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1.1 INTRODUCTION

A primary goal of software process improvement is to make soft-
ware development more effective and efficient. One way of doing 
that is to understand the role of defects in the process and make 
informed decisions about avoiding defect creation or committing the 
effort necessary to find and fix the defects that escape development 
phases. Through examination of a large amount of data generated 
during Personal Software Process (PSP) classes, we can show how 
many defects are injected during design, what types of defects are 
injected, and how they are detected and removed in later develop-
ment phases. We can use this information to teach developers how 
to define and improve their own processes, and thus make the prod-
uct development more effective and efficient.

“The Personal Software Process (PSP) is a self-improvement 
process that helps you to control, manage, and improve the way 
you work” [Humphrey 05]. This process includes phases that you 
complete while building the software: plan, detailed design, de-
tailed design review, code, code review, compile, unit test, and post 
mortem. For each phase, the engineer collects data on the time spent 
in the development phase and data about the defects injected and 
removed. The defect data include the defect type, the time to find and 
fix the defect, the phase in which the defect was injected, and the 
phase in which it was removed.

During the Personal Software Process course, the engineers build 
programs while progressively learning PSP planning, develop-
ment, and process assessment practices. For the first exercise, the 
engineer starts with a simple, defined process (the baseline process, 
called PSP0); as the class progresses, new process steps and ele-
ments are added, from estimation and planning to code reviews, to 
design, and design review. 

In this article, we present an analysis of defects injected during the 
design phase of the PSP programs 6, 7, and 8 (all developed using 
PSP2.1). In PSP2.1, students conceptualize program design prior to 
coding and record the design decisions using functional, logical, 
operational, and state templates. Students then perform a checklist-
based personal review of the design to identify and remove design 
defects before beginning to write code. 

In this analysis, we focused on defects injected during the design 
phase because these data had not been specifically studied before. 
Previous studies did not have all the defect data, such as defect 
types and individual defect times; they had only summaries. Our 
analysis of the complete data available from individual defect logs 
shows not only that the defects injected during design are the most 
expensive to remove in test but also these are easy to remove in the 
review phases. The difference is striking: it costs five times more to 
remove a defect in test than it does to remove that same defect dur-
ing review.

To show this, we observed how defects injected during design 
escaped into each subsequent phase of the PSP and how the cost 
to remove was affected by defect type and phase. We describe 
the different defects types injected during design and how these 
defect types compare with respect to the “find and fix” time. From 
this analysis, we show that “function” defects are the most com-
mon design phase defect, that personal design review is an effective 
removal activity, and that finding and fixing design defects in review 
is substantially less expensive than removal in test.

Some other articles study software quality improvement using PSP 
[Paulk 10] [Wholin 98] [Rombach 08] [Paulk 06] [Hayes 97] [Fergu-
son 97]. In the context of PSP, quality is measured as defect density 
(defects/KLOC). Our study differs from these others in that we focus 
on design defects, consider the defect type, and do not consider 
defect density. Instead, we focus on the characteristics of the de-
fects introduced in design. Our findings resulted from analyses of the 
defect types injected, how they proceeded through the process until 
they were found and removed, and cost of removal in subsequent 
development phases. 

1.2 THE DATA SET

We used data from the eight program version of PSP for Engineers I 
and II taught between October 2005 and January 2010. These courses 
were taught by the Software Engineering Institute (SEI) at Carnegie 
Mellon University or by SEI partners, including a number of different 
instructors in multiple countries. 

This study is limited to only consider the final three programs of 
the 2006 version of the PSP course (programs 6, 7, and 8). In these 
programs, the students apply the complete PSP process, using all 
process elements and techniques. Specifically, these exercises 
include the use of design templates and design reviews. Of course, 
not all of these techniques are necessarily applied well because the 
students are in a learning process.

We began with the 133 students who completed all programming 
exercises. From this we made several cuts to remove errors and 
questionable data and to select the data most likely to have compa-
rable design and coding characteristics.

Because of data errors, we removed data from three students. John-
son and Disney reviewed the quality of the PSP data [Johnson 1999]. 
Their analysis showed that 5% of the data was incorrect; however, 
many or most of those errors in their data were due to calculations 
the students made. Because our data were collected with direct 
entry into a MS Access tool, which then performed all calculations 
automatically, the lower amount (2.3%) of data removed is lower than 
the percentage reported by Johnson and Disney but seems reason-
able.

We next reduced the data set to separate programming languages 
with more common design and coding characteristics. As we analyze 
the design defects, it seems reasonable to consider only languages 
with similar characteristics that might affect code size, modularity, 
subroutine interfacing, and module logic. The students used a num-
ber of different program languages, as shown in Figure 1. 
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Figure 1: Quantity of students by program languages 

The most common language used was Java. To increase the data set size, we decided to include 
the data generated by students who used Java, C#, C++, and C. This group of languages uses simi-
lar syntax, subprogram, and data constructs. For the simple programs produced in the PSP course, 
we judged that these were most likely to have similar modularization, interface, and data design 
considerations. This cut reduced our data to that generated by the programming efforts of 94 stu-
dents. 

Because our intent was to analyze defects injected in the design phase, we removed from consid-
eration any data for which design defects were not recorded. From the 94 data sets remaining, two 
recorded no defects and 11 recorded no defects injected during design. Our data set for this analy-
sis was, therefore, reduced to 92 engineers or 83 engineers depending upon the specific analysis 
performed. In the following sections we present the types of defects that were injected in the de-
sign phase, when the defects were removed, and the effort required to find and fix these defects. 

1.3 WHERE THE DEFECTS ARE INJECTED 

The first goal of our analysis was to better understand where defects were injected. We expected 
injections to be dominated by the design and code phases of course, because they are the construc-
tion phases in PSP. We began by explicitly documenting the phase injection percentages. 

This analysis studied the defect injection and removal performance of individuals and the perfor-
mance variation among them. We included the 92 engineers who recorded defects. We began by 
computing the phase data for each individual and then computed the following statistics of the 
distribution of individuals:  

• an estimate of the mean percentage of defects injected by phase  

• the 95% confidence interval for that mean (to characterize the standard error on the 
mean)  

• the standard deviation of the distribution to characterize the spread among individuals 

For each phase and for each individual, we calculated the percentage of defects injected in each 
PSP phase. The distribution statistics are shown in Table 1. 

Figure 1: Quantity of students by program languages

The most common language used was Java. To increase the data set 
size, we decided to include the data generated by students who used 
Java, C#, C++, and C. This group of languages uses similar syntax, 
subprogram, and data constructs. For the simple programs produced 
in the PSP course, we judged that these were most likely to have 
similar modularization, interface, and data design considerations. 
This cut reduced our data to that generated by the programming ef-
forts of 94 students.

Because our intent was to analyze defects injected in the design 
phase, we removed from consideration any data for which design 
defects were not recorded. From the 94 data sets remaining, two re-
corded no defects and 11 recorded no defects injected during design. 
Our data set for this analysis was, therefore, reduced to 92 engineers 
or 83 engineers depending upon the specific analysis performed. 
In the following sections we present the types of defects that were 
injected in the design phase, when the defects were removed, and 
the effort required to find and fix these defects.

1.3 WHERE THE DEFECTS ARE INJECTED

The first goal of our analysis was to better understand where defects 
were injected. We expected injections to be dominated by the design 
and code phases of course, because they are the construction 
phases in PSP. We began by explicitly documenting the phase injec-
tion percentages.

This analysis studied the defect injection and removal performance 
of individuals and the performance variation among them. We includ-
ed the 92 engineers who recorded defects. We began by computing 
the phase data for each individual and then computed the following 
statistics of the distribution of individuals: 
•	 an	estimate	of	the	mean	percentage	of	defects	injected	by	phase	

•	 the	95%	confidence	interval	for	that	mean	(to	characterize	the	
standard error on the mean) 

•	 the	standard	deviation	of	the	distribution	to	characterize	the	
spread among individuals

For each phase and for each individual, we calculated the percent-
age of defects injected in each PSP phase. The distribution statistics 
are shown in Table 1.

DLD DLDR Code CR Comp UT

Mean 46.4 0.4 52.4 0.3 0.03 0.5

Lower 40.8 0.2 46.7 0.0 0.0 0.2

Upper 52.0 0.7 58.1 0.7 0.09 0.9

Std. dev. 27.2 1.7 27.4 1.8 0.3 1.8

 
Table 1: Mean lower, upper confidence interval values and std. 
dev. of the % of defects injected by phase

The design and code phases have similar injection percentages 
both on average and in the spread. Their mean of the percentage 
of defects injected is near 50% with lower and upper confidence 
interval bounds between 40% and 58%. Both standard deviations are 
around 27% with. So, in the average of this population, roughly half 
of the defects were injected in the design phase and the other half of 
the defects were injected in the code phase. On average, the defect 
potential of these phases appears to be very similar. The standard 
deviation shows, however, that the variability between individuals is 
substantial. Nonetheless, as we expected, in the average almost 99% 
of the defects were injected in the design and code phases with only 
around 1% of the defects injected in the other phases.

The design review, code review, compile, and unit test phases also 
have similar average defect potentials. The average in all these 
cases is less than 0.5% and their standard deviations are small, 
the largest being 1.8% in code review and unit testing. This shows 
that during verification activities in PSP the percentage of defects 
injected is low but not zero. From time to time, developers inject de-
fects while correcting other defects. We will study these secondary 
injections in a later study.

The variability between individuals and the similarity between the 
code and design phase is also presented in Figure 2. Note that the 
range in both phases is from 0% to 100% (all possible values). The 
25th percentile is 26.34 for design and 35.78 for code, the median is 
45.80 for design and 52.08 for code, and the 75th percentile is 64.22 for 
design and 71.56 for code. 

Despite a high variability between individuals, this analysis shows 
that the great majority of defects are injected in the design and code 
phases. Slightly more defects are injected during code than during 
design, but the difference is not statistically significant. We could, 
therefore, focus on the defects injected in the design and code 
phases. In this article, we discuss only the defects injected in the 
design phase.
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Figure 2: Percentage of defects injected by phase (box and whisker chart) 

1.4 ANALYSIS OF DESIGN DEFECTS 

From the 94 engineers in our data set there were 11 who recorded no injected defects during de-
sign. Our data set for analysis of the design defects was, therefore, reduced to 83 engineers. In the 
following sections we discuss the types of defects that are injected in the design phase, when 
those defects are removed, and the effort required to find and fix the defects. 

1.4.1 Defect types Injected during Design 

To improve the detection of design defects we first wanted to know which types of defects were 
injected during the design phase. Table 2 shows the mean of the percentage of the different defect 
types injected. It also presents the lower and upper bound of the 95% confidence interval for the 
mean (a measure of the standard error) and the standard deviation of the distribution. 

 Docs. Syn. Build Assign. Inter. Check Data Func. Syst. Env. 

Mean 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1 

Lower 3.3 2.5 0.0 8.2 5.1 1.6 6.3 39.7 0.0 0.9 

Upper 10.5 9.5 0.3 17.0 15.0 7.6 13.3 53.5 0.6 5.3 

Std. dev. 16.6 16.0 0.8 20.2 22.5 13.8 16.0 31.5 1.7 10.1 

Table 2: Percentage of defect types injected during design 

We divided these defect types into three categories. The first is “almost not defects of this type.” 
In this category we found system and build/package defects. It is clear that during the PSP course 
these types of defects were almost never injected. This may be due to the PSP course exercises 
rather than the PSP. Because the exercises are small, taking only a few hours, and contain few 
components, and make few external library references, build packages are usually quite simple. 
We expect to find more defects of these types in the Team Software Process in industrial scale 
projects. A second category is “few defects;” most of the other defect types (all except Function 
type) are in this category. The percentage of defects in this category ranged from 3.1% to 12.6%.  

Figure 2: Percentage of defects injected by phase  
(box and whisker chart)

1.4 ANALYSIS OF DESIGN DEFECTS

From the 94 engineers in our data set there were 11 who recorded no 
injected defects during design. Our data set for analysis of the design 
defects was, therefore, reduced to 83 engineers. In the following sec-
tions we discuss the types of defects that are injected in the design 
phase, when those defects are removed, and the effort required to 
find and fix the defects.

1.4.1 Defect types Injected during Design

To improve the detection of design defects we first wanted to know 
which types of defects were injected during the design phase. Table 
2 shows the mean of the percentage of the different defect types 
injected. It also presents the lower and upper bound of the 95% confi-
dence interval for the mean (a measure of the standard error) and the 
standard deviation of the distribution.

We divided these defect types into three categories. The first is 
“almost not defects of this type.” In this category we found system 
and build/package defects. It is clear that during the PSP course these 
types of defects were almost never injected. This may be due to the 
PSP course exercises rather than the PSP. Because the exercises 
are small, taking only a few hours, and contain few components, and 
make few external library references, build packages are usually quite 
simple. We expect to find more defects of these types in the Team 
Software Process in industrial scale projects. A second category is 
“few defects;” most of the other defect types (all except Function type) 
are in this category. The percentage of defects in this category ranged 
from 3.1% to 12.6%. 

Docs. Syn. Build Assign. Inter. Check Data Func. Syst. Env.

Mean 6.9 6.0 0.1 12.6 10.0 4.6 9.8 46.6 0.2 3.1

Lower 3.3 2.5 0.0 8.2 5.1 1.6 6.3 39.7 0.0 0.9

Upper 10.5 9.5 0.3 17.0 15.0 7.6 13.3 53.5 0.6 5.3

Std. dev. 16.6 16.0 0.8 20.2 22.5 13.8 16.0 31.5 1.7 10.1

 
Table 2: Percentage of defect types injected during design

The last category, “many defects,” includes only one type of defect: 
function. The great majority of defects injected during design were 
of the Function type. This type of defect was almost half of all the 
defects injected during Design. This is an observation familiar to PSP 
instructors, but not previously reported for a sizable data set.

The lower, upper, and standard deviation data show again the high 
variability between individuals. This can also be observed in Figure 
3; the box and whisker chart shows many observations as outliers. 
Also, it can be seen that the function defect type goes from 0% to 
100% and that the 25 percentile is 21% and the 75 percentile is 70%.
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1.4.2 When Are the Defects Injected During Design Removed? 

Our analysis indicated the subsequent phases during which the design defects were removed. 
While our data set was larger than any previously studied, it remained too small for us to examine 
the removals based on defect type. Still, for each engineer who injected design defects, we identi-
fied the phases in which the engineers found the defects, then, for every phase, we determined the 
percentage of the defects that were found in that phase.  

Table 3 shows the mean (with 95% confidence interval) and standard deviation for the different 
phases. The 95% confidence interval is bounded by 45.8% and 61.0%. As previously shown, the 
standard deviation was high, indicating the high variability between individuals. From this we 
learned that approximately 50% of the defects injected during Design were found in the detailed 
level design review (DLDR) phase.  

 DLDR Code CR Comp UT 

Mean 53.4 9.6 8.9 2.5 25.7 

Lower 45.8 5.7 5.2 0.0 19.3 

Upper 61.0 13.4 12.5 5.2 32.0 

Figure 3: Box and whisker of the percentage of defects injected 
during design

1.4.2  When Are the Defects Injected During Design Removed?

Our analysis indicated the subsequent phases during which the de-
sign defects were removed. While our data set was larger than any 
previously studied, it remained too small for us to examine the remov-
als based on defect type. Still, for each engineer who injected design 
defects, we identified the phases in which the engineers found the 
defects, then, for every phase, we determined the percentage of the 
defects that were found in that phase. 
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Table 3 shows the mean (with 95% confidence interval) and standard 
deviation for the different phases. The 95% confidence interval is 
bounded by 45.8% and 61.0%. As previously shown, the standard 
deviation was high, indicating the high variability between individuals. 
From this we learned that approximately 50% of the defects injected 
during Design were found in the detailed level design review (DLDR) 
phase. 

DLDR Code CR Comp UT

Mean 53.4 9.6 8.9 2.5 25.7

Lower 45.8 5.7 5.2 0.0 19.3

Upper 61.0 13.4 12.5 5.2 32.0

Std. dev. 34.8 17.5 16.7 12.3 29.2

 
Table 3: Phases where are founded the design defects  
(percentage)

Figure 4 shows the box and whisker charts displaying the percentage 
of defects found in the different phases and the histogram for the de-
fects founds in DLDR. Figure 4 also shows the high variability between 
individuals in the percentage of defects found during DLDR and UT.

Code and code review have a similar percentage of defects that were 
injected during design. Approximately 10% of the defects were found 
and removed in each of those phases. Approximately 2.5% of the 
design defects were found during the compile phase; it is likely that 
the defects found in compile were pseudo-code defects. And finally, 
around 25% of the defects were found in unit test (UT). This means 
that in the PSP accounting, one of every four defects injected during 
design escapes all phases prior to UT. We know, of course, that not 
all the defects that escape into UT are found in UT. UT will not have 
a 100% yield; therefore the percentage of defects found in each of 
these phases is smaller than reported while the actual percentage of 
escapes into UT is a lower limit. An estimate or measurement of the 
UT yield will be necessary to revise these phase estimates.
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Table 3: Phases where are founded the design defects (percentage) 
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1.4.3 Cost to Remove the Defects Injected in Design 

What is the cost and variation in cost (in minutes) to find and fix the defects that are injected dur-
ing design? First, we analyze the differences in cost segmented by the removal phase. Second, we 
study the differences in cost segmented by defect type. 

It would also be interesting to segment and analyze both the removal phase and the defect type 
jointly. Unfortunately, because of limited sample size after a two dimensional segmentation, we 
cannot perform that analysis with statistical significance. 

1.4.3.1 Phase Removal Cost 

What is the cost, in each removal phase, to find and fix a defect injected in design? Design defects 
can be removed in the detailed level design review (DLDR), code, code review (CR), compile, 
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1.4.3 Cost to Remove the Defects Injected in Design

What is the cost and variation in cost (in minutes) to find and fix the 
defects that are injected during design? First, we analyze the differ-
ences in cost segmented by the removal phase. Second, we study the 
differences in cost segmented by defect type.

It would also be interesting to segment and analyze both the removal 
phase and the defect type jointly. Unfortunately, because of limited 
sample size after a two dimensional segmentation, we cannot per-
form that analysis with statistical significance.

1.4.3.1 Phase Removal Cost

What is the cost, in each removal phase, to find and fix a defect 
injected in design? Design defects can be removed in the detailed 
level design review (DLDR), code, code review (CR), compile, and 
unit test (UT) phases. For each engineer, we calculated the average 
task time of removing a design defect in each of the different phases. 
Because some engineers did not remove design defects in one or 
more phases, our sample size varied by phase. We had data from 67 
engineers for DLDR, 29 each for code and CR, six for compile, and 55 
for UT. We excluded the cost of finding design defects in the Comp 
phase because we had insufficient data for that phase.

Table 4 shows the mean, lower and upper 95% confidence interval, 
and the standard deviation for the find and fix time (in minutes) for de-
sign defects in each of the studied phases. We might have expected 
an increased cost in each phase but this is not what the data showed.

DLDR CODE CR UT

Mean 5.3 5.1 4.2 23.0

Lower 3.7 2.5 2.6 11.6

Upper 6.9 7.6 5.7 34.3

Std. dev. 6.6 6.7 4.1 42.0
 
Table 4: Cost of find and fix defects injected in design segment-
ed by phase removed
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Rather, the “find and fix” cost remained almost constant during 
DLDR, code, and CR; in fact, the cost decreased a little in these phas-
es, though the differences were not statistically significant. Further 
analysis will be needed to determine which of the defect finds in code 
and code review escaped through design and an effective (as opposed 
to ineffective) design review. Regardless, any defect discovered in 
these phases is essentially found by an inspection process where the 
“fix” time is short because the root cause has been identified.

We are not stating here that the cost of finding and fixing a design de-
fect during DLDR, code, and CR is necessarily the same. We are stating 
that using PSP, the design defects that are removed during DLDR cost 
approximately the same as removing the ones that escape from design 
into code and those that escape from design into CR.

As we expected, the average cost of finding a design defect during UT 
is much higher than in the other phases by almost a factor of 5.

We also found a high variability among individual engineers.  This vari-
ability can be seen in the box and whisker chart in Figure 5. We tested 
for normal distribution after log transformation of find and fix times for 
DLDR, code, CR, and UT and all are consistent (p> 0.05 using a Kol-
morov-Smirnov  and Shapiro-Wilk test) with a log-normal distribution. 
This test is primarily useful to verify that we can apply regression to the 
transformed data; however, understanding the distribution also helped 
to characterize the asymmetry and long tailed nature of the variation. 
That is, the log-normality affirmed our intuition that some defects found 
in test required far more than the average effort to fix, making test time 
highly variable. We also observed that the both the mean and variation 
of rework cost in the DLDR, code, and CR phases were significantly 
lower than UT in both the statistical sense and the practical sense.
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Figure 5: Box and whisker of the cost of find and fix a design defect segmented by phase removed 

1.4.3.2 Defect Removal by Type 

What is the find and fix cost, per defect type, of defects injected during detailed design? As we 
mentioned before, we had few build/package and system defects injected during design. As a re-
sult, we didn’t have enough data for a statistically significant analysis of the cost of removing the-
se two types of defects. However, we were able to analyze the remaining defect types. 

Table 5 presents the mean, lower, and upper 95% confidence interval and the standard deviation 
for the find and fix cost of design defects, segmented by type. The cost, in minutes, for “find and 
fix” fell into three groups:  

• a group that has a mean near 5 minutes: Documentation, Syntax, Interface, Checking  

• a group, composed only of Assignment defects, that has a mean near 7 minutes 

• a group that has a mean near 10 minutes: Data, Functions, Environment 

The confidence interval of the second group is sufficiently wide that it is not clearly distinct from 
either of the other two groups, falling more or less in between. More data would help to clarify 
this grouping. We want to emphasize that the third group, including data, functions, and environ-
ment, takes twice the time to find and fix the defects than the documentation, syntax, interface and 
checking types of the first group. 

 Docs. Syn. Assign. Inter. Check Data Func. Env. 
Mean 5.6 4.3 7.3 5.4 4.9 11.0 9.3 10.5 

Lower 3.6 1.8 1.9 2.5 2.2 2.2 6.9 3.0 

Upper 7.6 6.7 12.7 8.2 7.5 19.8 11.7 17.9 

Std. dev. 4.1 3.7 16.3 7.3 5.2 25.6 10.1 11.7 
 

Table 5: Cost of find and fix defects injected in design discriminated by defect type 

Figure 5: Box and whisker of the cost of find and fix a design 
defect segmented by phase removed

1.4.3.2 Defect Removal by Type

What is the find and fix cost, per defect type, of defects injected 
during detailed design? As we mentioned before, we had few build/
package and system defects injected during design. As a result, we 
didn’t have enough data for a statistically significant analysis of the 
cost of removing these two types of defects. However, we were able 
to analyze the remaining defect types.

Table 5 presents the mean, lower, and upper 95% confidence interval 
and the standard deviation for the find and fix cost of design defects, 
segmented by type. The cost, in minutes, for “find and fix” fell into 
three groups: 

•	 a	group	that	has	a	mean	near	5	minutes:	Documentation,	Syntax,	
Interface, Checking 

•	 a	group,	composed	only	of	Assignment	defects,	that	has	a	mean	
near 7 minutes

•	 a	group	that	has	a	mean	near	10	minutes:	Data,	Functions,	Environ-
ment

The confidence interval of the second group is sufficiently wide that it 
is not clearly distinct from either of the other two groups, falling more 
or less in between. More data would help to clarify this grouping. 
We want to emphasize that the third group, including data, functions, 
and environment, takes twice the time to find and fix the defects than 
the documentation, syntax, interface and checking types of the first 
group.

Docs. Syn. Assign. Inter. Check Data Func. Env.

Mean 5.6 4.3 7.3 5.4 4.9 11.0 9.3 10.5

Lower 3.6 1.8 1.9 2.5 2.2 2.2 6.9 3.0

Upper 7.6 6.7 12.7 8.2 7.5 19.8 11.7 17.9

Std. 
dev.

4.1 3.7 16.3 7.3 5.2 25.6 10.1 11.7

 
Table 5: Cost of find and fix defects injected in design discrimi-
nated by defect type

As in the other cases, the variation among individual developers was 
high. This can be seen using the standard deviation, as well as the 
box and whisker chart that is presented in Figure 6.
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As in the other cases, the variation among individual developers was high. This can be seen using 
the standard deviation, as well as the box and whisker chart that is presented in Figure 6. 

 

Figure 6: Box and whisker of the cost of find and fix a defect segmented by defect type 

1.5 CONCLUSIONS AND FUTURE WORK 

In this analysis, we considered the work of 92 software engineers who, during PSP course work, 
developed programs in the Java, C, C#, or C++ programming languages. In each of our analyses, 
we observe that there exists a high variation in range of performance among individuals; we show 
this variability using standard deviation and box and whisker charts to display the median, quar-
tiles, and range. After considering this variation, we focused our analysis on the defects injected 
during design. Our analysis showed that most common design defects (46%) are of type function. 
This type belongs to the group of the most costly defects to find and fix. Data and environment 
defect types are in the same cost group category as Function. 

In addition, the analysis showed that build/package and systems defects were seldom injected in 
the design phase. We interpreted this as a consequence of the small programs developed during 
the course, rather than as a characteristic of PSP as a development discipline. 

In the final three PSP course exercises, defects were injected roughly equally in the design and 
code phases; that is, nearly half of the defects were injected in design. Half of the design defects 
were found early through appraisal during the detailed design review (DLDR). However, around 
25% were discovered during unit test, where defect find and fix is almost five times more expen-
sive in time.  

While this analysis provided insights into the injection and removal profile of design defects with 
greater specificity than previously possible, a larger data set would allow us to consider more de-
tail, such as the costs of defects discriminated by defect type in addition to removal phase. A more 
complete analysis, including a study about the defects injected during the code phase, may enable 
us to analyze improvement opportunities to achieve better process yields. 

Figure 6: Box and whisker of the cost of find and fix a defect 
segmented by defect type

1.5 CONCLUSIONS AND FUTURE WORK

In this analysis, we considered the work of 92 software engineers 
who, during PSP course work, developed programs in the Java, C, C#, 
or C++ programming languages. In each of our analyses, we observe 
that there exists a high variation in range of performance among 
individuals; we show this variability using standard deviation and box 
and whisker charts to display the median, quartiles, and range. After 
considering this variation, we focused our analysis on the defects in-
jected during design. Our analysis showed that most common design 
defects (46%) are of type function. This type belongs to the group of 
the most costly defects to find and fix. Data and environment defect 
types are in the same cost group category as Function.

In addition, the analysis showed that build/package and systems 
defects were seldom injected in the design phase. We interpreted 
this as a consequence of the small programs developed during the 
course, rather than as a characteristic of PSP as a development 
discipline.

In the final three PSP course exercises, defects were injected 
roughly equally in the design and code phases; that is, nearly half of 
the defects were injected in design. Half of the design defects were 
found early through appraisal during the detailed design review 
(DLDR). However, around 25% were discovered during unit test, 
where defect find and fix is almost five times more expensive in time. 

While this analysis provided insights into the injection and removal 
profile of design defects with greater specificity than previously 
possible, a larger data set would allow us to consider more detail, 
such as the costs of defects discriminated by defect type in addition 
to removal phase. A more complete analysis, including a study about 
the defects injected during the code phase, may enable us to analyze 
improvement opportunities to achieve better process yields.

In future analysis, we will examine the relationship between design 
and code activities and the defects found in the downstream phases. 
In particular, we want to determine how variation in design and 
design review affects defect leakage into these later phases. During 
a related analysis, we will examine the effects of design and design 
review on secondary defects injected in the unit test phase.
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