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Abstract

For any C'* diffeomorphism with dominated splitting we consider a nonempty
set of invariant measures which describes the asymptotic statistics of Lebesgue-
almost all orbits. They are the limits of convergent subsequences of averages of
the Dirac delta measures supported on those orbits. We prove that the metric
entropy of each of these measures is bounded from below by the sum of the
Lyapunov exponents on the dominating subbundle. As a consequence, if those
exponents are non negative, and if the exponents on the dominated subbundle
are non positive, those measures satisfy the Pesin Entropy Formula.

1 Introduction

As pointed out by [P84, BCS13] and other authors, there is a gap between the
C'*9 and the C! Pesin Theory. To find new results that hold for C'' maps relatively
recent research started assuming some uniformly dominated conditions (see [ABC11,
BCS13, ST10, ST12, T02]).

Let us consider f € Diff'(M), where M is a compact and connected Rieman-
nian manifold of finite dimension. We denote by P the set of all Borel probability
measures endowed with the weak™ topology, and by Py C P the set of f-invariant
probabilities. We denote by m a normalized Lebesgue measure, i.e. m € P. For any
p € Py, the orbit of x is regular for p-a.e. & € M (see for instance [BP07, Theorem
5.4.1]). We denote the Lyapunov exponents of the orbit of x by

X1(7) > x2(®) > ... = Xdim M (T).
Let
X:‘(m) := max{x;(x),0}.

THEOREM (RUELLE’S INEQUALITY) [R78]
For all f € Diff'(M) and for all u € Py

dim M

he< [ 30
i=1
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where h, denotes the metric theoretical entropy of f.

Definition 1.1 Let f € Diff'(M) and p € Py . We say that ju satisfies the Pesin
Entropy Formula, and write p € PF, if

dim M

hy =/ > X du
=1

We denote by m" the Lebesgue measure along the unstable manifolds of the
regular points for which positive Lyapunov exponents and unstable manifolds exist.
We denote the (zero dimensional) unstable manifold of = by {z}, and in this case we
have m* = §,. For any invariant measure u for which local unstable manifolds exist
u-a.e. we denote by pu* the conditional measures of p along the unstable manifolds,
after applying the local Rohlin decomposition [R62].

The following are well known results of the Pesin Theory under the hypothesis

f € Diff 2(M):
PESIN THEOREM [P77, M81, BPOT7] Let 1 € Py be hyperbolic (namely, x;(x) # 0 for
all i and for p—a.e. x € M). If p < m then p* < m™ and pp € PF.
LEDRAPPIER-STRELCYN-YOUNG THEOREM [LS82, LY85| u € PF if and only if
Mu < mY.

Still in the C?-scenario, non uniformly partially hyperbolic diffeomorphisms pos-

sess invariant measures p such that u* < m"; and hence u € PF (see for instance
[BDV05, Theorem 11.16]).

The general purpose of this paper is to look for adequate reformulations of some
of the above results which hold for all f € Diff'(M). That is, we would like to know
when an invariant measure under f € Diff* (M) satisfies Pesin Entropy Formula.

We first recall some definitions and previous results taken from [CE11].

Definition 1.2 (ASYMPTOTIC STATISTICS)
Fix x € M. The sequence of empirical probabilities of = is {0y 5 }n>1 C P, where

1 n—1
o = g
J:

The pw-limit of x is

pw(z) :={p € P: I n; — +oo such that lim o, , = pu} C Py
j—00

We say that pw(x) describes the asymptotic statistics of the orbit of .

Definition 1.3 (BASINS OF STATISTICAL ATTRACTION)
For any given p € P the basin of (strong) statistical attraction of p is

B(p) :={z € M: pw(z) ={u}}.

Consider a metric in P that induces the weak* topology and denote it by dist*.
The basin of e-weak statistical attraction of p is

B.(p) :={x € M : dist*(pw(x),n) < e}.



Definition 1.4 (SRB, PHYSICAL AND SRB-LIKE MEASURES)

An invariant probability measure p is called SRB (and we denote u €SRB) if
the local unstable manifolds exist u- a.e. and p* < m*.

The probability measure p is called physical if m(B(u)) > 0.

If f € C'? then any hyperbolic ergodic SRB measure is physical. Nevertheless,
if f € C', the definition of SRB measure may not be meaningful since there may
not exist local unstable manifolds ([P84, BCS13]). However, it still makes sense to
define when a measure is physical.

In the C'-scenario, we call a probability measure p SRB-like or pseudo-physical
(and we denote pu € SRB-like) if m(B:(u)) > 0 for all € > 0.

It is standard to check that the set of SRB-like measures is independent of the
metric dist® chosen in P and that it is contained in Py.

Remark 1.5 (MINIMAL DESCRIPTION OF THE ASYMPTOTIC STATISTICS OF THE
SYSTEM)

Given f: M — M, we say that a weak*-compact set I C P describes the
asymptotic statistics of Lebesgue-almost all orbits of f if pw(x) C K for Lebesgue-
almost all z € M.

Theorems 1.3 and 1.5 of [CE11] prove that, for any continuous map f: M +— M
the set of SRB-like measures is nonempty, it contains pw(x) for Lebesgue-almost
all z € M, and it is the minimal weak*-compact set I C P such that pw(z) C K
for Lebesgue-almost all z € M. Therefore, the set of SRB-like measures minimally
describes the asymptotic statistics of Lebesgue-almost all orbits.

Our focus is to find relations, for C* diffeomorphisms, between:

e Physical measures and, more generally, SRB-like measures.
e Invariant measures p such that p € PF.

Several interesting results were already obtained for f € Diff*(M). First, in
[T02] Tahzibi proved the Pesin Entropy Formula for C'-generic area preserving dif-
feomorphisms on surfaces. More recently, Qiu [Q11] proved that if f is a transitive
Anosov, then C'-generically there exists a unique p satisfying Pesin Entropy For-
mula. Moreover  is physical and mutually singular with respect to Lebesgue (cf.
[ABO06]). Finally, we cite:

SUN-TIAN THEOREM [ST12]: If f € Diff*(M) has an invariant measure pn < m, and
if there exists a dominated splitting E® F p-a.e. such that Xgim(r) = 0 > Xdim(F)+1
then € PF.

To prove this theorem Sun and Tian use an approach introduced by Mané [M81].
In that approach he gave a new proof of Pesin Entropy Formula for f € Diff *¢()
and hyperbolic u < m. Mané’s proof does not directly require the absolute conti-
nuity of the invariant foliations. So, it is reasonable to expect that it is adaptable
to the Cl-scenario.

We reformulate the technique of Mané [M81] to obtain an exact lower bound
of the entropy for non necessarily conservative f € Diff! (M), provided that there
exists a dominated splitting.



Definition 1.6 (DOMINATED SPLITTING)

Let f: M — M be a C" diffeomorphism on a compact Riemannian manifold. Let
TM = E®F be a continuous and df-invariant splitting such that dim(E), dim(F') #
0. We call TM = E & F a dominated splitting if there exist C' > 0and 0 < A < 1
such that

ldf" . |

’df_"|an(z)H <CN'.Vx e M andn > 1.
We will prove the following results:

Theorem 1 Let f € Diff *(M) with a dominated splitting TM = E & F. Let u be
an SRB-like measure for f. Then:

dim F

hulf) = / 3 xid. 1)
i=1

Corollary 2 Under the hypothesis of Theorem 1, if XdimF = 0 > Xdim F+1, then p
satisfies the Pesin Entropy Formula.

The proof of Corollary 2 is immediate: inequality (1) and Ruelle’s Inequality
imply that p satisfies Pesin Entropy Formula. Moreover, as said in Remark 1.5,
the set of SRB-like measures is nonempty. So, under the hypothesis of Corollary 2,
there are invariant measures that satisfy the Pesin Entropy Formula. Besides, they
minimally describe the asymptotic statistics of Lebesgue-almost all orbits.

Note that according to Avila and Bochi result [AB06] the measures of Theorem
1 and Corollary 2 are C''-generically mutually singular with respect to Lebesgue.

Remark 1.7 The same arguments of the proof of Theorem 1 also work under hy-
pothesis that are more general than the global dominated splitting assumption. In
fact, if A C M is an invariant and compact topological attractor, and if V' O A
is a compact neighborhood with dominated splitting 75 = E © F, then the same
statements and proofs of Theorem 1 and Corollary 2 hold for f|y .

Now, let us pose an example for which Theorem 1 and Corollary 2 do not hold.
Consider the simple eight-figure diffeomorphism in [BP07, Figure 10.1]. In this ex-
ample, the Dirac-delta measure u supported on a fixed hyperbolic point p is physical.
Thus p is SRB-like. Besides, there exists a dominated splitting p-a.e. because p is
hyperbolic. Nevertheless, inequality (1) does not hold because h, = 0 and the Lya-
punov exponent along the unstable subspace of T,,(M) is strictly positive. So, the
presence of a dominated splitting just p-a.e. is not enough to obtain Theorem 1.

The following question arises from the statements of our results: Does the SRB-
like property characterize all the measures that satisfy Pesin Entropy Formula? The
answer is negative. In fact, the converse statement of Corollary 2 is false. As a
counter-example consider a C? non transitive uniformly hyperbolic attractor, with
a finite set I = {1, p2, ..., ik} (k> 2) of distinct SRB ergodic measures (hence
each p; is physical) such that IC statistically attracts Lebesgue-almost every orbit.
Therefore, the set of all SRB-like measures coincides with K (see Remark 1.5). So,
(1 + p2)/2 ¢ K is not an SRB-like measure. After Corollary 2, g and po satisfy



Pesin Entropy Formula. It is well known that any convex combination of measures
that satisfy Pesin Entropy Formula also satisfies it (see Theorem 5.3.1 and Lemma
5.2.2. of [K98]). We conclude that (u; + p12)/2 satisfies Pesin Formula but it is not
SRB-like.

The paper is organized as follows: In Section 2 we reduce the proof of Theorem
1 to Lemmas 2.2 and 2.3. In Sections 3 and 4 we prove Lemmas 2.2 and 2.3 respec-
tively. Finally, in Section 5 we check some technical assertions that are used in the
proofs of the previous sections.

2 Reduction of the proof of Theorem 1

For the diffeomorphism f: M — M with dominated splitting £ @& F = TM, we
denote:

P(x) = —log ‘ det df(:n)|pz| (2)
n—1

Un(z) := —log | det df"(x)|p,| = > 1o f/(z) = —log | det df " (f"(z))|Fyu,,| (3)
§=0

Consider a metric dist™ in the space P of all Borel probability measures inducing
its weak™ topology. For all y € P, for all € > 0 and for all n > 1, we denote:

Cn(e) ={x e M : dist"(opz, 1) < e}, (4)

where 0, , is the empirical probability according to Definition 1.2. We call C),(¢)
the approzimation up to time n of the basin B.(u) of e-weak statistical attraction
of the measure p (cf. Definition 1.3).

Proposition 2.1 Let f € Diff' (M) with a dominated splitting TM = E® F. There
exists a weak® metric dist™ in P, such that for any f-invariant probability measure
u the following inequality holds:

lim limsupM < hu(f) +/¢du, (5)

e—0Tt n— -+o0o n

where m is the Lebesgue measure.

We note that the term hy,(f) -+ [ % du is non negative due to Ruelle’s Inequality.
Nevertheless, it is bounded from below by inequality (5), which relates it with the
Lebesgue measure m.

At the end of this section, we reduce the proof of Proposition 2.1 to Lemmas 2.2 and
2.3. Along the remaining sections we prove these two lemmas. Now, let us prove
the following assertion:

PROPOSITION 2.1 IMPLIES THEOREM 1.

Proof:



Let o be f-invariant. Assume that p does not satisfy inequality (1). In other
words,

hy(f) -l-/?,bd,u = —r <0.
From Proposition 2.1, for all £ > 0 small enough there exists N > 1 such that

n -2 -

Since r > 0, we deduce that > "% m(Cy(g)) < +oc. Thus, by Borel-Cantelli
Lemma the set (x>, U,>xn Cn(€) has zero m-measure. By Definition 1.3 we have
B:(11) € Ny>1 Upsy Cnl€). So, m(B:(1)) = 0, and applying Definition 1.4 we
conclude that p is not SRB-like, proving Theorem 1. (]

PROPOSITION 2.1 FOLLOWS FROM LEMMAS 2.2 AND 2.3.

To prove Proposition 2.1, we take from [ST12| the idea of using Mané’s ap-
proach [M81]. Nevertheless, we use this approach in a distinct context (i.e. we
do not assume p < m) and apply different arguments. In [M81] Mané considers
f € C"% and constructs a C! foliation £, which is not necessarily invariant, but
approximates the unstable invariant foliation. On the one hand, the given invariant
measure p << m has absolutely continuous conditional measures along the leaves of
L, because m has. On the other hand, the hypothesis f € C'*? allows Maifié to
use the Bounded Distortion Lemma. So, he obtained Pesin Entropy Formula after
taking f™L convergent to the unstable foliation.

In our case these arguments fail to work, except one. There still exists a C*
(non invariant) foliation £ whose tangent sub-bundle approximates the dominating
sub-bundle F. Besides, since £ is C!, the conditional measures of m (not of p)
along the leaves of L are absolutely continuous. But we have neither the hypothesis
p < m nor the O regularity of f. Also an invariant foliation to which £ would
converge, may fail to exist. The role of the following Lemmas 2.2 and 2.3 is to
overcome these problems. Before stating them, we adopt the following:

NOTATION. Let B be the Borel o-algebra on the manifold M. We denote by
a = {X;}1<i<k a finite partition of M, namely:

X;,eBforall 1<i<k,
XX, =0 i # ],
U?:IXZ':M'

We write [~/ (a) = {f77(X;) h<i<k-
For any pair of finite partitions o = {X;}1<i< and 8 = {Yj }1<j<p, we denote

aVB={XinY;:1<i<k 1<j<h XinY;£0},

a = \/ ().

Jj=0



Lemma 2.2 (UPPER BOUND OF THE LEBESGUE MEASURE m)

For all ¢ > 0 there exists § > 0 such that for every finite partition o with
diam(a) < § there exist a sequence {vy }n>0 of finite measures and a constant K > 0
such that:

(1) vn(X) < K for all X € a™=\/7_, (), for all n>0.

(ii) The following inequality holds for all C € B and for alln € N* :

m(C) < Ke"™I(¢n,C,vy), where

I(Yn, Cvy) = /C e du,,. (6)

We will prove Lemma 2.2 in Section 3.
Before stating the second lemma, recall equality (4).

Lemma 2.3 (LOWER BOUND OF THE METRIC ENTROPY)

There exists a metric dist™ in P with the following property:

For all p € Py and for all e, 6 > 0 there exist a finite partition o satisfying
diama < 6, and a real number e > 0 such that:

For all 0 < e* < &f, and for any sequence {vy}n>0 of finite measures such that
there exists K > 0 satisfying v,(X) < K for all X € ™ for all n > 0, the following
inequality holds:

imsup ~10g (U, Cole"), ) < &+ ) + [ 6

n—+oo N

We will prove Lemma 2.3 in Section 4.

To end this section let us prove that Lemmas 2.2 and 2.3 imply Proposition 2.1:

Proof: Let u € Py and € > 0. Consider 6 > 0 obtained from Lemma 2.2.
Applying Lemma 2.3, construct the partition «, the number ¢ and the sequence
{Ch (") }n>0 C B for any 0 < £* < .

Apply again Lemma 2.2 to obtain the sequence {v,},>0 of finite measures and
the constant K > 0.

We now apply again Lemma 2.3 to deduce:

1
timsup - log (i, Ca(e*), v) < & + hy(a) + /Wu Vo<et<el  (7)
Besides, by Lemma 2.2:
log K
n

Logm(@(e) < BE 4 et Liog 10, Cue).m). (8)

We join the two inequalities (7) and (8) to deduce that:
1
lim sup — log m(Cp(e¥)) < 2¢e + hy(a) + /wd,u VO0<e <ep.

Taking ¥ — 07 we obtain:

1
lim limsup —logm(Cy (")) < 2e + hy(a) + /T/Jdﬂ-

e*—0t npooco N

Since £ > 0 is arbitrary, we deduce inequality (5), as wanted. O



3 Proof of Lemma 2.2

To prove Lemma 2.2 we will use the technique of the dispersion of Hadamard graphs,
following Mané in [M81].

Notation: First take a fixed value of 6 > 0 small enough such that exp;! is a
diffeomorphism from Bss(z) onto its image in T, M for all x € M. Fix x € M.
Denote

By (0) :={v € E; : [Jv]| <6},

B?’”(O) ={v € F,:|jv|] <},
B;*M(0) := BY*(0) @ BL*(0).

Denote by 7g, (resp. mp,) the projection of T, M on E, along F, (resp. on F,

along Ex)a and 7y := maXzeM{”ﬂ-Esz ”7TFx ”}
For any v € B?””M(O) we denote vy := Tg,v, V2 = TE,.

Definition 3.1 G is a Hadamard graph (or simply “a graph”) if

G: By (0) x B;*(0) — B;7(0),

G(v1,0) = 0 for all v; € BS*(0) and

O (v1,v2) = v1+v2+G(vi,v2) € BQTg‘M(O) is a O''-diffeomorphism onto its image.
(See Figure 1.)

R/ ™™
T £(y)
ely) /Y
5+
v=V,t+ V.
v 1 of V+G(Y )=y

2 Gy )

1 .

Figure 1: The foliation £ associated to a Hadarmard graph (We omit the exponential
map exp,)




The foliation £ associated to the graph G is the foliation whose leaves are
parametrized on vy € B? *(0) C F,, with constant vy, by the diffeomorphism:

exp, (P(v1,+)) = exp,(v1 + - + G(v1,+))

In Figure 1 we draw the foliation £. To simplify the notation we omit the exponential
map exp, and denote y = v1 + v + G(v1,v2). The leaf containing y is denoted by

L(y).

Definition 3.2 DISPERSION OF G
The dispersion of the graph G is

oG
dispG = max —(vy,v
p UEB?ZM(O) {HOUQ( 1 2)

where v = v; + v9 and OG/Jve denotes the Fréchet derivative of
G(v1.): BL*(0) — B (0)
with a constant value of v; € By (0).

We denote by m" the Lebesgue measure along an embedded local submanifold
W C M.

Assertion 3.3

T, L(y) = (Id o+ g—i) k, ©)
mEW (£(y)) < (1 + disp G F, (10)

For all € > 0 there exists ¢ > 0 such that, if disp G < ¢, then

dist(Ty L(y), ) < vV y € Im(P).

| ™

For such a value of ¢ > 0 (depending on € > 0), there exists 61 > 0 such that, if
dist (z,y) < 91, then y € Im(®P) and

dist(T, L(y), Fy) < € (11)

Proof: The assertion follows from the properties that were established in the
definition of Hadamard graphs and their associated foliations, and from the definition
of dispersion. In particular (11) holds because of the continuous dependence of the
splitting £, & F, on the point y. U



3.4 ITERATING THE LOCAL FOLIATION L
Denote by Bj(z) the dynamical ball defined as
B(z) = {y € M : dist(f(2), f(y)) < 6 YO < j < n}.

Take any graph G in B?””M (0) such that dispG < 1/2, and consider its associated
local foliation £. Construct the image f"(£) in the dynamical ball Bj(x), i.e.:

(LN By (x)) = f"exp,(vi+ va + G(vi,v2))
for all (vy,vy) € Bf” (0) x B?x (0) such that exp,(vi + va + G(v1,v2)) € Bf(z).

Lemma 3.5 (REFORMULATION OF LEMMA 4 oF [MS81])

There exists 0 < ¢ < 1/2 depending only on f, such that for all 0 < ¢ < ¢ there
are 8y, ng > 0 such that for any point x € M, if L is the local foliation associated
to a graph G defined on T, M with

disp G < ¢,

then for all n > 0 the iterated foliation (LN By (x)) is contained in the associated
foliation of a graph G, defined on Tpn ()M, and

disp G, < ¢ for all n > ny. (12)

Besides, for all y € Bf, () the image f"(L(y) N By, (x)) is contained in a single leaf
of the foliation associated to G,,.

Proof:
STEP 1. Choose ng > 0 such that

(| df™ . <1 Vn>ng, Vel (13)

de_n‘an(z)

For such a fixed value of ng, take §g > 0 so that for all z € M, for all 0 < n < ny,
and for any graph G defined in B:*;F””M (0) with disp G < 1/2, there exists a graph G,

defined on B(;Tf n(z)M(O) satisfying the following condition:

for any y = exp,(v1 + v2 + G(v1,v2)) € Bs,(x)
there exists (u,us) € Bffn(z)(O) X B?fn(z)(O)
where u; depends only on v; and

f(Y) = exp pn(p) (urtug+Gn(ur, u2)).

(14)

In Assertion 5.1 of the appendix we show that such §y > 0 exists. We note that
the above assertion is true for any initial graph G with dispersion smaller than 1/2
and that Statement (14) a priori only holds if 0 < n < ng. The assertion that u;
depends only on vy implies that the image f"(z) of any point z € Bj,(x) in the leaf
L(y) associated to the graph G, is contained in the leaf of f™(y) associated to the
graph G,,.

10



STEP 2. With dy > 0 fixed as above, there exists 0 < ¢/ < 1/2 such that for any
graph G with disp G < ¢ and for all n > 0, if G,, is the graph defined in B5Tf n(z)M(O)
satisfying (14), then:

0G, (
OUQ

ut, ug) || < [|df"| g, || - disp G - ||df | Fyn,, || Yy € BS, (x) (15)

We prove this statement in Assertion 5.2 of the appendix.

STEP 3. Due to the construction of dy in Step 1, inequality (15) holds in particular
for n = ng for any G such that disp G < ¢/. Therefore, using Inequalities (13) and
(15) and Definition 3.2, we obtain:

disp G, < dispG < ¢ V¥V G s.t. dispG < ¢,

Moreover, if disp G < ¢ < ¢, then dispG,,, < ¢ < .

STEP 4. From the construction of Jp in Step 1 and using that dispG,, < ¢ <
¢ < 1/2, we deduce that the graph G, exists for all ng < n < 2ng. Moreover,
df™ e, || - lldf 7" [Fpn(,, | < 1 for all n > ng. So, applying inequality (15) we obtain
disp G,, < ¢ for all ng < n < 2ng. Finally, applying inductively Assertions (13) and
(14) we conclude that the graph G,, exists for all n > 0 and dispG,, < ¢ for all
n > ng. O

Once the constant ¢ of Lemma 3.5 is fixed, depending only on f, one obtains
the following property that allows to move the reference point x (used to construct
the graph G on BJT”M (0)), preserving the same associated local foliation £ and the
uniformity of the upper bound of its dispersion:

Lemma 3.6 For all 0 < ¢ < ¢ there exists 61 > 0 such that, for any v € M and
for any graph G with disp(G) < ¢/2 defined in BéT”“’M(O), the associated foliation L
in the neighborhood Bg, (x) is also associated to a graph G' defined in B%M(O) for
any z € Bs, (). Besides disp(G’) < c.

Proof: The splitting F, & F, depends continuously on z € M. Then 7, and
7r, also depend continuously on z. Therefore, for all € > 0 there exists d; > 0 such
that

lme, el <&, |me. el <e if dist(z,z) < 01.

(For simplicity in the notation in the above inequalities we omit the derivative of
exp, ' oexp, which identifies T, M with T, M.)

We claim that if §; > 0 is small enough then, for any graph G defined on
BJT’”M(O), and for any point z such that dist(z,x) < &;, there exists a graph G’
defined on B%M (0) such that the local foliations associated to G and G’ coincide
in an open set where both are defined. In fact, G’ should satisfy the following
equations:

U1 +'LL2+G/(U1,U2) = —I—’L)Q—I-G(’L)l,UQ), (16)

ul,G/(ul,qu) c EZ, Uy € Fz; G/(ul,O) =0.
Since by hypothesis G is a graph, it is C' and

U1, G(’Ul,’l)g) c Ex, V9 € Fx, G(Ul,O) =0.

11



The above equations are solved by
up = 7p, (v1),  uz:=7E (v1 +ve + G(vr,v2)), (17)

G =—u + g, (v + vo + G(v1, v2)). (18)

The two equalities in (17) define a local diffeomorphism W(vy,v2) = (u1,u2). In fact,
on the one hand uy = 7g, |g, (v1), where 7, |g, is a diffeomorphism (which is linear
and uniformly near the identity map, independently of the graph G). On the other
hand, for v; constant, the derivative with respect to vy of 7p, (v1 + vo + G(v1,v2))
is mF. |1, £(y), which is, independently of the graph G, uniformly near 7r, |7, 2, =
Id|p,. Thus, ¥ is a local diffeomorphism C! near the identity map provided that &;
is chosen small enough (independently of the given graph G).

From the above construction we deduce that the composition of the mapping
WU (uy,us) = (v1,v9) with the mapping (vy,v2) — G’ defined by (18), is of C class.
Therefore G'(u1,us) is C' dependent on (uj,us). Besides G'(u1,0) = 0 because
G(v1,0) = 0. Due to Identity (16), the application ¢’ defined by ®'(uq,us) :=
uy 4+ uz + G'(u1,ug) coincides with the application ® (v, vs) := vy + v9 + G(v1,v2).

Due to Definition 3.1 the mapping ® is a local diffeomorphism. So @' is also a
local diffeomorphism. Thus G’ satisfies Definition 3.1 of Hadamard graph. The first
claim is proved.

The diffeomorphism ¥ (v, v9) = (u1,u2) as constructed above, converges to the
identity map in the C' topology, when §; — 07, and uniformly for all graphs G
defined in B (0). Thus, by Identity (16), |G’ — G||c1 converges uniformly to
zero, independently of the given graph G, when §; — 0. This implies, in particular,
that OG’ (uy,u3)/Ous converges uniformly to OG(vy,v2)/dve when §; — 0. Thus, for
any constant ¢/2 > 0 there exists 6; > 0, which is independent of the graph G,
such that |disp(G’) — disp(G)| < ¢/2. In other words, disp(G’) < ¢ for all G with
disp(G) < ¢/2, as wanted. O

We are ready to prove the following Proposition, for all f € Diff'(M) with a
dominated splitting TM = E ® F.

Proposition 3.7 For all ¢ > 0 there are 6y, K,ng > 0, and a finite family of local
foliations L, each one defined in an open ball of a given finite covering of M with
do-balls, such that:

(a) £ is C'- trivializable and its leaves are dim F-dimensional,

(b) dist (Fyn(y), Tpn(z) f™(L(x))) < € for all 2 and for all n > ny,

(c) the following assertion holds for all m > 0 and for all x,y such that y € By, (z):

md" W) (L (y) N B§ (7)) < K,

(d) the following inequality holds for all n > 0 and for all x € M:

one gt < |90t dflm e

< Ke™.
= [detdfy|p,| T
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Proof: Consider the constant ¢’ determined by Lemma 3.5. For each point x € M
construct a local foliation £ from a graph G defined on T, M, with dispersion smaller
than a constant ¢/2 such that 0 < ¢ < ¢ < 1/2. The constant ¢ will be fixed later
taking into account the given value of € > 0.

After Lemma 3.6, there exists §; > 0 such that, for all x € M the graph G defined
on BéT”’M(O) is redefined on B%M(O), for any point z € Bs, (x), preserving the same
associated foliation and having dispersion upper bounded by c. Fix dp,n¢ (depending
on ¢) by Lemma 3.5 and such that §y < d;. For any given finite covering of M with
balls Bs,(z;), fix a finite family {L£;}1<;<) of local foliations so constructed, one in
each ball of the covering.

By the definition of graph, each foliation £ of the finite family constructed above,
is C'l-trivializable and its leaves have the same dimension as the dominating sub-
bundle F'. Thus Assertion (a) is proved.

From inequality (11), given ¢/ > 0 (a fixed value of ¢ > 0 will be determined
later), there exists ¢ > 0 such that, if disp(G) < ¢ then

dist(T,.(L(x), Fy)) <& Ve M. (19)

Recall that g, ng (depending on ¢, which depends on &’) were defined by Lemma 3.5.
Therefore, each leaf f"(L(y) () By, (x)) is part of a single leaf of a foliation associated
to a graph G, for all n > 0. Besides, Lemma 3.5 states that

dispGp, <c Vn>ng (20)
From Inequalities (10) and (20) we deduce that
m!"EW) (f1(L(y) 0 By, () < m"EW (£ (L(y))) <

[(14dispGn) 6] P < [(14¢)8] U™ F v n > ny.
Thus, there exists K > 0 such that

m!"ED) (L) N By (@) < K V>0,

So, Assertion (c) of Proposition 3.7 is proved for each fixed value of £ > 0.
Next, we prove (d). From Inequalities (19) and (20), we deduce that

dist (Fn(py, Tpn(a) f(L(x))) <& VaeM, ¥n>ng. (21)

Finally, we fix &’ > 0 (depending on the given value of € > 0), such that 0 <&’ < e
and such that for all dim F-dimensional sub-bundles L that satisfy dist(L, F') < &,
the following inequality holds:

o _ |detdfeli)|

<e Vze M. 22
= |detdfy|p,| (22)

Therefore, (21) implies:

iy ‘det dffj(x)\Tfj(z)fjc(x)

N (det dfps oyl

<e® VxeM, Vj>ng.
fj(r)‘

(&

13



The latter inequality implies (d). Finally, (b) is obtained from (21) taking into
account that ¢/ was chosen smaller than e. O

END OF THE PROOF OF LEMMA 2.2:

For the given value of € > 0, we construct dp, K > 0 as in Proposition 3.7.
Consider any finite partition a = {4 }1<p<k, where k = #(a), such that diam o =
maxp—1.. .k diam{Ah} < dp.

For each A € «a construct an open set V4 C M also of diameter smaller than dy,
containing A. Construct a dim F’ local foliation £ 4 in V4 satisfying Proposition 3.7.
Construct also a C'' submanifold Wy transversal to £4.

Take o = V_of~ I(a) = {Xi}t1<i<k,, where k, = #(a™). For all X; € ™, there
exists Ap, € « such that X; C Ap,. Denote £; := LAhi and W; := WAhi' Since L;
is C''-trivializable, by Fubini’s Theorem we have:

kn
=> / dp'Vi / loax, ¢idm©®) ¥ CeB, (23)
i=1 zeW; yeﬁi(z)

where B is the Borel sigma-algebra, 1o x, is the characteristic function of the set
C' (N X;, and ¢; is a continuous function which depends on A, € . Precisely, ¢;
is the Jacobian of the C'-trivialization of the foliation £;. So, there are at most
k = #(«) different local foliations £;, k different continuous functions ¢;, and k
different transversal manifolds W;, which allow Formula (23) work for any value of
n and for any C € B.

Denote i = f"(y) € f"(Li(2) (N Xi) =: L (2):

e :z/ A /yec;%z)[lcmx O(f (@) [detdf "y cp| dm ) (24)

By Part (d) of Proposition 3.7:
|det df_"|T@£;_m| < Ke™ |det df_"|Fg‘ . (25)
Recall Formula (3) defining v, (y). Since f"(y) = y, we have
log |det df ™[k, | = ¥u(F7"(3)),
which together with inequality (25) and equality (24) gives:

|det df |, zn | < KeeeVn @) (26)

kn
m(C) < Ke™ ) / dp™ /A [Lenx, ¢il(f7" () et "0 am @) (27)
i=1 ZEWZ yeﬁy(z)

By Riesz Representation Theorem there exists a finite measure v, such that

_ B o £ (7) dmEie) 0 .
[ = Z/ewz /E [0 0000 57 @) am ) v e 0L R)
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From inequality (27) and the above definition of v, we conclude

m(C) < Ke™* / 1o e dy, < Ke"a/ el du,,.
C

Statement (ii) of Lemma 2.2 is proved.

Let us prove Statement (i). We must show that there exists a constant Ky > 0,
independent of n, such that v,(X) < Kj for all X € o", and for all n > 0. In fact,
recall that L7'(z) = f"(Li(z) N X;) C f™(Li(z) N Bs,(y)) for all z € W; and for all
y € L;(z) N X;. Thus, applying Property (c) of Proposition 3.7 we have

m (L7 (2) < K,

for some constant K7 > 0 which is independent of n. From the construction of the
measure Vp:

() = [ [ a0 o @) dmt) <
zeW; geLn(2)

Vi (Wi) llillco m=F (L7(2)) < K1 p™ (W) || i co-

Since the number of different local foliations £; is equal to the number k of pieces
of the given partition «, which is independent of n, we obtain:

vn(Xi) < Ky I}gi({NWA(WA) lpallco} =: Ko,

where Ky depends only on the partition o and not on n. O

4 Proof of Lemma 2.3

Choose {; };>1 dense in C°(M, [0,1]) and define dist* in P:

0 cdp — [oid
dist™(p1, p2) :Z‘/wdm—/¢du2‘+zww MlQif(p Mz‘- (28)
i=1

By hypothesis, a measure y € Py and two small numbers ¢ > 0 and § > 0
are arbitrarily given. We must construct an adequate finite partition a of M, with
diameter smaller than ¢, satisfying Lemma 2.3.

Take 6; > 0 such that dist(z,y) < 01 = [Y(z) — P(y)| < g/5.

Take « such that diam(a) < min(é,d1), p(0X) = 0V X € a. This construction
implies

Jim (X)) = p(X) (29)
for all X € o = \/;1-:0 f77(a), for all ¢ € N and for all {,}, C P such that
lim} p, = p. Also

n—1

Unly) = Un(@)| £ S0P W) — (P @) £ 55 Yoy e X,¥X €a”. (30)

J=0
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Recall that hy (o) := limg—. 400 H (4, 1t)/q, where
H(a%p) == > u(X)log pu(X).
Xecad

Fix ¢ € NT such that H(a?,p)/q < h,(a)+¢/5. From (29):

H(a%)  H(a%p) :
Jim S = = < hu(a) + ¢ (31)

for any sequence p, € P such that im}, u, = p.

Using (31), fix 0 < g}y < /5 such that

o€ P, dist*(o,p) < & = |H(a%, o) — H(a, p)| < % (32)

Such a value of € exists; otherwise we could construct a sequence of probability
measures (i, converging to p and such that |H (a9, u,) — H(a4, u)| > qe/5 for all
n € N. This inequality contradicts the equality at left in (31).

For any fixed 0 < &* < ¢ we denote C,, = C,(¢*) defined by equality (4).
Consider

" \{Cp} ={X;NCp: X;€a", X;NC,+0}.

Denote k,, := #(a\/{C\}). For each C, N X; € o™ \/{C,}, choose one point z; €
Cn N X;. Counsider the integral I(v,,C,,v,) defined by equality (6), and apply
inequality (30):

kn
= I(Yn, Cp,vp) = / e¥n dy, = Z/ e W dy, (y) <
n i=1 yeCnnX;
kn
Z ene/Pevn@)y (O N X5). (33)
By hypothesis v, (X) < K for all X € o™. So:
kn
I < Kl S gnte) (34)
i=1

Define p; := e¥»(#) /I where L := Zf;l e¥n(#i)  Note that Zf;lpi = 1. Then:

kn
log Z ew” zi) Z ¢n 337, Di Z pi IOg pi- (35)
1=1

Taking logarithm in (34) and using (35), we obtain:

log I, <logK+—+21/1n zi)ps szlogpz
i=1
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From Equalities (2) and (3):

kn n—1
Z¢n Ti)pi = ZZ/]%T/) déff(xl
i=1 j=0
and thus:
kn n—1
log I <log K+ 55430 [ piv sy szlogpz (36)
=1 7=0

Let o0,, be the empirical probability according to Definition 1.2. We construct
tn € P by the following equality:
kn n—1

Z Z Di 5f3 () szo-n ;- (37)

21]0

Since z; € Cy, we have that dist*(oy,4,,0) < € - see equality (4). Since the £*-
balls defined with the metric dist™ by equality (28) are convex, and u, is a convex
combination of the measures oy, ;,, we deduce

dist™(op z,, 1) < " = dist™ (pp, p) < e*.
From the construction of dist* by equality (28), we obtain | [¢ du, — [ ¢ du| < e* <

/5. Therefore:
[odin < [odus

which togethter with (36) and (37) implies:

2ne i
10g[n§logK+——|—n/1/)d,u— g p; log p;.
g i=1

In Assertion 5.3 of the appendix we prove the following statement:
There exists ng > 0 such that

kn

—> pilogp; < ? + H( 9 ) Vo > g
i=1
Therefore:

H(a4, u,
log[nglogK+%+n/wd,u+M.

By the construction of € in (32), and since dist™(u,,, 1) < €* < &f;, we deduce:

H(a, pn) _ H(oﬂ,,u)‘ < €
q q -5

5

So

4 H(a4
logInglogK+%€+n/¢du+w.

Finally, using the choice of ¢ by inequality (31) we conclude
logl, <logK +ne+n /wdu +nhy(a),

ending the proof of Lemma 2.3. (]
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5 Appendix

In this appendix we check some technical assertions that were used in the proofs of
Sections 3 and 4.

Assertion 5.1 Let § > 0 be such that for all x € M
exp,: {veT,M:|v|| <30} — Bss(z) C M

1$ a diffeomorphism. Let ng > 0.
Then, there exists 0 < 0y < & such that for all x € M, for all 0 < n < ng and
for any graph G (defined in B(;T”“‘M (0) C T, M) with

disp G < 1/2,

there exists a graph G, (defined in B?fn(””)M(O)) satisfying the following condition:
for all y = exp, (v + v2 + G(v1,v2)) € Bs, ()
there exists (ui,u2) € Bffn(z)(O) X Bgfn(z)(O)
where uy depends only on vy
and f(y) = exp o) (11 -+ + Gl u2).

(38)

Proof: We will argue by induction on n € N, to show that for each n > 1, there
exists &, > 0 and G,, satisfying statement (38). To prove Assertion 5.1 it is enough
to take dp := min{dy,...,dn, }-

To simplify the notation along the proof, we will not write the exponential maps.
From Definition 3.1, recall the construction of the diffeomorphism ® obtained from
the graph G, which is a trivialization of the associated local foliation £ (see the upper
frame of Figure 2). Precisely, each leaf £(v1) is obtained for constant vy € sz(O),
and parametrized by vy € Bg *(0) through the formula

L(v1) : vy > vy, v2) := v1 + vg + G(vy,v2), where G(vy,v9) € BL*(0).
Since G(v1,0) = 0 we have v; = ®(vy,0). i.e.

Moreover,
mr, (V1 + v2 + G(v1,v2)) = vy for all vy € B?”(O).

So
mp,L(v) = ng (0).

Besides, £(v;) is uniformly transversal to E,, for all G with disp(G) < 1/2. In
fact
Ty, L(v1) = Im(Id|p, + 0G/0v2),

the subspace F) is transversal to F,, and

|0G/dve|| < disp G < 1/2.
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Figure 2:

The image f(L(y)) of the leaves L(y) near z associated to the graph G, are
associated to the graph G;. (We omit the exponential maps exp,, expf(w)).
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Thus, since the leaf £(z) intersects F, at 0, we deduce that there exists 0 < §’ < 4,
which is uniform for any G with disp(G) < 1/2, such that, if dist(z,y) < ¢ then 3/
belongs to some leaf of the foliation £. In other words,

By (z) C Im(®),
i.e. there exists (v1,v2) € E; X F} such that
o]l < 6, Jjva|l < and

y = P(v1,v9) =v1 +va+ G(v1,v2) if y € By(x).

Recall that, by Definition 3.1, ® is a diffeomorphism onto its image. Thus, for
all y € By (z), the point ®~1(y) = (v1,v2) € B5*(0) x B5*(0) depends C' on y. We
take 0 < §; < ¢ such that if y € Bg, (), then

1780 FWO < 6/2, NImry e FW)I < 0/2. (39)

Such a value of §; > 0 exists, and is independent of the graph G, because f, mg,
and 7, are uniformly continuous.
Taking if necessary a smaller value of 41, the following two properties (A) and
(B) hold for any graph G with disp(G) < 1/2 and for any y € B, (z):
(A) The leaf f(L(y)) intersects Bf/gx) (0) C Ey(y) in a point uy (see Figure 2).
In other words

there exists w1 € Epgy, [lui]l <d/2, Y uy) € L(y). (40)

(B) The application v; € E, + wu; € Eyyy defined by (A) for all y =
O (v1,v2) € Bs,(x), is independent of vy, and is a diffeomorphism onto its image.
Property (A) is achieved due to the Implicit Function Theorem, since f is a
diffeomorphism, Imdf.|r, = Ey(,), and the local foliation £ is uniformly transversal
to B (0) C E,, while its leaf £(z) intersects E, at 0. Property (B) is obtained
because f is a diffeomorphism and the mapping f(v1) € f(Ey) — w1 € Ey( is
the holonomy along the leaves of the foliation f(£), which is C?! trivializable and
uniformly transversal to both f(E,) and Ey,). (See Figure 2.)

Let us show that the graph G; exists in Ty, M satisfying Definition 3.1 and
Assertion (38) for all y € Bs, (z). We write y = ®(v1,v2) = v1 + vy + G(v1,v2). We
have already determined u; € Ey(,) as a diffeomorphic function of vy, which does
not depend on vy. Let us determine us € Fi@ and Gi(up,uz) € Et@) such that
fly) = ug + uz + Gy (u1, u2) according to Figure 2. Consider the equation:

f(v1 +v2 + G(v1,v2)) = ug + ug + Gy (u1,uz), (41)

where ug € Fy(,y and G1(uy,ug) € Ef .-
Equation (41) is solved by

ug =y, f(v1 + 02 + G(v1,02)) € Fiay, (42)
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Gi(ur,ug) = —u1 + g, f(v1 +v2 + G(v1,v2)) € Ef(y). (43)

The application ¥ defined by W(vy,vy) = (uy,us), where u; and uy are constructed
as above, is of C! class. In fact, u; depends only on vy, the mapping v; — u; is a
diffeomorphism onto its image, and ug is constructed by Formula (42).

Moreover, ¥ is C! invertible. In fact, on the one hand, we have that the ap-
plication v; — u; is C! invertible and independent of v. On the other hand, for
constant vy let us show that Formula (42) applies vy + uy C'-diffeomorphically.
Precisely, G(v1,0) = 0, va € Fy uz € Fy(yy, G(vr,v2) € By and dfy: Fy — Fyg)
is invertible. Thus, 7|p, df = df|r, 7F,. Taking derivatives in equality (42) with
respect to v with constant vy, we obtain:

aUQ 8G(Ul I '02)

B _ _ (g1 -1
EE_WEWaOWﬁ_TE_d_WE_W [Fyey) ™

The second equality holds because G(v1,v3) € E, for all (v1,v2), and so, the projec-
tion by 7g, composed with any derivative of G, equals zero. We have proved that
Oug /Dvs is invertible, and besides

auQ -t o 81)2 o -1
(52) =52 =dr ey, (44)

concluding that the application V¥ is a diffeomorphism onto its image.
Now, we define the mapping ®; by

Dy (uy,u) = uy + ug + Gy (ug, ug).

®; is a C! diffeomorphism onto its image, because its inverse is ¥ o ® o f~1. So
Gp is C', and ®; is the C! trivialization of its associated foliation, which is, by
construction, f(L).

Finally, (39) , (40) and (43) imply

Gl < Mlwall + 7y, fW)I| < 6/2+6/2 =6 and

_ By Fio
©1 f(Bs, () C By " (0) x By /17 (0).

Thus, Gy : 7' (f(Bs, (v))) — B5Ef(””) (0) can be C'! extended to be a graph G : B5Ef(””) (0) x
B(J;f(r) (O) N Bff(w) (0)

We have completed the first step of the inductive proof, since we have proved
the existence of §; > 0 and of the graph G; satisfying (38). Naturally, disp Gy
is not necessarily upper bounded by 1/2. So, we can not exactly repeat the same
argument to prove the inductive step. We will instead prove that there exists a
uniform constant ¢; > 0 such that

if dispG < 1/2 then dispG; < ¢1. (45)

If we prove inequality (45) for some constant ¢;, then we can end the inductive proof
as follows.
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Assume that for some n > 0 there are d,,c, > 0 and a graph G, defined in
BéTfn(””)M(O) satisfying (38) for all y € Bs,(z), and such that dispG,, < ¢, for
any graph G with dispG < 1/2. Thus, we can repeat the above proof, putting
min(dy,,d), ¢, and G,, in the roles of §,1/2 and G respectively. We deduce that there
are Op+t1,cn+1 > 0 and a graph Gpy1 = (Gp)1, defined in B?fn+1(””)M(O), which
satisfies (38) for all y € Bs, ,(x), and such that disp G411 < ¢4 for any graph G
for which disp G, < ¢,,. Thus, G, 1 satisfies (38) for all G such that dispG < 1/2.
Therefore, the inductive proof will be completed once we show inequality (45).

So, let us find a constant ¢y satisfying inequality (45). To find ¢; we will bound
from above the term [|0G(uy,us)/Ous||. From (43), and taking into account that

TEf(z) df|z = df |E, - 7|E,,

we obtain:
8G1 (’LL1, ’LLQ) aG(Ul s ’Ug) 8112 aG(Ul s ’Ug) 8112
L T2 g . 14 il S L VA I R Bl S RtV
8U2 f’Ex W’Ex ‘Fx - 81)2 aUQ f’Ex 81)2 aUQ
Applying (44) and the definition of dispersion, we deduce
disp(Gh) < [|df g, || - disp(G) - [|df |y, I (46)
Thus, inequality (45) follows taking
c1 := max{l|df| .|| - df = |y I3
ending the proof of Assertion 5.1. O

Assertion 5.2 Let § > 0 be such that for all x € M
exp,: {v e T, M:|v|| <30} — Bss(z) C M
is a diffeomorphism. For all 0 < &y < & there exists 0 < ¢ < 1/2 satisfying the
following property:
Assume that G is a Hadamard graph defined in B:*;F””M (0) such that
dispG < .
Assume that there exists n € N and a graph G,, in BéTfn(””)M(O) C Tpn(e)M such that
for all y = exp,(v1 + v2 + G(v1,v2)) € By (2)
. En(y Frnn
there exists (u1,uz) € B; " (0) x B5""(0),
where uy depends only on vy and
I (W) = exp () (urtua+Grlu1, uz)).

(47)

Then, the following inequality holds for all y = exp,(v1 + v2 + G(v1,v2)) € By (v):

H%—%(ULW)H < ||df"|e,

~disp G - ||df 7| Py |- (48)
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Proof: To simplify the notation, we do not write the exponential maps.
Equality (47) can be written as follows:

[ (v +v2 4+ G(v1,v2)) = uitug+Gp(ur, u), (49)

where
(Ul,vg) e B, X F,, (ul,u2) S Efn(m) X an(m),
G e E,, G, € Efn(w) and
y =1 +v2 + G(v1,v2) € By, (7).

Then:

Uy = TFpm, [ (01 +v2 + G(v1,02)), (50)

Gn(ut,u2) = —u1 + g, [ (01 + 02 + G(v1,02)). (51)

Taking derivatives in equality (50) with respect to ve, with constant v;, and

noting that m|p,,, - df = df|r, - 7p,, we obtain:

0 n _
2 4w, (Id), + (0G/002)) = df" 7, = (df " |rpng,)

81)2
In the second equality above, we used that G(vy,v2) € E, for all (v1,v9) (recall Defi-
nition 3.1 of Hadamard graphs). Since df"|f, is invertible, the linear transformation
Oug /Ovy is also invertible, and

OUQ -1 N 8’02 N —n
<a—> = Buy ~ ¥ e

Now, we take derivatives in equality (51) with respect to vy with constant v.
We recall that, by hypothesis, u; depends only on vy, but not on vy. Besides, we
note that 7T‘Efn(x) ~df™ = df"|g, - m|ge. Thus:

s oG, 9GOy oG
Oy af"|e, - Tog Oy af"|e, - Ty df " Py -
So, after Definition 3.2 of disp(G) we deduce
H%f; < a5 - isp G - a1y, .
proving inequality (48). O

Assertion 5.3 There exists ng > 1 such that
kn

ne  nH(a4,
_ZPiIOgPiSE‘i‘% vV n > ng,
i=1
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where € > 0, « is a finite partition, o™ = \/;L:0 f(a), with k, < #(a™), and

kn n—1 kn
0<pi <1, Y opi=1, ZZpﬁfa(%
i=1 ] =0 i=1
with z; € X;, X; € o™ and
H(qu”un) = Z Nn(A) log ,un(A)
A€t

Proof: Denote k := #a. Construct the probability measure 7, := Zf;l Dilz;
Then 7,(X;) =p; V1<i<k,and

a 7Tn = sz Ingz

Fix 0< 1< g — 1. Since o™ is thinner than o™, we have H(a”, 7,) < H(a"*! ,).

Thus
kn

- Zpl log Pi S H(an—Hu 7Tn)7 (52)
i=1

where ) )

"t = \/”+lf Ja = (\/é»_:h f_]a> v <f_l(\/?:0 f_]a)).
Besides, for any two partitions « and (3, and for any probability measure v we have
H(aV p,v) < H(a,v) + H(B,v). Therefore

-1
H(an+la7rn) < ZH(ayf*jﬂ'n) + H(f_lan,ﬂ'n)a (53)
J=0

where the operator f*: P — P in the space of probability measures is defined by
f*(v)(B) = v(f~Y(B)) for any measurable set B.

Since H (o, v) < log(#(«)) = log k for any probability measure v, and since 0 <[ <
q, from Inequalities (52) and (53), we obtain:

kn

—Y pilogpi < qloghk + H(a", f*'my).
i=1

If n > (10q log k) / €, then

kn

ne .
—Zpi log p; < 10 + H(a", f lwn). (54)
i=1

Now we write: n = Ng+s, 0 <s<g—1. We have

N—-1 Nq+s '
H(anv f*lﬂ-n) é H(qu, f*hq—l—lﬂ-n) + Z H(Oé, f*J-Hﬂ-n)
h=0 j=Ngq
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Arguing as above:

Ng+s ' .
Z H(a, f*]+l7rn) <(s+1)logk < qlogk < o
j=Ngq

So, inequality (54) implies:

kn

_szl()gpz § - + ZH Oéq f*hq+l n)

=1

Taking all values of [ such that 0 < [ < ¢ — 1 and adding the above bounds, we
deduce:

N-1g¢-1 n—1
—¢> pilogp < " ¢ H(of, f*"*r,) < % + > H(a% fm,). (55)
] h=0 =0 7=0

Recall that the entropy H of a partition with respect to a convex combination
of probabilities, is not smaller than the convex combination of the entropies with

n—1 k n—1
n 1 N .
respect to each of the probabilities. Since u, = z:l E;p,éfj @) = Z 7, we
j=11 =
1 n—1 _
deduce — Z H(a, fYm,) < H(a?, py,). Substituting in inequality (55) we conclude
n
§=0
b nqe
—q ;pi logpi <~ +nH(a", un),
ending the proof of Assertion 5.3. O
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