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Abstract—Network slicing has recently been proposed as one of
the main enablers for 5G networks. The slicing concept consists of
the partition of a physical network into several self-contained logical
networks (slices) that can be tailored to offer different functional or
performance requirements. In the context of 5G networks, we argue
that existing ubiquitous WiFi technology can be exploited to cope
with new requirements. Therefore, in this paper, we propose a novel
mechanism to implement network slicing in WiFi Access Points. We
formulate the resource allocation problem to the different slices as
a stochastic optimization problem, where each slice can have bit
rate, delay, and capacity requirements. We devise a solution to the
problem above using the Lyapunov drift optimization theory, and
we develop a novel queuing and scheduling algorithm. We have
used Matlab and Simulink to build a prototype of the proposed
solution, whose performance has been evaluated in a typical slicing
scenario.

Index Terms—5G, Quality of service, Stochastic optimization,
Wireless LAN, Wireless network slicing, Resource management.

I. INTRODUCTION

Network Slicing is a new network paradigm developed within
the context of recent 5G networks, which proposes the parti-
tion of the physical network infrastructure into multiple self-
contained logical (or virtual) networks called slices. Using this
paradigm, the infrastructure owners can allocate resources to
service providers (tenants), creating dynamic and on-demand
resource slices. The tenants have complete control over those
resources, and they use them to satisfy their client demands.
Also, 5G networks are designed to be multi-technology, and they
are being deployed to work with already existing infrastructures.
In this context, the available IEEE 802.11 (WiFi) infrastructure,
which is massively deployed, can be used to leverage 5G
capabilities. In this paper, we focus on the WiFi technology, for
which slicing has not been thoroughly studied [1], regardless of
its doubtless relevance.

There have been recent advances in standardized specifications
by the 3GPP organization for 5G systems. In [2] the most relevant
network slicing requirements are identified, describing that slices
may be tailored to provide different functional requirements
but also may have different performance requirements. In this
work, we focus specifically on performance requirements, and we
elaborate on how it could be implemented in WiFi Radio Access
Networks (RANs). We define this slicing strategy as Quality-
of-Service Slicing (QoSS): slices supporting different services
and ensuring their Quality of Service (QoS), regardless of the
required resources. For example, a slice can be created to assure
a minimum guaranteed latency or to provide a minimum guar-
anteed bandwidth to a given service. In particular, the approach
followed is to consider the QoS requirement of a slice as the

QoS guaranteed to each traffic flow1 within the slice. We deem
this approach as more interesting for a tenant who asks a QoS
guarantee for its clients. This is consistent with current design
definitions in 5G, where the concept of QoS flows is introduced
[3]. However, there exist other approaches in the literature where
performance guarantees are requested for the entire slice and not
for each flow [4].

In this regard, achieving performance guarantees in wireless
networks is challenging mainly because of the variability of
wireless links’ capacity and because of limited resources. In
wireless communications, the capacity of the link depends on the
Signal-to-Interference-plus-Noise Ratio (SINR) and the available
bandwidth of the link. The SINR depends mainly on the trans-
mission power, the attenuation of the signal while it crosses the
wireless medium, the noise, and the interference. As lower is
the SINR at a receiver, lower is the maximum data rate at which
the receiver can decode a signal. Hence, for a given wireless
communication, the transmission data rate is variable over time
due to, for example, the distance between transmitter and re-
ceiver, the location of the interferers, or the obstacles in between
communicating nodes. Besides, the available radio spectrum is
not only limited by technology, but it is also regulated. This
implies a bound on the bandwidth of the wireless channel that
can be used and limits the possibilities to be increased, in contrast
to the usual deployment of wired networks.

Consequently, to guarantee any performance requirements, a
dynamic resource provisioning strategy is needed. In this work,
we propose a slicing solution that considers the transmission time
(airtime) as the resource to share, and it modifies the packet
queuing and scheduling of the WiFi Access Points (APs), to
control the airtime that is allocated to the different slices. In
particular, the proposed solution seeks to provide a minimum
guaranteed transmission bit rate and guaranteed maximum queu-
ing delay at the AP. The solution is designed by formulating the
guaranteed bit rate and bounded queuing-delay slicing problem as
a stochastic optimization problem, where the channel conditions
and the arrival rates are unknown stochastic processes. Our
solution applies the drift-plus-penalty methods described in [5],
which is based on the Lyapunov Optimization Theory. This
method permits to obtain an equivalent deterministic problem,
which provides an approximate solution.

We perform this by extending our previous work on airtime
slicing [6], [7] and guaranteed bit rate slicing [8] in WiFi APs.
The main differences of this work with [8] are threefold:

1) We add a new QoS guarantee to the system model, a delay
bound to every packet of a flow.

1A traffic flow is a stream of packets sent between a given source and
destination. For example, a flow in an IP network is identified by the source
and destination IP addresses and the source and destination ports.
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2) We also add a capacity limit to the slices, to restrict the
slice’s resource consumption.

3) The solution is evaluated on an extended scenario, with
slices with different QoS requirements, and flows with
different traffic patterns.

The rest of the paper is organized as follows: in Section II,
we review the state of the art in wireless slicing and scheduling
mechanisms; in Section III we describe our system and QoS
guarantees models. Section IV depicts the problem formulation
as a stochastic optimization problem, and in Section V we
propose a solution based on the Lyapunov Optimization Theory.
In Section VI, we propose a mechanism to guarantee isolation
when the channel conditions do not permit to guarantee the
required performance, while in Section VII we discuss several
considerations concerning the implementation of our solution for
WiFi technology. In Section VIII we present an experimental
evaluation of our solution. Finally, in Section IX we conclude
the paper, identifying some aspects that will be tackled in our
future research.

II. BACKGROUND AND RELATED WORK

A. Quality of Service in WiFi Networks
Even though network slicing is a rather new concept, the prob-

lem of providing Quality of Service in IEEE 802.11 networks
has been thoroughly studied during the last twenty years. In this
sense, although in radio access networks the most predominant
traffic is downlink (from the AP to the stations), most of the
research on this subject has focused on providing QoS on
the uplink (the transmissions from the stations to the AP), or
between stations [9]. This is because WiFi networks have been
traditionally seen as an extension of the wired local area network,
and not as an Internet access alternative. Moreover, in many
of those previous works, QoS provisioning is based on service
differentiation and prioritization, but not on performance guaran-
tees. Regarding bit rate (or throughput) guarantees for traffic from
stations to the AP, the works of Banchs et al. [10], [11] are worth
mentioning. They foster throughput guarantees utilizing access
management schemes, controlling the Contention Window (CW)
size. Differently, in our proposal, we only consider traffic from
the AP to the stations, and our objective is to guarantee, at the
AP, a minimum bit rate to each downlink flow of a slice.

Regarding delay control, one of the main components affecting
packet delay in a network is queuing. Queuing delay is caused
by the accumulation of packets in a queue, originated by the
difference between the arrival and departure rates of packets
and is affected by two main factors: the arrival and departure
traffic rates and the formation of persistent queues because of
traffic bursts. If the arrival rate is continuously higher than the
departure rate, queues will build-up, and the delay would increase
to infinity. Nevertheless, in more benevolent situations, queues
can also introduce delays if, after a traffic burst, the queue is not
completely emptied. This problem is called the persistent full
buffer problem or bufferbloat [12], and is one of the main causes
of queuing delay in the network edge. Moreover, in wireless
networks, persistent queues can also be formed because of the
burstiness of departures, since they use a shared medium and
also due to the variable bit rate of the wireless transmissions.
This makes queues to accumulate packets while waiting for a
transmission opportunity and, consequently, to send them all in
a burst when access to the medium is granted. Hence, controlling
queuing delay implies keeping the length of the queues, yet

taking into account all the above considerations. Notice that if
the queue length is too short, the delay could be reduced, but
at the cost of high packet loss and so throughput reduction.
On the other hand, with too long queues, no packets would be
lost, maximizing the throughput, but leading to excessive delays.
In this regard, some approaches have dealt with bufferbloat in
WiFi by controlling the queue length through Active Queue
Management (AQM) techniques [13]. AQM mainly consists of
intelligently dropping packets to avoid queues to grow indef-
initely. In general, the main objective of AQM is to reduce
network congestion by signaling (either implicitly, by dropping
packets, or explicitly, by sending special packets) the sender to
reduce the flow rate. Nevertheless, AQM has also a clear impact
on queuing delay. However, AQM techniques have proved not
to achieve good latency reductions in WiFi [14] because of the
queuing at the lower layers of the WiFi stack. Therefore, the
work in [15] implements a queue management mechanism at
the queuing structure of the lower layers. The objective of this
work is to reduce queuing delay while achieving airtime fairness.
Nevertheless, it does not provide a bounded delay guarantee, nor
it considers the slicing concept.

A different approach to provide QoS guarantees (particularly
bit rate and delay) in wireless networks is to manage how the
packets are scheduled for transmission. In the context of schedul-
ing algorithms, in the last twenty-five years, the concept of
opportunistic scheduling has been thoroughly studied to provide
QoS guarantees [16]. These schedulers take advantage of physi-
cal layer information, such as the client channel capacity or local
system information, such as the queue lengths. Nevertheless, all
of the existing works have concentrated on theoretical proposals
or cellular technologies, but, to the best of our knowledge,
they have overlooked WiFi. In [17], a scheduler called Modified
Largest Weighted Delay First (M-LWDF) is proposed to achieve
average delay guarantees to traffic flows. The method is based
on scheduling the packet with the largest product of queue
length and transmission rate. A similar approach is proposed
in [18], where users are prioritized based on an exponential
formula using queue length and transmission rate. In [19], an
approach is discussed where the scheduling function is based on a
logarithmic expression of the queue lengths and the transmission
rate. In [20], a scheduler is proposed where each QoS flow
receives a fixed average throughput per slot, but other QoS
objectives such as delay are not considered. However, most
of those works consider priorities between different services,
and the objective is to reduce the latency of the high priority
flows. Conversely, in the slicing scenario, all slices are equally
important but have different QoS requirements, which all have
to be guaranteed simultaneously.

On the other hand, the work from Michael J. Neely on
opportunistic scheduling [5], [21] shares some similarities with
the works previously mentioned, but has some particular char-
acteristics which make it more adequate for the slicing problem.
The approach followed by Neely is to formulate the scheduling
problem as a stochastic optimization problem, where the channel
conditions and the arrival rates are unknown stochastic processes.
Then, using the Lyapunov Optimization Theory, an optimization
framework is proposed to solve this problem. The framework
permits to obtain an equivalent deterministic problem, which pro-
vides an approximate bounded solution to the original stochastic
one. This scheme provides the advantage that if the scheduling
problem can be formulated as an optimization problem, a set of
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theoretic tools can be applied, and an approximate solution can
be obtained. Even more, the distance between the optimal solu-
tion and the approximate solution is bounded by an adjustable
parameter.

B. Slicing in WiFi Networks

Regarding slicing, some works have dealt with this particular
issue in WiFi deployments. However, most of those works
concentrate on what we call Infrastructure-Sharing Slicing. In
this paradigm, the objective is to split and allocate network
resources into slices, proportionally to a requested ratio of
resources or priority, but performance guarantees are not consid-
ered. For example, the works [22], and [23] propose a framework
based on Software Defined Network (SDN) to share a WLAN
infrastructure through slicing. Moreover, during the last years,
several works [24], [25], [26], [27], [6], [7], [28], [23] have
proposed different solutions where Infrastructure-Sharing Slicing
is achieved through the allocation of airtime ratios to each
slice. Nevertheless, none of them consider QoS guarantees. A
different approach is followed in [4], where the authors propose
a scheduling mechanism with feedback control, to guarantee
throughput ratios among slices. The proposal splits the total
transmitted bytes of an AP into ratios, requested by the different
slices. However, it also does not guarantee any performance to
the slices. An extensive review of recent proposals for slicing in
WiFi can be found in our previous paper [1].

C. Contributions

One of the main contributions of the work presented here is
to consider the QoS Slicing problem as a stochastic optimization
problem. We develop a system model and formulate the guar-
anteed bit rate and bounded queuing delay slicing problem as a
stochastic optimization problem. After applying the Lyapunov
Optimization Theory, we were able to build a very efficient
scheduling algorithm from the obtained solution. However, the
application of this approach to WiFi technology would not be
possible without two other crucial mechanisms, developed in this
work, which stand out as the main differences of our proposal
with previous works on opportunistic scheduling.

First, given that scheduling in WiFi is not based on time
slots, we needed to develop a mechanism to appropriately adapt
the proposed scheduler. For this, we extended the approach
originally introduced in [7]. It is based on a system that mimics
a time-slotted solution, and it also provides feedback on the
consumed airtime, which is crucial to calculate the actual channel
capacity. Secondly, as the adopted theory does not consider
cases when there is not a feasible solution (lack of resources),
we introduce in this work the design and implementation of a
mechanism to detect and correct unfeasible situations. In WiFi,
because of the transmission medium characteristics, unfeasible
cases may emerge during the scheduling process. Therefore, we
have implemented a solution to tackle this issue (see Section VI).
Furthermore, we use the queuing model proposed in our previous
work, [7], which considers the particularities of the hardware
behavior to avoid queue buildup at lower layers and to allow
packet aggregation.

Finally, the main differences of the proposal discussed here-
with from previous works on WiFi slicing is that it does not
modify or tamper low-level MAC parameters, neither it needs
feedback from the medium nor the stations to achieve the

required allocation. It only requires information on the consumed
airtime, which can be obtained from the hardware driver.

III. SYSTEM MODEL

As already mentioned, our objective is to implement QoS
Slicing on WiFi APs by dynamically allocating the necessary
resources to the different slices. We devise the problem of
guaranteeing a minimum bit rate to each client of a slice jointly
with providing an upper bound on the queuing delay, as a
dynamic resource allocation problem that can be optimized. For
this, in our approach, we only consider downlink traffic, i.e.,
traffic from the AP to the clients. In this section, we define
the network and system model to be used in the optimization
problem formulation.

A. Dynamic Airtime Allocation
Regarding practical considerations, we assume that the traffic

arrival rate to the different slices and clients is an unknown
stochastic process. Moreover, we also assume that the AP is
operating in a stochastic environment, which is difficult to
model, so we consider it unpredictable and uncontrollable. In
particular, given the medium access control of WiFi, we assume
the existence of interference and congestion in the wireless
medium, which may cause transmission waiting times as well as
the possibility of packet collisions and/or packet losses. This may
trigger the WiFi back-off procedure and packet retransmission,
thus resulting in longer transmission times. In this scenario, to
tackle all the wireless channel uncertainties mentioned above,
we adopt the airtime allocation mechanism from our previous
work, [7]. The approach followed is to implement dynamic
allocation based on airtime control by modifying the Adaptive
Time-Excess Round Robin (ATERR) algorithm presented in [7].
Briefly, ATERR follows a round-robin scheduling based on a
given quantum of time. The quantum is a configurable parameter
that controls how much airtime is allocated to each client in a
round. When a packet is transmitted, the difference between the
airtime consumed by the packet and the quantum is registered
in a time-excess variable. Packets from the scheduled client are
transmitted until the excess surpasses the quantum value and
then, the algorithm moves to the next queue in a round-robin
manner. Given that in WiFi the transmissions are made in frames,
it is very likely that the size of a quantum does not exactly match
a given number of frames. Then, in ATERR, the additional time
consumed in one assignment is decremented from the next round.

This airtime resource allocation strategy followed by ATERR
implements static allocation in that it just fulfills the allocation
requests it receives. It allocates a fixed amount of resources only
based on the requested ratio of each slice, which, given the
characteristics of the wireless medium, makes it impossible to
guarantee any performance metric. In other words, it does not
consider the possibility of adapting the resource allocation to
the different slices based on the achieved throughput or delay
of the slice’s traffic. Therefore, to be able to implement slices
that guarantee some performance requirements, it is necessary
to dynamically allocate airtime based on the current channel
conditions. Moreover, with an airtime-based allocation, all the
possible variations of the unknown environment are accounted
in the airtime, providing an exact measurement of the time
consumed in a transmission (see [7]). Hence, all the unknown
variables from the medium that may affect our system are
contemplated in the allocated airtime.
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Accordingly, in this work, the approach is to modify ATERR
to use the same fixed quantum size for every client. Then, it
becomes possible to have a slotted transmission, with the differ-
ence that slots are of variable length, but leveraging a mechanism
that yields, in the long run, the correct airtime assignment. In
this sense, for a QoS Slicing solution, we need to develop a
mechanism that selects the client to schedule for transmission on
each time slot. To be able to perform this scheduling strategy, we
also adopt the queuing structure proposed in [7] consisting of a
queue per client and per slice. The scalability of this approach has
been partially evaluated in [7], where a scenario with 30 queues
is successfully tested. Furthermore, we consider that the proposed
scheduling scheme would not hinder the system scalability, since
the buffer capacity at the AP would likely be a much more
limiting factor.

Finally, given the previous system model, let us consider the
following parameters for a given AP:
• Let S be the set of slices instantiated in the AP, such that
| S | is the number of slices defined in the AP.

• Let us consider that the slice s ∈ S serves a set of clients
Ns where | Ns | is the total number of clients in slice s.
We identify a client n ∈ Ns with the couple (n, s).

• Ks is the minimum bit rate requirement, which must be
guaranteed to every client of the slice s.

• Hs is the slice s capacity limit, given as a ratio of the total
resources.

• An,s(t) is the arrival rate of the client n of slice s in time
slot t. This rate is dynamic and evolves with time, but we
assume it is invariant within a time slot.

• Cn,s(t) is the channel capacity between the AP and the
client n of slice s in time slot t. This capacity is variable,
and it depends on the channel conditions, but we assume to
be invariant within a time slot. We also assume this is not
the maximal theoretical capacity but a measured capacity
which includes all the possible delays introduced by the
unknown wireless environment.

From this time forth, because of space constraints, when a
formulation applies for all clients of all the slices, we omit the
expression ∀s ∈ S, ∀n ∈ Ns when possible.

B. Bit Rate Modelling
As previously stated, one of the proposed objectives of our

QoS Slicing approach is to guarantee a minimum bit rate to
each client of a slice. In this regard, the problem is to find a
control algorithm that decides how the AP should schedule the
transmissions to the different clients to guarantee that each of
them receives the minimum bit rate ensured by the corresponding
slice.

Therefore, we first clearly define how we consider these bit
rate guarantees. Let us first observe that the bit rate obtained by
a client mostly depends on two factors: the channel capacity and
the amount of time the AP transmits to that client. Therefore,
we have that the bit rate to a client n of slice s, in time slot t,
is given by:

Rn,s(t) = Cn,s(t)× xn,s(t) (1)

where xn,s(t) is the proportion (or ratio) of the time slot t
assigned for transmitting to client n of slice s. Note that Cn,s(t)
and Rn,s(t) are respectively the channel capacity and the bit rate
measured in bits per slot (for a generic time slot size). Therefore,
Rn,s(t) also represents the amount of data transmitted to client n

of slice s in time slot t. Also, note that from the previous model
description we have defined that the scheduler will assign the
entire slot to just one client, then we have that xn,s(t) ∈ {0, 1}
The problem to solve is thus finding, for all time slots t and all
clients, the assignments xn,s(t) that satisfy the slice requests.

In this proposal, we consider slice requests consisting of a
minimum average bit rate to be assured to each client of the
slice. Therefore, the problem is to guarantee that the average
bit rate of each client (Rn,s) would be within an interval of
the requested average bit rate Ks. In other words, we propose
an approach based on three parameters that define the slice’s
request: Ks, ∆s and Ws. A slice tenant requests a minimum
bit rate identified by Ks (in this work, we assume the bit rate
measured in bits per slot, but the agreement can be defined in
any metric previously settled), being what the tenant expects to
be guaranteed by the provider. Also, to provide flexibility to the
provider, it is possible to define a tolerance ∆s, which measures
the possible maximum deviation from the expected minimum bit
rate. This parameter is also measured in bits per slot. Last, Ws

is a time window over which the average bit rate is computed
and where the minimum bit rate plus the deviation must be
guaranteed. Hence, it is required that in a time window of size
Ws every client n of the slice s receives, on average, a bit rate
in the interval (Ks −∆s, Ks + ∆s).

Nevertheless, as already mentioned, Rn,s(t) is a random
(or stochastic) process, because the channel capacity varies
randomly, depending on several factors. Accordingly, for our
optimization problem formulation, where the objective is to find
a resource allocation policy which can guarantee a minimum
average bit rate, we consider the expected time average of the
bit rate2, defined as:

Rn,s = lim
t→∞

1

t

t−1∑
τ=0

E{Rn,s(τ)} (2)

= lim
t→∞

1

t

t−1∑
τ=0

E{Cn,s(τ)xn,s(τ)} (3)

Note that considering the expected average rewards is a classical
utility function in infinite-horizon stochastic decision problems
[30]. The objective is that the obtained solution converges to the
required bit rate to respect the requested average bit rate within
the indicated time window Ws.

C. Delay Modelling

As a delay guarantee, we propose to consider an upper bound
on the delay of every packet. To achieve this objective, we
adapted the approach described in [21], where the solution jointly
manages the queue and the scheduler3. In summary, our proposed
model manages two decision parameters (on each time slot)
to guarantee that the delay of each packet is below a given
threshold:
• select the next queue to schedule for transmission,
• drop packets from the head of the queues (the number of

packets to drop is part of the decision).

2We refer the reader to the supplementary material [29] where it is shown that
the proposed solution with this bit rate modeling approach yields the requested
slice’s guarantees under some necessary conditions.

3The work in [21] considers the possibility of rejecting incoming packets from
the upper layers. In our solution, we disregard this possibility, as this would move
the delay problem to the upper layers.
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As already analyzed in Section II, one major factor in the
queuing delay is the queue length. Hence, it becomes necessary
to model the queue dynamics to consider its length on the
problem formulation. Considering the possibility of dropping
packets at the head of the queues, the queues’ dynamics can
be expressed as:

Qn,s(t+ 1) = [Qn,s(t)−Rn,s(t)−Dn,s(t)]
+ +An,s(t) (4)

where [·]+ = max{·, 0} and where Rn,s(t), Dn,s(t) and An,s(t)
is the amount of data transmitted, dropped and received, respec-
tively, in slot t.

1) Persistent-Service Queues: To achieve bounded delay guar-
antees, we consider ε-persistent service queues into the problem.
These queues are virtual, and they do not represent real network
queues, but add new constraints to the problem to assure delay
guarantees. These new virtual queues are defined by the follow-
ing update equation for each client n of every slice s:

Zn,s(t+ 1) ={
[Zn,s(t) + εn,s −Rn,s(t)−Dn,s(t)]

+ if Qn,s(t) > 0

[Zn,s(t)−Dn,s(t)−Rmaxn,s ]+ if Qn,s(t) = 0
(5)

where εn,s are pre-defined constants.
In [29] we demonstrate that bounded delay is guaranteed by

any control algorithm that maintains the size of both queues
Qn,s(t) and Zn,s(t) bounded by finite maximums: Qmaxn,s and
Zmaxn,s , respectively. Even more, a bound for the delay is given by

the constant Wmax
n,s =

⌈
Qmax

n,s +Zmax
n,s

εn,s

⌉
. Intuitively, the ε-persistent

service queue allows having a virtual queue that always has
“incoming traffic”, so guaranteeing a bound on its length, jointly
with the real data queues, permits to have an upper bound on the
delay.

Then, with this approach, the guaranteed bounded delay
problem is transformed into a problem of bounding queues.
Therefore, the QoS Slicing formulation we are developing needs
to include this requirement of queue bounds to bound the delay.

D. Slice Capacity Limit

Given that a fundamental aspect of network slicing is to
provide isolation between slices when resources are scarce, our
model includes the possibility to define a limit Hs on the relative
allocation of resources to a slice s. In the context of our work,
this parameter represents an upper bound on the average airtime
consumption of a slice. For example, a slice may be limited to
use only, on average, a third of the total available airtime at a
particular AP. However, to use resources efficiently, we regard
this parameter as a soft limit, in the sense that it could be violated
when more airtime could be used without affecting other slices.

This limit can be negotiated with the slice tenant as part of the
QoS agreement, depending on the required service or the type
of users and/or traffic of the slice. This would provide the tenant
an extra guarantee that in the event of having scarce resources at
the AP, if the capacity limit is not surpassed, its QoS guarantees
will be respected.

Let us consider Xs(t) =
∑
n∈Ns

xn,s as the airtime ratio
allocated to slice s on time slot t. Then, following the expected
average approach used in this model, we define the expected time

average allocated airtime ratio to a slice s which will be limited
by Hs as:

Xs = lim
t→∞

1

t

t−1∑
τ=0

E{Xs(τ)} (6)

IV. PROBLEM FORMULATION

Based on the previously described model, the problem is to
find, for every slot t, the assignment vector, x(t) = [xn,s(t) |
s ∈ S, n ∈ Ns], which guarantees that all slices’ requests are
satisfied. Therefore, we can formulate an optimization problem
to find the resource allocation and drop decisions for maximizing
the average expected total throughput of the AP and respecting
the bit rate and airtime limits constraints.

Considering a system where the queues are stable, the through-
put (measured in bits per slot) in a time slot t can be expressed
as the amount of arrived data minus the amount of data dropped
in slot t. We thus define our throughput function as:

un,s(t) = An,s(t)−Dn,s(t), (7)

and its expected time average as:

un,s = lim
t→∞

1

t

t−1∑
τ=0

E{un,s(τ)}. (8)

However, to consider fairness in the dropping decisions, we
define the following fair utility function, which approximates
proportional fairness (as suggested in [31]):

φ(u(t)) =
∑
s∈S

∑
n∈Ns

log(1 + ωun,s(t)). (9)

for some constant ω > 0 and where u(t) is the vector of
throughputs. Note that with this utility function, we are indeed
minimizing the packet drops in relation to the arrival rates.

Then, we can formulate a stochastic optimization problem that
maximizes the average expected total throughput subject to the
bit rate, queue stability and airtime consumption constraints:

maximize
x,D

φ(u) (10)

subject to Rn,s ≥ Ks, (11)

Xs ≤ Hs, (12)

Qn,s <∞, (13)

Zn,s <∞, (14)
0 ≤ un,s(t) ≤ Amaxn,s , (15)
xn,s(t) ∈ {0, 1}, (16)∑
s∈S

∑
n∈Ns

xn,s(t) ≤ 1, (17)

0 ≤ Dn,s(t) ≤ Dmax
n,s . (18)

where
φ(u) =

∑
s∈S

∑
n∈Ns

log(1 + ωun,s). (19)

In this optimization problem the objective is to find the trans-
mission airtime assignments xn,s(t) and the dropping decisions
Dn,s(t) to maximize the total average expected throughput. Note
that x = {x(1), ...,x(t), ...} and D = {D(1), ...,D(t), ...} are
the vectors of assignment and dropping decisions for all clients
in all slots.
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Constraint (11) considers the minimum average expected bit
rate Ks of each slice. It represents, in fact, a set of constraints,
since there is a bit rate requirement for each client of each
slice. Constraint (12) limits the average airtime ratio assigned
to each slice to its capacity limit Hs. Constraints (13) and (14)
are the stability conditions for the packet and the ε-persistent
service queues, respectively. Constraint (15) guarantees that the
objective function is non-negative, by not dropping more packets
than those that had arrived. Both (16) and (17) ensure that
assigned resources do not surpass the available ones, by limiting
the possible values of the x variables. Finally, constraint (18)
limits the amount of data to drop at each time slot.

Note that in the problem formulation we have assumed a
known maximum on the arrival rate per slot, An,s(t) ≤ Amaxn,s

and we have also consider bounds on the dropping decisions,
0 ≤ Dn,s(t) ≤ Dmax

n,s , so that Dmax
n,s is the maximum amount of

data that can be dropped in one slot. Finally, it is also important
to note that there exists a maximum transmission rate given by
Rmaxn,s = Cmaxn,s (the maximum capacity of the channel).

V. PROPOSED SOLUTION

Our proposal consists of solving the previous stochastic prob-
lem by applying the drift-plus-penalty method described in [5].
This method allows us to build a new deterministic problem,
which provides an approximate solution to the original one. Even
more, such a solution can be made arbitrarily close to the optimal
one, but with a trade-off on how constraints are fulfilled. For
the proposed solution, we assume that the problem is feasible.
That is, there exists an airtime allocation that satisfies all the
problem constraints. Namely, we assume that slices’ bit rate and
delay requests can be fulfilled with the available resources. We
argue that this is a valid assumption, as it is possible to have
a previous mechanism of slice access control and a procedure
to adapt slices when more resources than those available are
needed. In particular, in Section VI, we develop a mechanism to
deal with unfeasible situations.

A. Problem Transformation
Since problem (10)-(18) consists of the optimization of a con-

cave non-linear function of time averages, we need to transform
it, before applying the drift-plus-penalty method. This problem
differs from the problem formulation needed to apply the method
as it involves the optimization of a function of time averages.
As the proposed function φ(u(t)) is not linear, in general, it
is not the same to maximize a time average of a function than
to maximize a function of time averages. Therefore, we follow
the auxiliary variable technique described in [5], to adapt the
formulated problem into a traditional time average optimization
problem.

With this technique, the stochastic network optimization prob-
lem (10)-(18) can be transformed using a vector of auxiliary
variables γ(t) = [γn,s(t) | s ∈ S, n ∈ Ns], which are chosen
at every slot, according to the constraints 0 ≤ γn,s(t) ≤ Amaxn,s .
The modified problem is therefore:

maximize
x,D

φ(γ) (20)

subject to (11)− (14), (21)
γn,s ≤ un,s, (22)
0 ≤ γn,s(t) ≤ Amaxn,s , (23)
(16)− (18). (24)

where

φ(γ) = lim
t→∞

1

t

t−1∑
τ=0

E

{∑
s∈S

∑
n∈Ns

log(γn,s(τ))

}
(25)

Intuitively, we can explain the previous transformation as
follows. First, it is worth noting that the original constraints are
a subset of the new ones, so any solution to the transformed
problem will also satisfy the original constraints. Suppose we
have decisions x∗(t) and D∗(t), which are a solution to the
original problem. Let u∗ be the expected utilities obtained
by the clients under those decisions, which yield a maximum
utility value φ(u∗) = φopt. Then, we can build a solution
to the transformed problem with the same x∗(t) decisions,
selecting γ(t) = u∗ for all t. Note that this solution satisfies
constraint (22), as we enforce equality, and new constraint (23)
equals (15). As γ(t) = u∗ is enforced for all t, we have
that φ(γ) = φ(u∗) = φopt. Hence, we have a solution to the
transformed problem with optimal value φopt, which is also a
solution to the original problem. Therefore, a solution to the
transformed problem ensures that the constraints of the original
problem are satisfied, and it obtains a utility that approximates the
original problem utility, as constraint (22) is forced to equality.
In our supplementary material [29], we show the distance of the
obtained solution to the optimum.

B. Application of the Drift-Plus-Penalty Approach

To solve the problem (20)-(24) using the drift-plus-penalty
method, we first transform the constraints into queue stability
problems. For constraints (11), (12) and (22) we define virtual
queues, with update equations:

Gn,s(t+ 1) = [Gn,s(t)−Rn,s(t) +Ks]
+ (26)

Us(t+ 1) = [Us(t) +Xs(t)−Hs]
+ (27)

Yn,s(t+ 1) = [Yn,s(t) + γn,s(t)− un,s(t)]+ (28)

As already mentioned for the ε-persistent queues, these queues
are virtual and so do not represent real network queues. Intu-
itively, they can be seen as queues that accumulate the difference
between the required and the obtained performance. By ensuring
stability on these three queues and on the already described
Qn,s(t) and Zn,s(t) queues, we guarantee that the constraints
(11)-(14) and (22) are met4.

Then, the drift-plus-penalty strategy consists of minimizing all
these queue’s backlogs, as well as minimizing a utility function
called penalty. As in our case, we have a reward maximization
rather than a penalty minimization; we consider the opposite
of our utility function φ(γ(t)) as a penalty. Let us consider
Θ(t) = [Q(t),Z(t),G(t),U(t),Y (t)] as the concatenated vec-
tor of queue backlogs. Then, a Lyapunov function can be defined
as a measure of the length of all the queues:

L(Θ(t)) =
1

2

∑
s∈S

∑
n∈Ns

Gn,s(t) +
1

2

∑
s∈S

∑
n∈Ns

Qn,s(t)+

1

2

∑
s∈S

∑
n∈Ns

Zn,s(t) +
1

2

∑
s∈S

∑
n∈Ns

Yn,s(t) +
1

2

∑
s∈S

Us(t) (29)

4We refer the reader to our supplementary material [29] for a complete
demonstration of this fact.
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From this definition it is introduced the one-slot conditional
Lyapunov drift ∆(Θ(t)) as:

∆(Θ(t)) = E{L(Θ(t+ 1))− L(Θ(t))|Θ(t)} (30)

This difference (drift) represents the expected change in the
Lyapunov function in one slot, given that the state in slot t is
Θ(t).

Accordingly, the strategy consists on minimizing on each time
slot t the following expression:

∆(Θ(t))− V E{φ(γ(t)) | Θ(t)} (31)

where V is a non-negative constant that will affect the trade-off
between the drift and the penalty. Then, the drift-plus-penalty
method comprises the minimization of the following upper bound
of the previous expression:

− V E{φ(γ(t)) | Θ(t)}+
∑
s∈S

∑
n∈Ns

Yn,s(t)E {γn,s(t) | Θ(t)}

−
∑
s∈S

∑
n∈Ns

[Gn,s(t) +Qn,s(t) + Zn,s(t)]E {Rn,s(t) | Θ(t)}

+
∑
s∈S

Us(t)E {Xs(t) | Θ(t)}

+
∑
s∈S

∑
n∈Ns

[Yn,s(t)−Qn,s(t)− Zn,s(t)E {Dn,s(t) | Θ(t)}

(32)

To solve this minimization, we separate the problem into three
different goals: (1) a minimization of the γn,s terms; (2) a
minimization of the xn,s terms; and (3) a minimization of Dn,s

terms.
First, we find the optimal auxiliary variables, by considering

a fixed Yn,s(t):

minimize
γ(t)

− V φ(γn,s(t)) +
∑
s∈S

∑
n∈Ns

Yn,s(t)γn,s(t)

subject to 0 ≤ γn,s(t) ≤ Amaxn,s .

(33)

We can find a closed-form solution for problem (33). First,
we transform the single minimization problem into a multi-
ple problem by minimizing each sum term (remember that
φ(γn,s(t)) =

∑
s∈S

∑
n∈Ns

log(1+ωγn,s(t))). So, for each slice
s ∈ S and for each client n ∈ Ns we have:

minimize
γ(t)

− V log(1 + ωγn,s(t)) + Yn,s(t)γn,s(t)

subject to 0 ≤ γn,s(t) ≤ Amaxn,s .
(34)

Finding the derivative and setting it equal to zero we obtain:

γn,s(t) =
V

Yn,s(t)
− 1

ω
. (35)

Secondly, also for each slot t, we observe the values of the
queues Gn,s(t), Qn,s(t), Zn,s(t) and Us(t), and the current
channel state Cn,s(t), to find the x(t) that solves:

maximize
x(t)

∑
s∈S

∑
n∈Ns

[Cn,s(t)(Gn,s(t) +Qn,s(t) + Zn,s(t))

− Us(t)]xn,s(t)
subject to

∑
s∈S

∑
n∈Ns

xn,s(t) ≤ 1,

xn,s(t) ∈ {0, 1}.
(36)

Finally, for each slot t, we need to solve the following
problem (also considering Yn,s(t), Qn,s(t) and Zn,s(t) as given
constants):

minimize
x(t)

∑
s∈S

∑
n∈Ns

[Yn,s(t)− (Qn,s(t) + Zn,s(t))]Dn,s(t)

subject to 0 ≤ Dn,s(t) ≤ Dmax
n,s .

(37)
It is straightforward to observe that the solution to this problem
is given by:

Dn,s(t) =

{
Dmax
n,s if Qn,s(t) + Zn,s(t) > Yn,s(t)

0 otherwise
(38)

As a consequence, we get a deterministic optimization problem
that, at every slot t, calculates the control actions xn,s(t) and
Dn,s(t) by observing the backlogs of the real queues Qn,s(t),
the virtual queues Zn,s(t), Gn,s(t), Us(t) and Yn,s(t) and the
random channel capacities of each client Cn,s(t). Note that the
channel capacities and the queue backlogs on time slot t act
as constants in the optimization problem. In our supplementary
material [29], we provide a proof that this solution satisfies all
constraints in (20)-(24), and that the obtained utility differs from
the target utility by no more than B/V , which can be made
arbitrarily small as V is increased. However, the bound over
the time average queues’ backlogs increases linearly with V . In
the case of our QoS Slicing problem, this trade-off translates
into a compromise between the optimal utility achieved and the
satisfaction of the bit rate and delay guarantees.

C. Proposed Scheduling Algorithm
The previous solution provides a mechanism that, at every

time slot, resolves an optimization problem and finds the airtime
allocations that must be assigned to each client of every slice. It
also calculates the necessary packet drops at each queue. As we
have already discussed, this task of assigning transmission op-
portunities to the different clients is performed by the Scheduler
of the AP. Hence, based on the previous analysis, we develop a
scheduling algorithm that implements the proposed solution.

It is easy to observe that the problem (36) has the form of the
Knapsack Problem, where each object or item (n, s) in time slot
t gives a reward of Cn,s(t)(Gn,s(t) +Qn,s(t) + Zn,s(t))− Us,
where all items weight 1 and the maximum capacity is also 1.
It is straightforward to note that the solution to this problem is
the item with the highest reward.

Then, from the previous analysis, we design the scheduling
algorithm shown in Algorithm 1. The scheduler only considers
non-empty queues at each slot to ensure that resources are
assigned beyond the capacity limit Hs only when free resources
are available. The rationale is that, if a client has an empty queue,
it implies that all offered traffic has been already served, and so,
if there were other queues with traffic, they should be served
although having a lower utility. Also, in the algorithm shown,
we adapt the quantum-based airtime allocation from ATERR to
be used for this specific case.

As can be seen in Algorithm 1, each iteration of the algorithm
corresponds to a time slot where the traffic queue of the client
(n, s) with the highest value of Cn,s(t)(Gn,s(t) + Qn,s(t) +
Zn,s(t)) − Us is assigned for transmission. Then, packets are
dequeued and transmitted until the quantum is totally consumed.
After the transmission has ended, each client’s queue is checked
to decide if any packet drops are necessary. Finally, all virtual
queues are updated accordingly.
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Algorithm 1: QoS Slicing Scheduler Pseudocode.
1 function Scheduler() is

input : V , Qn,s, Hs, Ks, Dmax
n,s , γmaxn,s , εn,s, ω

output: Scheduling and drops on each slot t
2 /* Initialize queues */

3 foreach s ∈ S, n ∈ N∫ do
4 Zn,s ← 0;Gn,s ← 0;Yn,s ← 0;Us ← 0;
5 end
6 while true do
7 /* Observe the current state */

8 foreach s ∈ S, n ∈ N∫ do
9 Cn,s ← getCapacity(n, s);

10 end
11 /* Compute the vector of benefits B */

12 B = C ∗ (G+Q+Z)−U ;
13 /* Find the client i with the max benefit */

14 i← argmaxB;
15 /* Get the queue of client i */

16 queue← GetQueue(queueList, i);
17 /* Transmit packets for a quantum period */

18 while queue.excess < 0 do
19 airtime← transmitPacket(queue);
20 queue.excess← queue.excess+ airtime
21 end
22 queue.excess← queue.excess−QUANTUM ;
23 foreach s ∈ S, n ∈ N∫ do
24 if Qn,s + Zn,s > Yn,s then
25 dropPackets(n, s,Dmax

n,s );
26 end
27 /* Calculate the auxiliary variables */

28 γn,s ← min{ V
Yn,s
− 1

ω , γ
max
n,s };

29 /* Update queue backlogs */

30 Zn,s ← [Zn,s − εn,s −Rn,s −Dn,s]
+;

31 Gn,s ← [Gn,s −Rn,s +Ks]
+;

32 Us ← [Us +Xs −Hs]
+;

33 Yn,s ← [Yn,s + γn,s − un,s]+;
34 end
35 end
36 end

VI. A MECHANISM FOR GUARANTEEING ISOLATION

In the context of QoS Slicing in wireless networks, the
isolation between slices and between clients within a slice is an
important aspect to keep the agreed guarantees, regardless of the
clients’ behavior. In this sense, we envision two different cases
that would produce isolation issues. One of them appears when
the offered traffic of a client within a slice exceeds the agreed
maximum bit rate, and it thus consumes resources from other
clients or slices. The other case happens when more resources
than available are needed to satisfy all the slices’ performance
requests.

Therefore, we propose to classify the possible isolation viola-
tions in two different types: Excess of offered load, and Lack of
resources. A possible solution to prevent the first type is that the
slicing architecture must control and limit the traffic to conform
to the parameters in the corresponding slice agreement. Note
that allowing this traffic to enter the queues violates the arrival
rate limitation Amaxn,s imposed by the solution. This may affect
the algorithm behavior by abnormally increasing the queues’

length, and it may also yield a packet drop increase. A simple yet
practical solution to this issue is to perform traffic shaping on the
incoming flows. Traffic shaping techniques are widely used as
they are very useful for the correct operation of networks with
constrained resources. In particular, several techniques for rate
limiting purposes already exist [32]. Hence, in this section, we
focus on the second type of isolation violation.

A. Proposed Solution for Guaranteeing Isolation

The isolation issue of Lack of resources emerges when there
are not enough resources to provide the agreed guarantees to
each client, thus affecting their performance. Although admission
control mechanisms may prevent this from happening when
instantiating new clients or slices into the devices, the channel
conditions of a client might worsen after the initial connection,
causing the scheduler to take resources from other slices to
provide the agreed QoS. From the perspective of the optimization
problem formulated in Section V, this issue generates a situation
of unfeasibility. This means that there is no possible airtime
allocation that can meet all the required constraints.

As described in Section III, in the proposed QoS Slicing
model, the isolation between different slices is provided by
setting a limit on the amount of resources that a slice can use.
With this approach, two objectives are achieved: (1) the expected
time average airtime usage ratio of each slice is limited so as to
avoid consuming resources from other slices; and (2) if extra
resources are available (because one or more slices use fewer
resources than requested), these are distributed among slices that
have traffic to be served. Nevertheless, as we need to provide
guarantees to each flow of a slice, the behavior of a client or a
traffic flow may affect other flows of the same slice. Therefore,
the issue of isolation among flows within the same slice must
also be tackled by the slicing mechanism. Our isolation proposal
consists of integrating the isolation management to the scheduler
described in Algorithm 1. We propose a solution in two stages:
• A monitoring stage, to detect isolation violations.
• An action stage, where actions are taken to move the system

to a stable state.
1) Monitoring: In this stage, the evolution of the virtual

queues is monitored to detect isolation issues. We recall that
the virtual queues Gn,s(t) model the bit rate constraints and
they can be conceived as buffers of the amount of bit rate not
currently satisfied. In the analysis of Section V, we showed that
the objective of the proposed optimization solution is to stabilize
the virtual queues so that the constraints are satisfied. Hence,
if we continuously monitor the virtual queue lengths to detect
when they are not stable, we can infer that the guarantees are
not necessarily being satisfied. Therefore, our solution consists
of adding a mechanism that monitors the evolution of virtual
queues, so in the case when it detects a situation of a constant
increment on the size of any of the virtual queues, it triggers an
event to take the appropriate action.

It is important to note that this solution is very conservative,
and the speed for detecting an isolation violation will depend on
how the virtual queues’ instability is measured. A stabilization
period must also be considered at initialization, and every time a
client connects or disconnects from the AP. This is because while
the algorithm is finding stability, the size of the virtual queues
may increase and stabilize at a larger length, and the scheduler
must not consider this case as an unfeasible situation.
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2) Enforcing Isolation: For the second stage, our proposal
to solve the isolation issue and to obtain a feasible problem
is to disconnect some clients from the AP (or to degrade its
performance), in a controlled manner. The choice of which
clients to disconnect may depend on several factors, such as
the amount of consumed resources, the slice to which the client
belongs, or the associated revenue. In a scenario with several APs
and where a global slicing architecture is deployed, this decision
should be performed by a high-level manager who may have a
complete view of the available resources. Even more, with this
approach, this manager may move the client to a different AP or
network with more resources available so as to continue serving
it. However, this decision problem is complex and is out of the
scope of this work. Hereafter, we introduce a simple strategy for
the actions to be taken when an isolation violation is detected.

For our solution, we propose to select a client and to remove its
QoS guarantees, downgrading it to a best-effort client. With this
approach, we allow the scheduler to assign resources to the client,
but only if they are available. We propose selecting the client
with the highest use of resources to be downgraded. If this still
does not solve the isolation situation, we continue downgrading
clients until it is resolved. Each downgrading is implemented by
setting the bit rate guarantee K of the selected client to 0. As
mentioned, the use of this policy is arbitrary, and other options
are perfectly suitable.

VII. IMPLEMENTATION DETAILS

In this section, we present brief descriptions about particular
details that may need to be considered when implementing the
proposed solution. Some of these details have already been
implemented in our simulated prototype we analyze in Section
VIII, but others are specific for an implementation in hardware.

A. Variable Time Slots
As was described in the system model, the proposed QoS

Slicing solution is built over the allocation mechanism of the
ATERR algorithm. For this, the ATERR is used with a fixed
size quantum for all queues and with no adaptation mechanism.
Hence, we can have a scheduler which assumes slotted time and
on each slot assigns a client for transmission. However, because
of how ATERR works, each time slot can be of variable size.
Although the ATERR mechanism compensates these variations in
the long run, it should be taken into account on the queue updates
of each slot. Therefore, the proposed scheduler implementation
receives feedback from the transmission module with the actual
time slot size used. This feedback allows using the exact airtime
consumed and not a fixed time slot for the updates of the (virtual
and real) queues. Even more, variations may also happen because
of the lack of data to fill an entire time slot. In those cases, when
a queue empties before completing a time slot, the scheduler is
executed to find a new queue for transmission.

B. Channel Capacity Estimation
As we already mentioned, an important aspect that influences

the performance of the proposed solution is the ability to obtain
a good estimation of the channel capacity of each client. In
this regard, in the following, we explain two complementary
approaches that can be taken.

On the one hand, most WiFi devices implement a Modulation
and Coding Scheme (MCS) adaptation mechanism to find the

most appropriate MCS for transmission given the current channel
conditions. Also, for each MCS we have a transmission bit rate
that can be achieved with it. Then, from this MCS adaptation
mechanism, it is easy to obtain the current transmission bit rate
used by the AP. Nowadays, the most widespread mechanism
in WiFi is called Minstrel [33], which uses the frame loss rate
to estimate the channel capacity. This mechanism, although not
being optimal, provides a good estimation and has the advantage
that can be obtained from real data, with almost no overhead.

However, the above approach provides just an upper bound
on the actual channel capacity obtained. As was previously
discussed, congestion at the wireless channel as well as retrans-
mission because of collisions or packet losses will reduce the
channel capacity finally obtained. Hence, to improve the channel
capacity estimate, we also use the airtime consumed by the
transmissions (including all the waiting times due to a busy
medium, the back-off procedure, and the retransmissions) and
the actual data that was transmitted. Therefore, we can estimate
the capacity of the next slot by measuring the amount of data
transmitted and the airtime consumed in the previous slot.

C. Maximum Arrival Rate
As discussed in previous sections, the proposed mechanism

needs to know the maximum arrival rate per slot, which cannot
always be easy to predict. One possibility is to always overes-
timate this value, which would guarantee the requested delay
bound. However, a bad estimate would negatively impact on
the obtained throughput, as more packets than needed would be
dropped. The approach envisioned in this work is to request the
tenant to inform the traffic characteristics of the slices as part
of the agreement, for example, in the form of average bit rate,
peak bit rate, and burst size.

A complementary strategy, which may also be necessary, is to
add a traffic control mechanism to guarantee that the pre-defined
contract is respected. This approach would guarantee that the
delay is assured, but when the contract is not respected, it would
shift the problem to the upper layers, where the packets may also
be enqueued. Even more, this mechanism should be carefully
designed to allow non-conforming traffic to ingress the system
if enough free resources are available.

D. Parameter Calculation and Minimum Delay Bound
The proposed mechanism has two very important parameters

that condition its performance and provide a trade-off between
delay and throughput: V and εn,s. As mentioned before, V
determines the distance to the optimal utility; in our case, this
means that as V is reduced the total throughput obtained by the
AP increases. On the other hand, the delay bound linearly grows
with it. In our supplementary material [29], we demonstrate that
the upper bound on the packet delay is given by:

Wmax
n,s =

⌈
2V ω + 3Amaxn,s + εn,s

εn,s

⌉
(39)

Hence, the delay does not also depends on V but also inversely
depends on εn,s, for each client and slice. Then, it is more
appropriate to express the delay bound as a function of V/εn,s.

In our QoS Slicing context, it is important to determine,
for a particular scenario and configuration, the minimum delay
bound a system can provide. Let us observe that for a given V
parameter, the minimum possible delay bound is given by the
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TABLE I
SLICE AND TRAFFIC CONFIGURATION.

Slice 1 Slice 2 Slice 3

Application Live Video Real-Time
Gaming Bulk

Traffic pattern Constant Bit Rate
of 300 kbps

Poisson Process5

with 3 Mbps of
mean rate.

TCP Bulk

Bit rate 300 kbps 3 Mbps none
Delay 50 ms 25 ms none
Capacity limit 30% 60% 10%
No. of flows 6 3 3

TABLE II
CHANNEL CAPACITIES

Average Capacity (Mbps)Client Slice Scenario 1 Scenario 2
1 1 5 5
2 1 5 5
3 1 10 6
4 1 10 8
5 1 20 13
6 1 20 15
7 2 20 15
8 2 30 22
9 2 30 22

10 3 30 30
11 3 10 10
12 3 5 5

maximum possible value of εn,s. From previous assumptions we
know that εn,s ≤ Amaxn,s . Hence, each client’s minimum delay
bound is given by:

Wmax
n,s =

⌈
2V ω + 4Amaxn,s

Amaxn,s

⌉
(40)

Note that the previous result provides a bound on the delay
measured in time slots. Hence, the actual delay measured in
seconds will depend on the particular time slot selected. In
our case, two parameters will have an important impact on the
time slot value, the quantum of the ATERR mechanism, and
the maximum packet transmission time, which, as discussed in
[7], affects the deviation from the predefined quantum. This last
factor is really important since a very low channel capacity
in some clients can generate long delays. For example, if the
wireless medium allows a channel capacity of 2 Mbps, a packet
of 1500 Bytes would take 6ms to be transmitted, limiting the
achievable queue delay to a value higher than that.

Therefore, the minimum channel capacity allowed in the
wireless device should be controlled, and clients with very low
capacity might need to be dropped or moved to another device.
Note that a client with low capacity would affect all clients.

VIII. EVALUATION

In this section, we evaluate the behavior and performance
of the proposed slicing mechanism by implementing it on the
MATLAB Simulink [34] software. In the prototype, we model
the queue and scheduling operation, the input traffic patterns,
as well as the variable channel conditions of the wireless links.
The implemented model is available at [35]. The goal of the
evaluation is to show how our solution provides the QoS guar-
antees to slices with different requirements when deployed on
a WiFi network. We tested slices with different traffic patterns
and different QoS requirements, having clients with different and
variable channel conditions.

5We choose to model the traffic as a Poisson Process to allow variability on
the offered load. However, actual gaming traffic may follow a different pattern.

A. Simulation Setup

The simulation scenario is composed of a single WiFi Access
Point (AP) and several clients that connect to such AP. We
consider three slices deployed at the AP: Slices 1, 2 and 3, for
Video Live Streaming (Video Conference), Real-Time Gaming,
and Bulk Background traffic, respectively. The scenario com-
prises 12 clients, which are enough to assess the behavior of the
proposed scheme, but also facilitate the analysis of the results.
Each client belongs to just one slice and receives traffic from
one application, thus resulting in 12 traffic flows in our system.
For each flow, there is a traffic generator, which sends packets
(following a given pattern) to be delivered to the clients from the
AP.

The QoS requests of each slice and the traffic patterns of each
flow are summarized in Table I. Slice 1 requires a minimum
guaranteed bit rate of 300Kbps for each flow, with a maximum
allowed delay (delay bound) of 50ms. This must be respected
while the required resources do not exceed the 30% of the total
resources of the AP. Slice 2 requests a guaranteed bit rate of
3Mbps, with a maximum delay of 25ms, and with a resource
limit of 60%. For both slices, the average bit rate guarantee
must be measured in a time window of 1 second and includes
a tolerance of a 10% from the requested average. Finally, Slice
3 only requests a maximum of 10% of the AP resources, with
no QoS guarantees. This slice will bear TCP flows with varying
loads. The TCP traffic generator consists of an application that
sends data as fast as possible, as it would be the case of a bulk
file transfer. In addition, when the lower layer buffer is full, it
waits until some frames are dequeued to send more data, as it
would be the case of a real elastic service.

The 802.11 MAC layer behavior is mimicked with a simple
model that estimates the overall time of a packet transmission
(from being available at the transmitter until it is correctly
received at the destination) for a certain channel occupancy and
probability of collision. The model considers the most important
aspects of the 802.11 Access Control mechanism: the time a
packet is waiting for the medium to be free, its transmission
time at the wireless interface, and the waiting time due to
contention. The model receives an average channel capacity C,
which can be different for each client connected to the AP,
depending on the distance between the client and the AP and
on the channel occupancy. A collision probability p can also
be configured, and the 802.11 exponential backoff algorithm is
used to establish the contention window size for consecutive
retransmissions of a single frame, after successive collisions.
Then, the overall time duration of a packet is finally computed,
based on the aforementioned inputs and on the packet length.
In the simulations shown in this work, the model is configured
with the average capacities depicted in Table II, with a probability
p = 0.1 and all the necessary constant values (CWmin, slot size)
from the 802.11n standard. Note that more dense scenarios (i.e.,
having a higher channel occupancy) could be easily captured
by decreasing the corresponding capacities or increasing the
collision probability.

For the system configuration, we have chosen a quantum size
of q = 2.5ms for all slices and clients. Under this configuration,
given the airtime allocation mechanism used, the maximum
possible airtime consumption of a client on a round is 4.8ms
(see [7]). Then, we select the values V = 3, ε1 = 1 for all clients
of Slice 1, and ε2 = 4.55 for all clients of Slice 2. Using the
delay bound (39), the selected parameter values yield an upper
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Fig. 1. Scenario 1. Delay and Throughput for Slices 1 and 2 with and without Traffic on Slice 3.
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Fig. 2. Scenario 1. Delay and Throughput for Slice 3.

delay bound for Slice 1 of 48ms and for Slice 2 of 30ms.
Furthermore, the system setup also includes the CoDel [13]

queue management technique on the queues associated with Slice
3. Although CoDel does not provide a bound on the delay, it
helps in controlling the queue lengths and on minimizing the
delay.

We evaluate three different resource usage scenarios (different
offered loads):
• Scenario 1 (Loose Resource Usage) Given the clients’

capacities and the offered load, all QoS guarantees can
be accomplished without using the 100% of the requested
resources.

• Scenario 2 (Tight Resource Usage) Similar to the pre-
vious scenario, but the slices use almost all the requested
resources.

• Scenario 3 (Lack of Resources) After an initial resource
assignment, because of a variation in the channel capacities,
the amount of available resources is not sufficient to comply
with all QoS requirements.

B. Results for Scenario 1

For the first scenario, Loose Resource Usage, we show results
with and without traffic in Slice 3. The objective is to assess
how our solution correctly manages isolation and guarantees
QoS requirements from Slice 1 and Slice 2. Because of space
constraints and to facilitate visualization, we are not able to show
the performance of all 12 clients, but we show, for each slice,
the highest obtained delay and the lowest throughput (the worst
client). The channel capacities of each client are depicted in Table
II. Clients 1 to 6 belong to Slice 1, Clients 7 to 8 to Slice 2, and
Clients 10 to 12 to Slice 3.

In Figure 1 is shown the obtained delay and throughput. It
can be observed that in both cases (with and without traffic on
Slice 3), the QoS requirements of delay and bit rate are always
guaranteed. When traffic is generated in Slice 3, there are some
variations on the average delay, but the maximum delay is kept
below the required bound.

For the experiment, we calculate the packet drop ratio for the
clients of Slices 1 and 2, which result in a ratio below 10−2 for all
clients. We also compute the percentages of airtime allocated to
the different slices, obtaining the following median values: Slice
1 - 23.6%; Slice 2 - 39.7%; Slice 3 - 36.4%. Given that Slices
1 and 2 require fewer resources than the maximum capacity to
fulfill the QoS requirements, the remaining resources are then
exploited by Slice 3.

Figure 2 depicts the obtained performance by the clients of
Slice 3. It shows how extra available resources are used by
Slice 3 to obtain throughputs between 0.5 and 3 Mbps for its
clients. As previously shown, this is achieved without affecting
the performance of the other slices.

C. Results for Scenario 2

As previously explained, we also analyzed a scenario where
Slices 1 and 2 require more resources to fulfill the QoS require-
ments. The average client capacities are also depicted in Table
II.

Figures 3 and 4 show the results that were obtained for this
scenario. As in the previous case, it can be observed that all
QoS requirements are correctly met. However, we can notice a
slightly worse overall system performance. This is because the
total channel capacity is lower than before, and more resources
are needed to fulfill the required performance.

In this case, the obtained airtime allocation is: Slice 1 - 27.9%;
Slice 2 - 52.9%; Slice 3 - 18.3%. This result shows that the



12

w/o S3 traffic w S3 traffic

0

10

20

30

40

50

Q
u
e
u
e
 D

e
la

y
 (

m
s
)

Slice 1

w/o S3 traffic w S3 traffic

0

5

10

15

20

Q
u
e
u
e
 D

e
la

y
 (

m
s
)

Slice 2

(a) Worst Client Delay
w/o S3 traffic w S3 traffic

0.2

0.22

0.24

0.26

0.28

0.3

0.32

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Slice 1

w/o S3 traffic w S3 traffic
2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

T
h
ro

u
g
h
p
u
t 
(M

b
p
s
)

Slice 2

(b) Worst Client Throughput

Fig. 3. Scenario 2. Delay and Throughput for Slices 1 and 2 with and without Traffic on Slice 3.
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Fig. 4. Scenario 2. Delay and Throughput for Slice 3.

proposed solution adapts the resource usage, and it limits Slice
3 traffic, to provide the required QoS in Slices 1 and 2. This can
also be observed in Figure 4 where the obtained performance of
Slice 3 is reduced.

D. Results Scenario 3

Finally, we also evaluate a scenario where, in a given instant,
the channel capacities deteriorate up to a point such that there are
not enough resources to comply with all the QoS requirements.
We start the simulation with the same channel capacities used in
Scenario 2, and after 50 seconds, we move Client 9 further away
from the AP, so that the average channel capacity decreases to
5 Mbps. It is worth noting that this scenario generates a case
of isolation violation, as there is not any possible allocation of
resources that can accomplish the required guarantees (there is
no feasible solution to the optimization problem). Hence, our
goal with this experiment is to show two aspects of our isolation
solution:
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Fig. 5. Scenario 3. Delay and Throughput for Slice 1 before and after Change
in Slice 2.

1) A variation for a client belonging to one slice does not
affect the QoS guarantees of the other slices.

2) When a slice cannot assure the required QoS guarantees,
the problem is detected, and an appropriate action is taken.

For the first aspect, we provide in Figure 5 the performance
results of Slice 1, before and after the channel variation of
Slice 2. As expected, the variation does not affect the QoS
requirements of Slice 1, guaranteeing the isolation between
slices. Secondly, in Figure 6, we depict the evolution along the
simulation time of the achieved throughput and delay of the three
clients of Slice 2. In this case, as explained in Section VI, the
scheduler detects the problem by monitoring the virtual queues,
selects Client 9, and removes it from Slice 2. Hence, as can
be seen, after a small transient period (4 seconds), in which all
the clients of the slice are affected by the drastic change in the
channel capacity of Client 9, the mechanism stops considering
Client 9 QoS requirements. Then, the other clients recover their
previous performance, while Client 9 is swapped to a best-effort
client.

IX. CONCLUSIONS

Slicing has become an essential part of the current 5G net-
works design. In this context, providing WiFi networks with
the ability to implement slicing further facilitates the integration
of this technology in the 5G ecosystem. In this paper, we
proposed a dynamic resource allocation mechanism to support
the development of network slicing in WiFi Access Points.
Through a novel packet scheduling design, slices with diverse
QoS requirements can be defined.
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Fig. 6. Scenario 3. Delay and Throughput Evolution for Slice 2.

The QoS Slicing problem is formulated as a stochastic opti-
mization problem, which maximizes the total average throughput
of the AP while satisfying the constraints of minimum average
bit rate, bounded delay, and average airtime usage limit. We
consider this is a relevant contribution, as the problem of resource
allocation to implement QoS Slicing in wireless networks (with
all its complexities and particularities) is condensed on a single
optimization problem. The theory of Lyapunov Optimization was
applied to transform the stochastic optimization problem into a
deterministic problem that must be solved on each time slot.
The obtained solution just requires the instantaneous value of the
channel capacity and the queues’ status and consists of solving
a deterministic optimization problem on each time slot. From
the obtained solution, it was derived a scheduling algorithm that
selects, in each time slot t, the client to transmit and the packets
to be dropped.

Nevertheless, to implement the obtained solution in WiFi APs,
we employ the ATERR airtime-allocation scheduler to provide
an approximate time-slotted system. Even more, thanks to the
ATERR scheduling strategy and the system model developed, the
obtained scheduling algorithm consists of finding a maximum on
each time slot. This is important since it makes the complexity
of the algorithm to be linear on the number of clients, and
assures the scalability of the solution. Lastly, we contribute
with a mechanism to detect and control unfeasible situations,
where more resources than needed are necessary to achieve
the requested guarantees. This provides isolation guarantees to
slices in scenarios where unexpected channel capacity variations
appear.

Finally, we carried out an extensive simulation-based analysis
of the proposed scheduler, evaluating the performance in a
typical slicing scenario. The results show the effectiveness of
our solution in guaranteeing the QoS requirements of all slices,
while also providing the required isolation between slices. In
summary, in this work, we contributed with a novel mechanism
to implement QoS Slicing in WiFi APs, which guarantees a
requested minimum average bit rate with bounded delay to
each client of a slice. Although the mechanism was designed
employing an existing technique, its application to a complex
and concrete problem in the context of WiFi technology brought
many new challenges that were successfully tackled.

In the future, we plan to implement our solution in a network
simulator to evaluate more complex scenarios. This includes the
interaction of the proposed solution with a high-level network

manager which controls slices and clients connections. We will
use such scenarios to assess the performance of the proposed
scheduler in terms of packet drops. Moreover, we are working
to deploy the proposed scheme over real platforms, both to
assess its feasibility and to broaden its performance analysis,
realistically considering the particularities of WiFi technology.
Such real deployment would also allow to study the scalabilty
of the proposed approach, regarding the required number of
queues in the system, as well as the execution complexity of
the algorithm. Finally, we also plan to further investigate on the
applied theory to remove some of the needed assumptions and
to theoretically analyze the algorithm behavior in more detail. In
particular, we are interested in obtaining a bound for the average
bit rate in a slot, and in assessing how fast the performance
converges to the required value.
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mine, “Resource allocation for network slicing in wifi access points,”
in Network and Service Management (CNSM), 2017 13th International
Conference on. IEEE, 2017, pp. 1–4.

[7] M. Richart, J. Baliosian, J. Serrat, J.-L. Gorricho, and R. Agüero, “Slicing
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