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Abstract

In the first part of this paper sufficient conditions are stated for a cascade of period doubling
bifurcations in n dimensions be reducible to a perturbation of a map in the interval with
critical points. In the second part we show that the example of a cascade in the n-dimensional
disk, given by Gambaudo and Tresser, can be approximated by maps exhibiting homoclinic
tangencies.

1 Introduction

A global program for locally dissipative dynamical systems has been formulated by J.Palis [P,1991]

in which the idea is to define a dense subset H ⊂ Diff3(M) (M is a compact manifold without

boundary) and describe the prevalent dynamical phenomena in small neighborhoods of the el-

ements of H in most k-parameters families of diffeomorphisms through them. If dim M = 2 a

candidate for H is the union of the hyperbolic diffeomorphisms and the ones exhibiting homoclinic

tangencies. The inspiring reason for taking the diffeomorphisms with homoclinic tangencies is the

richness of the dynamics when unfolding the tangency along a one-parameter family: for instance

cascades of period doubling bifurcations [YA,1983], diffeomorphisms exhibiting infinitely many

coexisting sinks [N,1979], Hénon-like attractors [MV,1993].

To develop this program, the globally unstable systems, in particular maps where a cascade

of period doubling bifurcations accumulate (that we call briefly a ”cascade”) and maps exhibiting

a Feigenbaum’s attractor, should be approximated with diffeomorphisms exhibiting homoclinic

tangencies.

The question we are dealing with is whether we can perturb a cascade to obtain homoclinic

tangencies. Mainly two types of n-dimensional cascades are considered: those that are intrinsically

one-dimensional (that is, after sufficiently renormalized, it remains in a neighborhood of a map
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in the interval) and those such that, although renormalized many times do not loose their n-

dimensional character.

In section 2 of this work we give sufficient conditions for the cascade be of the first type.

Although there is not a general result of approximation of this type of cascades with homoclinic

tangencies, a positive answer is given in [C,1995] when the map of the interval is the Feigenbaum

map, working in the analytic topology. In a work in progress we are extending this result to the

Cr topology, for r sufficiently large, depending on the dimension, but still in a neighborhood of the

Feigenbaum map. Possibly this is also true for perturbations of unimodal maps of combinatorial

type 2∞, with nondegenerate critical point (i.e. with nonvoid quadratic term) due to the fact that

the renormalizations of these maps converge to the Feigenbaum map [S,1991].

In [GT,1992] it is constructed a n-dimensional cascade of the second type mentioned above

(not reducible to a map in the interval), fixed by the renormalization, showing that the Feigen-

baum’s universality does not hold in a n-dimensional setting. A positive answer to the question

of approximation with homoclinic tangencies is given for this case, proved in the section 3 of this

work, exploring the geometric method of the construction of the cascade.

In an analytic neighborhood of the Feigenbaum map [F,1978] [CT,1978] the one-parameter

families of one-dimensional maps that are transversal to the stable manifold of the renormalization

transformation, exhibit cascades of period doubling bifurcations of sinks [CEK,1981], in which the

sink is transformed into a saddle of stable codimension one and generates a new sink of double

period. We will consider the map f at the accumulation of the bifurcations. It exhibits periodic

saddles of period 2n for each n ≥ 0, and a Cantor set attracting all the orbits in the complement

of the stable manifolds of the saddles. Successive renormalizations of the map f converge to

the Feigenbaum one-dimensional map. The geometry of the Cantor set is then bounded: it has

almost affine copies of itself (the changes of variables needed to renormalize the family are near

affine transformations). As the family exhibiting the cascade is close to a one-dimensional family,

the map f is globally dissipative, that is the determinant of the Jacobian matrix is smaller than

one. We show that, in dimension two, the boundness of the geometry and the dissipativeness are

enough for a general cascade of class Cr(r ≥ 3) to be reducible to dimension one.

We start from a general cascade f in the n-dimensional ball of class Cr, r ≥ 1. First we reduce

to dimension two, taking the quotient map on the leaves of a contractive invariant foliation. Next,

for r ≥ 3, under the assumptions of uniform dissipativeness and boundness of the geometry, we

obtain that high iterates of the cascade in dimension two approximate a map in the interval having

at least one critical point and periodic orbits of periods the powers of two.

As mentioned before the one-parameter unfolding of a homoclinic tangency for locally dissipa-

2



tive maps of class Cr(r ≥ 3) in dimension two originates important globally unstable dynamical

phenomena. Perhaps the simplest are the cascades of period doubling bifurcations of sinks, that

appear because horseshoes are created when the tangency is unfolded [YA,1983]. The family ex-

hibiting the cascade is near the one-dimensional quadratic family in two dimensions, after a proper

renormalization of the cascade near the tangency [PT,1993]. The existence of cascades of period

doubling is also valid in higher dimensions, when unfolding a homoclinic tangency [M,1991]. These

examples of n-dimensional cascades are reducible to dimension one.

The author thanks J. Palis for posing the problem and for helpful discussions.

2 Reduction of the dimension

Let B0 be a domain in Rn (i.e. a connected and bounded set that is the closure of its interior).

Definition 2.1 A cascade of period doubling is a map f : B0 ⊂ Rn 7→ int B0 of class Cr, r ≥ 1,

provided with a family of domains Bm,j , m ≥ 0, 0 ≤ j ≤ 2m − 1, B0,0 = B0 such that

a) Bm,j ∩Bm,k = ∅ for j 6= k and Bm,j ⊂ int Bm−1,j (mod 2m−1) for m ≥ 1.

b) diam Bm,j → 0 with m→∞ uniformly in j.

c) f(Bm,j) ⊂ Bm,j+1 (mod 2m) and f2m(Bm,j) ⊂ int Bm,j .

d) for each m ≥ 0 there exists a periodic hyperbolic orbit of saddle type, of stable codimension

one with negative expansing eigenvalue, of period 2m with one point in Bm,j for each j =

0, 1, . . . , 2m − 1, and there are no other periodic points.

e) for any q ∈ B0 and all m ≥ 0 the ω-limit of q is contained in the union of the periodic orbits

of period 1, 2, . . . , 2m−1 with ∪2m−1
j=0 intBm,j .

The definition above implies that the periodic orbit of period 2m and its stable manifold are

disjoint with ∪2m+1−1
j=0 Bm+1,j .

Let pm be the periodic point of period 2m in Bm,0. The points of Bm,0\W s(pm) are classified in

two sets: those points having an iterate by f2m+1
(and all of its following iterates) in int(Bm+1,0)

and those having an iterate in int(Bm+1,2m). They are open sets. Thus W s(pm) disconnects the

domain Bm,0.

We define K = ∪m ∩j Bm,j . Due to b) K is a Cantor set. Due to e) it is an attractor.

In [BGLT,1993] the wandering sets obtained without the convergence assumption (point b)of

the definition above) are studied. In particular the authors find a C1 example in which K contains
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a wandering domain. Also they prove that for C1+α diffeomorphisms with a hypothesis of bounded

geometry, the connected components of K have zero Lebesgue measure.

Remark 2.2 More generally, we will also call f a cascade of period doubling when f is not

provided with the whole family of the domains Bm,j of all the generations, but only with a

subfamily {Bmk,j , 0 ≤ j ≤ 2mk − 1},mk →∞ of the domains of generations mk.

Each set Bmk,j must be provided with a saddle type point pmk of period 2mk and 2i points of

period 2mk+i for 0 < i < mk+1 −mk.

They must fulfill the properties a) to e) (with the obvious change of notation).

Our purpose is to reduce the dimension. We do this in two steps:

First, when there is a contractive invariant foliation of codimension 2, we can reduce f to a

2-dimensional cascade. This is proposition 2.4. Unfortunately there is not an invariant foliation of

codimension one, when working with diffeomorphisms that exhibit a cascade of period doubling,

as shown in proposition 2.3.

Second, we reduce to dimension one under some hypothesis of area contractiveness, and of

uniform bounds of the sucessive renormalizations. This is done in theorem 2.7.

Proposition 2.3 Let f : B0 ⊂ Rn 7→ f(B0) ⊂ B0 be a Cr diffeomorphism (r ≥ 1) that is a

cascade of period doubling. Then it does not exist a C1 contractive foliation invariant by f of

codimension one.

Proof: By contradiction suppose that there exists an invariant C1 foliation. Consider f2m

with m sufficiently large to have Bm,0 contained in a neighborhood where the foliation can be

trivialized. After the trivialization each of the leaves of the foliation is a subspace of codimension

one, that separates Rn in two semispaces. In Bm,0 there is a fixed point pm of f2m and a period

2 point pm+1, both with negative expansive eigenvalues of Df2m(pm) and Df2m+1
(pm+1) respec-

tively. Connect pm and pm+1 with a continuous curve inside Bm,0. Applying Df2m+1
to any leaf

of the foliation intersecting Bm,0 we obtain another leaf intersecting Bm,0. Call H to the set of

points of the curve such that Df2m+1
maps each semispace onto itself. For instance pm is in H.

Call K to the set of points where the Df2m+1
maps each subspace onto the opposite. The point

pm+1 is in K. As the map f is a diffeomorphism the sets H and K are open and complementary

in the curve. This contradicts the connectedness of the curve.

Proposition 2.4 (Reduction to dimension 2) Let f : B0 ⊂ Rn 7→ f(B0) ⊂ B0 be a Cr

diffeomorphism (r ≥ 1) that is a cascade of period doubling.
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Suppose that there exists in B0 a Cr foliation that is f-invariant and contractive by f , of

codimension two.

Then there exist an integer m, a domain Bm invariant by f2m, and a Cr system of coordinates

{(x, y) : x ∈ R2, y ∈ Rn−2} in Bm such that in those coordinates

f2m(x, y) = (g(x), h(x, y))

where g is a cascade of period doubling in dimension two.

Proof: Let us take Bm,j , 0 ≤ j ≤ 2m − 1 the domains of generation m in the definition of

cascade. They are invariant by f2m . Take m large enough such that Bm,0 is contained in the

domain of a trivializing chart of the given foliation. In such trivializing coordinates {(x, y) : x ∈
R2, y ∈ Rn−2} the leaves are obtained fixing x. As they are invariant by f , we have:

f2m(x, y) = (g(x), h(x, y))

We call Bm to Bm,0.

We shall see that g is a cascade. Let us call Π to the projection on the first coordinate plane.

(It is the projection along the leaves of the foliation). Define B̃0 = Π(Bm). It contains the

point x0 = Π(pm), where pm is the periodic point of f in Bm with period 2m. As f2m(x0, y0) =

(g(x0), h(x0, y0)) = (x0, y0), we have that x0 is a fixed point of g. It is hyperbolic of saddle type

with stable codimension one and negative expansive eigenvalue: in fact the matrix Df2m(x0, y0) is

triangular and thus the eigenvalues of Df2m are those of Dg and those of Dyh. The last ones are

in modulus smaller than one because the foliation is contractive. Then the expansive eigenvalue

of Df2m is found in Dg.

The stable manifold of pm contains all the leaves of the foliation that intersects, because the

foliation is contractive with f , and thus for any q in the leaf through p:

‖f j2m(q)− f j2m(p)‖ → 0 withj →∞

As f j2
m

(p)→ pm with j →∞, if p ∈W s(pm), it is obtained that f j2
m

(q)→ pm. So q ∈W s(pm).

Π(Ws(pm)) is the stable manifold of x0, because if f2mj(q)→ pm then

gj(Π(q)) = Πf2mj(q)→ Π(pm) = x0

The subdomains B̃1,0 and B̃1,1 for g are defined as the projections of the two subdomains of

f of generation m+ 1 contained in Bm. They are disjoint: in fact, by contradiction suppose that

one leaf of the foliation intersects the two subdomains of f of generation m+ 1 in points q1 and q2
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respectively. As they are in the same contractive leaf, when iterating them by f2m+1
their distance

converges to zero. But they are in different subdomains of generation m + 1, that are invariant

by f2m+1
, closed and disjoint, thus having a positive distance.

All the points of B̃0 \W s(x0) when sufficiently iterated by g land in B̃1,0 ∪ B̃1,1 because they

are the projections of points of Bm \W s(pm). Thus there are not other fixed points of g besides

x0.

Analogously are constructed the periodic orbits of higher period for g and the domains of

higher generation, projecting those of f . Finally the diameter of the domains of g are convergent

to zero because they are the projection of the domains of f .

Definition 2.5 A Cr cascade of period doubling f : B0 ⊂ Rn 7→ B0 is renormalizable if for all

m ≥ 1 the domains Bm,0 are Cr diffeomorphic to B0.

Calling ξf : B0 7→ B1,0 to the diffeomorphism between the domains B0 and B1,0, we define the

first renormalized of f as

Rf = ξ−1
f ◦ f ◦ f ◦ ξf : B0 7→ B0

Observe that Rf is also a renormalizable cascade of period doubling. The m renormalized of

f is:

Rmf = ξ−1
Rm−1f ◦R

m−1f ◦Rm−1f ◦ ξRm−1

= ξ−1
Rm−1f ◦ . . . ◦ ξ

−1
f ◦ f

2m ◦ ξf ◦ . . . ◦ ξRm−1f

In particular cases we have some bounding properties of the change of variables ξRmf . Fre-

quently they are affine transformations.

Definition 2.6 We say that a Cr renormalizable cascade has bounded geometry if for all m ≥ 0

the changes of variables ξRmf of the definition above are Cr bounded and there exist β < 1 and

γ > 0, independent of m such that:

max{‖DξRmf‖C0 , ‖D(Rmf ◦ ξRmf )‖C0} ≤ β < 1

and

|det(DξRmf )| ≥ γ

Theorem 2.7 (Reduction of dimension 2 to dimension 1) Let f : B0 7→ B0 ⊂ R2 be a

Cr (r ≥ 3) cascade of period doubling in two dimensions that is renormalizable and such that Rmf

is Cr bounded for all m ≥ 1.
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Suppose that:

f is dissipative (i.e.: 0 ≤ detDf(p) ≤ α < 1 for all p ∈ B0), and has bounded geometry.

Then:

There exists a Cr−1 map g defined in B0 such that:

For any given ε > 0 there exists an integer m verifying ‖g −Rmf‖Cr−1 ≤ ε,
There exist k, a domain D ⊂ B0 invariant by g2k , and a Cr−2 change of coordinates in D such

that

g2k(x, y) = (g1(x), g2(x))

where g1 is a multimodal map (i.e. with at least one critical point) of the interval.

Proof: Applying the Arzela-Ascoli theorem to the family of maps Rmf , there exists a subse-

quence mj such that the limj→∞R
mjf exists in the Cr−1 topology. Let us call g to that limit.

We have:

detDg(q) = lim
j→∞

detDRmjf(q)

detDRmf(q) =
m−1∏
i=0

detDξRif (qi+1) detDf2m(q0)
m−1∏
i=0

det(DξRif (q̃i+1))−1

where qm = q, qi = ξRif ◦ . . . ◦ ξRm−1f (q), i = 0, . . . ,m− 1 and q̃0 = f2m(q0), q̃i+1 = ξ−1
Rif
◦ . . . ◦

ξf (q̃0), i = 0, . . . ,m− 1. Thus

|detD(Rmf)(q)| ≤ α2mam → 0 with m→∞

where a > 1 is a uniform bound of the Jacobians of ξRif and ξ−1
Rif

.

Thus detDg(q) = limj→∞ det(DRmjf)(q) = 0.

We already have a map g such that detDg = 0 in B0, and ‖g −Rmjf‖Cr−1 < ε, for any given

ε > 0, for all j sufficiently large, depending on ε.

As ξRmf and Rmf are bounded uniformly in m in the Cr topology, there exist sucessive

subsequences of {mj}, making at each step i, ξ
Rmj+if

and Rmj+i convergent in the Cr−1 topology

with i fixed and j →∞. Take the diagonal subsequence and then define, for each i:

Rig = lim
j→∞

(Ri+mj (f))

ξ̄i = lim
j→∞

ξ
Rmj+if

From

ξRmj f ◦ ξRmj+1f ◦ . . . ξRmj+i−1f
◦Rmj+if = (Rmjf)2i ◦ ξRmj f ◦ ξRmj+1f ◦ . . . ξRmj+i−1f
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making j →∞ with i fixed, we obtain:

ξ̄0 ◦ ξ̄1 ◦ . . . ◦ ξ̄i−1R
ig = g2i ◦ ξ̄0 ◦ . . . ◦ ξ̄i−1

Define Di,0 = ξ̄0 ◦ . . . ◦ ξ̄i−1(B0). It is invariant by g2i because

g2i(Di,0) = g2i ξ̄0 ◦ . . . ◦ ξ̄i−1(B0) = ξ̄0 ◦ . . . ◦ ξ̄i−1 ◦Rig(B0) ⊂ Di,0

Take

Di,k = gl0 ◦ ξ̄0 ◦ (Rg)l1 ◦ ξ̄1 ◦ . . . ◦ (Ri−2g)li−2 ◦ ξ̄i−2 ◦ (Ri−1g)li−1 ◦ ξ̄i−1(B0)

where li−1 . . . l2l1l0 is the binary writing of the index k.(0 ≤ k ≤ 2i − 1)

It is easy to check that g2i(Di,k) ⊂ Di,k. In fact g(Di,k) = Di,k+1 for 0 ≤ k ≤ 2i − 2, and

g(Di,2i−1) ⊂ Di,0.

Also, maxk diam(Di,k) ≤ βi(constant)→ 0 with i→∞.

From the definition of Di,k, considering that (Rig)li ξ̄i(B0) ⊂ B0, we obtain that:

Di,k(mod2i) ⊃ Di+1,k

Let pm0 be the fixed point of Rmf . Then

pmk = ξRmf ◦ . . . ◦ ξRm+k−1fp
m+k
0

is a periodic point of period 2k of Rmf .

Take p̄k an accumulation point of {pmj+k0 }j with k fixed and j → ∞. We have p̄k ∈ Dk,0

where p̄k is a periodic point of period 2k of g. The orbit by g of p̄k has one point on each

Dk,j j = 0, . . . , 2k − 1, because g(Dk,j) ⊂ Dk,j+1(mod2k).

Dg2k(p̄k) = limj→∞D(Rmjf)2k(pmjk ) has an eigenvalue ρk smaller or equal than −1, because

of the continuity of the eigenvalues. As detDg = 0, the other eigenvalue is zero.

We have

Dg2k(p̄k)uk =
2k−1∏
i=0

Dg(gi(p̄k))uk

Thus dim(kerDg(gi(p̄k))) = 1 for all k ≥ 0, and all i = 0, 1, . . . , 2k−1 and also ‖Dg(gi(k)(pk))vk‖ ≥
1 for some i(k), and some unitary vector vk.

Let us call qk = gi(k)(p̄k). We have a sequence {(qk, vk)}k≥1, with qk ∈ B0, ‖vk‖ = 1,

‖Dg(qk)vk‖ > 1. Let us take now a subsequence kj such that (qkj , vkj ) is convergent to (q, v).

We have ‖Dg(p)u‖ > 1
2 for (p, u) in a neighborhood of (q, v). This neighborhood is an open set

V ⊂ B0 and a cone of unitary vectors that are not contracted more than 1
2 by Dg(p).
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Thus, for all p ∈ V, dim ker(Dg(p)) = 1. The unitary vector of kerDg(p) define a vectorfield

in V of class Cr−2. For r ≥ 3, this vectorfield define a Cr−2 foliation. The image by g of each leaf

is a point, because the derivative of g along the leaf is zero.

Take a set Dk0,j0 in V with k0 sufficiently large so it is contained in a trivializing neighborhood

of the foliation. Let us call D to the union of the leaves intersecting Dk0,j0 . It is invariant by g2k0 .

D has non void interior because Dk0,j0 is connected and has points of period 2k for all k ≥ k0,

that can not be contained in the same leaf of the foliation. Take k = k0 + 1. In the trivializing

coordinates (x, y) in D, each leaf corresponds to constant x. As the image by g (and any of its

iterates) of each leaf is a point, we have for (x, y) in D: g2k(x, y) = (g1(x), g2(x)). Let us see that

g1 has at least one critical point.

We have in D a fixed point qk = (xk, yk) of g2k , and a fixed point qk−1 = (xk−1, yk−1) of g2k−1
.

As Dg2k(qk−1) has a eigenvalue greater or equal than one, it is obtained that g′1(xk) ≥ 1. But, as

Dg2k(qk) has a negative eigenvalue smaller or equal that −1, we have that g′1(xk−1) ≤ −1. There

must exist at least one point where g′1 = 0.

The last theorem asserts that dissipative Cr-cascades of period doubling in dimension two, ver-

ifying the hypothesis of the uniform bounds, are a perturbation of an one-dimensional multimodal

map, when microscopically looked.

3 Approximation with homoclinic tangencies of the Gambaudo-
Tresser n-dimensional cascade

The purpose of this section is to prove that the Gambaudo-Tresser [GT,1992] example of cascade

of period doubling in dimension n is approximated with homoclinic tangencies. It is of type Cr

with r increasing with n, and is not uniformly dissipative. Indeed at the points of the Cantor set

the determinant of the jacobian matrix is one.

Theorem 3.1 (Gambaudo-Tresser, [GT,1992]) For any r > 1 there exists n ≥ 2 and a Cr-

map of the n-dimensional ball that is a cascade of period doubling, whose Cantor set attractor

contains an affine copy of itself scaled by a factor λ that can be chosen in an interval.

Remark 3.2 As the geometry of the Cantor set can be chosen, this theorem implies that there

is no hope of finding universal geometry of the Cantor set attractor. In other words this example

can not be reducible to the Feigenbaum’s one dimensional map.
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The proof of the theorem is constructive. As we shall use later this construction, we include

a summary of the proof of [GT,1992], mainly to fix the notation to be used later.

Proof: Let us define F0, a C∞ diffeomorphism in the unitary n-dimensional ball D verifying

the following conditions:

a) F0 is the identity in a thin shell D \D1−γ , where D1−γ is the ball of radius 1 − γ concentric

with D.

b) Consider 2n disjoint balls D1,i, i = 0, . . . , 2n − 1 of radius λ < 1, contained in D1−γ , leav-

ing enough room to move rigidly any pair of these disjoint balls until they exchange their

positions. It is enough that λ < 1−γ
2
√
n+1

There is an isotopy {ψt}t∈[0,1] from the identity ψ0 =id to F0 = ψ1; ψt restricted to D1,i for

each i = 0, . . . 2n − 1 is a traslation, and F0(D1,i) = D1,i+1(mod2n).

c) F0 has one single periodic orbit of period 1, 2, . . . , 2n−1 of saddle type of stable codimension

one in M1 = D1−γ \ ∪2n−1
i=0 D1,i, and no other periodic orbits in M1.

d) The set ∪2n−1
i=0 D1,i is an attractor for F0, while the shell D\D1−γ is an attractor for the inverse

mapping F−1
0 .

We then have that F 2n
0 |D1,i is the identity.

Let us modify F0 in ∪2n−1
i=0 D1,i by self similarity to obtain F1 such that the behavior of F 2n

1 |D1,0

copies that of F0 in D. Let F1 be defined as F0 in D \ ∪iD1,i and

F1 |D1,i= Λ1,i+1(mod2n) ◦ ψ i+1
2n
◦ ψ−1

i
2n
◦ Λ−1

1,i

where Λ1,i is the homotecy transforming the ball D onto D1,i (the homotecy rate is λ). F1 is of

class C∞ because on each ball D1,i, F0 and F1 coincide in the shell D1,i \ Λ1,i(D1−γ).

F 2n
1 |D1,0= Λ1,0F0Λ−1

1,0 because

F1 |D1,2n−1
◦ . . . ◦ F1 |D1,1 ◦F1 |D1,0= Λ1,0 ◦ ψ1 ◦ Λ−1

1,0 = Λ1,0 ◦ F0 ◦ Λ−1
1,0

For i = 0, . . . , 2n − 1, consider Λ1,0(D1,i). They are 2n balls inside D1,0 that are moved by

translations with F1 and its iterates, generating a family of 22n balls D2,j , j = 0, . . . , 22n − 1

of radius λ2 inside the balls D1,i for i = 0, . . . , 2n − 1. Now: F1(D2,j) = D2,j+1(mod22n) for

j = 0, . . . , 22n − 1 and F 22n

1 |D2,j=id.

By induction, in the step h ≥ 1 we modify Fh−1 inside the 2hn balls Dh,j , j = 0, . . . , 2hn − 1

of radius λh. Having F 2hn
h−1 |Dh,j=id, we construct Fh defined as follows:

Fh = Fh−1 in D \ ∪jDh,j and
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Fh |Dh,j= Λh,j+1(mod2hn) ◦ ψ j+1

2hn
◦ ψ−1

j

2hn

◦ Λ−1
h,j (1)

where Λh,j is the homotecy transforming the ball D onto Dh,j (it is a homotecy of rate λh).

In this way we have defined in D a sequence of C∞ maps {Fh }h≥0. We claim that Fh is a

Cauchy sequence in the topology Cr for certain r depending on n. So it defines a map F in the

ball D, fixed by the renormalization F = Λ−1
1,0 ◦ F 2n ◦ Λ1,0.

In fact Fh−Fh−1 is null in the complement of ∪2hn−1
j=0 Dh,j so they differ only in the 2hn balls of

radius λh that are interchanged both with Fh and Fh−1. Thus ‖Fh − Fh−1‖C0 < 2λh with λ < 1.

Now, the derivatives of Fh−1 |∪jDh,j are the identity because it is a traslation restricted to each

of the balls Dh,j . It is left to prove for h large enough that

‖(DFh − id) |∪jDh,j ‖Cr−1 < kαh

with some α < 1.

In fact, from (1)

‖DFh − id‖Cr−1 ≤ (λ−h)r−1‖D(ψ j+1

2hn
ψ−1

j

2hn

)− id‖Cr−1

For the isotopy ψt we have a constant k such that

‖ψt ◦ ψ−1
s − id‖Cr < k|t− s|

for all t and s such that t− s is small enough. So

‖D(ψ j+1

2hn
ψ−1

j

2hn

)− id‖Cr−1 ≤ k
1

2hn

We thus have

‖DFh − id‖Cr−1 ≤ k
(

1
2nλr−1

)h
To have {Fh }h≥1 a Cauchy sequence it is enough that 2nλr−1 > 1, that is, n > − (r−1) log λ

log 2 . The

interval in which λ can be chosen is 1−γ
2
√
n+1

> λ > 1
2n/(r−1) for r, γ, n such that 2n/(r−1) > 2

√
n+1

1−γ .

Now we have defined F = limh→∞ Fh in the Cr topology. It is not still a cascade because it

has a shell D \D1−γ of fixed points and because of the self-similar construction it has shells inside

the balls of generation h all formed by periodic points of period 2h.

It is enough to change F0 (and the isotopy ψt correspondingly) in a neighborhood of the shell

D \D1−γ so that D is mapped inside itself, and in a neighborhood of ∪2n−1
i=0 D1,i so that the image

of D \ ∪iD1,i is not contained in itself.
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Theorem 3.3 Let F be the Cr cascade of period doubling in dimension n of the theorem of

Gambaudo-Tresser above. Given ε > 0 there exists G of type Cr, exhibiting a homoclinic tangency

and such that ‖G− F‖Cr < ε.

Proof: Let {ψt }0≤t≤1 be the isotopy such that ψ0 =id, ψ1 = F0 as in the proof of the last

theorem. Define { ψ̃t }0≤t≤1 such that ψ̃t = ψ2t for 0 ≤ t ≤ 1
2 , and { ψ̃t } 1

2
≤t≤1 is the transformation

δt ◦ F0 where δ 1
2

is the identity, and δt is constructed below.

Let V be a connected open set, disjoint with ∪iD1,i, that does not contain any periodic point

of F0 and such that W s(p0)∩V and W u(p0)∩V are contained in fundamental domains of W s(p0)

and W u(p0) respectively.

Now δ1 is a map that is the identity in the complement of V and takes the points of the

arc W u(p0) ∩ V and pushes them to be tangent to W s(p0). This can be done with an isotopy

{ δt } 1
2
≤t≤1 with δ 1

2
=id, leaving fixed all the points of the complement of V . Now consider as in

the proof of the last theorem the map F constructed as limh→∞ Fh with Fh and Fh−1 differing

only in the balls Dh,j of generation h. Let us define F̃h as follows:

F̃h =


F in D \ ∪jDh,j

Λh,j+1(mod2hn) ◦ ψ̃ j+1

2hn
◦ ψ̃−1

j

2hn

◦ Λ−1
h,j in Dh,j

where Λh,j is the homotecy transforming the ball D onto Dh,j . Now, by construction F̃h has

a periodic point in Dh,0 of period 2hn exhibiting a homoclinic tangency. It is left to show that

‖F̃h − F‖Cr →h→∞ 0.

‖F̃h − F‖Cr ≤ ‖F̃h − Fh‖Cr + ‖Fh − F‖Cr

As F = limh→∞ Fh, the second term of the sum above is less that ε for h large enough. As

Fh = F = F̃h in D \ ∪jDh,j , and they differ in the balls Dh,j that are interchanged both with Fh

and F̃h, we have

‖F̃h − Fh‖C0 < 2 diamDh,j = 2λh →h→0 0

Now:

‖D(F̃h − Fh)‖Cr−1 = ‖DF̃h − id‖Cr−1 + ‖DFh − id‖Cr−1 ≤

≤ 1
(λh)r−1

‖D(ψ̃ j+1

2hn
◦ ψ̃−1

j

2hn

)− id‖Cr−1 + k

(
1

2nλr−1

)h
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For the isotopy ψ̃ we have a constant k̃ such that

‖ψ̃t ◦ ψ̃−1
s − id‖Cr < k̃|t− s| for all t and s

So

‖D(F̃h − Fh)‖Cr−1 ≤
k + k̃

2hn
1

(λh)r−1
= (k + k̃)

(
1

2nλr−1

)h
→h→∞ 0

Thus ‖F̃h − F‖Cr →h→∞ 0 as wanted.
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