
The Impact of the PSP on Software Quality: Eliminating

the learning effect threat through a controlled experiment

Fernanda Grazioli, Diego Vallespir, Leticia Pérez, and Silvana Moreno

Facultad de Ingeniería, Universidad de la República

Julio Herrera y Reissig 565

Montevideo, 11300, Uruguay

{grazioli,dvallesp,lperez,smoreno}@fing.edu.uy

Abstract. Data from the Personal Software Process (PSP) courses indicate that the PSP im-

proves the quality of the developed programs. However, since the programs (exercises of the

course) are in the same application domain, the improvement could be due to programming

repetition. In this research we try to eliminate this threat to validity in order to confirm that the

quality improvement is due to the PSP. In a previous study we designed and performed a con-

trolled experiment with software engineering undergraduate students at the Universidad de la

República. The students performed the same exercises of the PSP course but without applying

the PSP techniques. Here we present a replication of this experiment. The results indicate that

the PSP and not programming repetition is the most plausible cause of the important software

quality improvements.

Keywords: Code Review, Design Review, Detailed Design

1 Introduction

The Personal Software Process (PSP) is a software development process for the indi-

vidual [1]. The PSP helps the engineer to control, manage and improve his or her

work and it is taught through a course. The students (many times software engineers)

perform several programming exercises in which techniques and phases of the PSP

are added as the exercises advance. For each exercise, process data are collected.

Data from the courses indicate that the PSP improves the quality of the products

developed [2-5]. One way used to determine this is through statistical analysis of the

evolution of the results obtained by the students in each program of the course. For

example, if the programs developed are of a better quality as the course progresses,

then it can be statistically inferred that the PSP is responsible for the quality im-

provement.

However, since the programs are in the same application domain, the improvement

could be due to programming repetition (i.e., the learning effect). To explore the rea-

sons for the improvements, we asked the following research question: Are the quality

improvements observed in the PSP courses due to the introduction of the phases and

techniques of the PSP or due to programming repetition? To investigate this we de-

signed and performed a controlled experiment with software engineering undergradu-

ate students at the Universidad de la República. The students performed the exercises

from the course without applying the PSP techniques. This makes it possible to know

2

if quality improves by the simple fact of programming repetition. In the context of

this study, product quality is measured as defect density.

The designed experiment was executed in 2012 [6], and an exact replication was

executed in 2013. The subjects of our experiment perform 8 program assignments

without applying the PSP techniques. Then, the collected data are statistically ana-

lyzed and compared with the data collected during the regular PSP course. In this

paper, we present the analysis of both executions of the experiment. The most im-

portant result indicates that the PSP and not programming repetition is the most plau-

sible cause of the important software quality improvements.

Section 2 briefly presents the PSP. The related works are presented in section 3.

Section 4 presents the way in which the study was designed. Sections 5, 6 and 7 pre-

sent the results of the research. Threats to validity are presented in section 8 and the

conclusions in section 9.

2 The Personal Software Process

The PSP is a software development process for the individual [1, 7]. The PSP estab-

lishes a highly instrumented development process that includes a rigorous measure-

ment framework for effort and quality. The process includes phases and techniques

that the engineer follows and uses while building the software.

Fig. 1. The PSP phases and the PSP process levels

For each phase, the PSP has scripts that help follow the process correctly. The

phases include Planning, Detailed Design, Detailed Design Review, Code, Code Re-

view, Compile, Unit Test, and Post Mortem. For each phase, the engineer collects

3

data on the time spent in the phase and the defects injected and removed, as it is

shown in Figure 1.

During the PSP course, the engineer builds programs while he progressively learns

the PSP phases and techniques. For the first exercise, the engineer starts with a simple

and defined process. As the course progresses, new process phases and elements are

added, from Estimation and Planning to Code Reviews, to Design, and Design Re-

view. As these elements are added, the process changes.

There are six PSP processes, also called PSP levels: PSP0, PSP0.1, PSP1, PSP1.1,

PSP2, and PSP2.1. Each process builds on the prior process by adding engineering or

management activities, as shown in Figure 1. The PSP is in fact the PSP2.1 level. The

other PSP levels exist exclusively for the purposes of teaching the PSP.

The course has changed twice. The first version of the course, PSP for Engineers

I/II original, involved 10 program exercises. The second version, PSP for Engineers

I/II revised, involved 8 programs. The third version, PSP Fundamentals and Ad-

vanced, involved 7 program assignments. All three course versions have been taught

in different environments, for different kind of people all around the world: under-

graduate students, graduate students as well as professional software engineers [8-9].

The SEI partners generally use in their classes the last course version, while in the

academy is commonly used the 10 program course version. We know this by internal

communications with the SEI, and by reviewing the published articles related to PSP

analysis.

As an example, Table 1 shows which PSP level is applied on each assignment in

the 8 programs course.

Table 1. PSP levels applied on each program assignment in the PSP I/II revised course

1 2 3 4 5 6 7 8

PSP 0 PSP 0.1 PSP 1 PSP 1.1 PSP 2 PSP 2.1 PSP 2.1 PSP 2.1

3 Related Works

The PSP has several published studies showing improvement in developer perfor-

mance with process insertion. In particular, some studies show that the PSP improves

the quality of the developed products [2-5].

Normally, in these studies the data are grouped by PSP level in order to be able to

evaluate the different techniques and phases that are introduced and used on each PSP

level. Rather than analyzing changes in group averages, these kinds of studies focus

on the average changes of individual engineers; i.e. analyze the improvement in de-

veloper performance.

Defect counts and measures of defect density (i.e., defects per KLOC) have tradi-

tionally served as software quality measures. The PSP uses this method of measuring

product quality, as well as several process quality metrics.

Hayes et. al. analyzed the data of 298 engineers who attended the PSP for Engi-

neers I/II original course until 1997 [2]. Their investigation focuses on the changes

4

across the first three major PSP levels (0, 1 and 2). They grouped individual data ac-

cording to these levels and then examined the change in individual performance that

occurred from level to level.

The analysis of overall defect density revealed a statistically significant difference

between PSP levels 0 and 1, as well as between PSP levels 0 and 2. They found that

the median reduction in total defect density is factor of 1.5 between PSP levels 0 and

2. On the other hand, they were not able to reject the null hypothesis between PSP

levels 1 and 2.

Both analysis of defect density in the compile phase and defect density in the test

phase revealed a statistically significant difference in defect density across the three

PSP levels comparisons. They found that the median reduction in defect density for

the Compile phase is a factor of 3.7, and for the Test phase, the median reduction is a

factor of 2.5, both between PSP levels 0 and 2.

In 2007, Rombach et. al. performed a replication and extension of the Hayes study

[3]. They analyzed the data of 3090 engineers who attended the PSP for Engineers I/II

original course between 1994 and 2005. The paper do not clarify whether they use all

the 3090 engineers’ data for the defect density analyses or not. We know that authors

began with that size sample but we do not know if they discarded some data for quali-

ty analysis.

They observed similar and significantly decreasing trends concerning defect densi-

ty for the compile and test phases. For those variables, the null hypotheses were re-

jected for all the PSP level comparisons.

In the case of overall defect density, a general decreasing trend was observed in

almost all PSP level comparisons where the null hypotheses were rejected. It was only

between PSP levels 1 and 2 that they were not able to reject the null hypothesis as no

significant difference was found.

In 2006, Paulk analyzed the data of 1345 engineers who attended the PSP for En-

gineers I/II original course between 1994 and 2001 [4]. He only used defect density in

test phase as the dependent variable to measure software quality.

He analyzed the changes across the four major PSP levels (0, 1, 2 and 3). A de-

creasing trend could be observed between all PSP level comparisons. Null hypotheses

were rejected for all cases, using both statistical tests named above. He found a de-

crease in defect density in testing of more than 75 percent between PSP level 0 and 3.

In a later work, Paulk considered a data set of 2435 programs developed by engi-

neers who performed the PSP for Engineers I/II original course between 1994 and

2001 [5]. The article does not clarify how many engineers were involved in those

developments. The data set is a subset of his previous study, in this instance he only

considered programs written in C language. He analyzed the changes across the four

major PSP levels like in his previous study, using the same two statistical methods.

He found a statistically significant decreasing trend between all PSP level compari-

sons. He found that quality improved by 79 percent, and that variability decreased by

81 percent between PSP level 0 and 3.

A retrospective analysis of these related works left some threats to external validi-

ty. One threat is the confounding of the effect of introducing process phases and tech-

niques insertions with the gaining of domain experience as related programs are de-

5

veloped. Therefore, the question is if the improvements are due to the phases and

techniques or due to programming repetition during the course (learning effect).

4 Methodology and Study Setup

The main goal of our research is to know if the software engineers improve the quali-

ty of the developed products due to the PSP itself or due to programming repetition in

the same application domain. In order to answer this research question, our study is

composed by three main steps:

 Analyzing the data of the PSP for Engineers I/II revised course.

 Designing, executing and analyzing the data of a controlled experiment that allows

us to know if quality improves by the simple fact of programming repetition.

 Comparing both results in order to know if there are differences between them.

In order to analyze the PSP for Engineers I/II revised course, the methodology con-

sist of analyze the available data of students that performed the PSP complete course

and look for changes in the individual performance. The method and the hypotheses

are presented in detail in the following paragraphs. The results, analysis and discus-

sion of the PSP regular course are presented in section 5. Regarding to the experiment

that allow us to look at the effects of programming repetition, the methodology and

experimental design is presented in the section 6.1, while the experiment results,

analysis and discussion are presented in section 6.2.

We use three measures to evaluate the quality of the products: defect density in

compile, defect density in unit test and total defect density. As we show in the related

works section, these are generally used for software quality assessment. The defect

density is measured as the number of defects per every thousand lines of code

(KLOC). The consequence of high defect density in software engineering is typically

seen in the form of defect-fixing or rework effort incurred in projects, which results in

poor quality products [2].

Because the PSP was developed to improve individual performance through the

gradual introduction of practices, we decided to follow a similar approach to analyze

the regular PSP course, examining the change in individual performance as these

practices are introduced by the different PSP process levels. We group the available

data of the program assignments according to the major PSP level that was followed

on that assignment. That is, we generate three groups: one with the programs devel-

oped using PSP0 and PSP0.1, another one with PSP1 and PSP1.1, and the last one

with PSP2 and PSP2.1. Table 2 shows the program assignment numbers for each

group according to the PSP for Engineers I/II revised course.

Our PSP course analysis raises the null hypotheses and their respective alternative

hypotheses for each of the three mentioned quality metrics. The hypotheses aim at

knowing if when comparing a PSP level to another one applied previously, the soft-

ware engineer improves the quality of the developed products. So, we compare

groups by pairs to find if the changes in each dependent variable are statistically sig-

nificant:

6

H0 def ut: Median (Defect density in UT i) = Median (Defect density in UT j)

H1 def ut: Median (Defect density in UT i) <> Median (Defect density in UT j)

Where i, j are the numbers of the major PSP levels (0, 1 or 2) and i < j.

The same type of null and alternative hypotheses is raised for the other two de-

pendent variables.

Table 2. Program assignments grouped by PSP major level

Group Program assignments

PSP0 1 and 2

PSP1 3 and 4

PSP2 5, 6, 7 and 8

In our experiment, the subjects perform the same eight exercises from the regular

course without applying the PSP techniques. In order to get comparable results, to

analyze the data of the experiment we decide to group the data using the program

assignment grouping done in the PSP I/II revised course, no matter the PSP level.

That is, we generate three groups: one with programs 1 and 2, another one with as-

signments 3 and 4, and the last one with exercises 5 to 8. Given these groups, for the

experiment we raise the same hypotheses stated above for the three product quality

measures under study.

In both cases, in the PSP regular course and in the experiment, we have a context

of repeated measures samples. So, the first statistical analysis method we considered

to compare defect density was the parametric ANOVA for repeated measures test,

which allow to investigate changes in mean scores over time points. Repeated

measures ANOVA carries a set of assumptions such as multivariate normality, homo-

geneity of covariance matrices, and independence. The results of the Shapiro-Wilk

normality test for our experiment sample indicate that it is not normally distributed.

So, it does not fulfills the normality assumption for ANOVA. The same happened

when testing the normality of the PSP course data. Based on the normality test results

and the small size samples, we discarded ANOVA for repeated measures as the anal-

ysis method. Then we analyzed the data of the PSP course and the data of the exper-

iment using the non-parametric Wilcoxon signed-rank test [11]. This test is used to

compare two sets of scores that come from the same subjects and it does not require

any assumptions about the shape of the distribution. The Wilcoxon signed-rank test

uses the median in the null and in the alternative hypotheses instead of the mean.

After analyzed and discussed each study separately, the comparison between the

course and the experiment is performed. This comparison is presented in section 7,

using a descriptive method and includes a complete results discussion.

7

5 PSP I/II Revised Course Quality Results and Discussion

We used data from the eight-program course version, PSP for Engineers I/II revised,

taught between June 2006 and June 2010. These courses were taught by the Software

Engineering Institute (SEI) at Carnegie Mellon University or by SEI partners, includ-

ing a number of different instructors in multiple countries.

We made several cuts and ran data cleaning algorithms to include only the subjects

who had completed all programming exercises, in order to clean and remove errors

and questionable data. We determined other cuts on the data set, by performing an

analysis and assessment of the data quality based on the data quality theory [10]. Af-

ter this cleaning process, the data set was composed by 40 engineers.

Table 3 presents median, interquartile range and mean of the three variables under

study for the three major PSP levels.

Table 3. Descriptive statistics for the three variables under study

Defect Density in Compile (#defects found in Compile / KLOC)

 PSP0 PSP1 PSP2

Median 26,67 10,03 0,00

IQR 23,37 17,90 4,76

Mean 29,67 14,63 3,50

Defect Density in Unit Testing (#defects found in UT / KLOC)

Median 18,76 9,93 5,41

IQR 16,29 15,22 14,03

Mean 20,60 12,94 8,04

Total Defect Density per KLOC (#defects found / KLOC)

Median 48,32 24,73 31,77

IQR 28,67 27,69 37,42

Mean 58,05 29,90 35,64

Tables 4, 5 and 6 present the results of applying the Wilcoxon test to each pair of

PSP levels for the hypothesis of defect density in compile (DDComp), defect density

in unit test (DDUT) and total defect density (TDD) respectively. The tables present

the comparison between pairs of PSP levels. Each cell contains the p-value (2-tailed)

of the Wilcoxon test and the effect size of the changes when applicable. The cells in

green or red indicate that the null hypothesis has been rejected (p<0.05). The green

ones also indicate that there has been an improvement as the subjects advance in the

PSP levels; the red ones indicate deterioration. The grey cells indicate that it has not

been possible to reject the null hypothesis. The effect sizes of the changes are present-

ed based on Cohen’s d measure.

8

Table 4. DDComp Analysis Table 5. DDUT Analysis

Level PSP1 PSP2 Level PSP1 PSP2

PSP0 p=0.000 , d=0.7 p=0.000 , d=1.4 PSP0 p=0.001 , d=0.5 p=0.000 , d=1.0

PSP1 p=0.000 , d=1.0 PSP1 p=0.021 , d=0.4

Table 6. TDD Analysis

Level PSP1 PSP2

PSP0 p=0.000 , d=0.9 p=0.000 , d=0.7

PSP1 p=0.072

The analysis of defects per KLOC in compile phase reveals a statistically signifi-

cant improvement in defect density between all the PSP level comparisons (p<0.05),

all with medium and large effect sizes following Cohen classification [12].

The analysis of defects per KLOC in unit test phase reveals a statistically signifi-

cant improvement in defect density between all the PSP level comparisons (p<0.05).

The effect size of the improvement is large between PSP0 and PSP2.

The analysis of overall defect density reveals that the difference between PSP lev-

els 0 and 1 and between PSP levels 0 and 2 are statistically significant (p<0.05), but

that the difference between PSP levels 1 and 2 is not. The effect size of the improve-

ment is large between PSP0 and PSP1, and medium between PSP0 and PSP2.

All these observations support the PSP course benefits regarding product quality. It

is important to note that because of the followed approach, the improvements that

were observed represent real change in individual performance, not a change in the

average performance of the group. These analyses throw very similar software quality

results to those obtained by Hayes, Rombach and Paulk.

However, as it was stated earlier, in this kind of study we cannot affirm that im-

provements are achieved exclusively by the PSP in itself. There is a possibility that

the improvements are achieved due to the programming learning effect produced by

the programming repetition during the course.

6 The PSP0.1 Experiment

We designed and performed a controlled experiment at the Universidad de la

República. In this experiment, the subjects performed the exercises from the PSP for

Engineers I/II revised course without applying the PSP techniques.

6.1 Design, Experimental Material and Subjects

The experimental material is made up of the process scripts of PSP0 and PSP0.1,

the requirements of the programs 1 to 8 used in the PSP course and the tool for data

collection. All this material is the same as the one that is used in the PSP for Engi-

9

neers I/II revised courses for the PSP0 and PSP0.1 levels. The tool for data collection

is the one distributed by the SEI (PSP support tool developed in Microsoft Access).

The design of this experiment is a repeated measures design. Students develop 8

software programs following an established process. The 8 programs are the same for

all the subjects and are developed in the same order. The students use the PSP0 for the

first program and the PSP0.1 for the remaining seven programs. These two levels of

the PSP only aim at collecting data of the process (time, defects, etc.) but they do not

introduce the practices of the PSP (reviews, design, PROBE, etc.). This design of the

experiment makes it possible to know if the students improve the performance due to

programming repetition.

For our experiment we decided to use 8 program assignments because we consider

that 10 assignments (as it has the first PSP course version) could be too much for a

student that is always applying the same baseline process, and as a consequence stu-

dents could lose the interest or the motivation at the last part of the experiment. We

also preferred to use this instead of 7 assignments (as it has the last PSP course ver-

sion) because it better fits the context of a university subject of one semester. Fur-

thermore, 8 programs are enough to analyze whether there are improvements due to

programming repetition.

Regarding to the environment, the students must perform the assignments individ-

ually in their houses, but they are permanently monitored by a tutor. It is a controlled

environment because there is a constant feedback with the tutor, unlimited email ex-

changes to evacuate doubts (sometimes also phone calls or meetings), corrections and

re-delivery requests when necessary at the end of each assignment. Students are not in

a time-limited classroom, so in this way the time records and the amount of defects

found are not biased by the available time of class. That is, the student performs the

assignment at their own peace, records their real time and defects without being pres-

sured by the clock or by other students who finish earlier. That allow us to have relia-

ble measures.

A total of 22 subjects performed the PSP0.1 experiment: 12 during the first execu-

tion that was performed in 2012 and the other 10 during the second execution in 2013.

These executions were conducted in the same way and only the subjects changed.

The subjects are Software Engineering undergraduate students of the Universidad

de la República of Uruguay, all of them advanced students since they are in their

fourth or fifth year. They have completed the course Programming Workshop in

which they learn Java language and they have at least completed three more Pro-

gramming courses and a course on Object Oriented Languages. We consider therefore

that the group that participates in the experiment is homogeneous due to their similar

advance in their career.

Some qualitative analyses have shown that undergraduate students in PSP courses

were more concerned with programming than with software process issues, and that

they were not ready to appreciate the benefits of addressing those issues [13-15]. In

these works, the students were applying PSP in introductory programming courses

during their first year of university studies. Our experiment is different from that in

several aspects. We only use a small part of the PSP framework which does not re-

quire new knowledge by students. They must apply their own process just adding

10

discipline aspects to record their data, and they do not have to learn complex tech-

niques applied in PSP such as the PROBE method for time and size estimation, nei-

ther perform reviews nor detailed design techniques. Another different aspect is that

our students already know how to program, they are advance students who had previ-

ously completed several programming courses. Our students are focused on making

the best software development they can, and focused on record the data correctly.

During the execution of our experiment we did not identify similar problems to those

described by these authors.

The students participate in the experiment in order to obtain credits for their career

and that is their motivation. It is mandatory for them to attend the theory classes (lec-

tures) where the software development process used (PSP0 and PSP0.1) is presented.

It is also mandatory for them to follow the scripts provided and to collect the data

using the tool for that purpose. The students do not know they are taking part in an

experiment, they think they are taking a course with an important component of la-

boratory practices. They do know, however, that the data they collect will be used in

research work and they indeed give their written consent for such purpose.

Finally, participation in the course by the students is voluntary. This course is not

mandatory for their Software Engineering Degree; therefore enrolling in it is optional.

6.2 Results and Discussion

In this section, we present the quality analysis results of the 22 subjects that per-

formed the experiment, which will allows us to know if quality improves by the sim-

ple fact of programming repetition.

For this analysis the labels “progs1-2”, “progs3-4” and “progs5-8” represent the

program assignment grouping done as in the PSP I/II revised course. That is, progs1-2

is the grouped data of program assignments 1 and 2, progs3-4 is the grouped data of

program assignments 3 and 4, and progs5-8 is the grouped data of program assign-

ments 5 to 8.

Table 7 presents median, interquartile range and mean of the three variables under

study for the three groups.

Tables 8, 9 and 10 present the result of applying the Wilcoxon test to each pair of

groups and the effect size for the three variables under study. The colors are used in

the same way as in Table 4.

The analyses of defects per KLOC in compile phase show a statistically significant

improvement when comparing the first two programs with the following programs

(i.e. progs1-2 vs. progs2-3 and progs5-8). However, there is no improvement after the

first programs as it was not possible to reject the null hypothesis when comparing

progs3-4 vs. progs5-8.

This means that programming repetition and data collection of time and defects

following the process PSP0.1 reduce the defects found in compile phase with statisti-

cal significance. We understand that the most plausible reason for the improvement in

the first programs is that the subjects record their own injected defect types found in

the programs. By recording each injected defect and data related to them, the engineer

becomes aware of the most common defects and reduces the injection or easily finds

11

them before compilation. Nevertheless, further experiments are needed to confirm if

this is the reason for the improvement.

Following Cohen classification, the effect size of the improvement is small be-

tween progs1-2 and progs3-4, and medium between progs1-2 and progs5-8.

Table 7. Descriptive statistics for the three variables under study

Defect Density in Compile (#defects found in Compile / KLOC)

 progs1-2 progs3-4 progs5-8

Median 56,58 39,72 37,83

IQR 75,48 45,32 39,15

Mean 78,21 59,08 44,12

Defect Density in Unit Testing (#defects found in UT / KLOC)

Median 39,10 16,45 19,82

IQR 17,58 20,01 18,30

Mean 54,57 20,13 27,38

Total Defect Density per KLOC (#defects found / KLOC)

Median 114,40 64,33 66,50

IQR 82,13 51,87 48,87

Mean 134,91 79,96 72,07

Table 8. DDComp Analysis Table 9. DDUT Analysis

Group progs3-4 progs5-8 Group progs3-4 progs5-8

progs1-2 p=0.04 , d=0.3 p=0.001 , d=0.6 progs1-2 p=0.000 , d=0.9 p=0.001 , d=0.7

progs3-4 p=0.296 progs3-4 p=0.012 , d=0.4

Table 10. TDD Analysis

Group progs3-4 progs5-8

progs1-2 p=0.000 , d=0.6 p=0.000 , d=0.7

progs3-4 p=0.961

The analyses of defects per KLOC in unit test phase reveal a statistically signifi-

cant improvement between progs1-2 and progs3-4, and between progs1-2 and progs5-

8. This could also be due to the defect recording of every injected defect.

Between progs3-4 and progs5-8 there is a significant difference but it refers to a

deterioration, which means that programs 5-8 show a higher number of detected de-

fects in unit test than programs 3-4. This shows that programming repetition (using

these programs) does not result in a continuous improvement of defect density in unit

12

testing. One possible explanation for this behavior is that defect types that are not

recognizable by the compiler (for example, function, data or checking defects) are not

as easy to learn to avoid their injection as the defect types that are detectable at the

compile phase (for example, syntax defects). This combined with the increasing com-

plexity of the program assignments tasks could be the reason for the deterioration.

There could be many other possible reasons for this deterioration, but further studies

are necessary.

According to Cohen classification, the effect sizes of the improvements are large,

and the effect size of the deterioration is medium.

The analyses of total defects per KLOC show the same behavior as the analyses of

DDComp. A statistically significant improvement was found when comparing the

progs1-2 vs. progs2-3 and progs5-8, and it was not possible to reject the null hypothe-

sis when comparing progs3-4 against progs5-8. This shows that the overall defect

density of the developed programs is reduced with statistical significance by the pro-

gramming repetition and data collection of time and defects following the PSP0.1

process. The effect size of the improvement is large between progs1-2 and progs3-4,

and medium between progs1-2 and progs5-8.

All these observations reveal that there is an improvement regarding product quali-

ty with the use of PSP0.1, but this improvement is not continuous as it is in the PSP

for Engineers I/II revised course.

7 Comparative Discussion

In this section we compare the regular PSP course with our experiment. We want to

know whether the quality improvement is because of the PSP practices or because of

other characteristics.

Figure 2 summarizes the hypotheses tests results and effect sizes that were present-

ed earlier in the PSP I/II revised course and the PSP0.1 experiment. Only the compar-

ison between progs1-2 vs. progs3-4, and progs3-4 vs. progs5-8 are included in the

tables. Remember that in the case of the PSP course, those comparisons refer to PSP0

vs. PSP1 and PSP1 vs. PSP2 levels respectively.

A bar-whisker chart of defect density per group and a bar-whisker chart of individ-

ual improvement are also included in the figure comparing the PSP course and the

experiment for each analyzed variable. These charts are descriptive, and allow us to

get a clearer idea of the software quality behavior at the individual level.

The individual improvement is calculated as the percentage difference for each

subject between two groups (i.e. % improvement = – 100 * (Defect Density in groupY

– Defect Density in groupX) / Defect Density in groupX). An improvement is repre-

sented by a positive value, and deterioration is represented by a negative one. Samples

with zero defects as the divisor are not considered in the analysis, as division by zero

is not defined. We use a proportional representation of individual improvement in-

stead of an absolute difference because we consider it more appropriate in our context

(i.e., it does not seem appropriate to consider a reduction in defect density from 455 to

450 defects per KLOC as equal as a reduction from 10 to 5 defects per KLOC.)

13

Fig. 2. PSP0.1 experiment vs. PSP I/II revised course

14

The left side charts indicate that from the beginning, the PSP course is better than

PSP0.1 experiment. The PSP courses are generally performed by professional soft-

ware engineers with several years of experience in the industry. We believe that this

factor is making the initial number of defects lower when comparing with undergrad-

uate students. This factor is known to affect productivity performance [16]. This is not

a problem for our study because we are interested in the changes in the individual

performance. That is, we analyze if there are improvements when introducing tech-

niques or if there are improvements with programming repetition.

For each analyzed variable, we can see an initial improvement (from progs1-2 to

progs3-4) in the PSP course as well as in the PSP0.1 experiment. In the right side

charts, this improvement effect is clearly visible. In both cases, the reason for the

improvement could be the defect recording activity done since PSP0, as in PSP1 only

size and time estimation techniques are introduced and these should not have impact

on product quality. For DDComp and TDD the effect size in the PSP course is great-

er, while for DDUT the effect size is greater in the experiment.

There is no statistical evidence of improvement when comparing progs3-4 to

progs5-8 in the PSP0.1 experiment in any of the analyzed variables (even statistical

evidence of deterioration exists in DDUT). However, when comparing PSP1 to PSP2

in the PSP course we found a statistical improvement in DDComp and DDUT with an

effect size of 1.0 and 0.4 respectively. We can see those improvements in the PSP

course graphically represented in the right side charts. Design reviews, code reviews

and detailed design techniques are introduced in PSP2 using four specific design tem-

plates and individual tailored checklists. This change in the process is the most plau-

sible reason for the difference in the quality improvement between the PSP0.1 exper-

iment and the PSP course. Therefore, the practices introduced by the PSP (and so, the

PSP itself) lead to such a big improvement in product quality, while programming

repetition or defect recording do not.

From the perspective of the practitioner at least two interesting conclusions

emerge. One is that the use of the PSP supports the development of quality software.

We presented that quality improvements are due to the use of this process, and also,

that by using the PSP2 a low defect density in Unit Testing is reached, even when the

engineer is incorporating and learning the process (see Table 5).

The second conclusion from the practitioner’s point of view is that the detailed de-

sign, and the individual design and code reviews are excellent techniques, -probably

unavoidable- to build quality software. These techniques are the ones added in the

PSP2 and they are the ones responsible for the quality improvements detected in our

work. Nowadays, with the fashion of agility, developers sometimes do not build de-

tailed designs, let alone review their design or code using checklists.

Still, unfortunately, the most common approach to software development today is

code-and-fix programing [17], sometimes modernized by the automating of the unit

tests. It is time to change.

15

8 Threats to Validity

Due to space restrictions, we only mention the threats to validity that seem most im-

portant to us. These include the following: a) having a small number of subjects per-

forming the experiment, which results in the application of non-parametric tests that

are less powerful than parametric ones; b) all the subjects of the experiment are stu-

dents with little or no programming experience in the industry; c) the program as-

signments were developed at home, which is a threat but is reduced because of the

tutor’s monitoring during and at the end of each assignment, as it was explained in

section 6.1; and d) the design method and the design and code review are embedded

in the PSP process, so the second practitioner’s conclusion is dependent on the PSP.

9 Conclusions and Future Work

The presented results contribute to the elimination of an important threat to the validi-

ty of different experiments performed with the PSP. This agrees with previous re-

search works we performed which indicate that the practices introduced by the PSP

and not programming repetition are responsible for the improvement of individual

performance [6, 18].

In addition, the comparison between our experiment and the regular PSP course

reveals that continuous and transcendent product quality improvements cannot be

reached simply by the programming learning effect. The use of adequate practices is

the cause of the important software quality improvements.

As future work we intend to isolate the PSP techniques (detailed design, design and

code review) using a new controlled experiment that will enable us to study the effect

of each technique in software quality and the synergy produced between them.

References

1. Humphrey, Watts; A Discipline for Software Engineering, Addison-Wesley, 1995.

2. Hayes, Will; Over, James; The Personal Software Process: An Empirical Study of

the Impact of PSP on Individual Engineers. Technical Report, Software Engineer-

ing Institute, Carnegie Mellon University, CMU/SEI-97-TR-001, 1997.

3. Rombach, Dieter; Munch, Jurgen; Ocampo, Alexis; Humphrey, Watts S.; Burton,

Dan; Teaching Disciplined Software Development. The Journal of Systems and

Software 81, (5): 747-763, 2007.

4. Paulk, M.C.; "Factors Affecting Personal Software Quality," Cross-Talk: The

Journal of Defense Software Engineering, vol. 19, no. 3, pp. 9-13, 2006.

5. Paulk, M.C.; "The Impact of Process Discipline on Personal Software Quality and

Productivity," ASQ Software Quality Professional, vol. 12, no. 2, pp. 15-19, 2010.

6. Vallespir, Diego; Grazioli, Fernanda; Pérez, Leticia; Moreno, Silvana; Demonstrat-

ing the Impact of the PSP on Software Quality and Effort: Eliminating the Pro-

16

gramming Learning. TSP Symposium 2013 Proceedings, Software Engineering In-

stitute, Carnegie Mellon, 2013.

7. Humphrey, Watts; PSP: A Self-Improvement Process for Software Engineers, Ad-

dison-Wesley Professional, 2005.

8. Transition Guide for the PSP for Engineers Course, Internal Document, Software

Engineering Institute, Carnegie Mellon University, 2005.

9. Transition Guide PSP for Engineers to PSP Fundamentals and PSP Advanced, In-

ternal Document, Software Engineering Institute, Carnegie Mellon University,

2008.

10. Valverde, Carolina; Grazioli, Fernanda; Vallespir, Diego; "Un Estudio de la Cali-

dad de los Datos Recolectados durante el Uso del Personal Software Process," In

Proceedings of the IX Jornadas Iberoamericanas de Ingeniería de Software e Inge-

niería del Conocimiento (JIISIC), pp. 37-44, 2012.

11. Wilcoxon, Frank; Individual comparisons by ranking methods. Biometrics Bulletin

1 (6): 80-83, 1945.

12. Cohen, Jacob; Statistical Power Analysis for the Behavioral Sciences (2nd ed.).

Hillsdale, NJ: Lawrence Earlbaum Associates, 1988.

13. Runeson, P.; Experiences from Teaching PSP for Freshmen, In Proceedings of the

14th IEEE Conference on Software Engineering Education and Training, pp. 98-

107, 2001.

14. Lisack, S. K.; The Personal Software Process in the Classroom: Student Reactions

(An Experience Report), In Proceedings of the 13th Conference on Software Engi-

neering Education & Training, pp. 169-175, 2000.

15. Grove, R.; Using the Personal Software Process to Motivate Good Programming

Practices. In Proceedings of the 6th Annual Conference on the Teaching of Com-

puting and the 3rd Annual Conference on Integrating Technology into Computer

Science Education, ITICSE ’98, Dublin, Ireland, pp. 98-101, 1998.

16. Raza, Mushtaq; Faria, Joao; Nichols, William; Factors Affecting Productivity Per-

formance in PSP Training. TSP Symposium 2013 Proceedings, Software Engineer-

ing Institute, Carnegie Mellon, 2013.

17. McConell, Steven; Tripp, Leonard L.; “Software Engineering as a Profession” in

Software Engineering Essentials, Volume II: The Supporting Process, Richard H.

Thayer and Merlin Dorfman, Eds., ch. 11, pp. 159-164, 2013.

18. Grazioli, Fernanda; Nichols, William; A Cross Course Analysis of Product Quality

Improvement with PSP. TSP Symposium 2012 Special Report, Software Engineer-

ing Institute, Carnegie Mellon, CMU/SEI-2012-SR-015: 76-89, 2012.

