
Image Colorization with Neural Networks
Matı́as Richart, Jorge Visca, Javier Baliosian

University of the Republic, Montevideo, Uruguay.
Email: {mrichart, jvisca, javierba}@fing.edu.uy

Abstract—We propose a method for colorizing photos, this is,
providing a color version of a given gray scale image. The method
does not depend on human input, and is completely automatic.
It does not depend on segmentation, scribbling or sophisticated
image processing techniques. It is based on training a simple
classifier using back propagation over a training set of color and
corresponding gray scale pictures. The classifier predicts the color
of a pixel based on the gray level of the pixels surrounding it.
This small patch captures a local texture. To keep the domain for
the predictor small, the colors are reduced using Self Organizing
Maps. This reduction produces a small set of chroma values
with enough variation as to generate good approximations for
all colors in the training set.

I. INTRODUCTION

In this work we propose a methodology for the colorization
of gray level images using a learning approach based on Neu-
ral Networks (NN). Image colorization has been well studied
in the field of image processing and computer vision. However,
in this work we propose to develop a methodology with
minimal usage of image processing algorithms and mainly
based on learning techniques.

The proposal consists of a Multi Layer Perceptron Neural
Network used for classification to predict the color of gray
level pixels. As the number of possible colors to learn is
considerable, we propose a vector quantization method based
on Self Organizing Maps to reduce the search space and
arrange colors in a small number of clusters. Then, our NN
classifies gray level pixels into color clusters.

Image colorization has been a field of study for several
years. The term colorization was introduced by Wilson Markle
in 1970s to define the process of assisting a person on giving
color to a black and white movie. The work of Markle [1], as
well as many that follow are conceived to assist a human on
the coloring process. For example the works of [2], [3], [4]
and [5] are considered semi-automatic coloring process as they
need some reference input (and knowledge) from a human to
colorize an image. All these works, obtain very good coloring
results with reasonable computing performance, however they
all need a coloring reference provided by a human.

More recently, proposals for fully automatic image coloriza-
tion have appeared: [6], [7], [8]. These works propose to use
recent techniques such as Convolutional Neural Networks and
Deep Learning jointly with a deep understanding on image
processing.

Our proposal differentiates from previous works in that we
follow a simple and straightforward approach for the learning
technique and for the image processing. We propose a novel
technique for color clustering with the help of a well known

approach as the Self Organizing Maps. We also introduce
a colorization process which leverages the simplicity and
efficiency of traditional Neural Networks. Although we could
not get the same color results as the more elaborated works,
we consider our proposal very effective for its simplicity.

The rest of the article is organized as follows. In Section II
we present our approach for image colorization and describe
the different steps of the work-flow for training and prediction.
In Section III we describe the application of our method to
a particular set of images, explaining the particular config-
urations of the learning algorithms. Finally, we give some
concluding remarks in Section IV.

II. METHODOLOGY

The methodology we propose is inspired in [9] and [10].
As previously mentioned, the objective is to give color to a
gray level (black and white) image. For achieving this, our
main proposal consists of using a Neural Network (NN) which
learns the relationship between the level of luminosity in the
gray level image and the color.

Our approach comprises a sequence of steps for preparing
the image, reducing the dimensionality of the problem, train-
ing the NN and post-processing of the image. The general
training work-flow can be seen in Figure 1. In the following
subsections we will explain in detail each step.

Fig. 1. General Training Work-flow.

A. Image pre-processing

The first step is the image preprocessing, which mainly
consists on taking a color RGB image and converting it to
the CIELUV [11] color space. In an RGB image, each pixel
has 3 channels which correspond to the colors red, green and
blue and can take values between 0 and 255. In the CIELUV
color-space, there are also 3 channels: L, U and V. The L
channel is the luminance or lightness, while the U and V
components are the chromatic values. Working with CIELUV
has two major advantages in our case: (i) the color space is
designed for perceptual uniformity which makes it ideal for
computer processing and (ii) our model only has to predict the
U and V channels, as the L channel would be the gray scale
image.

Then, the second step of the image pre-processing is to
separate the image in two new images, one with only the L



component and one with the U and V components. For now
we can think that the L component image is the input to our
model and the U and V component image is the target.

B. Color reduction with Self Organizing Maps

With the aim of reducing the space of possible values
to learn, we propose to reduce the color range. For this
objective, we use the technique of vector quantization. Vector
quantization consists on mapping k-dimensional vectors into
a reduced set of vectors Y = yi : i = 1, 2, ..., N . Each vector
yi is called a code vector or a codeword and the set of all the
codewords is called a codebook.

There are several techniques for vector quantization, being
the LBG algorithm [12] the most famous one. However, in this
work we propose to use Self Organizing Maps (SOM) [13] as
it is a fast and self-learning alternative [10].

Self Organizing Map is a type of neural network introduced
by Teuvo Kohonen in 1982 [13]. It consists of an input layer,
which size corresponds to the number of elements of the
vectors to reduce, and an output layer (or computational layer,
or map) where each neuron represents the code vectors (see
Figure 2). SOM learning is unsupervised, as there is no target
or objective to compare with. It can be seen as a mechanism to
split and classify the input data into classes based on common
features. In summary, as mentioned previously, the aim is to
transform an input of arbitrary dimension into a discrete map
of a much lower dimension.

Fig. 2. Self Organizing Map.

In our case we want to reduce the target space, the U and
V components of each pixel image. We can see each pixel as
a 2-dimension vector, where each component is a real number
in the range [−100, 100]. Then, with vector quantization the
aim is to reduce this space to a finite set of vectors.

As can be seen in Figure 3, the output of this process consist
of a trained SOM and a codebook. The trained SOM can be
used to clusterize (or classify) U,V vectors and its output is an
index which represents the cluster or class that vector belongs
to. The color codebook is used to obtain the U,V vector which
represents each cluster.

C. Dataset construction

Starting from the images preprocessed and the codebook,
the next step is to construct the data set for training. The

Fig. 3. Image Pre-processing and Color Reduction Work-flow.

simplest dataset would consists of one feature, the L value of
a pixel and one target for each feature, the U and V values
for that pixel. In this work we propose to add more features
to the dataset by also considering the pixels near to the pixel
we want to predict. The rationale of this is that, in general, in
the images there is some homogeneity in the colors, and that
information of the nearby pixels can help to predict the color
of the target pixel. Also, the adjacent pixels contains a texture
that also can help in classifying the pixel.

So, for each pixel we consider a neighborhood of pixels
to create the dataset which we call a patch. This patches are
squares of odd size where the pixel to predict is in the middle.
Then, our dataset has a number of features which depends on
the number of pixels of the patch.

After obtaining the patch, we need to obtain the target for
that row of features. As previously mentioned, in our case
the target is the U,V component of the central pixel of the
patch but with a reduction in the possible values. For this
reduction we utilize the SOM technique described earlier. The
U,V component of the central patch is given as input to the
trained SOM and an index is obtained which represents the
cluster of the U,V component. This index is used as target in
our dataset.

This process is depicted in Figure 4.

Fig. 4. Dataset Construction Work-flow.

D. Neural Network

We propose to use a Multi Layer Perceptron (MLP) Neural
Network for classification. The objective of the NN is to
classify each patch into the SOM cluster the central pixel
belongs to. So, the number of input neurons of our NN is
the number of pixels in the patch (N ) and the number of
output neurons depends on the size of the SOM (S), as we



have one output for each possible classification (see Figure 5).
As we are doing classification, the output of the NN prediction
corresponds to the winning output neuron.

Fig. 5. Neural Network Model.

The training of the NN is done with the Back-propagation
algorithm in a batch process using the dataset previously
constructed (Figure 6).

Fig. 6. Neural Network Training Work-flow.

E. Color image recovery

Finally, after having the NN trained, we are able to colorize
a gray level image. The process of colorization (Figure 7)
consists of three main steps for each pixel of a gray level
image:

• Use the NN to predict the index in the codebook for the
pixel.

• Use the index and the codebook to obtain the U and V
components of the pixel.

• Join the L component from the gray image and the
predicted U and V components to obtain the final 3-
dimension pixel.

It is important to notice that because of the color reduction
performed, the final color image obtained will have a reduced
number of colors. The color space of the final image will
depend on the size of the SOM used.

III. USE CASE

In this section we present the implementation and usage of
our proposal. We use the Python language with the scikit-learn
library [14] for the NN classifier implementation and for the
SOM network we use an external library called sompy [15].
We have made all the code available in [16].

Realistically, the system is not to be used on arbitrary
images but to images from a class. This class of images would
be used to train the predictor, and can be portraits, outdoor

Fig. 7. Color Prediction Work-flow.

nature shots, architecture, etc. For this work, we selected the
”Open Country” image collection from the Label Me project
[17]

A. Dataset

The image collection consists of 410 jpeg-encoded 256 ×
256 color images. The images are exterior nature shots of
various landscapes: desert, mountain ranges, open fields, hills,
etc. The pictures vary greatly in quality, time of the day,
atmospheric conditions, height of viewpoint, and so on.

To get a manageable amount of data for training, we
randomly sampled pixels from all images. We processed 2500
pixels from each image, with associated patches, to construct a
1025000 elements dataset. We built 3 datasets using different
patch sizes: 3× 3, 5× 5 and 11× 11.

B. Color reduction

One of the key aspects of this step is the selection of the
number of output neurons of the SOM (size of the map).
This gives the number of different classes the colors will be
classified in. As lower the size, more different colors will
be classified in the same class, reducing the color range, but
it would reduce the target (or label) space for the following
neural network training. Then, we have a compromise between
an easier training in the neural network but a reduced number
of colors in the final output.

In our experiments we test different sizes for the SOM map:
9, 25, 100 and 400 neurons. For each size, we train the SOM
with the same dataset and we measure the quantization error.
The results can be seen in Table I.

TABLE I
SOMS TRAINING RESULTS

Number of
neurons Error

9 0.621739
25 0.4585945
100 0.19889
400 0.100954

As expected, as bigger the map size and the possible
classes, lower the error, as the classification can be done better.



However, it is also interesting to see how this color reductions
affect images of a test. Figures 8 and 9 show an image painted
with the color-vectors of different sized SOMs. Figure 8 shows
what we consider a ”good case”, in the sense that the reduction
of colors does not affect the color perception substantially. On
the other hand, Figure 9 depicts a ”bad case”, where a color
is so particular that it is lost in the color reduction.

(a) Original (b) 4 neurons (c) 9 neurons

(d) 25 neurons (e) 100 neurons (f) 400 neurons

Fig. 8. Examples of Color Reduction with Different SOM Size. Good Case.

(a) Original (b) 4 neurons (c) 9 neurons

(d) 25 neurons (e) 100 neurons (f) 400 neurons

Fig. 9. Examples of Color Reduction with Different SOM Size. Bad Case.

C. Neural Network training and calibration

An important factor in the system performance is the correct
selection of the NN configuration. The main configuration
parameters are the number and size of the hidden layers, and
the activation function. Also, the input and output sizes must
be selected. In our case, the input is given by the patch size,
and the output by the size of the SOM.

Preliminary tests showed that increasing the SOM above
some moderate size do not increase the quality of the colored

image noticeably. At the same time an increment in the SOM’s
size has a heavy impact on the training as it relates directly to
the output space. This leads to a much slower learning. Hence,
we selected to use a SOM of 9 neurons.

As the NN is used to perform classification, the rectified
linear unit activation function was used. The NN model
used was Multi Layer Perceptron Classifier, with learning
rate of 0.001. Several hidden layer configuration were tested:
single layer with 10, 50 and 100 neurons; and two layers
with 50, 100, 200 and 300 neurons each. We refer to these
configurations as 10, 50, 100, 50+50, 100+100, 200+200 and
300+300, respectively.

To evaluate the different NN configurations we performed
a grid search, testing each configuration against each patch
size. We trained over the dataset cross-validating with 50000
as the training sample size and 5000 as the test sample size. To
compensate for the varying frequency of labels in the training
output we used Stratified Shuffle Split (with 10 splits), which
attempts to maintain an homogeneous representation of labels
in each split.

The results can be seen in Table II. For each patch size and
Hidden layer configuration there are two number shown: the
training score, and the test score. A big difference between
both could indicate over-fitting. This is the case with the two
biggest networks, the 200+200 and 300+300 configurations.
It must be noticed that 50+50 and 100+100 configurations
achieve a lower score over the training set, but actually
perform better over the test set which is the true indicator
of the NN predictive power.

In the one-layer configurations, there are little differences
between the 50 and 100 scores, indicating that there is little
performance to be further extracted. The two-layer config-
uration perform better, but the performance decreases with
configuration bigger than 100+100, as indicated.

Bigger patch sizes do not improve predicting performance.
In fact, 11x11 patches perform noticeably worse.

As conclusion, the best balance of performance and NN
size is achieved with 3x3 patches and a NN with two layer
of 50 neurons each. Nevertheless, there is visual differences
between the images generated using 3x3 and 5x5 patches.
The former has higher chroma noise in some regions, where
adjacent pixels are assigned different colors. The later achieves
a smoother image. Thus, 5x5 is a valid option also, using more
computational power but generating slightly more appealing
images.

D. Results

Some predictions can be seen in Figure 10. The first column
is the original image. The second column shows the colors in
the image displaying the U and V channels and a fixed 50%
value for the L channel. The third column is the image in black
and white, this is, only the L channel. The fourth column is
the colors as predicted by the NN from the gray-level image
(again the U and V channels with a fixed 50% L channel).
The last column is a full predicted image using the predicted



TABLE II
TRAINING AND TEST SCORES FOR TRAINING THE NN WITH DIFFERENT PATCH AND HIDDEN LAYER SIZES

Patch size Hidden layers
10 50 100 50+50 100+100 200+200 300+300

3x3 0.376 / 0.371 0.383 / 0.379 0.387 / 0.378 0.419 / 0.409 0.429 / 0.405 0.474 / 0.402 0.497 / 0.399
5x5 0.349 / 0.346 0.370 / 0.367 0.373 / 0.366 0.423 / 0.407 0.444 / 0.403 0.513 / 0.382 0.549 / 0.384
11x11 0.312 / 0.309 0.353 / 0.347 0.345 / 0.328 0.401 / 0.383 0.416 / 0.383 0.433 / 0.376 0.417 / 0.365

(a) Original (b) Original UV (c) Gray Level (d) Predicted UV (e) Predicted image

(f) Original (g) Original UV (h) Gray Level (i) Predicted UV (j) Predicted image

(k) Original (l) Original UV (m) Gray Level (n) Predicted UV (o) Predicted image

Fig. 10. Examples of predictions.

U and V channels combined with the gray-scale L image from
the original.

The image 10e is reasonably good. Comparing the colors in
figures 10b and 10d we can see it correctly separated ground
level from sky, with some differences. The clouds are more
desaturated (gray clouds vs. blueish), and applied a yellowish
color to the crop. Both changes are reasonable guesses to the
original colors.

In Figure 10j can be seen how the predictor correctly tinted
the sky reflection blue. It again preferred a yellowish tint.
Some color bleeding into adjacent areas can be observed.

Figure 10k is a very difficult picture. It has a very rare view
of a cloud bank from above. The predictor incorrectly tinted
the cloud blue (as either water or sky). It also tinted the snow
green/yellow. This suggest that snow scenes should be trained
separately.

IV. CONCLUSIONS AND FUTURE WORK

In this work we design and develop a methodology, strongly
based on neural networks, to colorize gray level images. Our
proposal consists on a series of steps to finally obtain a trained
neural network which predicts the color of a gray level pixel.
The methodology joins two main ideas from previous works:
color reduction using vector quantization and using a group
of neighboring pixels to predict the color of a single pixel.

We implement the methodology and test it with an open set
of images. In our opinion the results are good and promising
although the prediction scores obtained are below the 50%. To
a human eye the images obtained show good results and have
colors close to the intuition. As the prediction highly depends
on the set of training images, the images more similar to the
training set show better results than those more different. This
proposal is a work in progress and we are convinced that with



more extensive tunning and precise configuration the results
will improve. Nevertheless, we believe that the methodology
proposed is an interesting first step towards colorizing images
without the need of heavy image processing algorithms.

In addition to better tunning, future work includes more tests
with different patch sizes and SOM sizes. In particular, the size
of the SOM is an important aspect to improve, as the colors
obtained depends on the size of the SOM used. Our results
are for small SOMS and the images obtained lack of a full
color range, but bigger SOMs makes the neural network much
more difficult to train. The presented experiments and results
are for a single use case, experimenting with more image sets
of different classes is another aspect to improve.

Finally, a possible improvement to the methodology to try
as future work is to consider the position of the pixel as a a
feature to train the NN.

REFERENCES

[1] W. Markle and B. Hunt, “Coloring a black and white signal using motion
detection,” Jul. 5 1988, uS Patent 4,755,870.

[2] T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring color to
greyscale images,” in ACM Transactions on Graphics (TOG), vol. 21,
no. 3. ACM, 2002, pp. 277–280.

[3] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimization,”
in ACM transactions on graphics (tog), vol. 23, no. 3. ACM, 2004,
pp. 689–694.

[4] R. Ironi, D. Cohen-Or, and D. Lischinski, “Colorization by example.”
in Rendering Techniques, 2005, pp. 201–210.

[5] L. Yatziv and G. Sapiro, “Fast image and video colorization us-
ing chrominance blending,” IEEE Transactions on Image Processing,
vol. 15, no. 5, pp. 1120–1129, 2006.

[6] Z. Cheng, Q. Yang, and B. Sheng, “Deep colorization,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
415–423.

[7] G. Larsson, M. Maire, and G. Shakhnarovich, “Learning representations
for automatic colorization,” arXiv preprint arXiv:1603.06668, 2016.

[8] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” arXiv
preprint arXiv:1603.08511, 2016.

[9] J. Hwang and Y. Zhou, “Image colorization with deep convolutional
neural networks,” Stanford University, Tech. Rep., 2016. [Online].
Available: http://cs231n.stanford.edu/reports2016/219 Report.pdf

[10] J. Yoo and S.-Y. Oh, “A coloring method of gray-level image using
neural network,” in Proceedings of the 1997 International Conference
on Neural Information Processing and Intelligent Information Systems,
vol. 2, 1997, pp. 1203–1206.

[11] ISO/CIE 11664-5:2016 - Colorimetry – Part 5: CIE 1976 L*u*v* colour
space and u’, v’ uniform chromaticity scale diagram, International
Organization for Standardization, Geneva, Switzerland. Std., 2016.

[12] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on communications, vol. 28, no. 1, pp. 84–
95, 1980.

[13] T. Kohonen, “Self-organized formation of topologically correct feature
maps,” Biological cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[15] V. Moosavi, S. Packmann, and I. Vallés, “SOMPY: A Python
Library for Self Organizing Map,” 2016. [Online]. Available:
https://github.com/sevamoo/SOMPY

[16] M. Richart, J. Visca, and J. Baliosian, “Source code for image
colorization with neural networks.” 2017. [Online]. Available: https:
//github.com/mrichart/NNcoloring

[17] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal
of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001. [Online].
Available: http://dx.doi.org/10.1023/A:1011139631724


