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CASCATAS DE DUPLICAGAO DE PERIODO DE
CODIMENSAQ UM

Lleonora Catsigeras

Resumo

Considera-se as cascatas de duplicagio de periodo em dimensdo n cujos ponlos pericdicos tém
codimensio estavel um. Prova-se resultados de reducao de dimensdo em duas etapas: primeiro 4
dimensdo dois e depois a dimensdo nm para as cascatas uniformemente dissipativas com geometria
limitada. Obtém-se teoremas de aproximacio por tangéncias homoclinicas, respectivamente para

um exemplo de Gambaudo e Tresser, @ para as cascatas que sao perturbagbes analiticas do mapa

de Feigenha.um em dimensan n.
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Introdugao

(0 desdobramento de uma tangencia homoclinica em uma familia a um parimetro de mapas
de classe C* (k > 1) localmente dissipativos em dimensio dois origina fendmencs dindmicos
importantes [NPT,1983] [PT.1987] [T.1936] [PT,1993]. Por exemplo: ferraduras e conjuntos
hiperbolicos, cascatas de duplicagio de periodo [YA.1983], mapas com infinitos pocos (N,1979],
atratores do tipo de Hénon MV, 1092] [BC.1991]. Alguns destes resultados tambem sio validos
em dimensdes maicres [PV, 1991] [V,1991] [R,1992] [M,1991]. Em outras palavras, as familias que
desdobram uma tangéncia homoclinica apresentam muilas das hifurcagoes globais conhecidas. San
exemplos notdveis de sistemas dindmicos globalmente inestaveis.

Nao & conhecido se as bifurcagdes homoclinicas sio necessarias para a inestabilidade global.
Precisamente, J.Palis [PT,1993 tem formulado a sesuinte:

Conjetura

() subconjunto H de difcomorfismos que sdo hiperbalices [(Le. com congunto Gmite kiperbilico ¢
sem ciclos) e dos que apresentam uma bifurcacdo homoclinica ¢ denso no espage de difcomorfismos
de superficie de classe (™.

Ao formular a conjetura, J. Palis tambeém apresenta o seguinte programa: tratar de aproximar
com bifurcagoes homoclinicas os casos particulares de inestabilidade global, como por exemplo:

l. os difeomorfismos que tém um atrator na acumulacio de bifurcagées de duplicagao de perio-
do {descoberta por Feigenhaum e independentemente por Coullet e Tresser [F,1978] [(CT,1973|),

2. os difeomorfismos com um atrator de tipo e Hénon.

4. os difeomorfismes que exibem infinitos pocos simultineos,

Consideramos o primeiro caso do programa acima. Primeiro. na segao 1 definimos os mapas
em A" que exibem uma cascata de duplicagio de periodo, os quais serdo estudados ao longo do
trabalho, Na secao 2 incluimos alguns resultades que tratam da redugio de dimensio. Fazemos
esta redugio em duas etapas: primeiro & dimensio dois e depois & dimensao uim. Sob hipotese de
dissipatividade uniforme e existéncia de limites na geometria e na dinamica do sistema. obtemos
que as cascatas bidimensionals sio perturbacoes de mapas em dimensao um que tém pelo menos
urn ponto critico,

Na segdao 3 estudamos um exemplo de Gambaudo e Tresser [GT,1992] de cascata de duplicagio
de periodo em #n dimensdes que contém uma capia afim de si mesma e nao é redutivel & dimensio
um. Aproximamos a cascata desse exemplo com mapas que exibem uma tangéncia homoclinica.

Finalmente, na seciao 4 estudamos as cascatas de duplicacao de periodo analiticas reais numa

vizinhanga do mapa de Feigenbaum en n dimensoes. Definimos primeiro uma renormalizagao



aplicivel as perturbagées do mapa de Feigenbaum. Trabalhamos com a topologia analitica
para poder usar a diferenciabilidade da renormalizacao e obter as propriedades espectrais e
sua derivada. Estas propriedades sio estudadas aplicando-se um teorema de Collet, Eckmann e
Koch (CEK,1981]. Modificamos a renormalizagio usada nesse teorema, allerando a mudanca de
variaveis, para encaixar bem com a teoria em dimensio um. Pode-se assim aplicar um resultado
de Eckmann e Wittwer [EW . 1987] que trata dos mapas unidimensionais. Nele obtém-se, perto
do mapa de Feigenbaum, mapas unimodais cujo ponto critico, ao ser iterado um nimero finito
de vezes, vai para um repulsor periddico. Concluimos que os mapas analiticos n dimensionais,
proximos ao de Feigenbaum, que sao infinitamente renormalizaveis, sdo acumulados por mapas

que exibem tangéncias homoclinicas.
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Introduction

The one-parameter unfolding of a homoclinic tangency, for locally dissipative maps of class C*
(k = 3), in dimension two, originates important dynamical phenomena [NPT.1983] [PT,1987]
[T.1986) [PT,1993]. For instance: horseshoes and hyperbolic sets, cascades of period doubling
bifurcations [YA,198]], maps with infinitely many sinks {N,1979], Hénon-like attractors [MV,1992
[BC,1991]. Some of the results are also valid in higher dimensions [PV,19%1] [V,1991] [R,1992]
[M,1991).

In other words, the families unfolding a homaoclinic tangency have many of the known global
hilurcations. They are notable examples of global instable systems. It is not known if the homo-
clinic bifurcations are in general necessary for global instability. Precisely, J. Palis had formulated
the following:

Conjecture: The subset H of diffeornorphisms that are either hyperbalic (i.e. with hy-
perbolic limit set and no cycles) or homoclinie bifurcating is dense in the space of C% surface
diffeornorphisms. [PT,1993].

When formulating the question, J. Palis has also presented the following program: try to
approximate with homoclinic bifurcations some particular global instabilities, as for example:

L. diffeomorphisms having an attractor {as discovered by Feigenbaum and independently by
Coullet and Tresser [F,1978] [CT,1974] }, at the accumulation of perind doubling bifurca-

tions,
2. diffeomorphisms having a Hénon-like attractar
3. difeornorphisms exhibiting infinitely many coexisting sinks.

We addresss at the first case of the program above,
First, in section 1, we define the maps in R" exhibiting a cascade of period doubling that
are studied along the work. In section 2 we include some results dealing with the reduction of



the dimension. Under assumptions of uniform dissipativeness and boundness of the dynamical
geometry, we obtain that the cascades are perturbations of one dimensional maps having at least
one critical point.

In section 3 we study a particular example of Gambande and Tresser [GT.1992] of cascade of
period doubling in n dimensions that contains a rescaled copy of itself, and is not reductible to
dimension one. We approximate the cascade in this example with homoclinic bifurcating maps.

Finally, in section 4 we study the analytic cascades of period doubling appearing when per-
turbing the Feigenbaum™s map in n dimensions. We define a renormalization that is applicable lo
the perturbations, working with the analytic topology to be able to explote the differentiability
of this renormalization, and to obtain good spectral properties. These are studied applying a
theorem of Collet, Eckmann and Koch [CEK,1981|. We modify the renormalization used in that
work, moving the change of variables to fit well with the one-dimensional theory, We can thus
apply a result of Eckmann and Wittwer EW,1987] dealing with one-dimensional maps near the
Feigenbaum's whose critical peint lands, after finitely many iterates in a repellor. We conclude
that the analytic n-dimensional maps near the Feigenbaum’s that are infinitely renormalizahle are

accumulated with maps exhibiting an homoclinic tangency.
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1 Definitions and general assumptions

Let B; be a domain in B® (i.e. a connected and hounded set that is the closure of its interior)
and [ be a closed bounded interval in R.

Let { f, buer » fu @ By — int(By) be a one-parameter family of C" maps (r > 2 ) such that for
a monotone sequence g, — p.. in I, f, exhibits a biffurcation of period doubling {from period 2"
to period 2"*! at g = p,, for integer n > 0). Let us denote as p,(u) a point of the orbit of period
2", that is a hyperbolic sink for p,_; < p < p, and a hyperbolic saddle of stable codimension
one for all g > g, in I. The derivative of f2° at p, has a single eigenvalue —1 and the other are
strictly smaller than 1 in modulus.

For ¢ € (pbn,ftnse1) there is a hyperbolic sink pn4, of period 2**!, that becomes a saddle in
f = pinpr and generates a period 2°? orbit. See the figure 1.

There are no other periodic points and no other biffurcations for g > pg, p < jix except those
described above,

For g > pg, p < o we assume that there exist two disjoint domains B, , and B | contained
in int{ By )\ W*(pg), depending continously on g, that are forward invariant by f2, and fu(B,;) C



B1 j41(modz)-
The w-limit of all the orbits, except those in W*(pg), is contained in B ol . Thus
W*(pu(p)) separates B, leaving B, and B, in different connected components. The figure

2 shows how the unstable manifold of ps(j) behaves for p € (ug, uy + €) near gy and near Hi

t 2= g Mo S o<y ) [t = jiy
B g L=y RSy
Figure 2

In other words after the hifurcation produced at g, the Lehavior in B, VW Byal B survives
for all 4 > uy, i < pog-

The assumptions above are supposed to hold also for n > 1, u > p,, pa{p) instead of py, and
domains By, ; C intB,_) jimearn-1y instead of By ; C int By, and fj" instead of f,. The sets B,
are disjoint for fixed n and 0 € 7 £ 2" - 1 and will be called domains of generation n.

For simplicity we leave out in the notation the parameter g, when working at p..

In the tree diagram of bifurcations for the one-parameter family we can choose, at each bi-
furcation, one of the two points of the double period orbit. A route is a seqﬁence {i(n)}.» with
i{n) € {0, 1} corresponding to the choice at each bifurcation of one of the two branches in the tree
diagram.

To each route corresponds a sequence of contained domains:
By o e e W i - A R PN

where j(n) = 3;Z7 i(k)2* ! . Observe that 0 € j(n) € Ti=m 24! = 97 — |
Let us denote with J the set of all sequences { J{n)}az1 constructed as above, each sequence

for each route. For each route corresponds a compact subset el < S



¥e have the compact set:

= U m B, oy [:]U B.;

{finjled n

The last equality is due to the fact that the domains of generation n are all disjoint. We have
that f(K)C K.

We assume that all the rontes are convergent to a point. In other words any choice of the
branches in the tree diagram converge to a single point for g — p.,, or #01, B, jny = 1 for any
sequence {j(n)} € J.

In [BGLT,1993] are studied the wandering domains obtained without the convergence assump-
tion. In particular they find a ' example in which K contains a wandering domain (i.c with
non void interior). Also they prove that for C''*2 diffeomorphisms with a hyvpothesis of bounded
geometry, the connected components of & (that are not necessarily points) have zero Lebesgue

ITeAsLTe.

Proposition 1.1 Let f, — f be a family verifying all the assumptions above. Then K is an
tnvartant Cantor set and there is uniform convergence for all the routes, i.e. given € there erists
N such that diem(B, ;) < ¢ foralln> N and all0 € j €27 - 1.

Proof: By contradiction let us suppose that there exists ¢ > 0 such that for any N there exist
n > N and j € {0,1,...,2" = 1} for which diamDB,; > ¢. As any domain of generation n is
contained in a domain of generation n — 1, we have a sequence of domains B, ;. of diameter
ereater then e. This sequence can not be formed of domains each containig the following, hecanse
by hypothesis any route is convergent to a point. In other words {j(n)} ¢ J.

Let us consider B, jin); Bnyejines) for some fixed n 2 1, and fixed & 2 1. As Bosijinss) 08

contained in some ball of generation n, say B, ;i, ) we can substitute B, ;. to have
Hn Jin k] ) Hn+i,j|’ﬂ+¥]

I'or fixed n, the infinite sequence {j(n. &)}, takes its values in a finite set: 0 € j < 2" = 1. Thus
there exists some value j; that is repeated infinite times, for values of k in {&},5, and n fixed.

Fix 1,: we obtlain:

Eﬂ._iln o Bﬂ-l-i’;._l'l_l'l--'l-kl_l- Bri+i;.jl:r|.+k;|:|- vaas Erl+£’.._1[ra+#.j1 e

Now we change j(n + k) properly as above, such that, for a new sequence {k; }1,:

By I Buvniae o Bugks stose o Bk, dlathia s



In this way it is constructed a sequence of domains, each containing the following, all with

diameter greater than ¢, contradicting the hypothesis of convergence of the routes. O

Definition 1.2 A cascade of period doubling is a map f : B, € R® — int B, provided with a
family of domains B,.;, m >0, 0< j< 2™ =1, By, = B, such that

a) BN Bpy=0forj#kand B, Cint Bry_1j imada=-1y for m > 1.
b) diam B,,; — 0 with m — ¢ uniformly in j.
C] f{ﬂm,_f} £ Bm,} +1 (mad2™) H.-l'l.'d IEM{BM ,l} = j-ﬂt‘ Brn__;l-

d) There exists a periodic hyperbolic orbit of saddle type. of stable codimension one with negative
expansing eigenvalue, of pericd 2™ with one point in B, ; foreach j = 0,1,..., 2" =1, and

there are no ather periodic points.

e) For any ¢ € By and all m > 0 the w-limit of ¢ is contained in the union of the periodic orbits

of period 1,2,...,2™! with uf:;lintﬂ,,,_,.

For instance if {f,}.¢s is a family verifying all the assumptions at the beginning of this section,
then f,_ =lim,_, f,is a cascade of period tloubling,

The definition above implies that the periodic orbit of period 2™ and its stable manifold are

iy bt ¥ 2"'+1__1

disjoint with Uf_s ~'Hmyy .

Let p, be the periodic point of period 2™ in B, ;. The points of B W pm ) are classified
in two sets: those points having an iterate by f*™"' (and all of its following iterates) in int( Bppi o)
and those having an iterate in intH,,, am. They are open sets. Thus W*(p,,) disconnects the

domain B, o leaving Buyi s and By, o= in different connected COmMponents.

Remark 1.3 We will also have a cascade of period doubling given f provided not with the whole
family of the domains B,., of all the generations, but only with a subfamily f Bl 2.3 2
2™ — 1}, 1y — o¢ of the domains of generations m,.

Each set By, ; must be provided with a saddle type point p.,, of period 2™ and 2 points of
period 2™ for 0 < < Mg, — my.

The properties a) to e} must be fulfilled for Db, ; and all the periodic points mentioned above.
Thus domains of generation m, + 1 can be constructed as follows: start with i = My — My — 1.
Suppose constructed the domains of generation my + i+ 1, Take a periodic point P+ Of period
2™+ and choose some disjoint neighborhoods V; of P, +i and [7; of the domains B,,, 44, ;. When



iterating ¥; by fﬂ_“" it approaches the unstable manifold, which is attracted by LBl 5550 ita
two branches enter U;, and {/,,. Take the finite union of {7;,, I;, and the finite number of iterates

of V5 until they intersect [f;, and I';,. Its closure will be the domain of generation my+1i containing

Preag 41+
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2 Reduction of the dimension

QOur purpose in this section is to reduce the dimension. We do thal in two stepa:

First, when there is a contractive invariant foliation of codimension 2, we can reduce ftoa
2-dimensional cascade. This is done in proposition 2.2, Unfortunately there is not an invariant
foliation of codimension one, when working with diffeamorphisms that exhibit a cascade of period
doubling, as shown below in proposition 2.1.

Second, we reduce 2-dimensional cascades to 1-dimensional ones, under some hypothesis of
area contractiveness, and of uniform bounds of the sucessive renormalizations. This is done in

theorem 2.4,

Proposition 2.1 Let f : B, C B" — f{By) C B, be a €7 diffeomorphism (v > 1) that 15 a
cascade of period doubling. Then it does not erist @ C' contractive foliation invariunt by [ of

coditnension one.

Proof: By contradiction suppose that there exists an invariant ' foliation. Consider Jrﬂ"
with m sufliciently large to have 8, contained in a neigchborhood where the foliation can be
trivialized. After the trivialization cach of the leaves of the foliation is a subspace of codimension
one, which we draw horizontal in the figure 3, and that separates R” in lower and upper semis-

paces. In By, o there is a fixed point p, of f*" and a period 2 point Py, both with negative



sy meL

expansive eigenvalues of D f*" (p,) and D f {Prss: ) respectively. Connect p,, and pu,, with a

continuous curve inside B, ;. Applving Df*™"" to any leaf of the foliation intersecting B., , we
obtain another leaf intersecting B, 0. Call H to the set of points of the curve such that D"
maps the upper semispace onto the upper semispace. For instance p,, is in ff. Call & to the set
of points where the derivative maps the upper subspace onto the lower subspace. The point pay;
is in K. As the map f is a diffeomorphism the sets H and K are open and complementary in the

curve, This contradicts the connectedness of the curve. —

Proposition 2.2 (Reduction to dimension 2) Let f : 8, © R" — fiB) C By be a C7
diffeornorphism (v > 1) that is a cascade of period doubling.

Suppose that there ezists in By a " foliation that is f-invariont and contractive by f, of
codimension twe.

Then there exist an integer mi, a domain B, invariant by f*" and a system of coordinates
{{z.y):z € Ry € R"*} in B,, such that in those coordinates '

[ (2, y) = (9(2) h{z, p))
where ¢ 15 a cascade of period doubling in dimension 2.

Proof: Let us call B, ;,0 € j € 2™—1 the domains of generation m in the definition of cascade,
They are invariant by f*". Take m large enough such that B, ; is contained in the domain of a
trivializing chart of the given foliation. In such trivializing coordinates {{z,y):z € R*,y € B" %}
the leaves are obtained fixing r. As they are invariant by f, we have:

F e y) = (glz). Az, )

We call B, to B, 5.

We shall see that g is a cascade. Let us call IT to the projection on the first coordinate plane.
(It is the prajection along the leaves of the foliation). Define By = M{B,). It contains the
point. zg = Il{pm ), where p, is the periodic point of f in B,, with period 2™. As [ (zp.mn) =
(gl2zn).h{Zo, o)) = (Zu. ¥o), we have that z; is a fixed point of g. It is hyperbolic of saddle type
with stable codimension one and negative expansive eigenvalue: in fact the matrix D f*" (zg, yo) is
triangular and thus the eigenvalues of D f*" are those of Dy and those of D A. The last ones are

in modulus smaller than one because the foliation (s contractive. Then the expansive Higenvalue
of Df*" is found in Dg.



The stable manifold of pm ocontains all the leaves of the foliation that intersects, becanse the
foliation is contractive with S, and thus for any ¢ in the leaf through p e W*(p,,):

2" () = 7 (p)ll — 0 withj — oo

As f7¥7(p) = pm with j — oc it is obtained that 27 (q) — pm. S0 g€ W (p..).

Then II{W,(pm)) is a curve in B,. It is the stable manifold of g, because if f27(q) — P

then
g(ll{g)) = /" (g) = Nipm) = 2,

The subdomains B, , and f;'..l for g are defined as the projections of the two subdomains of
f of generation m + 1 contained in B, They are disjoint: in fact, by contradiction suppose that
one leaf of the foliation intersects the two subdomains of f of generation m + | in points g; and g,
respectively. As they are in the same contractive leaf, when iterating them by J377" their distance
-:-:nwwges to zero. But they are in different subdomains of generation m + 1, that are invariant
by f2", closed and dizjoint, thus having a positive distance,

All the points of B, \ W*( {zo) when sufficiently iterated by ¢ land in B\ o U B, because they
are the projections of points of B, " (#m). Thus there are not other fixed points of g besides
Zq.

Analogously are constructed the periodic orbits of higher period for g and the domains of
higher generation, projecting those of f. Finally all the routes of g are convergent because they

are the projection of convergent routes of f. —

Definition 2.3 A C" cascade of period doubling f: By C B® — By is {(doubling) renormalizable
if the domain B, C intB, invariant by f*, is " diffeomorphic to B,.

Calling &y : By — B, the diffeomorphism between the domains By and B, 4. we define the
renormalized of f as

Rfff;lﬂfﬂfl}fflﬁﬂl—*ﬂg

Observe that Rf is also a vascade of period doubling. Hy induction we define: a O map
15 r times renormalizable if it is m — | times renormalizable and its m — 1 renormalized is also

renormalizable. In that case the m renormalized js:
R™f = £gn. i o ™! fo R f o fgm-s

:Eﬁi__lj{’:l...ﬂ{;]ﬂf'z Uff\‘:‘...ﬁfﬂm—l.r

A map is infinilely renormalizable if it is m times renormalizable for all m,

L0



The definitions above are general. In particular cases we will impose some bounding conditions

to the change of variables £;. Normally they are afline transformations.

Theorem 2.4 (Reduction of dimension 2 to dimension 1) Let f : By — By C R be a
C7 (r = 3) cascade of period doubling in twe dimensions that is C° infinitely renormalizable and
such that B™ f 15 7 bounded for afl i > 1.

Suppose that:

[ is uniformly dissipative (le.: 0 < detDf(p) < a < 1 forall pe Hy).

The changes of variubles £xm-i; used to define the m renormalized of f, are C7 bounded

untformly in m, and there ezist 3 < 1 and 7 > 0 independent of m such that
max{|| DExmyllca [ D{R™f 0 Egmylllca} < 8 < L

and
|detl DEgmy )| =+

Then:

There ezists a "' map g defined in B, such that:

for any given £ > 0 there exists an integer moverifying |lg = B7 f|lc-: < &,

There ezists an iterate 2* of g, a subset D © By, invariant by g° and a C"? change of
ceordinales in ) such that

" (2,9) = (gulz) g2l x))
where gy is a multimodal {1.e. with at least one critieal point) map in the interval.

Proof: Applying the Arzela-Ascoli theorem to the family of maps R™ f, there exists a subse-

quence my; such that the lim;_ . B™ [ exists in the C"~! topology. Let us call g to that limit.

We have:
detlgig) = lim det DA™ fig)
1—ma
-1 mo= |
detDR™f(q) = [ detDéps(qisr) detDf*"(go) [] det(Déns(Giv)) ™!
=0 i=0
where ¢ = ¢, g = Eppo...08gm-iylg), i =0,..., m—=1and o = f* (o) §is1 = E;,,lf Bs2

§(go), i=0,...,m = 1. Thus
l[det D{R™ fi{g)] € 0* a™ — 0 withm — =

where @ > 1 is a uniform bound of the jacobians of £py and £5/,. and @ < 1 is the bound of the
hypothesis of uniform dissipativeness. Thus detDg(g) = lim;_ . det{ DR™: f)(q) = 0.

11



We already have a map g such that detDg = 0 in By, and ||g — ™ f|g--2 < 2. for any given
£ > 0, for all § sufficiently large, depending on £.

As fp-y and R™ [ are bounded uniformly in m in the €7 topology, there exist sucessive
subsequences {m;} obtained making at each step i, £gu.+, and R™* convergent in the (J*~!

topology with ¢ fixed and j — 2. Take the diagonal subsequence and then define, for each ::

Rg = lim (™™ f))

J—

e

£ = lim Egm;s )
j—ra

From

Erm g GERM,-H._I’ o “-‘ER":""'U a Rt f = ERmJJrJ-,E o Egmip 0 ERmjp1y O ...ERM:+|.—:"
making j — oo with ¢ fixed, we obtain:

frobio...of Rig=g" o0, . 0,
Define Dy s = £y0...0&_ (D). It is invariant by ¢* because
QE.(D-.ﬁ:‘ = ﬂ'ﬂ"f*.a Q...0 E--J[Hn," =f30...0 \';:i-1 o Rig(Bo) C Dig
Take
Diy=g°0&o(Ry) abio. .o R ) 00 (R 1g) " 0 &ii(Bo)

where [, _y...[311{5 is the binary writing of the index k(0 < k<2 - |)

It is easy to check that ¢*' (D;,) C Dis. In fact g( D) = Dippy for 0 € k € 2 = 2, and
gD p_1) C Dy

Also, max, diam(D, ;) £ 3 (constant} — 0 with i — 2c.

From the definition of D, ;, considering that (R'g)"£,(B,y) C By, we obtain that:

-'Ij:.hmmﬂ'_:l = ‘r}{-r';.*
Let pT be the fixed point of £™f. Then
pr‘ —s 'EH'“J' Q-...UEHMH-.IP;;‘-I-E

is a periodic point of period 2* of B™ [,



Rm}‘ Hm+1f R:ﬂ+2f

Figure 4

: : ; ; . k
Again, there exist succesive subsequences of {m;} oblained making at each step k, py*™

convergent with & fixed and ; — co. As before, taking the diagonal subsequence, we have
e’ — px € Dig where p, is a periodic point of period 2* of g. The orbit by g of f, has
one point on each [, ; j=0,...,2* = 1, because 9(Dx ;) C D= iqmedzsy

Dﬁzh{ﬁh} = lim;_, D{R™ f_]ﬂ*(pf’J has an eigenvalue p, smaller or equal than -1, because
of the continuity of the eigenvalues. As det Dyg = 0, the other eigenvalue is zero.

For fixed & > 0, let us take u, = lim;_. uy{m,) where u(m,) is the unitary expansive
eigenvector for D(R™(f))¥"(p7*) and m; is a subsequence such that u,(m;) is convergent.

We have Dg? (fi, Jus = peus, with =1 > pp > —0c. As

=1

Dg® (pi)ue = J] Dolg'(pe))us

i=a

we have that dim(ker Dg(g'(p:))) = 1 forall k > 0, and all ¢ = 0,1,...,2* — 1 and also we obtain
that j|Dg{y‘“J|:pk}}n'[| > 1 for some k), and some unitary vector vy,

Let us eall g, = _g‘.[H{p_k]. We have a sequence {[_f"u-'l'-‘u}}gzh with g & Ha, ||wel| = 1,

| Dglqelrell > 1. Let us take now a subsequence k, such that (G, ve,) is convergent to (g,u).

We have || Dg(p)u|l > 3 for (p,u) in a neighborhood of (g, v). This neighborhood is an open set

V' C By and a cone of unitary vectors that are not contracted more than 4 by Dg(p) as in the

figure 3.
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Thus, for all p € V, dim ker| Dg(p)) = 1. The unitary vector of ker Dy(p) define a vectorfield
in V of class C*=?. Fur r > 3, this vectarfield define 4 O~ foliation, The image by g of cach leaf

is a point, because the derivative of g along the leaf is zern,

Figure 5

Take a set Dy in V with k, sufficiently large so it is contained in a trivializing neighborhood
of the foliation. Let us call £ to the union of the leaves intersecting Dy, ;.. It is invariant by ¢*™.
D has non void interior because Dy, ;o 15 connected and has points of period 2* for all & W
that can not be contained in the same leaf of the fuliation. Take k = ki + 1. In the trivializing
coordinates {r,y) in D, each leaf corresponds to constant r. As the image by g (and any of its
iterates) of each leaf is a point, we have for (z,y}in L@ g3"(z, ) = (g1(x), 92(2)). Let us see that
g1 has at least one critical point,

We have in D) a fixed point e = (T4, 1) of y2*~ and a fixed paint g,_, = {(Ta-t.ta—y) of g* "
As Dg"'*{q;._l‘j has a eigenvalue greater than one, it is obtained that ¢{(z,) > 1. But, as Dgr"’*{qk}
has a negative eigenvalue smaller that —1, we have that g}(r,_,) < 1. There must exist al least

one point where gj = 0. 55

The last theorem asserts that the "-cascades of period doubling in dimension 2 verifying
the hypothesis of the uniform bounds can be studied as a perturbation of an one dimensional
multimodal map.

In the section 3 we study a n dimensional {n 2 2) example of Gambando and Tresser that is
not reductible to dimension ane, and in the section 4 we study the cascades of period doubling
appearing when perturbing in n-dimensions the one-dimensional Feigenbaum's map. In both

sections our purpoese is to approximate the cascades with maps exhibiting homaclinic tangencies,
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3 Approximation with homoclinic tangencies of the Gambaudo-
Tresser n-dimensional cascade

The purpose of this section is to prove that the Gambaudo-Tresser [GT,1992| example of cascade
of periad doubling in dimension n is approsimated with homoclinie tangencies. It is of type £
with r increasing with n, and is not uniformly dissipative. Indeed at the points of the Cantor set

the determinant of the jacobian matrix i5 one.

Theorem 3.1 {Gambaudo-Tresser, [GT,1992]) For any r > | there exists n > 2 and a 7 -

map of the n-dimenstonal bull that is o cascade of period doubling, whose Cantor sel attractor

containg an affine copy of itself scaled by a factor A that carn be chosen in an interval,

Remark 3.2 As the geometry of the Cantor set can be chosen. this theorem implies that there
is no hope of finding universal geometry of the Cantor set attractor. In other words this example
can not be reductible to the Feizenbaum’s one dimensional map.

The proof of the theorem is constructive. As we shall use later this construction. we include
the proof of [GT,1992|.

Prool: Let us define Fi, a

" diffeomarphism in the unitary r-dimensional ball I verilyving

the following conditions:

a) fFy is the identity in a thin shell D\ D, _,, where D,;_, is the ball of radius 1 — v concentric
with D,

b) Consider 2" disjoint balls Iy ;, i = 0,...,2" — | of radius A < 1, contained in £)_, as in
the figure 6, leaving enough room to move rigidly any pair of these disjoint balls until they

=

exchange their positions. It is enough that A < —=—
dm

There is an isotopy {t;'Jl],,;[n 1) Trom the identity g =id map Lo Fy = @5 restricted to L,

foreach t =0,...2" — 1 is a traslation, and £:( 0D, ,) = Dy vmeanrn

¢) Fy has one single periodic orbit of period 1, 2,..., 2" ! of saddle type of stable codimension
onein M, = D,_, \ UP_;'D,,, and no other periodic orbits in M,.

d) The set UZ; ' D, ; is an attractor for Fy, while the shell DY D,_, is an attractor for the inverse

mapping F, '

We then have that F}" |p, | is the identity.

[



Figure 6

Let us modify Fy in U ;" Dy, by self similarity to obtain F| such that the behavior of F¥ |p,
copies that of F in D. Let F) be defined as Fy in D\ U, D, ; and

A

Fl |ﬂ;_|= ‘J'Llll $ 1l rmadany @ {"-I"_;;i"'_l o 'ﬁ':?; ° -"|'-'| ;

where A, , is the homotecy transforming the ball 2 onte £, , (the homotecy rateis A). Fy is of class
€™ hecause on each ball D, ;, £} and F, coincide in the shell D, % Ay, (2,0, #F27(D,) = Dy,
and £ |p, = AjoFaA[ ] because

L L '_1.7\-'_'-1"_1..\.' 8 AN e e W

o] ] o i A=l ) A=l
'Ll PO 3=y S F! |D|.| o'rl D o= "{l‘l.'.:' R 'Ilkl_.:l - -‘!L].LI a FIJ a “L]Iu

For ¢+ = 0,...,2" = 1, consider A, (D ;). They are 2 halls inside P, ; that are moved hy
translations with Fy and its iterates, generating a family of 22" halls Dy, j = 0,...,2°" = 1
of radius A* inside the balls Dy, for i = 0,...,2" = 1. Now: Fi(Da,) = Da,irimednin; for
gm0 2% = ] and ng" I, ,=id.

By induction, in the step f = 1| we modify Fi-, inside the 2* balls Dy, j =0,...,2% -1

of radius A*. Having F7'7 |p, =id, we construct Fy defined as follows:

Fy=Fioypin DY Dy 5 and

1 i =1 1 |
f"h |ﬂh. = "l‘ll'fl-._f+1|:“ﬂ052“"'l 0 Qa4 O 2 _'J'Lh [J.J
i ke —= o

where Ay ; is the homolecy transforming the ball D onto Dy, (it is a homotecy of rate ALY

In this way we have defined in D a sequence of €' maps { F), fhzo- We claim that Fj is a
Cauchy sequence in the topology C” for certain r depending on n. So it defines a map #' in the
ball D, fixed by the renormalization F = AT{o F*" o A, .
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[n fact Fy — Fy_y is null in the complement of :_.f:”‘lDM so they differ only in the 2% balls of
radius A" that are interchanged both with F, and F,_,. Thus [|Fo = Fy[lee < 24% with A < 1.
Naw, the derivatives of £, _. w0, are the identity because it is a traslation restricted to cach

of the balls Dy ;. It is left to prove for & large enough that
DF =id) |u,p,, ller=s < ka®

with some a < 1.
In fact. from (1)

|| O F, — id]

cret AT D sz v ) = idlee-
uln. ?ﬁ"
For the isotopy ¥, we have that

cr o kit —s

e e @t —id]

for all ¢t and s such that ¢ — 5 is sinall enough. So
1
[ Dy, il — jdl|e=1 < o il
1D ga i ) = idfloems < ko
Wa thus have ,
] (]
|=DF|II id |{_-r—|. ‘:_k(—.-)

Enir—l
To have { Fj }u», a Cauchy sequence it is enough that 2°A*! % 1, that is, n > e e
interval in which A can be chosen is -J-—LJ-L-:{— >4 3 =i for viy; nauch that 27/0=1 5-"1’{1_‘—1'1

Now we have defined F' = lim,_. £ in the (7 topology. It is not still a cascade because it
has a shell DY\ Dy _, of fixed points and because of the self-similar construction it has shells inside
the balls of generation £ all formed by periodic points of period 2°.

It is enough to change F; (and the isotopy i, correspondingly) in a neighborhood of the shell
D\ Dy, so that D is mapped inside itself, and in a neighborhood of UZ5' D, , so that the image
of D\ U; Dy, is not contained in itself. —

Theorem 3.3 Let F be the C7 cascade of period doubling in dimension n of the theorem of
Gambaudo- Tresser above. Given e > 0 there ensts G of type (7, exhibiting a homoclinic tangency
and such that |G — F||o- < ¢.

Proof: Let {4 }ocic: be the isotopy such that ¥y =id, ¥, = Fy as in the proof of the last
theorem. Define { t, }ocrgr such that ¢ = w, for 0 € ¢ < <, and { W ti<i<y is the transformation

d, o F, where .ﬂi* is the identity, and §, is constructed below.
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Figure 7

Let V' be a connected open set, disjoint with U, D ;, that does not contain any periodic point
of Fy and such that W*(py) NV and W¥({p) 0V are contained in fundamental domains of W*(py)
and WY(p,) respectively.

Now #; is a map that is the identity in the complement of V and takes the points of the
arc W"%(py) NV and pushes them to be tangent to W?*(pg). This can be done with an isotopy
{60 }3ceey with ¢y =id, leaving fixed all the points of the complement of V. Now consider as in
the proof of the last theorem the map F constructed as limy—., F, with F), and Fuy, differing

only in the balls Dy ; of generation h. Let us define £}, as follows:

F in fJ "-.I L Uh.j
F-"I- —

A s l:',_-r_. o !.a_,l a A7 in Dy
JHalimpdiv® R T " d

where A, ; is the homotecy transforming the ball 7 onto Dy ;. Now, by construction Fj has
a periodic point in Dy g of period 2 exhibiting a homoclinic tangeney. It is left to show that
£ = Fller =3z 0.

|Ex = Fller € | Fy ~ Fille- +||Fa — F|

o

As F = limy_.. Fy, the second term of the sum above is less that ¢ for 4 large enough. As
Fa=F=F inbD\ L Dy ;. and they differ in the balls [, that are interchanged both with £,
and F},, we have

= Filleo < 2diamDy j = 24" =45 0

Now:

ID(F, = Flller—y = | DFy = id|lgr-s + [|DFy = id]lgres &




l | g Ser T H o ] §
< Ty IDUg 0 62—l +4 (g3 )

For the isotopy ¥ we have

[t 0 ;! = id||e- < k|t — 5| for all ¢ and s

50 )
- : E+k 1 G O i
| D{Fy = Fi)llce-s EETWsz-'-k](W) —h—sa U

Thus [|Fy = Fll¢r —smso 0 as wanted. —



4 The analytic perturbations of the Feigenbaum’s map

In this section we study the analytic vascades of period doubling appearing when perturhing in n
dimensions the Feigenbaum's map. We show that the vascades are approximated with homoclinic
tangencies. We develop the theory in the analytic case, exploting the fact that the renormalization
is differentiable with derivative that is a compact operator whose spectrum is computable.

The main theorem to be proved in this section is

Theorem 4.1 In the space Hy of n-dimensional, bounded and real analytic maps. there is a codi-
mension one manifold W, passing through the Feigenbaumn’s map &, such that any differentiable
curve {G,} in Mp, that intersects transversally W at G, _, verifics:

a) It has period doubling bifurcations for a monotone sequence of parameter values fhy = flag.

b) There ezists @, — po (monotonely, al the other side of u.. than u, ), such that Gy exhibits u

homaoelinic tangency,

4.1 Spectral analysis of the renormalization

Lel us state some results in dimension one that give an understanding of the cascades of period
doubling bifurcations.

Let I be a neighborhood of (-1, 1] in €, and Hp the space of real analytic maps deflined and
bounded in D. It is a Banach space with the supremum norm. In Hp let M be the manifold of

even maps taking value 1 at 0:

M = {weHp: wz) = ylz*) lor some g real analytic, ¢’ £ 0, g(0) = 1}.

The renormalization transformation F is defined as:
I:..'-'-:'LJ'[.H = {11 oy u{liz}

applied to the maps ¢ € M such that =1 < ¥(1} < 0 and w(e(1)D) C D.

The following theorem provides some properties of F:
Theorem 4.2 [f the neighborhood D is small encough, then:

a) There exists o € M fized by F. When restricted to real arguments, r'(z) < 0 if z £ 0, and
the Schwartzian dertvative S is negative, Besides 2*(0) = (1) = A = —0.3995 ... and
¥"(0)= —-1.52763. ..



b) FisaC™ transformation, and dF(5) 15 a compuct operutor having a single rigenvalue § =

4.6692 . .. of modulus greater or equal than 1, that 1s simple.

¢) The unstable manifold W¢(2) C M intersects transversally the codimension-one manifold T,
of period doubling bifurcations, defined as follows:

Y, = {9 € M: (1) = ~1 for some r, fized by v}

Proof: See 0. Lanford III's article [L,1982]. Also [CE,1981] [VK,1982] [L,19584] [CER,1982|
[VSK,1984]. This theorem was conjectured in [F,1978] [CT,1978] [F,1979)].

Definition 4.3 The Feigenbaum's map in dimension one, is the map o of the theorem above.

The number § = 4.6692. .. is the Feigenbaum s constant.

Following Collet, Eckmann and Koch [CEK,1981], let us take a neighborhood D in €7 of the
interval [~1,1] x {0}(We denote 0 € €"~1). Our functional space Hp will be the Banach real

space formed by the real analytic maps defined and bounded in 1), with Lhe SUPTEITILm nort,

Usually we will consider only the restrictions to 8" of the maps in Hp(For simplicity we will
not use a different notation to refer Lo the restriction).
Letusfix e € B"', a # 0, and define # : " — (", and 8 : C — ', as follows:

#2,2) = 2-a-2
iz} = 2

Definition 4.4 The Feigenbaum’s map in n dimensions is the map:
&= (fol0):DCC" —C",
where f ¢ 8y =  is the Feigenbaum’s map in dimension one, defined in 4.3,

For fixed a, there exists D small enough such that 8{ D} is contained in the domain of f. and
therefore @ is well defined.
Being A = (1) = -0.3995... € (=1,0), let us define A ; (" — ", the linear rescaling

Alz, Z) = I:AB'Q,AEZ]. and a (first) renormalization trunsformation
MG =A""' o0l

for all G € Hp in a neighborhood of &,
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The renormalization transformation A" will be modified later (substituting the linear rescaling
A with a nonlinear change of coordinates), to get a new renormalization transformation T that
will have some desired properties. Observe that the Feigenbaum's map @ is fixed by A and
dN{Plu=A"to(uod +dbad-u)o A

Remark 4.5 In the sequel we will use the following denotation:
W, =—cgodh +df.a
for any given ¢ analytic : (" — (™
¥, is a map in Hp tangent at @ to the curve of maps:

{(T+te) ado(l+to)} te( ¢ C H.

of analytic conjugates of ¢ near €. The eigenvectors of A () generated by such maps ¥, are

unessential,

Theorem 4.8 (Collet, Eckmann and Koch) [CEL.1981]
a) The map & {as defined in 4.4) 15 a flzed point of the renormalization N

b) N s infinitely differentiable and dA{®) 15 a compact operator whose eigenivalues of modulus
grealer or equal than 1 are:
s e

(where A = —0.3895... and & = 1.6692 .. ).

¢) Their respective spectral invariant subspaces Sy, 5y, 54, and U, are eigenspaces. Besides, the
subspace UV is one-dimensional in Hp and the sum § = §,285, %5, is the (n*+n)-dimensional
subspace of all the maps of the form ¥, | where

alzg. Z) = (ag + ay20, By + Bian + H'.'-’-'é + A )
for some ag and a, in B; By, B, and B- in B": and A & LI Rn=1_pa=1y

Proof: See [CEK,1981).

Many renormalizations for n-dimensional maps can be used. We have chosen one of them,
obtained from the transformation A" that fits well with the renormalization in dimension one, and
with the theorem of Eckmann and Wittwer [EW,1957].
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Definition 4.7 As an intermediate step, let us define the transformation F. applied 1o the maps

& =(gu.g) € Hp in a neighburhood of §:
Fii)=Az'cGoGoAg,

where Aglzg, Z) = (Mg, ALZ) for

_ e G0, 0)

= 40(0,0)

Note that Ag = A and F($) = N ¢) = ¢, Besides, for all = (uy, ') £ Hp:
dF( ) = dN(Pju+ alu)¥,,, &

whera:

upll.0)

aiu) =

+ ug{0, n}( l 1) S )

A 2
and oy(zy, Z) = (25,2Z). Using 4.5, we have:

Vo, (20, 2) = (- fl#f ~a Z)+ 2f'(55 — - Z)(z{ — - Z), Q).
A consequence of (2} and of the theorem 4.6, is the following:
Proposition 4.8 .
a) ® ts a fired point of F, and dF(®) has the same spectrum that d\ ().

b) The sum of the spectral invariant subspaces corresponding to the eigenvalues 1, A~! and A2
i85 =834+ 5, + 5, {as in the theorem 4.6).

e) For anyu € Hp there ezists olu], the unique analytic map in O™ such that Vi) = Eu, where

£ is the spectral projection on 5. The transformation v — ofu] s linear and bounded.

Proof: Let us denote F = dF({®), N = dV(®). They are compact operators. Denote
E(F), E(N) their spectra. Theorem 4.6 and {2) above imply E¥f,. = NWU,;. = W, . Let
# # 0. We assert that u € Z(+#) with multiplicity m, if and only if 4 € £(N) with the same
multiplicity. In fact, take y € Z{F), with spectral subspace ker( F' = u)* of dimension m. Define
V= ker(# — p)* + [¥,, |. It is invariant by F. The Jordan matrix J of F' restricted to V has
in the diagonal repeated m times (and a single 1 if 4 £ 1). In the same basis, the linear operator
N restricted to V has a triangular matrix with the same diagonal than J, (due to (2}). Then
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# € B{N) and has multiplicity at least m. Changing the roles of ¥ and F, our assertion is proved,
and also for g = 1, A7 or A-%:

ker(F — u) + [V,, ] = ker(N — u)* + [, |.
Now, part &} follows easily. Finally, Eu = ¥, for sume & in the set
{z: C" — CManalytic; g{z, %) = {ag +ayzy, By + Bizn + Bgzg +4-2)}

Call @ : o= W, the linear transformation between finite-dimensional spaces. It is easy to check

that €) is injective, Therefore v — olu] = Q= £y is linear and bounded. o=

We are now ready to define our final renormalization transformation in n dimensions:
Definition 4.9 The renormalization transformation T is:
NG = (I -a[FiG)- ®[}™ 0 FiG)o ([ - ol F(G) - @]).
applied to & € Hp in a neighborhood of &,
The renormalization T was chosen so that it verilies Lhe following properties:
Corollary 4.10 (of the theorem 1.6 .
a} The map @ is a fized point of 1.

b) T is infinitely differentiable and dT(®) is a compact operator, having a single stmple eigenvalue
6 = 4.6692... of modulus greater or equal than !.

¢} The unstable manifold W*(®) = {®,} is formed by the maps ®, € Hp of the form:
®u(z0.Z) = (fulzs - @+ Z),0 ),

where fu(2*) = w,u(z) are the one-dimensional maps of the unstable manifold {w.} = W¥(g)

of the renormalization F in dimension one. (cf. theorem 4.2)

Proof: Part o) can be easily verified, e begin showing c). Let A4 bLe the manifold of
one-dimensional maps v that are real analvtic, bounded, even and with the condition i) = 1.

We will say that ¥ is a one-dimensional endomorphism if it helongs to the following set:
M={¥eHp:¥=(gc8,0) with g real analytic .g' # 0, g(0) = 1}
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(Hecall that #{z, 2) = 2] — - Z.)

The theorem 4.2 states that F restricted to M has a single eigenvalue & of modulus greater or
equal than 1 at the fixed puint @ In other words, all the vectors in Tp M belong to ker{ £) (see
proposition 4.8), Thus ofu] = 0 for all v € T3 M. and due to the definition 1.9, we have that the
affine manifold M of one-dimensional endomorphisms in Mp is tnvartant by the renormalization
T

Part ¢) of the theorem is a consequence of b) and of the above remark, Finally, part ) follows
from the proposition 4.8: in fact, taking derivatives in the equality of the definition 1.9, and

denoting F' = dF(®), we pet:
dT{®ju = Fu+o[Fulo® -d¥- o[Fu]=

= Fu- "I".,[F.‘,J ={f— E}Fu

Now, all vectors of § are in the kernel of dT(®). Thus, the only unstable direction that remains
has eigenvalue &, as wanted. —

4.2 Homoclinic bifurcating maps

We will work with a particular tvpe of homoclinic bifurcation, that is produced in compact
parts of the stable and unstable manifolds, For the stable codimension-one case, the bifurcations
are the unfolding of homaoclinic tangencies.

Let {G.}, u € [a,b], be a continuous arc in Hp. Let us suppose that, for all g € [a,b], there
exists a hyperbolic periodic point p,, depending continously on u. of stable codimension one.

Let us denate A% and A} compact parts of W¥(p,) and W*'(FP,) respectively, depending
continously on u, as ' submanifolds with boundary of B*. (The point p, does not necessarily
belong to A% or A%).

Definition 4,11 The arc {G'I,}, ME [r}.._tr] in Hp exhibits a homoclinie bifurcation with wnavoid-

iable tangency if there exist p,, AL A% as above. such that:

W fAENnAlL = dA, N AL =D, for all yu € [a,b|

i, AsnAs=40

ut. Ay N A contains at least one point of transversal intersection.

The name unavoidable tangency of the definition above is due to the following:
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Proposition 4.12 If {G,}, it € [a,b], is an arc as in the definition {.11, then there ezists p, €

[a.b] such that €7, has a periodic point with a homoclinic tangeney,

Proof: As the interval [, 0] is ronnected, there exists gy, € (a,b) such that A} and AY have a

non transversal intersection. It must be a tangency because the dimension of A" is one. =

We will take the definition of band-merging maps from [EW,1987], and relate it with the
homaoclinic bifurcations.

Let 4 € M be a one-dimensional map, restricted to real argument. (Recall that M is the set
of even real analytic maps defined in the neighborhood D of [-1,1] and such that ¥(0) = 1.)

Definition 4.13 A map ¢ € M is banul-merging if:

iory'(z) <0 forallz £ 0, and

U 0<yoy(l)=—w(l)< 1

As ¥(x) = g(z”), we have the [ollowing equivalent definition: ¢ < 0: -1 < g(ly < i
g{9(1))? = —g(1).

Proposition 4.14 If ¢ is band-merging then:
a) Fu(—1) = =1 and 2(Fy)(z) < 0 if 7 £ 0.
b) Besides, if Sy < 0 then:
bi) —y(1) is a hyperbolic repellor, whose repelling basin ineludes [¥(1), —(1)],

b2} any v € M, near enough . has a repelling fized point whose basin tncludes

[#(1), =9(1)].

Proof: Part a/is a straightforward verification. Let us see part b) :

The map 4 o 4 is increasing in (0.x_,), where 2 _, > 0 and y(z_,) = 0. Its graph, at z = 0
is below the diagonal, al x_, is above the diagonal, and at xy, = —y(1) intersects the diagonal,
By contradiction, suppose that (wo @) (zy) € 1. Then, there exists 2, where (¥ o /)" vanishes
and (o ¢ )" is non negative. This implies that S{ya )z} > 0, contradicting our hypothesis.
The same contradiction is obtained il y ¢ @ is supposed to have other fixed point F, € [0, zq).
Therefore z, is a repellor and [0, 2q] is in its basin, By symmetry, also [—z,,0] is. This proves
bi). To show part b2}, consider any t., near encugh ¢, a0 that it also has a hyperbollic repellor,

and 59 < 0. The proof alse works for @ instead of ¥. O
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Remark 4.15 Due to the above proposition, the band merging maps with negative Schwartzian
derivative satisfy the condition that the critical point lands aler finitely many iterations on an

unstahle periodic point.

In the following theorem the family {.2,} is the unstable manifold in 3 of the hyperbolic fixed

point  of the renormalization #.

Theorem 4.16 (Eckmann and Wittwer) .
There erists py such that ¢,, € W* () is band-merging, and for all u near s
o : T
75 Pul(2al)) + (1)) # 0
Proof: See [EW,1947]
This last theorem asserts that W*(®) intersects, transversally in M, al Py Whe codimension
one [in .-\:fj manifold of band-merging maps.

The following lemma is a consequence of the theorem 4.16.

Lemma 4.17 Given € > 0 there exists v > 0 such that, for any interval |a,b] C (po — 7,400 +
«) containing g in tis interior, the arc {'I-'f_,,}, JTa= ;u.,l.’.r] eahithits @ homoclinde bifurcation with
unaviidable tangency, and the first coordinate projection of the compact part A}, (cf. definition

4.11 ) 15 contamned in (—¢, ¢).

Proof: First, we assert thal &, = (f,, o . 0) has a hyperbelic fixed point p,, = (—f., (1), 0)
of stable codimension one. In fact, it is [ixed because f, o#; is band merging (cf. theorem 4.16).
Let us see that it is hyperbolic, computing D¢, ip., ):

2xfl 00 (fl ofla

Oy, = 0 0

with 2z f] (2?) = (f,, o #o)'(#). But f, c#; belongs to the unstable manifold WY(z) in M, and
all maps in I‘i}“{u,:'] have negative schwarzian derivalive {(becanse all the maps in a neighborhood
of i have, and also their renormalizations). Therelore, proposition 4,14 states that = f, (1) s a
repellor. Thus:

¥ s T ral 1 Ea ey 3
|2z f, (25} =1 for 2 = = f,,(1)

Thus, our first assertion is proved.
Let us choose v > 0 small enough so that, for all g € B,(u,) there exists p, = (1,.0],
continuation of p, , hyperbolic fixed point of &, = (f, 28,0) € W¥(®). Here z, is the hyperbolic



repellor of the unimodal map v, = f, o fy , whose repelling basin includes [f,(L1). —f.(1]], as
proved in the proposition 4.14.
We define:
Ay = {20, X} X =0, |zp] £ =L.(1)} C W{p,).

The theorem 4.16 allows us to choose [, b] < B.(pte) such that Ful wal1)) + @u(1) is positive for
it € [a, o) and negative for u € [y, b). (We write [a, 8] although b could be smaller than a.)
We assert thal, given & > 0 there exists [a,8] sufficiently small and y, € 7%(r,), for all
4 € |a, b], such that:
l<y, <l+6 if pelapg)
Yug = 1
l—d<y, <1 if pé&(ug,b
In fact, if p € [a, o) we have 2, (2,(1)) + 2u(1) > 0, Qe the graph of 12, at —@,(1) is above the
diagonal. As o, is decreasing in {0, 1], the fixed point z, is at right of —g,(1). Therefore, given
& >
eull) > =2, > g1} = 6,

for all u € [a, po), near enough p,.
The map i, is decreasing at right of 0 and defined in a neighborhood D of [~ 1, 1]. We conclude
x,) for all p € [a, pg), such that

that, given & > 0, there exists a, near enough wy, and y, € ¢'(~r
l<yu <148 As -z, € ¢ Yz,), we have y, € w1 lr,). The same argument, with the opposite
inequalities, is valid for g € (i, b]. This completes the proof of our assertion.

We have f,(0) = 1 and fi(0) = 1/2:0(0) < 0 for all 2, € We(2). For any u € [a, b], near u,,
the map f, is invertible and decreasing in a fixed neighborhood of 0. Let us denote ¢, = f % )i
Qur previous assertion can be reformulated as follows:

Given € > 0, there exists [a, b sufficiently small, such that:

[ g [, pug)

>
e <e, =0

D<e, < if pE b

With no loss of generality, let us suppose Lhal a,_, £ 0. {Recall that @ = (e, a2, ... 04_,) #
0.) Let us denote X = (X, Xu...... Na_t). Now we can define, for given € > 0, :
AL = {(20,X) 2} = aX = ¢, |zl € € [I(X1. ... Xoss)l| S €}

It is easy to check that A% C $5%(p,) C W*(p.).

]



Let us see how A} looks: For o = gy, €, = 0 and A5 < {27 - aX = 0}. It is a quadratic
codimension-one manifold of R", passing through (0.0} and tangent at (0,0} to "1:.-.' For g e
(@.pu), €, < 0, and A} does not intersect {X = 0} O A%,
intersects {X =0 } at two points ¢ = {—,/@;,0) and r = [ /77, 0}, both in the e-neighborhood of
(0,0). Then both g and r are in A}

Besides T}A; and T,A:‘ are Lransversal to the subspace {X =0 } =T A4 = TrAE_

For u & |:Ju,-,~-".l]~ = ([},r:}. S0 :—1;

Finally, if € is chosen small enough, we get #4, N AL = AL N AL =0, for all g € [0.6]. 5

Now we are ready to perturh the family {$,}, u € [a, b], contained in W*({$), and prove that

the homoclinic bifurcation persists for nearby families.

Lemma 4.18 There exists an inderval [a,b] and neighborhomds ¥, N and N2 in Hp, of {$, :
p € [a.b]}, . and &, respectively, such that any continuous are {1}, in ¥, with extremes in N,

and N;, exhibits a homoclinic bifurcation with unaveidanble tangency.

Proof:  Let us take @, = (f,, = #,0) with g as in the theorem 4.16 (ie. f,, o #; is band
merging). We have that p,, = {(=f.,(1),0) is a fixed point, of saddle type. Tts local stable
manifold is contained in {{zo, X): i — aX — {f,,(1}1) = 0}. Any G in a small neighborhood of
Ly
contained in

up i Hg, has an hyperholic fixed point p((7), whose local stable manifold is of codimension one,

{(za. X} Uz, X, G)=10}.

where [7(-,-, '} is a real function of {2y, X}, depending continously on &, [HPS,1977] [I'M,1982]
We have U{zy, X, 8, ) =25 —aX = (f..(L]]°

Let us define, for any (xy, X,G) in a certain small neighborhood of (0,0 ,®,,)in B" x Hp,

the real function:
F(ry. X.G)= UGz, X ), G)

The point (0,0 } verifies #] (0,0 ) = p,,. and so
F{0,0,%,,)=0

As in the proof of the previous lemma, let ns suppose n,_; # 0 . and compute the partial
derivative:
aF
ax,
Now, by the implicit function theorem, there exists N, neighborhood of ¢, in Hp, and ¢ > 0

such that for all G € Ny, for all z;, € B,(0) and for all (X,....,X._2) in B*™? with norm less

[D.U 1I'I'uu} == E'D-r.—lqulll_]iwiu].l[l]f;ul:u] '."|£ D
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than e, is defined the coordinate X, ; = u(zn, Xy,..., X2, G) verifving:
(e0, X} & GWEP(G)) © W (p(G))

with X =Xy, Xacik
Let us take

ILJ{GJ = {(Iﬁ" ‘¥}: ‘k'r"--| = IIII'[J"'l:l:-'}‘I-J.'.-"l-"Ir.:-l"-l--21'Isl}: !‘TUI E £, |.':.-' Pll'--1'¥n-'—*]|i { F}‘

We have that A’(G) is a C'' submanifold with boundary of RB", that depends continously on
G € Ny. It is a compact part of W*(p{G)). For the neighborhood N, and € > 0 as abave, let us
take [a,b] and A7 as in the previous lemma, and also such that &, € N, ¥u € [a,b]. We have that
AL = A'(B,).

On the olher hand, the compact piece Ay of unstable manifold is contained, for some fixed
ny (independent of u ) in &322 ipid,)). Let us take for any i € [, b], a small neighborhood
Nyof @, in Np, such that G™(WE.(p{G)} is as C* proximate to $%(W2 (pi®,)) as needed,
for any G' € N,. Consequently, compact parts 44(G) and A°(G) can be chosen, as proximate as
needed from A} and A} respectively (as ' submanifolds with boundary), for any G € ¥,. The
three conditions in the definition -1.11 are persistent under small €' perturbations of A% and A2,

Therefore, the lemma is proved taking

R [ Wy Bom W Bty

uelab)

Now, we are ready to complete the proof of the theorem 4.1.

Proof: Let W = W*(®). The lemmas above state the existence of the arc {©, : u € [a.b]} C
WH(®) and the neighborhoods N, ¥, N, Given a curve {G,}, transversal at g = u.. to W, its
images by the renormalization T" accumulate, when n — oo, at the unstable manifold of ®. {See
[PM,1982]). In particular they approach the arc {@, : p € [a,b]} C W4 ®). Consequently, there
exists [an, bo], for all n sufficiently large, such that T"G,, € Ny, ™0, € No, TG, € N for all
# € [an, bn).

Desides [@,,b,] — 1o, hecanse the arpument above works for any subarc of {(,} as near as
wanted from G, .

The lemma 4.18 states that {1}, p € [a,,b,] exhibits a homoclinic bifurcation with un-
avoidable tangency, and so there exists I, € [a..b,] — j. with Gp exhibiting a homoclinic

tangency. —

A0
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