UNIDADES CURRICULARES PREVIAS

Curso:

Examen de Probabilidad y Estadística; Examen de Introducción a los Microprocesadores; Curso aprobado de Programación 2 o de Programación para Ingeniería Eléctrica.

Examen: No aplica

ANEXO B para la carrera Ingeniería em Sistemas de Comunicación

B1) ÁREA DE FORMACIÓN

Procesamiento de la información

B2) UNIDADES CURRICULARES PREVIAS

Curso:

- examen aprobado de Probabilidad y Estadística;
- examen aprobado de Introducción a los Microprocesadores:
- curso aprobado de Programación 2. o aprobación total de Programación para Ingeniería Eléctrica (PIE).

Examen: no corresponde

ANEXO B para la carrera Ingeniería en Computación (plan 97) y Licenciatura en Computación.

B1) ÁREA DE FORMACIÓN

Materias Opcionales.

B2) UNIDADES CURRICULARES PREVIAS

Para el Curso: Examen de Probabilidad y Estadística y

Examen de Arquitectura de Computadoras.

Para el Examen: No aplica.