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ABSTRACT. We consider C' Anosov diffeomorphisms on a compact Riemann-
ian manifold. We define the weak pseudo-physical measures, which include the
physical measures when these latter exist. We prove that ergodic weak pseudo-
physical measures do exist, and that the set of invariant probability measures
that satisfy Pesin’s Entropy Formula is the weak*-closed convex hull of the
ergodic weak pseudo-physical measures. In brief, we give in the C''-scenario of
uniform hyperbolicity, a characterization of Pesin’s Entropy Formula in terms
of physical-like properties.

1. Introduction

The purpose of this paper is to give, in the C''-scenario of uniform hyperbolicity,
a characterization of those invariant measures that satisfy Pesin’s Entropy Formula
in terms of their physical-like properties. Our main result works, for C' Anosov
diffeomorphisms, as Ledrappier-Young characterization [LY] of the measures p that
satisfy Pesin’s Entropy Formula (which holds in the C? context but not in the
general C'! context), by substituting the property of absolute continuity of the
unstable conditional decomposition of u, by the weak pseudo-physical property of
its ergodic decomposition.

Pesin Theory [P1, P2] gives relevant tools and results of the modern differ-
entiable ergodic theory. It works for C? (or at least C* plus Hélder) dynamical
systems. For instance, for C? hyperbolic systems, Pesin’s Entropy Formula com-
putes exactly the metric entropy of a diffeomorphism in terms of the mean value
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of the sum of its positive Lyaypunov exponents. In the C? scenario, Pesin’s En-
tropy Formula holds if and only if the invariant measure has absolutely continuous
conditional decomposition along the unstable manifolds. [LY].

Through the properties of absolute continuity of invariant measures, and mainly
through the absolute continuity of the holonomy along the invariant foliations, Pesin
Theory gives the tools to construct physically significant invariant measures for
C'-plus Holder systems. Among these measures, the so called Sinai-Ruelle-Bowen
(SRB) measures [Si, R1, B1], have particular relevance to describe the asymptotic
statistics of Lebesgue-positive set of orbits, not only for C! plus Holder uniform and
non-uniform hyperbolic systems, but also for C' plus Holder partially hyperbolic
systems [PS, BDV]. Precisely, one of the most relevant properties of ergodic
SRB measures for C' plus Holder hyperbolic systems, is that they are physical;
namely, their basins of statistical attraction have positive Lebesgue measure, even
for Lebesgue non-preserving systems.

In particular, for transitive Anosov C' plus Holder systems, the theorem of
Pesin-Sinai (see for instance [PS]) states that there exists a unique physical mea-
sure: it is the unique invariant probability measure that satisfies Pesin’s Entropy
Formula, and so, the only one with absolutely continuous conditional measures
along the unstable foliation. Besides, its basin of statistical attraction covers
Lebesgue all the orbits. In other words, for a C! plus Hélder Anosov system,
the definition of physical measure, SRB measure, and measure that satisfies Pesin’s
Entropy Formula, are equivalent.

Nevertheless, in the C'-scenario, the above results do not work, because the
theorems of Pesin Theory that ensure the absolute continuity of unstable condi-
tional measures, and of the holonomies along invariant foliations, fail. Even the
existence of the unstable manifolds, along which one could construct the condi-
tional unstable measures, fails in the C! context [Pu]. In the particular case of
C'-Anosov diffeomorphisms, invariant C? foliations with C* leaves do exist (see for
instance [HPS]), but the holonomies along the invariant foliations are not neces-
sarily absolutely continuous [RoY].

As a consequence, for C' systems, if one defined SRB measures by the exis-
tence of their absolutely continuous unstable conditional measures, one would lack
the hope to construct them. Nevertheless, one can still define SRB or SRB-like
measures, if one forgets for a while the properties of absolute continuity, and focus
the attention of the properties of statistical attraction. In other words, one can
try to look directly at their physical properties, dodging the lack of conditional
absolute continuity. For that reason, in the C''-scenario, we look for the Lebesgue
abundance of points in their statistical basins (or, more precisely, in the e-approach
of their statistical basins). This search was used in [CE] to construct the SRB-like
or pseudo-physical measures for C° dynamical systems on a compact Riemannian
manifold. The notion of SRB-like or pseudo-physical measures, even in a non dif-
ferentiable context, translate to the space of probability measures the concept of
statistical attraction defined by Ilyashenko [GIl, Il] in the ambient manifold.

In [Qiu] it is proved that Ct generically, transitive and uniformly hyperbolic
systems do have a unique measure satisfying Pesin’s Entropy Formula. Besides this
measure is physical and its basin of statistical attraction covers Lebesgue almost
all the orbits. In the general C'-scenario with non uniform hyperbolicity, Pesin’s
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Entropy Formula was first proved considering systems that preserve a smooth mea-
sure (we call a measure p smooth if p < Leb, where Leb is the Lebesgue measure).
In fact, for C! generic diffeomorphisms that preserve a smooth measure p, [Ta]
proved that p satisfies Pesin’s Entropy Formula. Later, in [ST], this formula was
also proved for any C' partially hyperbolic system that preserves a smooth measure.

If no smooth measure is preserved, in [CCE] is proved that the pseudo-physical
or SRB-like measures still exist and satisfy Pesin’s Entropy Formula, provided that
the system is C! partially hyperbolic. Recently, and also for C'! partially hyperbolic
systems, [Y'C] derived a proof of Shub’s Entropy Conjecture [Sh] from their method
of construction of measures that satisfy Pesin’s Entropy Formula.

In this paper we focus on C'' Anosov systems to search for a converse of the
result in [CCE]. Namely, our purpose is to characterize all the invariant measures
that satisfy Pesin’s Entropy Formula. First, we need to generalize the concept
of pseudo-physical or SRB-like measure. So, we define the weak pseudo physical
measures u, by taking into account only the e-approach of its basin of statistical
attraction up to time n, which we denote by Ae (1), and the exponential rate of
the variation of the Lebesgue measure of A, , (1) when n — 400 (Definition 1.3).
In Theorem 1 we study general properties of the weak pseudo physical measures,
which do always exist. We prove that for any C' Anosov diffeomorphism, the weak
pseudo-physical measures satisfy Pesin’s Entropy Formula (Part A) of Theorem 2).
Besides, we prove a converse result, to conclude that the set of invariant measures
that satisfy Pesin’s Entropy Formula is the closed convex hull of the weak pseudo-
physical measures (Theorem 2).

So, Theorem 2 characterizes all the measures that satisfy Pesin’s Entropy For-
mula in terms of the statistical properties that define the weak pseudo-physical
notion. Nevertheless, as far as we know, no example is still known of a C' Anosov
diffeomorphism for which weak pseudo-physical measures are not physical. In other
words, there are not known examples of C'-Anosov systems such that an ergodic
measure satisfies Pesin’s Entropy Formula and is non physical.

The proof of Theorem 2 is based on the construction of local C!' pseudo-unstable
foliations, which approach the local C° unstable foliation, and allow us to apply
a Fubini decomposition of the Lebesgue measure of the e-basin A, , (), for any
ergodic measure pu. The pseudo-unstable foliations are constructed via Hadamard
graphs whose future iterates have bounded dispersion. This method was introduced
by Maiié in [Maii] to prove Pesin’s Entropy Formula in the C! plus Holder context.
Much later, it was applied also to C* systems in [ST] and [CCE].

As said above, in Theorem 2 of this paper, we prove that the weak pseudo-
physical condition for the ergodic components of an invariant measure, is necessary
and sufficient to satisfy Pesin’s Entropy Formula. The sufficient condition is just
a corollary of the results in [CCE]. On the contrary, the proof of the necessary
condition is new, although it is also strongly based on Mané’s method to construct,
via Hadamard graphs, the C'-pseudo unstable foliations.

As a subproduct of the proof of Theorem 2, we also obtain an equality for
any ergodic measure of a C'-Anosov diffeomorphism, even for measures that do
not satisfy Pesin’s Entropy Formula. This equality, which is stated in Theorem 3,
considers the exponential rate

1 L b AE n
a(ﬂ) = lim lim sup M7
e—0t n—stoo n
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according to which the Lebesgue measure of the e-basin A, (1) of each ergodic
measure g varies with time n. Theorem 3 equals the exponential rate a(p) with

the difference

where h,,(f) is the metric entropy and {x;} are the positive Lyapunov exponents.
So, in the particular case of ergodic measures p satisfying Pesin’s Entropy Formula,
the exponential rate a(u) is null, and conversely.

1.1. Definitions and Statement of the Results. Let M be a compact,
connected, Riemannian C'-manifold without boundary and let f : M +— M be
continuous.

DEFINITION 1.1. (EMPIRIC PROBABILITY) For each x € M, n € Nt the
empiric probability o, (x) along the finite piece of the future orbit of z up to time
n, is defined by

n—1
1
Jn(.’t) = ﬁ Z(ng(w),
j=0

where 0, denotes the Dirac delta probability measure supported on the point y € M.

We denote by M the space of all the Borel probability measures on M, endowed
with the weak™ topology. We denote by My C M the space of f-invariant Borel
probability measures. It is well known that M and My are nonempty, weak*
compact, metrizable, sequentially compact and convex topological spaces. We fix
and choose a metric dist™ in M that induces the weak* topology.

DEFINITION 1.2. (BASIN AND PSEUDO BASIN OF ATTRACTION OF A MEA-
SURE.) Let 4 € M and € > 0. We construct the following measurable sets in the
manifold M:

(1.1) B(p) == {x eM: lm on(2)= ﬂ};
(1.2) Ac(p) = {x € M : liminf dist” (o, (), ) < e};
(1.3) Ac n(p) := {33 € M :dist™(op(z),p) < 6}.

We call B(u) the basin of attraction of p. We call A.(p) the e-pseudo basin of
attraction of . We call A ,(u) the e-pseudo basin of p up to time n.

In the sequel we denote by Leb the Lebesgue measure of M, renormalized to
be a probability measure.

DEFINITION 1.3. (PHYSICAL, PSEUDO-PHYSICAL AND WEAK PSEUDO-PHYS-
ICAL MEASURES)

Let p € M. We call p physical if Leb(B(p)) > 0.

We call p pseudo-physical if Leb(Ac(u)) > 0 for all € > 0.

We call p weak pseudo-physical if

(1.4) lim sup 1 log Leb(A¢, n(1)) =0 Ve>0.

n—+oo T
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We denote
Pr = {u € M: pis weak pseudo—physical}.

On the one hand, it is standard to check that for continuous mappings f : M —
M the physical measures, if they exist, are f-invariant. Also, pseudo-physical are
f-invariant (see [CE]), page 153, and as proved in Theorem 1.3 of [CE], the set of
pseudo-physical measures is never empty, weak™ compact and independent of the
chosen metric dist* that induces the weak* topology of M. Besides, it is immediate
to check that physical measures, if they exist, are particular cases of the always
existing pseudo-physical measures.

On the other hand, in this paper we will generalize the previous results that
hold for pseudo-physical measures, by proving the following properties also for weak
pseudo-physical measures:

THEOREM 1. Let f: M +— M be a continuous map. Then:
A) Weak pseudo-physical measures are f-invariant.
B) Physical measures and pseudo-physical measures are particular cases of weak
pseudo-physical measures.
¢) Weak pseudo-physical measures do always exist.
D) The set Py of weak pseudo-physical measures does not depend on the choice of
the metric dist* that induces the weak* topology on M.
E) Py is weak*-compact, hence sequentially compact.
F) ngr}rloo dist" (o, (z), Py) = 0 for Lebesgue almost all x € M.

Q) If the weak pseudo-physical measure p is unique, then it is physical and its basin
of attraction B(u) covers Lebesque a.e. x € M.

REMARK 1.4. Weak pseudo-physical measures are not necessaritly ergodic (see
Example 5.4 of [CE]).

Now, let f € Diff' (M) be a C* diffeomorphism on M.

DEFINITION 1.5. (ANOSOV DIFFEOMORPHISMS) The diffeomorphism f is called
Anosov if there exists a Riemannian metric of M and asplitting TM = E® F which
is continuous and non trivial (i.e. dim(FE),dim(F) # 0), and a constant A < 1, such
that

(1‘5) HDfm‘E(m)Ha ||sz_1|F(z)|| <A VzeM.

We call E and F the stable and unstable subbundles respectively. We call \ the
(uniform) hyperbolicity constant.

REMARK 1.6. We observe that the condition of continuity of the unstable and
stable subbundles is redundant in Definition 1.5. Besides, since the manifold is
connected, from the continuity of F' and E we deduce that they are uniformly
transversal sub-bundles and dim(F") and dimFE are constants.

From inequalities (1.5), for any Anosov diffeomorphism f and for any regular
point & € M, the minimum Lyapunov exponent along F(x) is not smaller than
logA™! > 0, and the maximum Lyapunov exponent along F is not larger than
log A < 0. Thus, for any regular point x € M all the Lyapunov exponents along
E(x) are strictly negative and bounded away from zero, and all the Lyapunov
exponents along F'(x) are strictly positive and bounded away from zero.
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DEFINITION 1.7.  (PESIN’S ENTROPY FORMULA) Let f € Diff'(M). Let
1€ My. We say that u satisfies Pesin’s Entropy Formula if

hu(f) _ / dirii_(;M

where h,(f) is the metric entropy of f with respect to p; for p-a.e. x € M the
Lyapunov exponents of the orbit of x are denoted by

)
X (x) dp,

x1(z) = x2(%) = .. = Xdimm (2);
and x; (z) := max{x;(z),0}.

Recall that for any C'- Anosov diffeomorphism f, the set of measures that

satisfy Pesin’s Entropy Formula is nonempty (see for example Theorems 4.2.3 and
4.5.6 of [Ke]).

The main purpose of this paper is to prove the following result:

THEOREM 2. For C' Anosov diffeomorphisms, the set of ergodic weak pseudo-
physical measures is nonempty, and the set of invariant probability measures that
satisfy Pesin’s Entropy Formula is its closed convex hull.

The following is an equivalent restatement of Theorem 2:

A) All the weak pseudo-physical measures satisfy Pesin’s Entropy Formula.
B) Any invariant probability measure p satisfies Pesin’s Entropy Formula if and
only if its ergodic components u, are weak pseudo-physical p-a.e. x € M.

From Theorem 2, we obtain the following consequence:

COROLLARY 1.8. If f € Diff' (M) is Anosov, then for Lebesque-almost all x €
M any convergent subsequence of the empirical probabilities o,,(x) converges to a
measure that satisfies Pesin’s Entropy Formula.

PROOF. From Assertion F) of Theorem 1, for Lebesgue-almost all z € M any
convergent subsequence of {c,,(z)},>1 converges to a weak pseudo-physical measure
w. Thus, applying part A) of Theorem 2 p satisfies Pesin’s Entropy Formula. O

The arguments to prove Theorem 2 are based in the following more general
result, which we will prove along the paper:

THEOREM 3. If f € Diff' (M) is Anosov, if F denotes its unstable sub-bundle,
and if i is an ergodic probability measure for f, then the e-pseudo basin A n (1) of
w up to time n satisfies the following equality:

log Leb(A
(1.6) lim lim sup —2 eb(n enlt) _ ) —/10g|deth|de.

e—=0F n—4oo

1.2. Organization of the paper. In Section 2 we prove Theorem 1, which
states the general properties of weak pseudo physical measures for any continuous
map f: M +— M.

In Section 3, for Anosov diffeomorphisms, we prove part A) of Theorem 2 and
also the first part of B). Precisely, we prove that the weak pseudo-physical prop-
erty of the ergodic components is a sufficient condition to satisfy Pesin’s Entropy
Formula.
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In Section 4, for Anosov diffeomorphisms, we prove the converse statement in
part B) of Theorem 2. Namely, the weak pseudo-physical property of the ergodic
components is also a necessary condition to satisfy Pesin’s Entropy Formula.

Through the proof of Theorem 2, we obtain some stronger intermediate results
that hold for any ergodic measure. Finally, at the end of Section 4, we join those
intermediate results to prove Theorem 3.

2. Properties of the weak pseudo-physical measures

The purpose of this section is to prove Theorem 1. Along this section, we
assume that f is only a continuous map from a compact Riemannian manifold M
into itself.

Let us divide the proof of Theorem 1 into its assertions A) to F):

THEOREM 1 A) Any weak pseudo-physical measure p is f-invariant.

PrOOF. From Equality (1.4), for any fixed value of € > 0 there exists n; — 400
such that Leb(Ac, », (1)) > 0. Thus, there exists x; € M such that

(2.1) dist™ (o, (z5), p) < €.

Since oy, (zj) € M and M is sequentially compact, it is not restrictive to assume
that {0y, (z;)} is weak® convergent. Denote by v its limit. We assert that v is
f-invariant. In fact, consider the operator f* : M — M defined by f*(v)(B) =
v(f~(B)) for any Borel measurable set B C M. Then f*(8,) = 6, for all y € M;
hence f*(0y,,(x;)) = on, (f(x;)) for all j € N.

It is well known that f* is continuous. Thus, taking limit in the weak* topology,
we obtain:

frv)y = Tim f*(on,(z;)) = lim o, (f(25)).

j—+oo : Jj—rtoo
Since
1 n;—1 1 n;—1
O—nj(‘rj) = TTJ Z 5)”(1'3')’ on; (f(25)) = TTj Z 6fi+1($j)’
i=1 1=1

. 1
0w, 3) = £ (o, (@) < — (8, + 3 ay))-
J

Thus lim;_, 4 o0 0, (75) = limj s 4 oo f*(0n, (24)), hence v = f*(v), or equivalently v
is f-invariant.

From (2.1) dist*(v, ) < e. We have proved that for all € > 0 there exists
v € My such that dist™(pu,v) < e. Since My is sequentially compact, we deduce
that u € My, as wanted. |

THEOREM 1 B) Any physical or pseudo-physical measure is weak pseudo-physical.

ProoF. Trivially any physical measure is pseudo-physical. So, it is only left to
prove that any pseudo-physical measure p is weak pseudo-physical. Consider x €
Ac(p). From equality (1.2), there exists n; — 400 such that dist™ (o, (z), 1) < €.
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Therefore, from (1.3) x € (x>, U,>n Ae, n(p). Since the latter assertions holds for
all x € A.(u), we have proved that

Ac(p) C m U Ae,n(p)-
N>1n>N
As p is pseudo-physical, we deduce:
(2.2) Leb( N U Am(u)) > Leb(Ae(u)> >0 Ve> 0.
N>1n>N

Now, assume by contradiction, that u is not weak pseudo-physical. Taking into
account that Leb(A¢ (1)) < 1, from the contrary of equality (1.4), we deduce that
there exist € > 0 and a > 0 such that

1
lim sup — log Leb(Ae, » (1)) = —2a < 0.

n—+oco N
Therefore, there exists N > 0 such that Leb(A¢ (1) < e " for all n > N, from
+oo
where we deduce that ZLeb(Aeﬁn(,u) < +oco. Finally, applying Borell-Cantelli
n=1
Lemma, we conclude that Leb( ﬂ U Aem,(,u)) = 0, contradicting inequality
N>1n>N
(2.2). O

THEOREM 1 ¢) Weak pseudo-physical measures do exist.

PROOF. In Theorem 1.3 of [CE], it is proved for any continuous map f on a
compact manifold, that the pseudo-physical measures (which in that paper are also
called SRB-like or observable) do exist. Since any pseudo-physical measure is weak
pseudo-physical, these latter measures always exist. O

THEOREM 1 D) The set Py of weak pseudo-physical measures does not depend on
the choice of the metric in M that induces the weak* topology.

PROOF. Take two metrics dist] and dist, both inducing the weak* topology
on M. We assume that u is weak pseudo-physical according to dist], and let us
prove that it is also weak pseudo-physical according to dists.

Since both metric induce the same topology, for any € > 0 there exists § > 0
such that

(2.3) peM, distj(p,u) <d = dists(p,u) <e

In the notation of equality (1.3), add a subindex 1 or 2 to denote the sets A. ,, 1(x)
and A. ., 2(u), according to which metric (dist] and dist3, respectively) is used to
define them. So, from assertion (2.3) we have: Aj ., 1(p) C Ae n, 2, from where

Leb(4s,n, 1)) < Leb(Ac.n, 2(1))

Since we are assuming that p is weak pseudo-physical according to dist], from
equality (1.4) we know that

s ELED(As 1 (1)

n—4oo n

=0.
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Then,

Jim sup log Leb(Ac, p, 2(1))

n——+oo n

> 0.

As € > 0 was arbitrarily chosen, the latter inequality holds for all ¢ > 0. But the
limit in the latter inequality is non positive because Leb is a probability measure.
We conclude that

log Leb(A
lim sup 0g Leb 6’”’2(M))

n——+o0o n

=0 Ve>0,

ending the proof that p is also weak pseudo-physical with respect to the metric
dists. O

THEOREM 1 E) The set Py of weak pseudo-physical measures is weak”-compact.

Proor. Since Py C M and M is weak*-compact, it is enough to prove that
Py is weak*-closed. Assume p; € Py and p € M such that

lim dist™(p;, ) =0

Jj—+oo

We will prove that ;1 € Py. For any given € > 0, choose and fix j such that
dist™(p;, p) < €/2. Thus, from equality (1.3) and the triangle property, we obtain:
Acjo n(pj) C Ae n(p), from where

(2.4) Leb(AE /z,n(w)) < Leb (Ae,n(u)).

Since p; € Py, we can apply equality (1.4) to Leb (AG/QW(;LJ-)), which joint with
inequality (2.4) implies:

1
lim sup — log Leb(Ae’n(,u)) > 0.

n—+oco N

Finally, since Leb is a probability measure, we deduce that the above limsup equals
0, concluding that 1 € Py as wanted. ([

THEOREM 1 F) lim dist* (0, (z),Ps) =0 for Lebesgue almost all x € M.

n—-+o0o

PRrOOF. Theorem 1.5 of [CE], states that the distance between o, (z) and the
set of pseudo-physical measures converges to zero with n — +o0o for Lebesgue
almost all z € M. Since the pseudo-physical measures are contained in Py, we
trivially deduce the wanted equality. (|

THEOREM 1 G) If the weak pseudo-physical measure p is unique, then it is physical
and its basin of attraction B(u) covers Lebesque a.e. © € M.

PRrOOF. It is an immediate consequence of part F). [
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3. Sufficient condition for Pesin’s Entropy Formula

In the sequel we assume that the map f € Diff* (M) is Anosov. The purpose
of this section is to deduce, as an immediate consequence from previous known
results, part A) of Theorem 2, and the sufficient condition to satisfy Pesin’s Entropy
Formula in part B) of Theorem 2. Namely, we will deduce that if all the ergodic
components of an f-invariant measure p are weak pseudo-physical, then u satisfies
Pesin’s Entropy Formula.

Recall Definition 1.2, which defines the e-pseudo basin A, ,(x) up to time n of
a probability measure pu. We will apply the following result:

THEOREM 3.1. [CCE] Let M be a compact Riemannian manifold of finite
dimension. Let f € Diff*(M) be Anosov with hyperbolic splitting TM = E & F,
where E and F are the stable and unstable sub-bundles respectively. Then, the
following inequality holds for any f-invariant p € M:

log Leb( A n
(3.1) lim limsupw ghu(f)—/log|deth|pd/L.
e—0t n—-+oo n
PROOF. See Proposition 2.1 in [CCE].
REMARK 3.2. For the non negative Lyapunov exponents, we adopt the notation

Xi (z) as in Definition 1.7. For any f € Diff' (M), Margulis and Ruelle inequality
[Mar, R2]| states:

(3.2) ha(f) < / S X (@) d.

Thus, Pesin’s Entropy Formula holds for an invariant measure p, if and only if the
following inequality holds:

)
Xi (x) dp.

Besides, from Definition 1.5, and from the formula of the integral of the volume
form along the unstable sub-bundle F', we obtain the following equality for Anosov
diffeomorphisms:

dim (M)
| Y @ du= [log]detDr|r|dn
=1

Joining the above assertions, we conclude:
Let f € Diﬁl(M) be Anosov, and F be its unstable sub-bundle. Then, any
f-invariant probability measure p satisfies Pesin’s Entropy Formula if and only if

(3.3) hulf) = [ 1og|det D] dp

We are ready to deduce part A) of Theorem 2, which is indeed a corollary of
Theorem 3.1:

PART A) OF THEOREM 2: If f € Diff'(M) is Anosov and if i is a weak pseudo-
physical f-invariant measure, then p satisfies Pesin’s Entropy Formula. Therefore,
the set of invariant probability measures that satisfy Pesin’s Entropy Formula is
nonempty.
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PROOF. By contradiction, assume that u does not satisfy Pesin’s Entropy For-
mula. According to Remark 3.2, inequality (3.3) does not hold:

hu(f) = [ tog|det Dl dp <,

Therefore, applying inequality (3.1) of Theorem 3.1, we conclude that there exists
€ > 0 such that

Jim sup log Leb(Ae, n (1))

n——+oo n

< 0.

So, equality (1.4) does not hold; hence p is not weak pseudo-physical, contradicting
the hypothesis. We have proved that all the weak pseudo-physical measures for f
satisfy Pesin’s Entropy Formula. From part ¢) of Theorem 1, weak pseudo-physical
measures do exist. So, the set of measures that satisfy Pesin’s Entropy Formula is
nonempty. (]

We now recall the following well known result (see for instance Theorems 4.3.7
and 4.5.6 of [Ke]):

THEOREM 3.3. Let f € Diffl(M) be Anosov. An f-invariant measure u satisfies
Pesin’s Entropy Formula if and only if its ergodic components u,, satisfy it for p-a.e.
re M.

PROOF. On the one hand, we recall that any Anosov C' diffeomorphism f is
expansive, and for any expansive homeomorphism f on M the metric entropy h,(f)
depends upper semi-continuously on the f-invariant measure p (see for instance
Theorem 4.5.6 of [Ke]). So, we can apply the theorem of the Affinity of the Entropy
Function (see Theorem 4.3.7 of [Ke]), which states that

(3.4) half) = [ b (7)),

where the measures p, for u — a.e. * € M are the ergodic components of u.
On the other hand, the ergodic decomposition theorem states that

65) [ 1ogldetDfleldu= [ duta)( [ 14et DSy lrel dissw).

Joining Equalities (3.4) and (3.5), and taking into account Margulis and Ruelle
inequality (3.2), we deduce that

u(f) ~ [ 1og|det D] dp =0

if and only if

B, () = [ 10g | det DF(0) | dia () =0 for o = . < D,

ending the proof of Theorem 3.3. O
As a consequence we obtain:

PART B) OF THEOREM 2, SUFFICIENT CONDITION: If f € Diff* (M) is Anosov
and if p is an invariant measure whose ergodic components p, are weak pseudo-
physical for p-a.e. x € M, then u satisfies Pesin’s Entropy Formula.
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PROOF. From the hypothesis, and applying part A) of Theorem 2, we deduce
that the ergodic components p, of u satisfy Pesin’s Entropy Formula for p-a.e.
x € M. So, from Theorem 3.3, the measure p also satisfies this formula. O

4. Necessary condition for Pesin’s Entropy Formula

In this section we will prove the necessary condition to satisfy Pesin’s Entropy
Formula, as stated in part B) of Theorem 2. Precisely, we will prove that if f €
Diffl(M ) is Anosov, and if the f-invariant measure p satisfies Pesin’s Entropy
Formula, then the ergodic components of p are weak pseudo-physical. We will also
prove the equality of Theorem 3 for any ergodic measure .

4.1. Previous known properties for Anosov diffeomorphisms. .
EXPANSIVITY. Recall that any Anosov diffeomorphism f is expansive (see for
instance Lemma 3.4 in [B2]). Namely, there exists a constant a > 0, which is
called the expansivity constant, such that

dist(f"(x), f"(y)) <a VneZ = z=y.
Given two partitions Q and R, the partition Q V R is defined by

QvR:{QmR; Qe o, ReR}.

METRIC ENTROPY FOR EXPANSIVE SYSTEMS. Recall the following result, which
follows from Kolmorgorov-Sinai Theorem in the case of expansive homeomorphisms
(see for instance, Proposition 2.5 of [B2], or also Theorem 3.2.18 and Lemma 4.5.4
of [Ke]):

If R is a finite partition whose pieces are Borel measurable sets and have diam-
eter smaller than the expansivity constant o, then U::é{\/i:fz f7IR} generates
the Borel o-algebra, and for any f-invariant measure p, the metric entropy h,,(f)
can be computed by:

n——4oo

n—1
H 3] —j
(4.1) hu(f) = limsup y, where R, := \/ f7(R), and
Jj=0

(42)  HRyp):=— Y p(Y)log(u(Y)) <log#{Y € Ry: u(Y) > 0}.
YeR,

Note: In (4.2) at right, #P denotes the number of elements of the finite set P.
RECTANGLES. Recall the definition of rectangle R in the manifold M for the

Anosov diffeomorphism f. (See [B2], page 78.) In particular a rectangle R is
proper if R = R = int(R). For any proper rectangle R and any = € R denote

W5 := connected component(W?*(z) N R) > x,

W4 := connected component(W*(z) N R) 3 «x,
where W#(z), W*(x) are the stable and unstable submanifolds of the point z.

The properties below follow from the definition of rectangle R:
(1) For any pair of points x,y € R there exists a unique point, which we denote
by [z,y], defined by
[z,y] :€ Wi(x) h Wi(x).
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(11) There exists a constant Kr > 0 such that, if L C R is a local embedded
C'-submanifold, with dimension equal to the unstable dimension, and such that L
intersects transversally the local stable manifolds W}, (z) for all z € R, then

(4.3) Leb" (L) > K3*,

where Leb” denotes the Lebesgue measure along L.
We recall the definition of Markov partition R = {R;}1<i<k into rectangles R;
(see [B2], pages 78-79) and the following well known result:

THEOREM 4.1. (EXISTENCE OF MARKOV PARTITIONS).
Let f € Diff' (M) be Anosov. Then, for all § > 0 there exists a Markov partition
whose rectangles have diameter smaller than 0.

PROOF. See Theorem 3.12 of [B2].

DEFINITION 4.2. (DYNAMICAL RECTANGLE)

Let R be a Markov partition of the manifold M, let x € M and denote by
R(z) the rectangle of R that contains z. Let n be a positive natural number. The
dynamical rectangle R, (x) that contains z is defined by

Vo= () £ (R @))).
§=0

The following property follows from the definition of Markov Partition (see
Condition (b) in [B2], page 79):
(4.4) Vn>0, ifyeR,(x) then Wg(y) C Ry(x).

4.2. Technical Lemmas.

LEMMA 4.3. Let f be an Anosov diffeomorphism on a compact manifold. Then,
for any finite Markov partition R, there exists a constant Ky > 0 satisfying the
following inequality for any f-invariant probability measure p, for any 0 < e < 1/4,

for any Borel measurable set A C M such that p(A) > 1 — e, and for any natural
number n > 1:

(4.5) log#{Y e R: YNA A0} > HRy,u) —n-Ky-e+eloge+ (1—e)log(l—e).

PROOF. Denote A, := U{Y €ERy: ANY # (Z)}. Since A C A,, we have

w(Ay,) >1—e If u(A,) =1 then inequality (4.5) holds trivially as a consequence
of (4.2). So, let us prove Lemma 4.3 in the case

1—e<u(Ay) <1; hence 0 < u(M\ A,) <€
By definition:

H(Rp,p) == > p(Y)logu(Y)
YER,
== p(M)logu(Y)— > pY)logu(Y)
YCA, YCM\A,

)Y pY (M(Y) ) = > u(Y)log u(Ay)

YCA, u(A #(An) YCA,

SIAVREDS <A/2(an>1°g(u<ﬁ(@4n>)‘ S (V) log u(M\ Ay).

YCM\A, YCM\A,
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Construct the probability measures p1 and po defined by the following equalities
for all Borelian set B C M:

i1(B) i= u(B 1 An)/u(B),  pa(B) i= (B 0 (M\ A))/u(M \ A,).
We obtain

H(Ro, ) = —p(An) 3 m(¥)log (1 (V) = p(An) log pu(A,)
YCA,

—u(M\ A ST (Y ) log (a(Y)) = p(M \ Ay)log (M \ Ay),
YCM\A,

Applying inequality (4.2):
H(Ry,p) <log#{Y € Ryy: Y C Ay} — u(Ay) log u(Ay)

+Hu(M\ Ap) -log #Ry — (M \ Ay) log (M \ Ay,).
Taking into account that 0 < u(M \ A4,) < € < 1/4 and that —ulogu is strictly
increasing for 0 < u < 1/4 and strictly decreasing for u > 3/4, we obtain:

H(anl‘)ﬁ
log#{Y € Rp: Y C Ay} + (M \ Ay) -log #R,, — €loge — (1 —€)log(1 —¢€) <
log#{Y €R,: Y C Ay} +e-n-Ko-—eloge — (1 —€)log(l —e),
where

Ky :=sup % >0

n>1 n
Therefore, to end the proof of Lemma 4.3 it is enough to show that Ky < +o0. In
fact, for a Markov partition R, any rectangle Y € R, is obtained as a connected
component of the intersection f~"(R;) N R; for some pair of rectangles R;, R; € R.
Fixing R; € R, the maximum number of connected components of the intersections
of f~™(R;) with the rectangle R; of the partition, is upper bounded the following

quotient
max {Leb(Wfsfn(Ri)(y)% ye f_”(Ri)}
min {Leb(Wf%j (x)):z € Rj}

<

- max {Leb(Wﬁii (z)): z € Ri}

=:d" - q;,
min {Leb(Wﬁj (2): x € Rj}
where

a:= max {|[detDf; | @ € M.
Thus, denoting k := #R, we have
#R, < k- d 'max{qiyj C1<ij< k}

We conclude that

n = )

lim sup
n—-+oo

log #R

which implies Ko := sup,,>, < 400, ending the proof of Lemma 4.3. O
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In the following Lemma we will construct a local C!-foliation, whose leaves
are pseudo-unstable manifolds e- approaching (in the C'-topology) the true local
unstable manifolds of any rectangle of a given Markov partition.

LEMMA 4.4. Let f € Diff'(M) be Anosov. Denote the stable and unstable
subbundles by E and F, respectively. Denote the expansivity constant by o > 0.
Then, for all € > 0 there exist 0 < dg < a and K > 0 such that, for any finite
Markov partition R = {R;}1<i<k into rectangles with diameter smaller than o,
there exists a finite family {L;}1<i<k of local foliations L;, each one defined in an
open neighborhood of each rectangle R;, satisfying the following properties for all
1<i<k, forallz € R; and for alln > 0:

A) L; is Cl-trivializable and its leaves are dim(F)- dimensional.
B) dist(Fyn(a), Tpn(a)f"(Li(x))) < €, where L;(x) denotes the leaf of the foliation
L; that contains x.

‘ detdDfZ | (£,(x)) ‘

‘det ng|F(x)(
D) There exist a point x; € R; and an open subset A3 C Wk, (x;), in the topology
of the stable submanifold W*(x;), such that

Leb™ ") (45) > K1,

C) K—le—ne S

< K e™.

where Leb™ @) denotes the Lebesgue measure along the submanifold W*(z;); and
besides, if y € A3, then

Leb " EOD (£7(Li(y) O R(2)) ) = K7,

where Leb? “iW)) denotes the Lebesgue measure along the submanifold L;(y).

PRrOOF. Proposition 3.6 of [CCE] states the existence of o > 0 and the local
Cl-foliation £; satisfying (A), (B) and (C). So, it is enough to prove that if € > 0
is small enough, then any local C!-foliation £; defined in a neighborhood of the
rectangle R; and satisfying (A) and (B), also satisfies (D) for some constant K > 0.

In fact, choose and fix any point x; in the interior of the rectangle R;. From the
definition of rectangle, for each z € R; there exists a unique point in the transversal
intersection

Wi, (z) h W (z:) # 0.
By continuity of the transversal intersection between C'-manifolds, there exists
€’ > 0 such that the following assertion holds:

If dist(z;,y) < € and if £; is any local foliation whose leaves have dimension
dim(F), are C!, and are ¢’-near the unstable local leaves of R; in the C*-topology,
then for each z € R; the intersection W (2) M L;(y) is transversal and contains a
single point.

In particular, we obtain:

(4.6) Wi, (2) h Li(y) #0
V y € Wi, (x;) such that dist(z;,y) <€, Vze€ Ry(z) CR;, YxeR;
Define
Aj = {y € Wg, (x;): dist(zs,y) < 6/}.
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By construction A is an open subset of the local stable submanifold W3 (z;), in
the topology of this submanifold. Construct a real number K; > 0 large enough so

(4.7) Leb™ 0 (43) > K.

From assertion (4.6) we deduce

(L) 0 Bu@)) 0 Wi, oy () # 0

for all y € A5 and for all w € f™(R,(z)).

From the definition of the dynamical rectangle R,,(z) and from the properties
of the Markov partition, there exists a rectangle R; > f™(x) of the partition such
that local stable manifold W5 (w) D Wi g () (w) for allw € R;.

So, we deduce

7 (£:9) 0 Ru@)) h Wi, (w) # 0
for all y € A7 and for all w € R;. In other words, the pseudo-unstable dim(F")—
submanifold f" (Ei (y) ﬂRn(x)) intersects transversally all the local stable subman-

ifolds of the rectangle R; where it is contained. Thus, applying inequality (4.3) we
have

1
4.8 Leb/ " (£i) fn N R, > .
(48) b E0 (L) 0 Ru(@)) 2
Finally, define K = maxi<;<;x{Kg,, K;}. From inequalities (4.7) and (4.8), we
conclude assertion D), as wanted. O

4.3. End of the proofs of Theorems 2 and 3. For any probability measure
w recall equality (1.3), defining the measurable set A, ,,(p) which we called the e-
pseudo basin of g up to time n. We will end the proof of Theorem 2, by applying
the following key result which bounds from below the Lebesgue measure of the set
Ac n(p) for any ergodic measure pi:

THEOREM 4.5. Let M be a compact Riemannian manifold of finite dimension.
Let f € Difft (M) be Anosov with hyperbolic splitting TM = E® F, where E and F
are the stable and unstable sub-bundles respectively. Let p be an ergodic measure.
Then:

(4.9) lim limsup M

e—=0t notoo n

> u(f) - [ log|det Dl dn.

PROOF. We notice that the limit at left in equality (4.9) does not depend on
the choice of metric dist™ that induces the weak* topology in the space M of Borel
probability measures. In fact, to prove the latter assertion it is enough to argue as
in the proof of part (D) of Theorem 1 in Section 2. So, to prove Theorem 4.5 we
choose and fix the following metric in M:

dist™( Z'f%du J i dv] YV ou,vEeM,

where {¢}ieny is any fixed countable family of real continuous functions ¢; €
C°(M,[0,1]) that is dense in C°(M,[0,1]). Note that, according to the metric
dist™, the balls are convex. In other words, if a finite number of probability mea-
sures belong to the ball with centre p and radius € > 0, then any convex combination
of those measures also belongs to it.
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For any x € M and for any natural number n > 1 denote:

P(x) := log | det(Dfm|F(x))|,

V() :=log | det(Df7|p))| = iz/)(fj(:r)) =n- /Man(x),
j=0

where o, () is the empiric probability constructed in Definition 1.1.

Fix any real value ¢ > 0. The real funcion ¢ : M +— R is continuous because
f is of class C! and the sub-bundle F is continuous. Thus, from the definition of
the weak* topology in the space M of probability measures, we deduce that there
exists 0 < € < € such that

vype M, dist"(v,u) < = ’/¢du—/1/}d,u‘ <e.
In particular, for v = o, (z) we deduce:
(4.10) If dist™ (o (z), p) < €, then ‘ log | det(D f}|p(z))| — - /wd,u‘ <n-e

Since p is an ergodic probability measure, we have lim, o op(z) = p for
p-a.e. x € M. So, for the fixed value of ¢ > 0 as above, and for p-a.e. z € M,
there exists N(z) > 1 such that

dist* (o, (z), n) < €/2 ¥n > N(z).
For any natural value of N > 1, define the set

(4.11) Ay = {m eM: dist"(op(x),pn) <€/2 Vn> N}.

Since Ay C Any41 and u(UAN) =1, there exists N > 1 such that

(4.12) p(An) > 1—e

In the sequel, we fix such a value of N > 1.

From the definition of the metrizable weak*-topology in the space M of Borel-
probability measures, it is standard to check that the Dirac delta probability d,,
depends uniformly continuously on the point x € M. Since the empiric probability
on(x) is a convex combination of Dirac delta measures, and the balls in M are
convex, we deduce that there exists do > 0 such that, for any pair of points z,y € M
and for any natural value of n > 1, the following assertion holds:

(4.13)
If dist(f7(x), fi(y)) < do forall0 <j<n—1, then dist*(o,(z),0n(y)) <€ /2.

For the fixed value of € > 0 at the beginning, we construct the real numbers
0 < 6o < «a (where « is expansivity constant), and K > 0, as in Lemma 4.4.
We consider any Markov partition R = {R;}1<;<x with diameter smaller than
min{dy,d1,d2} and, for each rectangle R;, we construct the C!-foliation L£; that
satisfies the properties (A) to (D) of Lemma 4.4.

From equality (4.11), assertion (4.13), and the triangle property of the metric,
we deduce the following assertion for all n > N:

Ifz € Ay and y € R, (x), then
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/ !/

(4.14) dist* (o (y), 1) < dist™ (0 (y), on(2)) + dist™ (on (), 1) < % + % —d<e

Recalling equality (1.3), from the above assertion we deduce that y € A, ,(u) for
all y € R,,(x). Since the rectangle R, () is any piece of the partition R,, = \/;L:_O1 R
that intersects Ay, we deduce the following statement for all n > N:

FY eRy,and Y NAy #0, then Y C A ().
Therefore
(4.15) Leb(Aeyn(,u)) > 3 Leb(Y).
YER, YNAN #0

Besides, joining assertion (4.10) and inequality (4.14), we deduce the following
property for all n > N:

IfY eR,and YNAN #0, then

(4.16) ‘log‘det(Df;|p(y))| —n~/wdu‘ <n-e Vyevy.

Now, for any n > N, let us compute Leb(Y') for any rectangle Y € R,, such
that Y N Ax # 0. Since Y C R; € R, to compute Leb(Y) we will use the Fubini
decomposition of the Lebesgue measure along the local pseudo-unstable C!-foliation
L;. Applying part (D) of Lemma 4.4 consider the point z; € R; and the submanifold
A; C Wy (). Taking the Fubini decomposition of Leb we obtain:

Leb(Y) = / dLeb™ @ (2) / | det Doy (y)| dLeb ) (1),
ZGW}S% (z4) yeL; (2)NY

where ¢i—1 is a local C'-diffeomorhism that parameterizes the neighborhood of R;
and trivializes the C'-foliation £;. Therefore, |det D¢;| is continuous and bounded
away from zero by a constant, say k; > 0. Since Aj is an open subset of W5 (z;)
in the topology of this local stable manifold, we obtain: '

Leb(Y) > k; - dLeb™" () (2) / dLeb™ ) (y).
2€EAZ yeL (2)NY

Changing variables y' = f™(y) in the integral at right, we obtain:

Leb(Y) > k; - / I(z) dLeb™ " ®)(2), where
zEAS

-1 n
I(z) = / ‘det Dfnfn , ‘ . 4 dLebf (Li(z) (y/)
y'efr (Lq,(z)my) ) Tf’"(y’)‘cl(z)

Since y € Y C R;, we can apply inequality at left of part ¢) of Lemma 4.4:

Leb(Y) > k- K1 -e e / J(z) dLeb™ () (2), where
ZE€EAS

-1 n
J(z) = / ’deth”_n , n ’ dLeb!" (F:) (4.
(2) vef (Li=)ny) ! (y)|F(f 9) W)

Since y = f7"(y') € Y and Y N Ax # (), we can apply inequality (4.16):

—2ne—n/z/1du

Leb(Y) > k;- K~ '-e -J, where
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J= / dLeb™ " (1) (2) / dLeb”" £ (y/) =
2€A3 y'efr (Li(z)mY)

/ Leb!" (€3 (£7(£,(2)) dLeb"™ ") (2).
z2€EAS

From part (D) of Lemma 4.4 we know that Lebf"([:i(z)(f"(ﬁi(z)) > K1 for all

z € Af, and besides Leb" (*9(A#) > K~1. Thus, we have proved the following
inequality for all n > N, and for all Y € R,, such that Y N Ax # 0:

) anan/u)d,u
Leb(Y)> k- K2 ¢ .

Joining the above inequality with inequality (4.15), we deduce, for all n > N:

—2ne—n/¢du+log#{Y€Rn: Y NnAy #0}
Leb(Ac n(p)) > ki - K73 e .

Therefore,
log Leb(A
Jim sup 28 eb(Ae,n (1)) >
n—-+00 n
1 YeR,:YNA
—2¢ — [ |det Df|r|dp + limsup og #HY € N#w}.
n——+o0o n

Finally, applying Lemma 4.3, we deduce that
b log Leb(Ae, (1)) <

lim su 2
n—+o00 n
H(R,,
—2¢ — |deth|F|du+limsupu—K0-e VOo<e<l.
n—-+oo n

So, from equality (4.1), we conclude

lim limsup log Leb(AQ n(1)

e—0t n——+oo n

2 h;t(f) - / |det Df|r|dpu,

ending the proof of Theorem 4.5. O

Now, we are ready to end the proofs of Theorems 2 and 3, as consequences of
Theorems 4.5 , 3.3 and 3.1:

PART B) OF THEOREM 2, NECESSARY CONDITION: If f € Diff' (M) is Anosov and
if w is an invariant measure satisfying Pesin’s Entropy Formula, then its ergodic
components u, are weak pseudo-physical for u-a.e. x € M.

PROOF. First, let us assume that u is ergodic satisfying Pesin’s Entropy For-
mula. From Theorem 4.5 we obtain

log Leb (Ae, n (,u))
lim limsup

=0t nostoo n

> 0.

From equality (1.3), if €1 < e then A, (1) C Ae,, n(p).
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log Leb (A@ n(u))
So lim sup

n——+o0o n

is increasing with € > 0. Thus

- log Leb (Aﬁ n (u)>

n—+oo n

>0 Ve>0.

But since Leb is a probability measure, we conclude that

_— log Leb (A@ n(u))

n—+o0o n

=0 Ve>0.

Applying Definition 1.3, we deduce that p is weak pseudo-physical.

We have proved that any ergodic measure that satisfies Pesin’s Entropy Formula
is weak pseudo-physical. Now let us consider a non ergodic measure p that satisfies
Pesin’s Entropy Formula. From Theorem 3.3 we know that its ergodic components
1o also satisfy that formula for p-a.e. x € M. We conclude that the ergodic
components pu, of u are weak pseudo-physical for y-a.e. * € M, as wanted. O

Finally to complete all the proofs, we add the following immediate end:
END OF THE PROOF OF THEOREM 3.

PrOOF. The equality of Theorem 3 is immediately obtained by joining the
inequalities of Theorems 3.1 and 4.5. O
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