
4 SQP VOL. 18, NO. 2/© 2016, ASQ

S O F T W A R E Q U A L I T Y M A N A G E M E N T

Quality Is
Free, Personal

Reviews
Improve
Software
Quality at
No Cost

DIEGO VALLESPIR AND WILLIAM NICHOLS

INTRODUCTION
A primary goal of software process improvement is to make
software development more effective and efficient. Because
defects require rework, one path to performance improvement
is to quantitatively understand the role of defects in the process.
One can then make informed decisions about preventing defect
injection or committing the necessary effort to remove the
injected defects.

The Personal Software ProcessSM (PSPSM) establishes a highly
instrumented development process that includes a rigorous
measurement framework for effort and defects (Humphrey 2005).
After examining a large amount of data generated during the
PSP instruction classes, the authors know how many defects are
injected by developers using the PSP, when they are detected,
and the effort required to remove them.

The authors have found that even using a rigorous PSP develop-
ment process, nearly a quarter of all defects detected will still be
present at the beginning of the unit test. Regrettably, finding and
removing defects in the unit test phase requires several times as
much effort as removal in earlier phases.

On the other hand, the authors also found that design and code
personal reviews are highly effective in detecting and removing

The largest single portion of software devel-
opment time is usually spent in test, and
that time is dominated by finding and fixing
defects and then retesting. Test time also
tends to be highly variable and finds only
a modest portion of the defects. However,
because developers tend to repeat the same
mistakes, the types of defects to be removed
can be predicted. Developers can find these
known types of defects using the tech-
nique of structured personal review, and the
checklist-based personal review used in the
Personal Software ProcessSM (PSPSM) they can
use for production code.

Analyzing PSP classroom data, the authors
found that personal reviews can remove
60 percent or more of the defects before
unit testing. Because finding and fixing the
defects during a review is less expensive than
fixing them during test, the review time pays
for itself. Moreover, the defect density is
lower going into test than without review,
thus making testing effort more predictable
and, more importantly, enabling testing to
focus on the more difficult types of defects.
Although it is tempting to review or inspect
code after test, the authors’ study of the
economics suggests it is better to review
before the product is used in any other
activity. This research is based on an ongoing
retrospective study conducted using data
from PSP courses. The results suggest that
all developers should personally review their
work to improve quality at no net increase
in cost.

KEY WORDS

�cost of quality, empirical study, personal
review, Personal Software Process

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

www.asq.org 5

defects. Fifty-three percent of all defects injected during
the design phase are detected in the design review phase.
The code review phase detects 62 percent of all defects
injected during the code phase.

The purpose of this study is not to measure the
effectiveness of PSP training, but rather to characterize
where the defects are injected, where they are removed,
and how much it costs to find and fix them. By examining
the characteristics of defect injections, removals, and
escapes, developers can learn how to define and improve
their own processes, and thus make product development
more effective and efficient.

The PSP is learned in a course. During the course,
engineers complete exercises that require them to build
programs while they progressively learn the PSP. There
are eight exercises in the particular PSP course the
authors analyzed. In this article, they present an analysis
of the defects injected in the last three PSP programs
(exercises 6, 7, and 8), which were built by engineers
using the complete PSP.

The authors’ analysis of the complete data available
from individual defect logs shows that defects are more
expensive to remove in the unit test phase than in previ-
ous phases of the process. Furthermore, they present
evidence of the effectiveness of personal reviews and
emphasize their importance if the aim is to obtain a
quality product. They show how the defects injected
escaped into each subsequent phase of the PSP and how
the cost of removing them is affected by the combination
of the phase injected and the phase removed.

Other articles have also been published about soft-
ware quality improvements using PSP (Ferguson 1997;
Hayes and Over 1997; Paulk 2006; Paulk 2010; Rombach
et al. 2008; Wohlin and Wesslen 1998). These articles
discuss quality in terms of defect density (defects/KLOC),
as it is measured in the context of PSP. The authors’ study
differs from these in that it focuses on the percentage
of injected and removed defects and costs and does not
consider defect density.

Another difference is that the authors analyze only
the final three programs of the PSP course, when the
engineers have learned the complete PSP and are apply-
ing it in the programs.

An early PSP report (Humphrey 2000) suggested that
time in review should be approximately 65 percent the
coding time. This was based on observed phase defect
injection and removal rates. Development environments
have changed somewhat in the intervening years, notably
removing an explicit compile, interactive checking with

IDEs, and including enhanced debugging tools. The
author’s analysis approach differs from that report,
but will be broadly in agreement in that recommended
review rates remain unchanged.

THE PERSONAL
SOFTWARE PROCESS
“The Personal Software Process (PSP) is a self-improve-
ment process that helps you to control, manage, and
improve the way you work” (Humphrey 2005). This
process includes phases that are completed while
building the software.

For each software development phase, the PSP has
scripts that help software engineers follow the process
correctly. The phases include planning, detailed design,
detailed design review, code, code review, compile, unit
test, and post mortem. For each phase, the engineer
collects data on the time spent in the phase and the
defects injected and removed. The defect data include the
defect type, the time to find and fix (that is, remove) the
defect, the phase in which the defect was injected, and
the phase in which it was removed. Figure 1 shows the
guidance, phases, and data collection used with the PSP.

Some clarification is needed to understand the
measurement framework. The phases should not be
confused with the activity being performed. Students
are asked to write substantial amounts of code, on the
scale of a small module, before proceeding through to
the code review, compile, and unit test phases. Once a
block of code has passed into a phase, all time is logged
in that phase, regardless of the developer’s activity. For

FIGURE 1	 PSP phases, scripts, logs, and
project summary

©2
01

6,
 A

SQ

Planning

Design

Design review

Compile

Code
Scripts

Logs

Project
summary

Finished product

Requirements

Plan

Guide
Results

Record
time and
defects

Unit test

Code review

Postmortem

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

www.asq.org

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

6 SQP VOL. 18, NO. 2/© 2016, ASQ

example, a failure in test will require some coding and
a compile, but this time is logged as the unit test phase.

The time to find and fix a defect includes the time
it takes to find it, correct it, and then verify that the
correction made is right. In the design review and code
review phases, the time to find a defect is zero, since
finding a defect is direct in a review. However, the time to
correct it and check that the correction is right depends
on the complexity of the correction.

On the other hand, finding a defect is an indirect
activity in both the compile and unit test phases. First,
there will be a compilation error or a test case that fails.
Taking that failure as a starting point (compilation or
test), the cause of the defect must be found in order to
make the correction and verify it.

During the PSP course, the engineers build programs
while they progressively learn PSP planning, develop-
ment, and process assessment practices. For the first
exercise, the engineer starts with a simple, defined
process (the baseline process, called PSP 0); as the class
progresses, new process steps and elements are added,
from estimation and planning to code reviews, design,
and design reviews. The process changes as these ele-
ments are added. The name of each process and which
elements are added in each are presented in Figure 2.
The PSP 2.1 is the complete PSP process.

In PSP 2.1, students conceptualize program design
prior to coding and record the design decisions using

FIGURE 2	 PSP process level introduction
during course

PSP 0

Current process
Time recording
Defect recording
Defect type standard

PSP 1

Size estimating
Test report

PSP 2

Code reviews
Design reviews

functional, logical, operational, and state templates.
Students then perform a checklist-based personal review
of the design to identify and remove design defects before
beginning to write code. After coding, students perform
a checklist-based personal review of the code. After the
review, they compile the code and, finally, do unit testing.

PERSONAL REVIEWS
A personal review is a way to find defects quickly
by examining one’s own products. The activities are
similar to those performed in a peer review, but they
are personally performed by the developer on his or her
work product before peer inspection, testing, or even
compiling. The use of interactive integrated develop-
ment environments (IDEs), debuggers, and test-driven
development, and the virtual disappearance of a separate
compile, have led to increased interaction with the tools
and less reliance on the personal review. The authors sug-
gest, however, that while these tools reduce some costs,
they hide others. While modern tools make development
more interactive and engaging, failure to systematically
review removes a valuable opportunity to learn from
one’s mistakes. Moreover, properly performed personal
reviews remain a consistently effective and efficient
way to remove defects early while using other modern
development tools. Rather than give up the new and go
back to punch cards and batch compile, the authors
argue for using one of the most effective quality tools
from an earlier era—the personal review. To make this
case, they describe the review process and examine the
economics as measured in the PSP.

To perform a review, software professionals critically
examine the product to find defects. To be effective, they
should follow a defined review process with input criteria,
execution steps, and exit conditions. A review should
use a checklist appropriate for the product. It is best
to review a product after producing it and before using
that product in the next step. For example, requirements
can be reviewed before design, designs reviewed before
coding, and code reviewed before inspection or test. Most
software defects result from simple oversights or errors
that are easiest to find and fix soon after producing the
design or the code. If software professionals review the
product too soon after producing it, they may see what
they expect to see rather than the defect; if they wait
too long, however, they may forget exactly what they
meant. Taking a modest break before review, between
an hour and a day, helps make the mistakes more visible ©2

01
6,

 A
SQ

PSP 0.1

Coding standard
Size measurement
Process improvement proposal

PSP 1.1

Task planning
Schedule planning

PSP 2.1

Design templates

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

www.asq.org 7

while software professionals still remember what they
intended. Before completing the review, note the types
and counts of defects and the time spent reviewing. The
data will be useful later for analysis, but the authors
also conjecture that the objective and prompt feedback
enables self-learning, thus reducing the incidence of
some future defects.

There are many ways to do a code review, but the
authors recommend printing a source code listing. While
one can review the code on the computer screen, there
are advantages to a printout. With a printout one can
mark up the paper without becoming distracted with the
fix, and easily obscure portions, annotate relationships,
note alternative options, draw lines to mark off sections,
apply a highlighter, and so forth. The authors’ experience
has shown that reviews are more effective when using a
paper listing and reviewing using a structured approach.
An informal reading often misses simple mistakes, as
the reviewer sees what he or she expects to see rather
than what is actually printed.

Using a personal code review checklist, developers
first select each item for review in turn and proceed to
review the entire document for that item. The personal
code review checklist is developed taking into account
the personal defects the developers have found in their
own work. It is updated regularly to focus on the few key
types of defects that are most troublesome. When each
action is completed, the developer checks it off the list.
At the end, the developer reviews the entire checklist to
ensure that he or she has checked every item. If not, the
developer must go back and perform the missing actions,
check them off, and again scan the list to make sure he
or she did not miss anything else. In using a checklist,
the following practices may be helpful:

•	Take a break before review. Developers
may want to start another module, class,
or procedure before reviewing the one they
just completed.

•	Plan to review no more than 200 to 300
lines of code at a rate of no more than 200
lines of code per hour. If necessary, separate
classes, modules, or procedures to get to a
manageable size.

•	Print out the program listing to perform
the review.

•	Use a review checklist tailored to the defects
the developers personally inject. Describe
types of defects in a way meaningful to

developers so that when they see the defect, it
will be apparent.

•	For each item on the checklist, go through
the entire document looking for only that
item. If developers see other defects, mark
them and move on. Only after completing the
entire document should they move on to the
next item.

A design review should be performed after design
activities but before coding. The purpose is to ensure
that the design is complete and correct before proceed-
ing. Designs usually capture the structure of the code,
distribute functionality or responsibility among compo-
nents, define the interfaces, specify calling sequences,
determine data structures, choose algorithms, and
specify internal logic. Various representations help
developers conceptualize at a more abstract level
than code. These may include state charts, sequence
diagrams, flowcharts, pseudocode, and class diagrams.
Reviews typically use a checklist to check for complete
satisfaction of requirements, correctness of logic,
termination of loops, undefined state transitions,
matching of the interfaces, and so forth. The checklist
is supplemented with analysis tools appropriate to the
specific design representations such as state transition
analysis or symbolic execution.

It is possible to conduct design review after coding.
Competent programmers can usually produce small
products without an explicit design. Developers may
find that they need to write prototype code to test
performance or to better understand the problem. A
prototype code is worth examining thoroughly before
converting it into production code. For a simple program
or module, producing a simple design should not require
much time or effort but will make the review more
effective. Because design defects are usually of a differ-
ent character than code defects, they are more likely
to escape a code review than a design-specific review.
In the remainder of this paper the authors will discuss
the differences between the defects found in design and
code reviews and those found in test.

THE DATA SET
There are several versions of the PSP course. The authors
used data from the version of the PSP course that has
eight exercises from classes taught between October
2005 and January 2010 by the Software Engineering
Institute (SEI) at Carnegie Mellon University or by SEI

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

www.asq.org

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

8 SQP VOL. 18, NO. 2/© 2016, ASQ

partners, including a number of different instructors in
multiple countries.

This study is limited to consider only the final three
programs of the PSP course (programs 6, 7, and 8). In
these programs, the students apply the complete PSP
process, using all process elements and techniques. Of
course, not all these techniques are necessarily applied
well because the students are in a learning process.

This constitutes a threat to the validity of this study
in the sense that different (and possibly better) results
can be expected when the engineers use PSP in their own
working environments after taking the course, if they
continue to assimilate the techniques and the elements
of the process after completing the course.

A related threat is that the programming exercises
and results are not representative of all real-world
programming. The program exercises were designed
to be challenging but also to be completed in an after-
noon. The variation of program size is therefore small.
Developers used their own choice programming and were
instructed to use a familiar programming environment.
A prior publication (Davis and Mullaney 2003) showed
excellent quality results with teams trained using PSP
and applying this practice in industrial settings. A
report summarizing results using a larger data set will
be forthcoming in future work.

The authors’ data set includes data from 133 students
who completed all the programming exercises of the
mentioned courses. From this they made several cuts
to remove errors and questionable data and to select
the data most likely to have comparable design and
coding characteristics.

Because of data errors, the authors removed data
from three students. Johnson and Disney reviewed the
quality of PSP data (Johnson and Disney 1999). Their
analysis showed that 5 percent of the data were incor-
rect; however, many or most of the errors in their data
were in-hand calculations of derived measures used
to make estimates for the next program. For example,
calculation errors were found in the defects injected per
hour, defect in a phase, or in calculating the regression
parameters relating the estimated size to the real size
and effort for the program.

Because the authors’ data were collected with direct
entry into a Microsoft Access tool, which then performed
all process calculations automatically, the amount of data
removed (2.3 percent) was lower than the percentage
reported by Johnson and Disney, but seems reasonable
and should not bias the analysis.

The authors next reduced the data set to separate
programming languages with more common design
and coding characteristics. As they analyzed the code
defects, it seemed reasonable to consider only languages
with similar characteristics that might affect code size,
modularity, subroutine interfacing, and module logic.

The most common language used was Java. To increase
the data set size, the authors decided to include the data
generated by students who used Java, C#, C++, and C. This
group of languages share similar syntax, subprogram, and
data constructs and are unlike languages such as COBOL
or Perl. For the simple programs produced in the PSP
course, the authors judged that these were most likely to
have similar modularization, interface, and data design
considerations. This cut reduced their data to 94 subjects.

Because the authors’ intent was to analyze defect
removal, they eliminated from consideration any data for
which defects were not recorded. From the 94 remaining
engineers, two developers recorded no defects at all in
the three programs considered. Their data set for this
analysis was then reduced to 92 engineers.

The authors’ analysis studied the defect injection
and removal performance for individual developers
rather than pooling data for an overall average. That
is, they wanted to characterize the work of individual
programmers, and therefore they calculated individual
performance for each developer. After obtaining the
performance of each developer, they calculated the
mean of individual performances using only the three
programs they completed using the complete PSP.

So, for this study the authors included the 92 engi-
neers using one of several languages who also recorded
removed defects. However, in several analyses, the
number of engineers included varies, and in each of
these cases they document the reason.

WHEN ARE THE DEFECTS
INJECTED AND REMOVED?
The authors know from previous work that in PSP, most of
the injected defects are injected during the code and design
phases (Vallespir and Nichols 2011). In their population,
almost 99 percent of the defects are injected in these two
phases; the remaining 1 percent are injected in the other
PSP phases (this applies to PSP, but in industrial software
development, high-level design and requirement specifica-
tion are other important sources of defect injections).
The authors found 46.4 percent of defects were injected
during the design phase and 52.4 percent were injected

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

www.asq.org 9

during the code phase. This percentage is calculated as an
unweighted average of the average percentage of defects
injected in each phase by each individual in the last three
programs. This differs from the average of the total defects
injected by their entire population. Instead, the authors
are modeling an average individual. In this population,
roughly half of the defects were injected in the design
phase and the other half were injected in the code phase.
The standard deviation shows, however, that the variability
between individuals is substantial. Nonetheless, in this
study the authors focus on the average situation rather
than go into greater depth on the variations.

Phases in Which Defects Are
Removed, Segmented by Origin
From the 92 engineers in the authors’ data set, there
were four whose records of injected defects during the
code phase were uncertain regarding their correctness
and therefore were dismissed for this analysis. Also, eight
engineers did not record defects in the code phase, so
they were dismissed as well. The authors’ data set for
analyzing the defects injected during the code phase
was, therefore, reduced to 80 engineers. The data set
for analysis of the defects injected during the design
phase was reduced to 83 engineers for similar reasons.

For each engineer who injected defects, the authors
identified the phases in which the engineers found and
removed those defects. For every phase with a removal,
they determined the percentage of defects that were
found and removed in that phase.

Figure 3 shows the mean for each phase in which
the defects were removed. From this they learned that
approximately 53 percent of the defects injected during
design were found in the design review phase and that 62
percent of the defects injected during code were found
in the code review phase on average. These numbers
show a high percentage of defects found during review,
indicating that a PSP personal review is effective in
finding defects. Personal reviews improved the quality
of the product that goes into the unit test phase.

Considering only the defects injected during the
design phase, the code and code review phases have a
similar percentage of defects removed. Approximately
10 percent of the design defects were found and removed
in each of these phases. Approximately 2.5 percent of
the design defects were found during the compile phase.
It is likely that the defects injected during the design
phase and found in the compile phase were pseudo-code

defects (in PSP the pseudo-code is written during the
design phase). Finally, around 25 percent of the defects
were found in the unit test phase. This means that in
the PSP accounting, one of every four defects injected
during design escapes all phases prior to unit test.

Considering the defects injected during the code
phase, the authors show that around 20 percent of the
defects escape all phases prior to unit test and around
16 percent are found in compile.

Defect Removal by Phase
The PSP defines defect removal yield in terms of phase
containment. A defect is counted as a defect only if
it escapes a development phase or if it results from a
fix injected during test and found in a test. The defect
removal “process yield,” or yield, is then the fraction of
defects found cumulatively through some process phase
divided by the defects injected prior to that phase. The
“phase yield” is the fraction of defects removed by a
phase divided by the defects entering that phase. When
expressed as yield, process yield is implied.

To simplify the yield calculations and presentation,
the authors considered only the defects injected during
the most common injection phases, design and code, thus
removing from consideration 1.2 percent of the defects.
Using the data in Figure 3, the authors calculated the
cumulative removal percentage for each phase of the PSP.
In Figure 4 they present the cumulative removal percent-
ages separately for defects injected in design and code.

FIGURE 3	 Phases where the defects are
found (percentage) divided by
injection phase

Phase
injected

Phase removed

DLDR Code CR Comp UT

Design 53.4 9.6 8.9 2.5 25.7

Code - - 62.0 16.6 21.4

©2
01

6,
 A

SQ
©2

01
6,

 A
SQ

FIGURE 4	 Process yield in each phase of
the PSP

Process Yield by Phase

DLDR Code CR Comp UT

Injected
in design

53.4% 63% 71.9% 74.4% 100%

Injected
in code

- - 62% 78.6% 100%

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

www.asq.org

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

10 SQP VOL. 18, NO. 2/© 2016, ASQ

They know, of course, that unit test is not 100 percent
effective and will not have 100 percent phase yield. Since
not all the defects that escape into unit test are found in
unit test, their unit test value is a lower limit. Therefore,
the authors’ reported percentage of the defects found in
each of these phases as greater than the actual to the
extent that defects escape unit testing. To correct for
this, an estimate or measurement of the unit test yield
in PSP will be made.

Capers Jones presents data showing that the unit test
yield is about 30 percent (his data are not limited to those
using the PSP). He adds that using certain methods such
as design and inspections before unit test increases the
yield by 5 percent (Jones 2013).

Given that the PSP process ends up in unit testing,
the authors do not have PSP data for the actual unit test
phase yield. They believe that in a disciplined process
like the PSP it is possible to achieve a higher yield in
unit test than that presented by Jones. As a working
hypothesis, the authors will assume that phase yield is
50 percent. That is, half the defects that get to the unit

test phase are detected, and the other half are not. This
hypothesis should be studied in future work, but their
conclusions are not sensitive to a reasonable range of
values. Using this assumption, the authors recalculated
the revised yield of each of the phases and the process
yield in each phase. The results are presented in Figure 5.

The adjustment has a small effect, changing the
percentage of defects injected during design to 47 percent
and defects injected during code to 53 percent. These
are used to calculate the adjusted yield of all the defects,
which is also presented in Figure 5.

The PSP achieves a process yield of 81 percent in
unit test with the assumption of a 50 percent phase
yield. This, in comparison with other data obtained in
the industry (Jones 2013), indicates excellent quality.

Figure 6 presents how the PSP would perform for 100
injected defects. The figure shows where the defects are
injected, how many are removed in each phase, and how
many defects escape into a following phase. The data
are presented by defect origin (design defects [DD], code
defects [CD], and total defects [TD]). This characterizes
the PSP process according to the injection and removal
of defects in each phase.

COST TO REMOVE DEFECTS:
CONSIDERING ONLY
FIND AND FIX TIME
In this section the authors analyze the cost of remov-
ing defects related to the phase where the defects are
injected and where the defects are removed. The cost
is calculated in minutes of developer effort to find and
fix the defects. Though actual charge differs not only
by country and company, but also by role (for example,
analyst, designer, coder, tester, and so forth), coding
defects are isolated (though not necessarily detected)

FIGURE 5	 Phase yield and process yield
using a 50 percent yield in UT

DLDR Code CR Comp UT

Process yield
(design phase def.)

42.5% 50.2% 57.3% 59.3% 79.7%

Phase yield
(design phase def.)

42.5% 13.3% 14.3% 4.8% 50%

Process yield
(code phase def.)

- - 51.1% 64.8% 82.4%

Phase yield
(code phase def.)

- - 51.1% 28.0% 50%

Process yield
(all the defects)

42.5% 23.6% 54% 62.2% 81.1%

Phase yield
(all the defects)

42.5% 4.5% 39.8% 18% 50%

©2
01

6,
 A

SQ

©2
01

6,
 A

SQ

FIGURE 6	 Simulation of the PSP with 100 defects injected

Injects 47

Removes
	 DD 0
	 CD 0

Yield 42.5% Yield 23.6% Yield 54% Yield 62.2% Yield 81.1%

DD 9.6
CD 9.3
Td 18.9

Injects 53

Removes
	 DD 3.6
	 CD 0

Removes
	 DD 1
	 CD 7.2

Removes
	 DD 20
	 CD 0 

Removes
	 DD 3.3
	 CD 27.1 

Removes
	 DD 9.5
	 CD 9.4 

DD 47
CD 0
TD 47

DD 23.4
CD 53
TD 76.4

DD 19.1
CD 18.7
TD 37.8

DD 27
CD 0
TD 27

DD 20.1
CD 25.9
TD 46

Design CRDLDR CompCode UT

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

www.asq.org 11

The authors are not stating here that the cost of find-
ing and fixing a particular design defect during DLDR,
code, and CR is necessarily the same. They are stating
that when using PSP, the removal cost of design defects

and fixed by code developers. “Developer minutes” is
thus a proxy for developer cost to find and fix defects.
The authors first present the cost of removing the defects
injected during the design phase and then the defects
injected during the code phase.

Cost to Remove the Defects
Injected in Design
Design defects can be removed in the detailed level
design review (DLDR), code, code review (CR), compile
(comp), and unit test phases. For each engineer, the
authors calculated the average task time of removing a
design defect in each of the different phases. Because
some engineers did not remove design defects in one or
more phases, their sample size varied by phase. They had
data from 68 engineers for DLDR, 29 each for code and
CR, six for comp, and 55 for unit test. They excluded the
cost of finding design defects in the comp phase because
they had insufficient data for that phase.

Figure 7 shows the mean time to find and fix defects
in each of the studied phases. Although the authors
expected removal cost to increase in later phases, this
is not what the data showed. Rather, the find and fix
cost remained almost constant during DLDR, code, and
CR; in fact, the cost decreased a little in these phases,
though the differences were not statistically significant.
Further analysis is needed to determine which of the
defects found in code and CR escaped through design
in an effective (as opposed to ineffective) design review
phase. Regardless, any defect discovered in these phases
is essentially found by an inspection process where the
fix time is short because the root cause has already
been identified.

found during DLDR was approximately the same as
the removal cost of those that escaped from the design
phase into the code phase and those that escaped from
design into CR.

On the other hand, the data showed, as expected,
the average cost of finding a design defect during unit
test is much higher than in the other phases, by almost
a factor of five.

Cost to Remove the Defects
Injected in Code
Code defects can be removed in PSP in the CR, comp,
and unit test phases. For each engineer, the authors
calculated the average task time of removing a code
defect in each of the different phases. Because some
engineers did not remove code defects in one or more
phases, the authors’ sample size varied by phase. They
had data from 72 engineers for CR, 44 for comp, and
51 for unit test.

Figure 7 shows the mean for the find and fix time (in
minutes) for code defects in each of the studied phases.
Unsurprisingly, the average cost of finding code defects
during unit test is much higher than in the other phases,
this time by a factor of seven. Again, the authors do not
claim that the cost of finding and fixing a particular
code defect during unit test is seven times higher than
finding and fixing the same code defect in CR or comp.
Instead, they state that when using PSP, the code defects
removed during unit test cost an average of seven times
more than those removed in CR and comp. These are
different defects.

Considering the defects injected in design and in
code, the defects injected in design and removed in unit
test are the most costly to remove, taking an average of
23 minutes. Defects injected in code and removed in unit
test follow with an average of 14.4 minutes. This suggests
that testing, even at the unit test level, is consistently
more expensive than alternative verification activities.

Cost to Remove Defects:
Considering Time in Phase
In this section the cost of defect removal is analyzed,
but considering the entire time in phase the removal
phases instead of only the find and fix time. The time
in a defect removal phase (design review, code review,
compile, and unit testing) is the cost associated with
the application of a defect removal technique. For this

FIGURE 7	 Cost (in minutes) of find and fix
defects injected segmented by
phase removed

DLDR CODE CR Comp UT

Injected
in design

5.3 5.1 4.2 - 23.0

Injected
in code

1.9 1.5 14.4

©2
01

6,
 A

SQ

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

www.asq.org

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

12 SQP VOL. 18, NO. 2/© 2016, ASQ

analysis, the cost of defect removal is calculated as the
ratio of the defects removed in a phase and total time
in phase. That is, the average cost of removal includes
the time required to execute that phase, not just the fix
time after discovery.

In the previous section the costs are differentiated
depending on the injection phase of the defect (design or
code); in this case it is impossible to make this division.
The time in phase is the time engineers used in a phase,
and it is impossible to tell how long it took them to find
and fix defects injected during the design or code phases.

The cost of removing a defect in each of the phases
for the three last programs in the course is calculated for
each engineer. Then the average is calculated considering
all the engineers. The ones who did not remove defects
in the phases considered were not taken into account
for the average. The data of 64 engineers are considered
for DLDR, 75 for CR, 44 for comp, and 77 for unit test.

Figure 8 shows the average cost of removing the
defects injected in each of the studied phases. The
lowest average cost is in comp. On the other hand, the
cost in CR is significantly lower than the unit test and
DLDR, whereas in the last two it is very similar. As in
the previous section, the authors are not comparing the
cost of removing the same defect in each of the phases.
The comparison corresponds to the cost of removing
the defects that are not removed in previous phases.

This high combined effectiveness (using both reviews
in the same process) controls product software quality.
Assuming 50 percent of the defects that get to unit test are
detected in that phase, the process that combines design
review, code review, and unit test is capable of detecting
80 percent of the defects injected before integration test.

These results show that the defects injected during
the design phase are more expensive to remove than
those injected during code. They also show that the cost
of removing defects in phases prior to unit test remains
constant; some five minutes for those injected during
design, and about two minutes for those injected in code.
However, there is a significant quantitative increase
when removing defects in unit test. The variable cost
per defect increases almost five times for the defects
injected in design (23 minutes) and about seven times
for those injected in code (14 minutes).

Because find and fix is only the variable time, the
authors also analyze the fixed cost, or the total time
invested in each phase. To better analyze this situation,
it is necessary to know more about the relationship
between time in phase and the size of the product.

From the point of view of software engineering prac-
tice, this work highlights the economic benefits of the
early defect removal activities. The data show that despite
unit test removing only 23 percent of the defects, it still
incurs 64 percent of the find and fix cost. Relying on unit
testing as the first, best, and only method of software
verification not only increases the cost of a software
project, but also increases the number of escaped defects.

From the point of view of practice, the authors
emphasize the importance of both preventing the
injection of defects and being able to detect them prior
to the unit test phase. That is, they advocate transfer-
ring costs of quality to phases where defect removal is
significantly less expensive. The developer has several
options, including improving the reviews, improving the
design itself, investing more time in the reviews, and,
in a team environment, introducing inspections (Fagan
1976). At present, the authors are researching the use of
design by contract (Meyer 1992) with the PSP (Moreno,
Tasistro, and Vallespir 2012) to help prevent or remove a
greater number of design and code defects prior to unit
test with less overall cost.

Software engineers must be aware that the tech-
niques, benefits, and importance of inspections have
been reported in the literature since the well-known
article by Fagan (1976). This article presents the costs
associated with the removal of defects in personal review

FIGURE 8	 Cost (in minutes) of removing
defects per phase considering
time in phase

DLDR CR Comp. UT UT

Time
(min.)

41.8 27.7 4.1 38.9 100%

©2
01

6,
 A

SQ

The cost of the reviews, both of code and design, does
not normally depend on the number of defects but on
the size of the product to be reviewed. This aspect is
not included in this work. However, it is important to
know that relationship in order to analyze the cost of
defect removal and the removal techniques more deeply.

DISCUSSION OF THE RESULTS
The authors found that design and code reviews are
highly effective in defect removal at an early stage. Design
reviews detect about half the defects, while code reviews
detect about 60 percent of the defects.

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

www.asq.org 13

and in unit test using PSP data. The authors’ contribution
in this work is reporting empirical data demonstrating
the similar benefits of the personal review. Nonetheless,
much of the software industry bases its verification
strategies on software testing and tools. Testing and tools
serve important roles, but should supplement rather than
replace effective and efficient human reviews. Finally,
they emphasize the importance of having multiple defect
filters before reaching unit test as a way of reducing the
costs of the development process and producing a better
software product.

LIMITATIONS OF THIS WORK
There are several considerations that limit the ability
to generalize this work: the limited life cycle of the PSP
course, the lack of a production environment, the fact
that students are still going through the learning process,
and the nature of the exercises.

Because the PSP life cycle begins in the detailed design
phase and ends in the unit test phase, the authors do not
observe all types of defects and specifically do not observe
requirements defects or those that would be found in
the late testing such as integration test, system test, and
acceptance test. This also implies that defects found in
unit test are only a lower estimate of the actual escapes
into unit test. Defects such as build and environment or
requirements injections are not considered.

The second consideration is that the PSP exercises
do not build production code. PSP exercise code is
not intended to be “bullet proof” or production ready.
This is most likely to affect the rigor of the unit test.
Students often run only the minimum tests specified.
This likely leads to fewer defects being found and higher
overall development rates. For example, coding rates
are typically much higher than found in industry. Also
excluded is the production practice of peer inspections.

A third consideration is that the students using PSP
are still learning design and personal review techniques.
The results after gaining experience may differ from
those found during the course. Finally, the problems,
though modestly challenging, do not represent a broad
range of development problems.

CONCLUSIONS
In this analysis, the authors considered the work of 92
software engineers who, during PSP course work, devel-
oped programs in the Java, C, C#, or C++ programming

languages. They focused their analysis on the defects
injected during the design and code phases.

They found that defects were injected roughly equally
in the design and code phases; that is, around half of
the defects were injected in design and around half in
code. About half of the defects injected in design were
discovered early (in the DLDR phase). However, 25
percent of these defects were discovered late (in the unit
test phase). About 60 percent of the defects injected in
the code phase were also discovered early (in the CR
phase). But, again, a number of the defects (21 percent)
were discovered late (in the unit test phase).

Defects discovered in unit test are more expensive
to remove than those removed in earlier phases. The
defects injected in design and removed in unit test are
almost five times more expensive to remove than the
defects removed in DLDR. The defects injected in code
and removed in unit test are almost seven times more
expensive than the defects removed in CR. This is not
only a warning to PSP’s users, it is also a warning to
any software developer: Do not perform unit test before
reviewing the detailed design and code.

While this analysis provided insights into the injection
and removal profile of defects with greater specificity
than previously possible, a larger data set would allow
the authors to consider more detail, such as the costs
of defects discriminated by defect type in addition to
removal phase. A more complete analysis may enable
them to analyze improvement opportunities to achieve
better process yields.

This material has been approved for public release and
unlimited distribution. Please see Copyright notice for
non-U.S. government use and distribution.

PSPSM and TSPSM are service marks of Carnegie
Mellon University. DM-0003208

ACKNOWLEDGMENTS

�This work was partially funded by the Programa de Desarrollo de las
Ciencias Básicas (PEDECIBA), Uruguay. This material is based upon work
funded and supported by TSP and PSP cost recovery under Contract No.
FA8721-05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research and devel-
opment center sponsored by the U.S. Department of Defense.

REFERENCES

�Davis, N., and J. Mullaney. 2003. The Team Software Process (TSP) in
practice: A summary of recent results. SEI Technical Report. CMU/SEI-
2003-TR-014. Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

www.asq.org

Quality Is Free, Personal Reviews Improve Software Quality at No Cost

14 SQP VOL. 18, NO. 2/© 2016, ASQ

�Ferguson, P., W. S. Humphrey, S. Khajenoori, S. Macke, and A. Matvya.
1997. Results of applying the Personal Software Process. Computer 30,
no. 5:24-31.

�Hayes, W., and J. Over. 1997. The Personal Software Process: An empirical
study of the impact of PSP on individual engineers. SEI Technical Report.
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University.

�Humphrey, W. S. 2000. The Personal Software Process (PSP) SM. SEI
Technical Report, CMU/SEI-2000-TR-022. Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

�Humphrey, W. S. 2005. PSP: A self-improvement process for software
engineers. Boston, MA: Addison-Wesley.

�Humphrey, W. S. 2006. TSP: Coaching development teams. Boston, MA:
Addison-Wesley.

�Johnson, P. M., and A. M. Disney. 1999. A critical analysis of PSP data quality:
Results from a case study. Empirical Software Engineering 4, no. 4:317-349.

�Jones, C. 2013. Software defects origin and removal methods. Draft 7.0.

�Meyer, B. 1992. Applying design by contract. Computer 25, no. 10:40-51.

�Moreno, S., Á. Tasistro, and D. Vallespir. 2012. PSPDC: An adaptation of
the PSP to incorporate verified design by contract. In Proceedings TSP
Symposium 2012, St. Petersburg, FL, 41-50.

�Paulk, M. C. 2006. Factors affecting personal software quality. CrossTalk:
The Journal of Defense Software Engineering 19, no. 3:9-13.

�Paulk, M. C. 2010. The impact of process discipline on personal software
quality and productivity. Software Quality Professional 12, no. 2:15-19.

�Rombach, D., J. Munch, A. Ocampo, W. S. Humphrey, and D. Burton. 2008.
Teaching disciplined software development. The Journal of Systems and
Software 81, no. 5:747-763.

�Vallespir, D., and W. Nichols. 2011. Analysis of design defects injection and
removal in PSP. In Proceedings TSP Symposium 2011, Atlanta, GA, 19-25.

�Wohlin, C., and A. Wesslen. 1998. Understanding software defect detec-
tion in the Personal Software Process. In Proceedings of the Ninth
International Symposium on Software Reliability Engineering, 49-58.

BIOGRAPHIES

Diego Vallespir �is the director of the Computer Science Institute at the
Engineering School of the Universidad de la República (UdelaR), director
of the Informatics Professional Postgraduate Center at UdelaR, director
of the Software Engineering Research Group (GrIS) at UdelaR, and a
researcher at PEDECIBA-Informatics. He holds an engineering degree in
computer science, a master’s degree in computer science, and a doctorate
in computer science, all obtained from UdelaR. He has published several
articles in international conference proceedings. His main research topics
are empirical software engineering, software process, software techniques,
and software engineering education. He can be reached by email at
dvallesp@fing.edu.uy.

William Nichols �is a senior member of the technical staff in the Software
Solutions Division of the Software Engineering Institute (SEI) at Carnegie
Mellon University. His current work focuses on software process measure-
ment, project management, quality, security, and improving development
team performance. During his tenure at the SEI, Nichols has worked
extensively with the Team Software Process (TSP) initiative, where he
currently serves as a Personal Software Process (PSP) instructor and as a
TSP mentor coach. Prior to joining the SEI, Nichols earned a doctorate in
physics from Carnegie Mellon University and later led a team developing
nuclear reactor analysis software. Nichols is a senior member of IEEE and
a member of ACM.

Reprnted with permission from Software Quality Professional (c) 2016 ASQ, www.asq.org
No further distribution allowed without permission.

mailto:dvallesp%40fing.edu.uy?subject=Software%20Quality%20Professional%20article

