

Programa de PUENTES

1. NOMBRE DE LA UNIDAD CURRICULAR

2359 - Puentes

2. CRÉDITOS

10 créditos

3. OBJETIVOS DE LA UNIDAD CURRICULAR

- Preparar al Ingeniero para entender conceptualmente las condicionantes de diseño y funcionamiento de las obras de paso.
- Conocer los diferentes tipos estructurales de puentes y manejar los conceptos básicos que conducen a la elección de un cierto tipo de solución estructural y constructiva.
- Desarrollar la capacidad de análisis crítico de soluciones concretas.
- Explicar las acciones a las que está sometido un puente y presentar distintos reglamentos de carga y herramientas de cálculo.

4. METODOLOGÍA DE ENSEÑANZA

La carga horaria semanal será de 4 horas durante las 15 semanas del semestre.

En las clases teórico-prácticas se expondrán los temas del curso, ejemplos de aplicación de los mismos, y se indicarán trabajos prácticos que conecten y sinteticen los temas desarrollados en la parte teórica así como un anteproyecto de un caso real concreto.

Se espera una dedicación complementaria del estudiante de 6 horas semanales de trabajos y estudios domiciliarios.

5. TEMARIO

- 1. Introducción a las obras de paso: Concepto de obra de paso. Presentación y desarrollo histórico de las estructuras de los puentes. Materiales y tipologías generales.
- 2. Condicionantes de proyecto: Identificación del puente como resultado de una conjunción de diferentes áreas de la ingeniería y arquitectura. Aspectos topográficos, geotécnicos, hidráulicos, hidrológicos, estéticos, entre otros de relevancia para el proyecto.
- 3. Generalidades de puentes y viaductos carreteros: Características esenciales de un puente o viaducto carretero. Definición de los elementos determinantes para la geometría del proyecto. Reglamentos nacionales e internacionales.
- 4. Superestructura de obras de paso: Sección transversal característica de un tablero carretero. Elementos estructurales y funcionales. Obras de paso con tableros de hormigón armado y pretensado. Obras de paso con tableros mixtos. Tableros tipo losa y tipo viga. Métodos de cálculo y sistemas constructivos. Ejemplos. Acciones permanentes y variables presentes en este tipo de estructuras. Reglamentos de cargas.
- 5. Infraestructura de obras de paso: Pórticos interiores, estribos y accesos. Concepto de socavación. Acciones permanentes y variables existentes. Métodos de cálculo y sistemas constructivos. Ejemplos.
- 6. Dispositivos de apoyo: Apoyos empleados históricamente. Apoyos elastoméricos y aspectos de diseño de apoyos especiales.
- 7. Puesta en servicio de obras de paso: Consideraciones de la puesta en funcionamiento de una determinada obra de paso. Tareas de inspección, conservación y mantenimiento. Tipos de reparación y refuerzo. Ampliación y refuerzo de puente o reconstrucción. Procedimientos constructivos empleados. Ejemplos.
- 8. Pasarelas y puentes ferroviarios: Características esenciales de diseño. Acciones a considerar y verificaciones a realizar. Reglamentos de cargas. Ejemplos.
- Tipologías particulares de obras de paso: Puentes tipo arco, atirantados y extradosados. Desarrollo general de recomendaciones para el diseño geométrico, aspectos constructivos y modelos de cálculo.

6. BIBLIOGRAFÍA

Tema	Básica	Complementaria
Introducción a las obras de paso.	(1),(4)	(11),(12),(14),(15)
Condicionantes de proyecto	(1),(2),(3),(4)	(14),(15),(16)
Generalidades de puentes y viaductos	(1),(2),(3),(4),(5),(10)	(13),(15)
carreteros	(1) (2) (4) (5) (40)	(40) (45) (47) (40)
Superestructura de obras de paso	(1),(2),(3),(4),(5),(10)	(13),(15),(17),(18)
Infraestructura de obras de paso	(1),(2),(3),(4),(10)	
Dispositivos de apoyo	(1),(6)	(19)
Puesta en servicio de obras de paso	(7),(8)	(20),(21)
Pasarelas y puentes ferroviarios	(4),(9),(10)	(22),(23)
Tipologías particulares de obras de paso	(10)	

6.1 Básica

- Dirección General de Carreteras del Ministerio de Fomento de España (2000). Obras de paso de nueva construcción – Conceptos generales. España: Centro de Publicaciones - Secretaría General Técnica - Ministerio de Fomento.
- 2. Ministerio de Transporte y Obras Públicas República Oriental del Uruguay (1989). Pliego General de Condiciones para la Construcción de Puentes y Carreteras.
- 3. Especificaciones Técnico Complementarias y Modificativas del Pliego de Condiciones para la Construcción de Puentes y Carreteras de la Dirección Nacional de Vialidad (2003).
- 4. Dirección General de Carreteras del Ministerio de Fomento de España (2011). IAP-11: Instrucción sobre las acciones a considerar en el proyecto de carreteras. España: Centro de Publicaciones - Secretaría General Técnica -Ministerio de Fomento.
- 5. Hambly, E.C. (1990). Bridge Deck Behaviour. 2nd Edition. CRC Press.
- 6. Dirección General de Carreteras del Ministerio de Obras Públicas, Transportes y Medio Ambiente (1995). Nota técnica sobre aparatos de apoyo para puentes de carretera. España: Centro de Publicaciones - Secretaría General Técnica -Ministerio de Obras Públicas, Transportes y Medio Ambiente.
- 7. Dirección General de Carreteras del Ministerio de Fomento de España (2012). Guía para la realización de inspecciones de principales obras de paso en la Red de Carreteras del Estado. España: Centro de Publicaciones Secretaría General Técnica Ministerio de Fomento.
- 8. Rodríguez García, Fernando (1998). Rehabilitación de estructuras de hormigón: técnicas y sistemas. Revista de Edificación Vol. 28. Navarra, España: Servicio de

FACULTAD DE INGENIERÍA UDELAR

Formato Aprobado por resolución Nº113 del CFI de fecha 04.07.2017

Publicaciones de la Universidad de Navarra.

- 9. Norma para cálculo de puentes ferroviarios de hormigón y metálicos de AFE. Gerencia de Vía y Obras Departamento Técnico Administración de Ferrocarriles del Estado.
- 10. Manterola, Javier (2006). Puentes Apuntes para su diseño, cálculo y construcción.

6.2 Complementaria

- 11. Torres Arcila, Martha (2001). Puentes. España: Atrium Internacional.
- 12. Fernández Trojano, Leonardo (1999). Tierra sobre el agua. Visión histórica universal de los puentes. Madrid, España: Canales y Puertos, Colegio de Ingenieros de Caminos.
- 13. Monleón Cremades, Salvador (1997). Ingeniería de Puentes Análisis estructural. Valencia, España: Universitat Politecnica de Valencia.
- 14. Arenas de Pablo, Juan J. (2002). Caminos en el aire. Los Puentes. Madrid, España: Canales y Puertos, Colegio de Ingenieros de Caminos.
- 15. Ministerio de Transporte y Comunicaciones del Perú. Dirección General de Caminos y Ferrocarriles (2003). Manual de Diseño de Puentes.
- 16. Gottemoeller F. (2004). Bridgescape The Art of Designing Bridges (2nd Edition). John Wiley & Sons, Inc.
- 17. Baker, Richard M. Puckett, Jay A. (2013). Design of Highway Bridges: an LRFD Approach. John Wiley & Sons Ltd.
- 18. Asociación técnica de carreteras de España (2003). Juntas para puentes de carreteras. Consideraciones prácticas. Madrid, España: Asociación técnica de carreteras de España.
- 19.MOPU Dirección General de Carreteras de España Sección de Puentes y Estructuras (1982). Recomendaciones para el proyecto y puesta en obra de los apoyos elastoméricos para puentes de carretera.
- 20. Ministerio de Transporte y Comunicaciones del Perú. Dirección General de Caminos y Ferrocarriles (2006). Guía para Inspección de Puentes.
- 21. Dirección Nacional de Vialidad del Ministerio de Infraestructura, Vivienda y Servicios Públicos de la Provincia de Buenos Aires (2007). Manual para inspecciones rutinarias de puentes y alcantarillas en servicio.
- 22. American Association of State Highway and Transportation Officials (2009). LRFD Guide Specifications for the Design of Pedestrian Bridges.
- 23. Dirección General de Ferrocarriles del Ministerio de Fomento de España (2010). IAPF. Instrucción sobre las acciones a considerar en el proyecto de puentes de ferrocarril. España: Centro de Publicaciones Secretaría General Técnica Ministerio de Fomento.

Formato Aprobado por resolución N°113 del CFI de fecha 04.07.2017

7. CONOCIMIENTOS PREVIOS EXIGIDOS Y RECOMENDADOS

- **7.1 Conocimientos Previos Exigidos:** Conocimientos de Hormigón Armado. Conocimientos de Resistencia de Materiales 1 y 2.
- **7.2 Conocimientos Previos Recomendados:** Conocimientos de Hidrología e Hidráulica Aplicada y Trazado Vial. Conocimientos de Hormigón Pretensado. Conocimientos de Métodos Computacionales Aplicados a Estructuras.

ANEXO A
Para todas las Carreras

A1) INSTITUTO

Instituto de Estructuras y Transporte

A2) CRONOGRAMA TENTATIVO

Semana 1	Tema 1 (4 hs de clase).
Semana 2	Tema 2 (4 hs de clase).
Semana 3	Tema 2 (2 hs de clase). Tema 3 (2 hs de clase).
Semana 4	Tema 4 (3 hs de clase). Anteproyecto (1 hs de clase).
Semana 5	Tema 4 (3 hs de clase). Anteproyecto (1 hs de clase).
Semana 6	Tema 4 (3 hs de clase). Anteproyecto (1 hs de clase).
Semana 7	Tema 4 (3 hs de clase). Anteproyecto (1 hs de clase).
Semana 8	Tema 5 (4 hs de clase).
Semana 9	Tema 5 (2 hs de clase). Anteproyecto (2 hs de clase).
Semana 10	Tema 6 (4 hs de clase).
Semana 11	Tema 7 (4 hs de clase).
Semana 12	Tema 8 (4 hs de clase).
Semana 13	Tema 9 (4 hs de clase).
Semana 14	Tema 9 (2 hs de clase). Anteproyecto (2 hs de clase).
Semana 15	Anteproyecto (2 hs de clase). Repaso.

A3) MODALIDAD DEL CURSO Y PROCEDIMIENTO DE EVALUACIÓN

Durante el curso se propondrá un anteproyecto (planos y memoria de cálculo) que se puntuará. Con la aprobación de este trabajo se ganará el derecho a dar examen. El examen será escrito sobre una propuesta concreta de obra de paso donde se desarrollarán preguntas y ejercicios en base a los temas desarrollados en el curso teórico-práctico.

A4) CALIDAD DE LIBRE

No se podrá acceder a la calidad de libre.

A5) CUPOS DE LA UNIDAD CURRICULAR

No existen cupos.

ANEXO B para la carrera de Ingeniería Civil

B1) ÁREA DE FORMACIÓN

Teoría de Estructuras

B2) UNIDADES CURRICULARES PREVIAS

Curso:

Examen de Resistencia de Materiales 2. Examen de Hormigón 1. Curso de Hormigón 2.

Examen:

Curso de Puentes. Examen de Hormigón 2.

APROBADO POR RES. CONSEJO FAC. ING. FECHA 02/05/2023 EXP 061130-000019-23