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Abstract Mobile computing devices and the services offered by them are utilized
by millions of users on a daily basis. However, they operate in hostile environments
getting exposed to a wide variety of threats. Accordingly, vulnerability manage-
ment mechanisms are highly required. We present in this paper a novel approach for
increasing the security of mobile devices by efficiently detecting vulnerable con-
figurations. In that context, we propose a modeling for performing vulnerability
assessment activities as well as an OVAL-based distributed framework for ensuring
safe configurations within the Android platform. We also describe an implementa-
tion prototype and evaluate its performance through an extensive set of experiments.
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1 Introduction

The overwhelming technological advances in the broad sense of mobile computing
have made end users to experience real computers in their pockets. Android1 [1], a
Linux-based operating system for mobile devices, is nowadays the election of mil-
lions of users as the platform for governing their mobile devices. Only in the first
quarter of 2012, worldwide sales of smartphones to end users reached 144.4 mil-
lion units where Android-based devices leaded the market share owning the 56.1%
followed by iOS2 with 22.9% [5]. However, despite of the many security improve-
ments that have been done since Android’s creation, the underlying operating sys-
tem as well as services and applications have also evolved providing room for new
vulnerabilities. Moreover, the open and barely protected mobile environment facil-
itates attackers to take advantage of such vulnerabilities. Sensitive data handled by
mobile users becomes easily exposed. Under this perspective, managing vulnerabil-
ities is a crucial and challenging task that must be addressed in order to ensure safe
configurations and to increase the overall security of the system.

Once a vulnerability is discovered in almost any typical software product, its
patch cycle normally describes a time gap until the vulnerability is disclosed, an-
other time span until the patch is available and yet another time span until the end
user applies the patch [26]. It is usually during this period that attackers activity
takes place. Within the Android environment, this issue gets worse. Android is dis-
tributed as open source and device manufacturers and telecommunications carriers
customize it in order to provide specific services as well as added value to their
customers. When a patch is released by Google, an extra time gap will occur until
the manufacturer adapts it to work with its own hardware and another time span will
pass until the patch is released by the carrier [31]. In addition to this problem, several
application markets allow to fast distribute third party applications with only some
security checks expecting that the community identifies and reports malicious soft-
ware. With thousands of applications in the market, Android users are very likely to
encounter malware3 on their devices [7].

Such scenario imperatively requires solutions for rapidly identifying new vulner-
abilities and minimizing their impact. Even though no patch might be available for a
new vulnerability at a given time, countermeasures can be taken in order to mitigate
the problem until the disclosure of an official patch. In that context, vulnerability
assessment mechanisms are highly required in order to increase the vulnerability
awareness of the system. In addition, mobile devices usually have limited resources
thus optimized lightweight tools should be developed to ensure efficiency without
losing functionality. Moreover, there are no current solutions built over solid foun-
dations as well as open and mature standards that foster its adoption and speed up
general vulnerability information exchange.

1 Android is developed by Open Handset Alliance, led by Google [11]
2 Apple iOS [3]
3 Malicious software including viruses, worms and spyware among others
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In light of this, we propose a novel approach for increasing the security of the
Android platform, though it could be applied over other mobile platforms as well,
using the OVAL4 language [14] as a means for describing Android vulnerabilities.
We put forward a mathematical model that supports the assessment strategy and a
lightweight framework that efficiently takes advantage of such knowledge in order
to detect and prevent configuration vulnerabilities. We also present an implementa-
tion prototype as well as an extensive set of experiments that shows the feasibility
of our solution.

Finally, the remainder of this paper is organized as follows. Section 2 describes
existing work and their limits. Section 3 presents our approach for modeling the vul-
nerability assessment process. Section 4 details the proposed framework describing
its architecture and the proposed strategy for performing self-assessment activities.
Section 5 depicts the internals of our implementation prototype. Section 6 shows an
extensive set of experiments and the obtained results. Section 7 presents conclusions
and future work.

2 Related work

Android is an open source operating system that integrates some security features
by design. It uses the Dalvik virtual machine [4] for executing end user applications
written in Java [13]. It is not the same standard Java virtual machine used in most
popular platforms such as Linux, Mac OS X or Windows. It has its own API5 that is
almost the same as the standard one. The Dalvik virtual machine takes the Java ap-
plication classes and translates them into one or more .dex (Dalvik Executable) files
generating optimized and smaller code. The internal design of the Android platform
provides important security features such as the sandbox execution approach [31].
Such approach executes Android applications within separate instances of the
Dalvik virtual machine that in turn are represented by different Linux kernel pro-
cesses. In order to manage the underlying system resources, Android uses an access
control policy based on unique identifiers for each application to ensure that they
can not interfere between each other.

Despite of the many security features provided by the Android platform [24], [29],
end users still face security threats due to existing vulnerabilities within the sys-
tem itself, misuse of personal data performed by applications and malicious third
party software [23], [25]. Several approaches have been proposed for analyzing An-
droid applications and their risks [22], [27]. These contributions provide a strong
support for increasing the security of the Android platform. Nevertheless, vulnera-
bility assessment mechanisms have been barely or not at all discussed. Currently,
dozens of security applications exist for the Android platform developed by differ-
ent providers [7, 10, 16]. However, they generally use private knowledge sources

4 Open Vulnerability and Assessment Language
5 Application Programming Interface
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as well as their own assessment techniques, and they do not provide standardized
and open means for describing and exchanging vulnerability descriptions within the
community.

Much of the work done in vulnerability analysis has defined the assessment in-
frastructure using its own vulnerability specification language arising compatibility
and interoperability problems. Languages such as VulnXML [15] have been devel-
oped as an attempt to mitigate these problems and to promote the exchange of secu-
rity information among applications and security entities. However, these languages
are only focused on web applications covering a subset of the existing vulnerabili-
ties in current computer systems. In order to cope with these problems, the MITRE
corporation [8] has introduced the OVAL language [14], an information security
community effort to standardize how to assess and report upon the machine state
of computer systems. OVAL is an XML-based language that allows to express spe-
cific machine states such as vulnerabilities, configuration settings, patch states. Real
analysis is performed by OVAL interpreters such as Ovaldi [12] and XOvaldi [21].
Several related technologies have evolved around the OVAL language. NIST [9]
is responsible for the development of emerging technologies including the SCAP6

protocol [18] and the XCCDF7 language [32]. The SCAP protocol is a suite of spec-
ifications that includes OVAL and XCCDF, and it can be used for several purposes,
including automating vulnerability checking, technical control compliance activi-
ties, and security measurement. XCCDF is a language for authoring security check-
lists/benchmarks and for reporting results of checklist evaluation. The use of SCAP,
particularly OVAL and XCCDF, not only allows to specify vulnerabilities, but also
to bring a system into compliance through the remediation of identified vulnera-
bilities or misconfigurations. While OVAL provides means for describing specific
machine states, XCCDF allows to describe certain actions that should be taken when
these states are present on the system under analysis.

Several previous contributions have taken advantage of public vulnerability
databases [17] and the use of the OVAL language for performing vulnerability as-
sessment activities in large scale networks [28]. Currently, OVAL repositories offer
a wide range of vulnerability descriptions though Android is not yet an official sup-
ported platform. In this work, we have instrumented our approach with an experi-
mental OVAL extension for Android within the OVAL Sandbox project [14]. Such
extension enables practitioners and experts within the field to specify known vulner-
abilities for Android in a machine-readable manner and at the same time, it promotes
the exchange and enrichment of Android security information within the commu-
nity. Our work aims at defining a solution for increasing the security of Android
devices by capitalizing Android vulnerability descriptions specified with the OVAL
language. Such security advisories are automatically integrated in a distributed ar-
chitecture where self-assessment activities are performed in order to ensure safe
mobile configurations.

6 Security Content Automation Protocol
7 eXtensible Configuration Checklist Description Format
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3 Vulnerability assessment process model

The process by which vulnerabilities are assessed is critical for efficiently analyzing
a target system and minimizing computation costs at the same time. In this section
we present a mathematical model that defines and efficiently supports the vulner-
ability assessment process. Usually, a vulnerability can be understood as a logical
combination of properties that if observed in a target system, the security problem
associated with such vulnerability is present on that system. Properties can vary de-
pending on the nature of the vulnerability being described, some examples are: a
specific process is running (e.g., httpd), a specific port is open (e.g., 80), the sys-
tem has a specific version (e.g., 2.6.10.rc). Frequently, one property is required by
several vulnerability descriptions and naturally one vulnerability description may
require several properties. Under this perspective, the set of vulnerability descrip-
tions that constitutes a knowledge base can be compactly represented by using a
boolean pattern matrix PM defined as follows:

PM =


p1 p2 · · · pn

v1 a1,1 a1,2 · · · a1,n
v2 a2,1 a2,2 · · · a2,n
...

...
...

. . .
...

vm am,1 am,2 · · · am,n

 ai, j ∈ {0,1}

Each matrix row encodes the properties required to be observed for the vulner-
ability vi to be present. Thus, each entry ai, j denotes if the vulnerability vi requires
the property p j. Considering for instance a scenario with three vulnerabilities v1, v2
and v3, a pattern matrix PM can be built as follows:

v1 = (p1, p3, p5)

v2 = (p2, p4)

v3 = (p1, p2, p5)

 PM3,5 =

1 0 1 0 1
0 1 0 1 0
1 1 0 0 1


The pattern matrix can also provide useful information for performing statistics.

The v f latten operation aggregates the number of times that each property occurs
within the whole set of known vulnerabilities. The resulting vector provides an in-
dicator that helps to identify most common properties involved in vulnerabilities.
Such indicator provides valuable information that can be used for closer monitoring
and controlling critical components changes.

v f latten(PM) = (
m

∑
i=1

ai1,
m

∑
i=1

ai2, . . . ,
m

∑
i=1

ain)

Other useful metric can be extracted from the pattern matrix when the aggrega-
tion operation is performed horizontally, as indicated by h f latten. A column vector
is obtained from its application where each entry j denotes the amount of properties
required by each vulnerability v j. This metric can be utilized, among other uses, for
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identifying those vulnerabilities that are most likely affected by changes performed
in the environment, thus assessment activities should be taken into account as well.

h f latten(PM) = (
n

∑
j=1

a1 j,
n

∑
j=1

a2 j, . . . ,
n

∑
j=1

am j)
T

The state of a system can be encoded in the same manner as done with vulner-
abilities, indicating for those properties under control, which ones are present and
which ones are not. Thus, a system state is a boolean vector s defined as follows:

s = (s1,s2, . . . ,sn) si ∈ {0,1}

Each entry si takes the value 1 if the property pi is present in the system and 0
if it is not. Considering these constructs, the results of performing the vulnerability
assessment process over a given system is defined by the following equation:

w = h f latten(PM)− [PM ∗ sT ] (1)

⇓

w=


∑

n
j=1 a1 j

∑
n
j=1 a2 j

...
∑

n
j=1 am j

−



a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

am,1 am,2 · · · am,n

×


s1
s2
...

sn




The resulting assessment vector w = (w1,w2, · · · ,wm) denotes the status of each
vulnerability vi in the target system. The semantic of the vector w is given by the
Kronecker delta function as follows:

δi =

{
0, if i 6= 0
1, if i = 0

A null entry wi indicates that the vulnerability vi is present in the system while
non null values denotes the absence of the corresponding vulnerability. This fact
can be understood as a distance metric where a positive value indicates a positive
distance between the vulnerability and the target system, and a null distance indi-
cates that the vulnerability is actually in the system. Computing matrix operations
in optimized manners constitutes a field that has been studied for years [30]. The
integration of the proposed model into real computing systems can take advantage
of such expertise providing a compact and efficient representation for performing
vulnerability assessment activities.
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4 An OVAL-based framework for assessing Android
vulnerabilities

The previous model establishes a well-founded process for assessing vulnerabili-
ties in an efficient manner. By taking advantage of OVAL security advisories, such
model can be used for efficiently increasing the security of mobile computing de-
vices. Mobile devices have become a daily useful resource for connecting people,
entertainment, working, managing personal data and much more. This fact attracted
the attention of legitimate users of these pocket-computers but also from attackers.
In only the first semester of 2011, malware for the Android platform has grown
at 250% [7]. It is critical to develop open security frameworks that can speed up
the knowledge exchange among community users and also being able to take ad-
vantage of such information in order to augment their own security. In this section
we present our approach for efficiently increasing the security of Android-based
devices by automatically evaluating OVAL-based vulnerability descriptions and re-
porting analysis results.

4.1 Architecture and main components

We have designed the proposed architecture illustrated in Fig. 1 as a distributed
infrastructure composed of three main building blocks: (1) a knowledge source
that provides existing security advisories, (2) Android-based devices running a self-
assessment service and (3) a reporting system for storing analysis results and per-
forming further analysis. The overall process is defined as follows. Firstly at step 1,
the Android device periodically monitors and queries for new vulnerability descrip-
tions updates. This is achieved by using a web service provided by the security
advisory provider. At step 2, the provider examines its database and sends back new
found entries. The updater tool running inside the Android device synchronizes then

Fig. 1: OVAL-based vulnerability assessment framework for the Android platform
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its security advisories. When new information is available or configuration changes
occur within the system, a self-assessment service is launched in order to analyze
the device at step 3. At step 4, the report containing the collected data and the re-
sults of the analyzed vulnerabilities is sent to a reporting system by means of a web
service request. At step 5, the obtained results are stored and analyzed to detect po-
tential threats within the Android device. In addition, this information can also be
used with different purposes such as forensic activities or statistical analysis.

Within the proposed approach, vulnerabilities are described by using OVAL def-
initions. An OVAL definition is intended to describe a specific machine state using
a logical combination of OVAL tests that must be performed over a host. If such
logical combination is observed, then the specified state is present on that host (e.g.
vulnerability, specific configuration) [14]. Under a logical perspective, this combi-
nation can be understood as a first order formula where each OVAL test corresponds
to an atomic unary predicate over that system [19]. The model presented in Section 3
denotes these predicates as the set of properties P= {p1, p2, . . . , pn}. P represents all
the predicates (OVAL tests) involved in the vulnerability descriptions (OVAL defini-
tions) available within our knowledge source. In this manner, a boolean matrix PM
representing each involved OVAL test for each OVAL definition can be easily built
in order to perform assessment activities. The self-assessment component depicted
in Fig. 1 constitutes a critical building block because it is in charge of orchestrating
the entire lifecycle of the framework in an automatic manner. Hence, optimized al-
gorithms for performing self-assessment activities are highly required. In order to
achieve this objective, we have designed and implemented a strategy that uses the
model presented in Section 3 for minimizing the system components required to be
assessed.

4.2 Optimized assessment strategy

Due to the limited resources provided usually by mobile devices, it is important to
optimize the use of such elements without losing functionality and performance.
The proposed assessment strategy takes this issue into account and minimizes com-
putation costs by using a boolean pattern matrix PM that represents known vulner-
abilities and a system state vector s that holds the current system properties. The
overall assessment is then efficiently performed using both the pattern matrix and
the system vector defined in Section 3. Within our approach, two types of events
can trigger self-assessment activities: (i) when changes occur in the system and
(ii) when new vulnerability definitions are available. Algorithm 1 depicts the over-
all strategy for treating such events and minimizing the number of OVAL tests to be
re-evaluated. In order to explain the proposed algorithm, we put forward an illus-
trative example that considers both situations and uses the matrix PM3,5 illustrated
in Section 3. Let consider the property p2 = {Package X has version Y} and the sys-
tem state s = (1,0,0,0,1) meaning that only the properties p1 and p5 are present
in the system. Within the OVAL language, p2 is described using an OVAL test that
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involves an OVAL package object with its attribute name = X and an OVAL pack-
age state with its attribute version = Y .

Input: Event event, PatternMatrix matrix, SystemState state
Output: VulnerabilityList list

1 if event is of type SystemChange then
2 ob js← getA f f ectedOb jectsByEvent(e);
3 foreach Property p ∈ state do
4 o← getOb jectFromProperty(p);
5 if o ∈ ob js then
6 result ← evaluateProperty(p);
7 updateSystemState(state, p,result);
8 end
9 end

10 end
11 if event is of type De f initionU pdate then
12 de f s← getDe f initionsFromEvent(e);
13 props← getPropertiesFromDe f initions(de f s);
14 foreach Property p ∈ props do
15 if p 6∈ state then
16 addEmptyPropertyColumn(matrix, p);
17 addEmptyPropertyColumn(state, p);
18 result ← evaluateProperty(p);
19 updateSystemState(state, p,result);
20 end
21 end
22 foreach Definition d ∈ de f s do
23 addAndLoadDe f initionRow(matrix,d);
24 end
25 end
26 w← hSumMatrix(matrix)− (matrix∗ state);
27 index← 0;
28 foreach Entry v ∈ w do
29 if v = 0 then
30 vulnDe f ← getVulnDe f (index);
31 addToOut putList(list,vulnDe f );
32 end
33 index← index+1;
34 end

Algorithm 1: Efficient event-based vulnerability assessment algorithm

Let suppose now that an event of type package updated has occurred in the sys-
tem affecting the package X (line 1). Usually, a complete evaluation of each OVAL
definition involving the OVAL test that describes the property p2 should be carried
out. However, only the truth value of the involved OVAL test for p2 is required for
recomputing the results of all the descriptions affected. In order to achieve this, the
objects affected by the event are retrieved (line 2) and compared with the objects
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related to the system properties (lines 3-4). If the object of one property is seen
to be affected (line 5), the property represented by an OVAL test is re-evaluated
and reflected in the system state (lines 6-7). Within our example, such optimization
point will only assess and change the second entry of the system state s. Due to both
events are disjoint (system changes at line 1 and definition update at line 11), we
now explain the end of the algorithm for the first case and then we discuss the be-
havior for the second case. Let suppose that the new value for the package version
is Y thus the new system state becomes s = (1,1,0,0,1). Once the assessment of
the OVAL test for p2 has been done, the overall assessment result is achieved by
performing two operations between boolean matrices (line 26), within our example,
as given by Equation 2.

w=

3
2
3

−

1 0 1 0 1

0 1 0 1 0
1 1 0 0 1

×


1
1
0
0
1


=

1
1
0

 (2)

For each entry in the result vector w (line 28), we use the Kronecker delta function
(line 29) in order to detect if the vulnerability represented by that entry is present in
the target system. If it is the case, the vulnerability definition is added in the output
detected vulnerability list (lines 30-31). Within our example, it can be observed that
the change performed in the system has exposed itself to new security risks due to
the presence of the vulnerability v3.

The second situation involves the arrival of new vulnerability descriptions
(line 11). In this case, both the pattern matrix PM and the system state s have to
be extended so as to cover the new properties involved in the OVAL definitions. In
order to achieve this, the new definitions are retrieved from the event (line 12), and
the properties involved within such definitions are analyzed (lines 13-14). For each
uncovered property (line 15), an extension process must be applied. The extension
process for the pattern matrix PM will include new columns with null entries for
the new properties within existing vulnerability definitions (line 16). The system
state s is extended (line 17) and updated as well with the result of the property as-
sessment (lines 18-19). It is important to notice that the arrival of new vulnerability
definitions does not imply changes on the system and that the assessment results for
known properties are already loaded in the system state, thus there is no need to re-
evaluate them again. Finally, for each new vulnerability definition (line 22), a new
row is added in the pattern matrix PM indicating the required properties for that vul-
nerability to be present (line 23). The final assessment procedure is then performed
in the same manner as explained in the first situation (lines 26-34). The proposed
strategy constitutes a critical part of our framework and it has been integrated into
our implementation prototype, which is the heart of the next section.
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5 Implementation prototype

In order to provide a computable infrastructure to the proposed approach, a running
software component inside Android capable of performing self-assessment activi-
ties is required. Currently, 60.3% of Android users operate their devices using Gin-
gerbread (versions 2.3.3 to 2.3.7, API level 10) and a total of 79.3% operate versions
starting at 2.3.3 until its last release Jelly Bean (version 4.1, API level 16) [2]. Our
implementation prototype has been developed to be compliant with Android plat-
forms starting at version 2.3.3, thus covering almost 80% of the Android market
share. In this section, we describe the prototyping of our solution as well as the
high-level operation performed during the assessment activity.

The implementation prototype has been purely written in Java [13] and is com-
posed of four main components: (1) an update system that keeps the internal
database up-to-date, (2) a vulnerability management system in charge of orches-
trating the assessment activities when required, (3) an OVAL interpreter for the
Android platform and (4) a reporting system that stores the analysis results inter-
nally and sends them to an external reporting system. Fig. 2 depicts the main oper-
ational steps performed during the self-assessment activity and the connection with
the mentioned four main components. The prototype is executed as a lightweight
service that is running on background and that can be awakened by two potential
reasons. The first one is that the update system in charge of monitoring external
knowledge sources has obtained new vulnerability definitions; the second one is
that changes in the system have occurred hence it is highly possible that some vul-
nerability definitions need to be re-evaluated. The prototype is still in an early de-
velopment phase so we only cover some system events such as when a package has
been installed.

In order to be aware of these two potential self-assessment triggers, two listen-
ers remain active as shown at step 1. The updater listener listens the vulnerability
database updater component and will be notified when new vulnerability definitions
become available. The event bus listener uses the Android broadcast bus to capture
notifications about system changes. If new vulnerability definitions are available or
system changes have been detected, a vulnerability definition selection process is
launched at step 2. This process is in charge of analyzing the cause that has trig-
gered the self-assessment activity and deciding which assessment tasks must be
performed by actually implementing the Algorithm 1. At step 3, the vulnerability
manager component uses the services of XOvaldi4Android in order to perform the
corresponding assessment activity. At step 4, the results of the assessment are stored
in the internal results database and sent to the external reporting system by perform-
ing a web service request. Finally, a local notification is displayed to the user if new
vulnerabilities have been found in the system.

XOvaldi4Android plays a fundamental role within the proposed framework be-
cause it is in charge of actually assess the Android system. XOvaldi4Android is an
extension of XOvaldi [21], a multi-platform and extensible OVAL interpreter. We
have ported the XOvaldi system to the Android platform obtaining a 94 KB size
library. We have used the Eclipse development environment and the ADT plugin [2]
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Fig. 2: Self-assessment service high-level operation

for Eclipse to easily manage development projects for Android. The interpreter uses
the JAXB8 technology [6] for automatically generating its internal OVAL-based
data model. This technology provides means not only for modeling XML docu-
ments within a Java application data model but also for automatically reading and
writing them. Such feature provides to the interpreter the ability to evolve with new
OVAL versions as well as extensions, in this work for the Android platform, with
almost no developing cost. As shown in Fig. 2, the high-level operation performed
by XOvaldi4Android follows the same assessment process proposed by OVAL. In
order to provide extensibility features, the interpreter decouples the analysis of the
OVAL structure from the actual collection and evaluation activities by using a plu-
gin repository. While the former is implemented as the core of the interpreter, each
plugin provides injectable functionality (collection and evaluation) for the specific
type of OVAL test it was built for. In this manner, declarative extensibility of the in-
terpreter is achieved by automatic code generation using the JAXB technology and
functional extensibility is supported by its plugin-based architecture.

6 Performance evaluation

Devices with limited resources imperatively require well-designed and optimized
software that take care of such elements. In this section we present an analytical
evaluation of the proposed mathematical model as well as a technical evaluation that

8 Java Architecture for XML Binding



A Lightweight OVAL-based Vulnerability Assessment Framework for Android 13

involves a comprehensive set of experiments showing the feasibility and scalability
of our solution.

6.1 Analytical evaluation

Within the proposed approach, the vulnerability assessment process is governed by
Equation (1). Given n as the number of system properties being monitored and m
the number of available vulnerability definitions, the complexity of computing the
result vector w is n×m. Considering the worst case (n = m), the complexity is
O(n2). Being h f latten(PM) a known value, the number of operations performed
during the process are n boolean multiplications plus n− 1 integer sums for each
vulnerability definition. Then, the total number of boolean multiplications is m×n
and the total number of integer sums is m× (n−1). Hence, m× (n+(n−1))≈ n2

arithmetic operations are performed for assessing the entire knowledge repository
in the worst case.

Considering a knowledge repository with 1000 vulnerability definitions involv-
ing 1000 different system properties, the size of the pattern matrix PM is 106. This
means that the assessment process defined by the model will perform 106 arithmetic
operations for assessing the entire knowledge base. Considering MFLOPS9 as the
performance measure, though boolean and entire operations are cheaper than float-
ing point operations, the assessment requires 1 MFLOP. Within our experimental
devices Samsung Galaxy Gio running Android 2.3.3, we have measured an average
of 8.936 MFLOPS. With this information, we can infer that a dedicated application
of our strategy over a 106 size matrix takes less than 1 second in almost any standard
Android-based device.

Moreover, latest models may achieve more than 100 MFLOPS meaning that a
knowledge source of 10000 vulnerability definitions involving 10000 different prop-
erties could be mathematically assessed in less than 1 second. Currently, the OVAL
repository [14] offers 8747 UNIX vulnerability definitions including all versions
and families after years of contributions made by the community. Such scenario
provides real facts making the proposed approach highly suitable for efficiently per-
forming vulnerability assessment activities.

6.2 Technical experimentation

We have performed several experiments in order to analyze the behavior of our im-
plementation prototype. The proposed methodology cyclically tests the framework
without other applications running in foreground. The OVAL definitions set is in-
creased by 5 each time until a set of 100 definitions is evaluated. The used OVAL

9 Million Floating Point Operations Per Second
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Fig. 3: Scalability statistics in a simulated environment

definitions are similar in size containing on average two OVAL tests. For instance,
the vulnerability with the CVE-2011-3874 id permits a locally installed application
to gain root privileges by causing a buffer overflow within libsysutils. This vul-
nerability only affects specific Android versions (first OVAL test) and requires the
existence of the library libsysutils (second OVAL test). Fig. 3 illustrates the behav-
ior of our implementation prototype over the emulated Android device. We analyze
three performance dimensions: (1) the CPU utilization when XOvaldi4Android is
executed (red solid line with crossings), (2) the XOvaldi4Android execution time
(green dashed line with triangular points) and (3) the total framework execution
time (blue dashed line with rounded points). During the XOvaldi4Android execu-
tion, we have observed a stable and linear behavior in terms of CPU utilization,
consuming 80% on average. Its execution time is also stable as shown by the first
derivative within the inner graph. While assessing 50 definitions takes about 72 sec-
onds, 100 definitions takes almost twice the time. The overall execution time across
the framework, including database updates and reporting results, shows the same
behavior though slightly increased in time due to the sequential execution of its
components. It is important to notice that these experiments consider extreme cases.
As a matter of fact, only new definitions or a small set of definitions affected by
system changes will be evaluated in most situations.

In order to analyze the framework behavior using a real device, we have per-
formed the same experiments using a standard smartphone Samsung Galaxy Gio
S5660 (CPU 800 MHz, 278 MB of RAM, Android 2.3.3). Fig. 4 illustrates the ob-
tained results. We can observe the same behavior on each curve as with the emulated
device, describing a linear growth for each analysis dimension as shown in the in-
ner graph. Nevertheless, we have also detected an improvement in terms of speed
and resource usage. The average value for the CPU utilization is now about 65%.
In addition, the execution time of XOvaldi4Android is almost half the emulator
execution time, taking 38 seconds for analyzing 50 vulnerabilities and 75 for 100
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Fig. 4: Scalability statistics in a real device

vulnerabilities. This is probably due to a slower emulated CPU. The overall execu-
tion time is also reduced due to the faster execution of the vulnerability assessment
process. However, its growth rate, though linear, is faster because the internetwork
connections are real in this case.

As a final but not less important dimension to analyze, we have experimented
with the memory load. Within this analysis, we have considered the allocated mem-
ory required by XOvaldi4Android when it is executed. The system classifies the
allocated memory in two categories, native and Dalvik, taking on average 40% for
native memory and 60% for Dalvik memory. Fig. 5 illustrates the total memory
load considering both, the emulator and the smartphone. We have observed an al-
most constant utilization of the RAM memory. Within the emulator (blue solid line
with rounded points), XOvaldi4Android requires 12 MB on average (4.8 MB of na-
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tive memory, 7.2 MB of Dalvik memory). Within the smartphone (red dashed line
with rhomboid points), XOvaldi4Android requires a little less memory, 11 MB on
average (4.4 MB of native memory, 6.6 MB of Dalvik memory).

7 Conclusions and future work

Vulnerability management constitutes a complex activity that must be addressed in
order to increase the overall security of computing devices. In that context, we have
proposed an approach for supporting vulnerability assessment tasks as the first key
step for integrating this activity within the Android platform. We have put forward a
mathematical model as well as an optimized strategy that provides solid foundations
for its instantiation on this platform. We have proposed a lightweight framework that
enables the integration of OVAL security knowledge into the management plane of
mobile Android-based devices. By maintaining low-consumption services monitor-
ing the system, the proposed approach minimizes heavy task executions by only
triggering assessment activities when configuration changes are detected or new
vulnerability definitions are available. In light of this, we have developed an imple-
mentation prototype that efficiently performs self-assessment activities by following
the proposed optimized strategy. We have also performed an analytical evaluation of
the proposed model as well as an extensive set of technical experiments that shows
the feasibility of our solution.

For future work we plan to analyze protection mechanisms of the assessment
framework itself as well as collaborative techniques for exchanging security infor-
mation among neighboring devices over secure channels. We aim at distributing the
resulting improved implementation prototype within the community as open source.
In addition, botnets such as the one built by the DroidDream malware in 2011 are
an emerging mobile trend [7]. We also aim at extending our previous work [20] for
quantifying compliant network nodes involved in distributed vulnerabilities in order
to describe massive attack scenarios within mobile environments. Finally, we state
that real autonomy can be achieved if mobile devices are capable of closing the
vulnerability lifecycle by performing corrective tasks as well. In that context, we
also plan to analyze remediation strategies for correcting vulnerable configurations,
leading us closer to get real autonomic solutions.
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