

AGENT-BASED METHODOLOGY
FOR DEVELOPING

AGROECOSYSTEMS’ SIMULATIONS

ING. JORGE CORRAL AREÁN

TRABAJO DE TESIS
PARA LA OBTENCIÓN DEL TÍTULO
DE MAGÍSTER EN COMPUTACIÓN

CENTRO DE POSGRADOS Y

ACTUALIZACIÓN PROFESIONAL
INSTITUTO DE COMPUTACIÓN

FACULTAD DE INGENIERÍA
UNIVERSIDAD DE LA REPÚBLICA

Enero 2011
Montevideo – Uruguay

Supervisor:

MSc. Ing. Daniel Calegari

Revisor:

Dr. Pierre Bommel

Tribunal:

Dr. Gustavo Betarte
MSc. Ing. Antonio Mauttone

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 2 of 112

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 3 of 112

Acknowledgements
I am very thankful (in no particular order)…

…To the EULACIAS Project Team and the Wageningen University and Research Centre (WUR) of
The Netherlands for supporting me at the very beginning of this work, particularly Santiago Dogliotti
and Walter Rossing. A special acknowledgement goes to Jeroen Groot for his always wise comments
and revisions of the early chapters of this thesis. I‘m in debt with all of you.

…To the Instituto Plan Agropecuario (IPA) for letting me be part not only of this FPTA project but
of the team itself. I don‘t want to forget any of you here: Danilo Bartaburu, Esteban Montes, Emilio
Duarte, Marcelo Pereira, Francisco Dieguez and Paulina Altieri, and also to its Board of Directors. A
special acknowledgement goes to Hermes Morales Grosskopf because he introduced me not only to
MAS but to agronomy and showed me there are many people that no longer identify themselves with
just one discipline.

…To the French Centre de Coopération Internationale en Recherche Agronomique pour le
Développement (CIRAD) for letting me be part of several research projects and getting more involved
in the MAS topics. A special acknowledgement goes to Jean Pierre Müller for our fruitful discussions
here in Uruguay, to Jean Francois Tourrand for constantly inviting me to projects and meetings
(hoping you will continue to do so!) and of course, to Pierre Bommel, who taught me the vast majority
of what I know about MAS, for his constant disposition to help and support, giving me the necessary
confidence and trust to follow his steps in every project in which we participate together, including
the revision of this thesis.

…To my supervisor, Daniel Calegari, for the delicate balance that he kept between giving me the
freedom I needed and stating the results and milestones that he expected, and also for his accurate
corrections and invaluable guidance. Also to the Faculty of Engineering (FING, UdelaR, including my
colleagues at the COAL group) for supporting me in this adventure of combining computer science
and agronomy.

…To my family and friends, since there is no big project that one can embrace without their
emotional and spiritual support.

I would also like to acknowledge that this work was partially funded by the Instituto Nacional de
Investigación Agropecuaria (INIA) through the FPTA-funded project that is part of Chapter 6 of this
thesis.

I know I am probably missing someone, so forgive me in advance.

I am very, extremely, grateful to all of you for your trust and support without which this work
would have never been possible.

And last, but not least, this thesis is dedicated to my daughter, María Paz: I love you from the
bottom of my heart.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 4 of 112

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 5 of 112

Abstract

The agent-based modeling (ABM) approach allows modeling
complex systems, involving different kinds of interacting
autonomous agents with heterogeneous behavior. Agro-ecosystems
(ecological systems subject to human interaction) are a kind of
complex system whose analysis and simulation is of interest to
several disciplines (e.g. agronomy, ecology or sociology). In this
context, the ABM approach appears as a suitable tool for modeling
agro-ecosystems, along with a corresponding agent-oriented
software engineering (AOSE) methodology for the construction of
the simulation. Nevertheless, existing AOSE methodologies are
general-purpose, they have not yet accomplished widespread use,
and clear examples of applications to agro-ecosystems are hard to
find. This thesis sets the ground for a new software development
methodology for developing agro-ecosystem simulations based on
the ABM approach as well as on these already existing AOSE
methodologies, but tailored to tackle specific agro-ecosystem
features.

Keywords: Multi-Agent Systems, Agro-Ecosystem, Software
Development, Simulation.

Resumen

El enfoque de modelado basado en agentes (ABM) permite el
modelado de sistemas complejos en los que interactúan diferentes
tipos de agentes autónomos con comportamientos heterogéneos. Los
agro-ecosistemas (sistemas ecológicos sujetos a la presencia humana)
son un tipo de sistema complejo cuyo análisis y simulación resulta
de interés para diversas disciplinas (ej.: agronomía, ecología o
sociología). En este contexto, el enfoque ABM aparece como una
herramienta adecuada para el modelado de agro-ecosistemas, junto
con una correspondiente metodología de desarrollo de software
también orientada a agentes (AOSE) para la construcción de dicha
simulación. Si bien ya existen metodologías AOSE, éstas son de
propósito general, no han logrado un amplio uso y ejemplos claros
de aplicaciones a agro-ecosistemas son difíciles de encontrar. Esta
tesis establece los fundamentos para crear una nueva metodología de
desarrollo de software basada en el enfoque de agentes para el
desarrollo de simulaciones de agro-ecosistemas, basándose en las
metodologías AOSE ya existentes, pero personalizada para soportar
las características específicas de los agro-ecosistemas.

Palabras clave: Sistemas Multi-Agente, Agro-ecosistema, Desarrollo
de Software, Simulación.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 6 of 112

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 7 of 112

Table of Contents
1. Introduction ... 9
2. Background ... 12

2.1 Complex Systems ... 12
2.2 Agro-Ecosystems .. 13
2.3 Agent-Based Modeling .. 15
2.4 Agent-Based Modeling of Complex Systems ... 17
2.5 Comparison Between Agent-Oriented and Object-Oriented Paradigms 19
2.6 Final Remarks ... 20

3 Agent-Oriented Software Engineering .. 21
3.1 Introduction to AOSE .. 21
3.2 Review of AOSE Methodologies .. 21
3.3 Standard Steps of an AOSE Methodology .. 26
3.4 Final Remarks ... 28

4 Towards a Methodological Framework for Developing Agro-ecosystem Simulations ... 29
4.1 Guidelines for the Proposed Methodological Framework ... 29
4.2 MAS Simulation Requirements .. 30
4.3 Selecting Steps .. 31
4.4 New Steps .. 38
4.5 Final Remarks ... 41

5 Agro-ecosystems‘ Features Supported by the Proposed Methodological Framework 43
5.1 Natural Resources Related Features .. 43
5.2 Human Resources Related Features .. 44
5.3 Capital Resources Related Features ... 45
5.4 Production Resources Related Features .. 46
5.5 Other Features .. 47
5.6 Final Remarks ... 48

6 Applying the Proposed Methodological Framework to a Case Study 49
6.1 Case Study Introduction.. 50
6.2 Step 1: Identify System Purpose ... 51
6.3 Step 2: Identify Roles and Agent Types .. 53
6.4 Step 3: Model Domain Conceptualization .. 56
6.5 Step 4: Define Agent Interaction .. 57
6.6 Step 5: Define Agent Architecture and Design .. 58
6.7 Step 6: Model Environment and Resources .. 59
6.8 Step 7: Simulation Configuration ... 62
6.9 Step 8: Simulation Output ... 63
6.10 Step 9: Implementation .. 64
6.11 Step 10: Simulation Run and Sensitivity Analysis ... 65
6.12 Conclusions of Applying the Methodological Framework to the Case Study 66

7 Conclusions & Future Work ... 67
7.1 Conclusions ... 67
7.2 Future Work .. 68

References .. 70
Appendix A: State-of-the-Art of MAS ... 75
Appendix B: Comparison between AOSE and OOSE Methodologies 93
Appendix C: Case Study Glossary ... 95
Appendix D: ICAART 2011 Paper ... 97

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 8 of 112

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 9 of 112

1. Introduction
Many of the current world challenges and opportunities (e.g. globalization, sustainability, terrorism,
epidemics or climate change) can be seen as complex systems [Miller and Page, 2007]. Understanding
the components, behavior and interactions in these systems is the first step to whatever analysis is
needed about them.

Agro-ecosystems are natural ecosystems subject to human interaction. Therefore they are
composed of a natural sub-system and a social (or human) sub-system. Even though not at global
scale, agro-ecosystems can be seen as a case of complex systems that can represent altogether the
natural and human aspects, as well as their interactions and feedback over time. However, the
possibility for direct experimentation of such systems is rare, if not impossible, so the need for
modeling and simulation becomes relevant.

Several approaches or methodologies can be used for modeling an agro-ecosystem. In particular,
the agent-based modeling (ABM) approach appears as a suitable tool for this purpose since they can
be used for modeling complex systems. On the other hand, simulating generally means developing a
software system, in this case, representing the agent-based model. This requires the use of some agent-
oriented software engineering (AOSE) methodology. Several AOSE methodologies are currently
available for guiding a programmer in developing software following the ABM approach. However,
they are general-purpose methodologies, so the programmer is faced with a trade-off between using
an already existing one and not leveraging the specificities of agro-ecosystems, or to follow an ad-hoc
methodology that pays detail to those features. Up to our knowledge there are no specific AOSE
methodologies for this purpose. Nevertheless, there are some related work [Le Page and Bommel,
2005] that address the simulation of agro-ecosystems using an ABM approach but without a
methodological framework behind it.

The overall objective of this thesis is to contribute to the development of an agent-based
methodology for developing agro-ecosystem simulation software.

The work presented here aims at contributing to the development of such a methodology, but it
does not attempt to develop a fully comprehensive one. Many topics considered relevant for a
software development methodology, such as resource, time and risk management, budget and effort
estimation, team work, and testing, among others, are not included in this thesis. Only those aspects
directly related to constructing a program are considered, such as the analysis, design and
implementation phases, along with their artifacts and techniques. This is why this thesis uses the term
methodological framework in order to distinguish it from a fully-featured methodology.

The focus on the agent-based approach comes from its close relation to agro-ecosystems, more
specifically because the latter can naturally be modeled using the former.

The interest in agro-ecosystems comes from my involvement in several agronomical research
projects in the years before starting this thesis. Even though I played the role of ―pure‖ software
engineer, the multidisciplinary teams in which I had the honor to work, the new frontiers that these
people showed me, the new real-world and real-people problems I was faced to, and the chance to re-
focus my previous expertise into these topics, all of this showed me a window of opportunity ready to
be opened.

Because of the very nature of the systems under study (natural and human), there is a need for
simulating different scenarios and test various hypothesis, and in order to do this, we must count not
only on software tools and packages to assist us, but also on methodological tools to guide the process.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 10 of 112

Therefore, this thesis‘ specific objectives are the following:

 Present the state-of-the-art in the multi-agent systems (MAS) field that, apart from
relating the necessary concepts, shows a clear separation of the different areas of
study that are involved (i.e. complex systems, agents, multi-agent systems, artificial
intelligence), including a solid line of thought that clearly justifies the use of multi-
agent systems and the agent-based modeling (ABM) approach to modeling (and later
simulating) an agro-ecosystem (Chapter 2).

 Present the state-of-the-art in the agent-oriented software engineering (AOSE)
methodologies and show that none of them is specific to the modeling and simulation
of agro-ecosystems (Chapter 3).

 Propose a methodological framework that allows developing agro-ecosystem
software simulations using the agent-based modeling approach, leveraging existing
AOSE methodologies where possible, as well as leveraging software developers‘
object-oriented programming (OOP) and Unified Modeling Language (UML)
knowledge (Chapter 4).

 Verify that all relevant agro-ecosystem‘s features are covered by the proposed
methodological framework (Chapter 5).

 Achieve an initial validation of the methodological framework by applying it to a real-
world complex case study (Chapter 6).

Having all these objectives accomplished, this thesis‘ contributions are the following:

 The only methodological framework for developing agro-ecosystem simulations
using the agent-based modeling approach. Up to our knowledge, there is no other
methodology (nor methodological framework) that copes with this problem.

 The only case in which the ABM approach was applied to a Uruguayan agro-
ecosystem problem, in this case the draught phenomena in the basalt region and a
study on how it affects cattle breeders and their draught strategies.

 The possibility to get regular OOP+UML software developers to quickly start writing
agro-ecosystem simulation software, without previous knowledge of MAS. This
becomes increasingly important because it reduces the time and skills required to get
into a multidisciplinary team, especially when software developers are hard to find.

 The possibility to formalize a methodology that allows developers (as stated above) as
well as experts (e.g. agronomists) and producers to jointly participate in the
development of a simulation, achieving a truly interdisciplinary work.

 A clear separation of the areas of study and fields that are involved. Usually the
papers around the topic of ABM and agro-ecosystems do not clearly separate the
fundamental concepts involved, leading to misunderstandings, which increase the
time and effort to getting involved in the topic.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 11 of 112

The structure of this thesis is summarized in Figure 1:

Figure 1: Chapter overview of this thesis.

Chapter 2 presents the main concepts and state-of-the-art regarding complex systems, agents,
multi-agent systems, agro-ecosystems and how they relate to each other. It also serves as the necessary
background knowledge needed to understand the rest of the thesis.

Chapter 3 presents the main ideas behind Agent-Oriented Software Engineering (AOSE) and a
summary and comparison of the most well-known AOSE development methodologies.

Chapter 4 presents the methodological framework that is proposed in this thesis for developing
agro-ecosystem simulation software based on the agent-based modeling approach and on ideas from
the existing AOSE of Chapter 3.

Chapter 5 presents those features that characterize an agro-ecosystem and shows how they are
covered by the methodological framework proposed in Chapter 4.

Chapter 6 applies the methodological framework to a case study.

Chapter 7 concludes this thesis and presents possible future work.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 12 of 112

2. Background
This chapter introduces the main concepts that will be elaborated in this thesis and presents a state-of-
the-art regarding complex systems, agents, multi-agent systems, agro-ecosystems and how they relate
to each other. It assumes no previous knowledge of concepts related to complex systems, agent-based
modeling or agro-ecosystems. This chapter is an excerpt of Appendix A.

Section 2.1 presents fundamental concepts and principles related to complex systems which are the
general context for agro-ecosystems presented in Section 2.2. Section 2.3 introduces the agent-based
modeling approach, and Section 2.4 shows the applicability of the agent-based modeling approach to
complex systems in general and to agro-ecosystems in particular. Section 2.5 compares the Object-
Oriented (OOP) and Agent-Oriented (AOP) programming paradigms. Finally, the chapter ends with
some concluding remarks in Section 2.6.

2.1 Complex Systems

In natural sciences and computer science, the most common approach to understand or analyze a
system is based on a decomposition of the system into its elementary parts and the isolated and in-
depth study of these in order to understand the whole, i.e. the reductionism of Descartes.

The systemic approach starts by first examining and understanding the relations between the
different elements of the system. The systemic approach is a general theory since its principles can be
applied to any discipline or area. One of the most common ways for addressing the systemic approach
is to say that ‗the whole is more than just the sum of its parts‘ or in the words of [Miller and Page,
2007]: “The field of complex systems challenges the notion that by perfectly understanding the behavior of each
component part of a system we will then understand the system as a whole”.

Both complicated and complex systems are composed of a large number of interacting elements,
but two properties set a complex system apart from one that is merely complicated: emergence and
self-organization. Emergence is the appearance of behavior that could not be anticipated from the
knowledge of the parts of the system alone [CSIRO, 2008]. Moreover, the newly emerged properties
can in turn feedback to the original lower-level entities, entering a feedback loop where each element
(micro/marco level) interacts. Self-organization means that there is no external controller or planner
engineering the appearance of the emergent features; they appear spontaneously [CSIRO, 2008]. The
motivation for studying complex systems is that many of current opportunities and challenges
(globalization, sustainability, terrorism, epidemics, climate change) are complex. Each of these
domains consists of a set of diverse entities and actors that dynamically interact, and are immersed in
a sea of feedback [Miller and Page, 2007]. Figure 2 shows a schematic representation of a complex
system based on [Parrott, 2002].

Figure 2: Schematic Conceptual Model of a Complex System.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 13 of 112

Complex Adaptive Systems (CAS) are defined as systems that are capable to adapt and self-
organize in response to perturbations or distortions in the environment or by the result of certain
interrelations between the elements. System adaptation is ultimately concerned with the adaptation of
each individual element of the system, since there is no centralized control and therefore no single
‗object‘ that represents the entire system.

2.2 Agro-Ecosystems

This section introduces the notion of agro-ecosystem and related concepts. Also, agro-ecosystems are
presented as a special case of complex systems. Finally, the importance of modeling and simulation of
agro-ecosystems is highlighted.

2.2.1 What is an Agro-ecosystem?

An agro-ecosystem is the human manipulation and alteration of ecosystems for the purpose of
establishing agricultural production [Gliessman, 1997]. Agro-ecosystems result from the interplay
between endogenous biological and environmental features of the agricultural fields and exogenous
social and economic factors, and are delimited by arbitrarily chosen boundaries. They are semi-
domesticated ecosystems that fall on a gradient between ecosystems that have experienced minimal
human impact, and those under maximum human control [Hecht, 1987].

According to [Odum, 1984] the four major characteristics of agro-ecosystems are:

 They include external sources of energy like human, animal or fuel energy to enhance
productivity of particular crops;

 Diversity may be reduced compared with natural ecosystems (those with no human
intervention);

 The dominant animals and plants are under artificial selection rather natural selection; and

 The system controls are external rather than internal via subsystem feedback, in the sense that
the natural resources are no less dependent on natural factors because of human intervention.

Even though this is a good starting point according to [Hecht, 1997] it does not reflect agro-
ecosystems that can be relatively diverse and its lack of attention to the social determinants of
agriculture limits its explanatory power. Agricultural systems are human artifacts, and the
determinants of agriculture do not stop at the boundaries of the field. Agricultural strategies respond
not only to environmental, biotic1, and cultivar constraints, but also reflect human subsistence
strategies and economic conditions [Hecht, 1987; Ellen, 1982]. This stresses the importance of social
factors like labor availability, access and conditions of credit, subsidies, perceived risk, price
information, association obligations, family size, and access to other forms of livelihood are often
critical to understanding the logic of a farming system [Hecht, 1987].

An agro-ecosystem thus has physical parts with particular relationships (the structure of the
system) that together take part in dynamic processes (the function of the system) [Gliessman, 1997].
The structure can be viewed as organized in several levels, ranging from individual elements such as
organisms or crops up to regions, landscapes or entire countries.

Any system uses its processes and resources to convert its inputs into its outputs. Concerning the
resources commonly found in agro-ecosystems, [Norman, 1979] suggests the following classification:

 Natural resources: the given elements of land, water, climate and natural vegetation that are
exploited by the farmer.

 Human resources: the people who live and work within the farm and use its resources for
agricultural production, based on their traditional or economic incentives.

 Capital resources: the goods and services created, purchased, or borrowed by the people
associated with the farm to facilitate their exploitation of natural resources for agricultural
production.

 Production resources: the agricultural output of the farm such as crops and livestock. These
become capital resources when sold, and residues (crops, manure) are nutrient inputs
reinvested in the system.

1 Associated with or derived from living organisms (English On-Line Dictionary).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 14 of 112

Several of all the previous concepts are summarized in Figure 3, based on [Altieri. 1995] and
[Briggs and Courtney, 1985]:

Figure 3: Representation of an Agro-ecosystem.

It is worth noting that human intervention is represented by the inputs but mainly by the
management practices executed by farmers.

Other concepts that are also commonly associated to agro-ecosystems include natural processes
(like erosion), the landscape to which the agro-ecosystem belongs, market prices and prices evolution
(regarding for example international crop prices), and government policies (which may affect virtually
any part of the agro-ecosystem).

2.2.2 Agro-ecosystems as Complex Adaptive Systems

Any ecosystem by itself can already be considered as a case of complex adaptive system, considering
its various components, organization levels, micro and macro interactions and their feedbacks, and
even more if including a social subsystem (with heterogeneous behaviors) as in the case of agro-
ecosystems.

The interactions between the social and natural subsystems inside an agro-ecosystem, such as
farmers‘ practices affecting natural resources, are examples of local interactions at a small scale which
may produce negative or positive feedbacks affecting in turn the decision-making of social actors.
Repeating these interactions on a daily basis can produce emergent properties and new organizations
across the agro-ecosystem in the long-term, like a change in soil quality as a long-term consequence of
the adoption of certain management practice or the emergence of a certain land-use pattern.

Aside from natural processes, also the interactions between the social actors can lead to complex
behaviors like, for example, communications between neighboring producers which can affect each
producer‘s performance (e.g. knowing about certain new market because of participation in an
organization can lead to improvements in the income of those producers that receive the correct
information at the right moment).

2.2.3 The Importance of Simulation in Agro-ecosystems

Since these coupled human-natural systems cannot be manipulated and tested as other systems, due
to scale and resource difficulties (setting up farms managed by people over decades just to see the
effects) the possibility of simulating them is crucial.

The objective of simulating these kind of systems is not for trying to figure out exactly what will
happen in the future if the present conditions are X, the behavior of each part is Y and the evolution of
certain parameters is Z. In contrast, simulation in these contexts should have the objective of
prospection of scenarios were the interest is not in the ‗fortune-teller‘ features of the simulation but on
discovering possible outcomes under certain conditions and being able to easily modify these
conditions and check again the outcomes (as in a virtual laboratory). Another objective can be to
deepen the understanding (and also possibly learning/teaching) of a coupled human-natural system,
since the more micro/macro level study of each part as well as their interactions require an in-depth
understanding of them in order to obtain a simulation that is close to reality. Yet other objective can be
to explore the consequences of manipulating certain system in order to understand how the different
parts will co-exist in the future due to that manipulation (e.g. how does a water shortage affects the
productivity of a farm, or how does certain economic policy impacts in the long term).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 15 of 112

The next section presents an approach that can be used to develop such simulations in the form of
software systems that will be able to simulate the different parts of an agro-ecosystem and monitor
(observe) certain parameters over time in order to analyze their evolution.

2.3 Agent-Based Modeling

Agent based modeling (ABM) is a computer science approach that enables the simulation of
heterogeneous populations of interacting individuals or agents, in many cases in a non-agent
environment, which can also contain non-agent passive objects (commonly known as resources). The
agents can exhibit a set of different behaviors, and the selected behavior is dependent on the local
interactions with other individuals in their neighborhood and the state of the environment, thus the
agents may be adaptive. The mechanism of selection of behavior can range from simple procedural
logic to highly sophisticated reasoning. The repertoire of behaviors can be fixed or extensible, and the
latter implies that the agents should be able of learning. The intelligence of the agent depends on its
abilities to reason and to learn. The adaptive behavioral patterns enable self-organization of the
population and can result in emergent phenomena. Consequently, the ABM approach is suitable to
address complex adaptive systems. These concepts will be further studied in the following sections.

2.3.1 Definition of Agent

There is no consensus on the definition of agents, but the most used definitions were proposed by
Wooldridge and Jennings (1995) and Ferber (1999).

A definition that supports the computer science focus presented in this thesis is proposed by
[Wooldridge, 2008]: ―An agent is a computer system that is capable of independent action on behalf of its user
or owner, figuring out what needs to be done to satisfy design objectives, rather than constantly being told [what
to do]‖. In this definition, the word ‗independent‘ refers to agent autonomy, capable of acting
independently and exhibiting control over its internal state. Thus an agent is a computer system
capable of autonomous action in some environment in order to meet its design objectives [Wooldrige,
2002&2008] (Section 2.3.3 further discusses agents‘ environments).

According to [Wooldridge, 2002] an intelligent agent is a computer system capable of flexible
autonomous action in some environment2 and proposes the following properties in order to let an
agent show intelligent behavior: reactive, proactive and social.

 Reactive: A reactive system is one that maintains an ongoing interaction with its environment,
and responds to changes that occur in it (in time for the response to be useful) [Wooldridge,
2002]. Even though a changing environment makes agent design harder, it allows the
representation of much more complex (and interesting) situations.

 Proactive: Since agents should be able to do something according to their design objectives
(goals) they should have some way to direct their behavior towards those goals. Proactiveness
means generating and attempting to achieve goals, not driven solely by events as in the case of
reactivity but by actually taking the initiative [Wooldridge, 2002].

 Social: The real world is a multi-agent environment. As [Wooldrigde, 2002] states: ―we cannot
go around attempting to achieve goals without taking others into account‖. Social ability in
agents is the ability to interact with other agents via some kind of agent-communication
protocol or language, and perhaps also cooperate or negotiate with others.

In order to formalize some of the previous topics and to simplify future discussions without losing
generality, the following concepts are introduced, which were extracted from [Wooldridge, 2002] and
[Lind, 2008]. In order to let agents react (or take the initiative) according to changes in the
environment, agents must perceive their environment and have some way to act upon it, after
reasoning what to do. This leads agent to a Perceive/Reason/Act cycle, shown in Figure 4.

2 One of the best known examples of agents are robots. From industry manufacturing to NASA explorers and
soccer-playing, robots can be seen as a ―physical instantiation of an agent‖ according to Wooldridge. Being their
objective to ensemble a car, collect and analyze rocks or score a goal, being alone or in groups, each of these share,
to more or less extent, the properties discussed here.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 16 of 112

Figure 4: General representation of an agent with its environment.

2.3.2 Agent Architectures

Since there are multiple ways to achieve this Perceive/Reason/Act cycle, there are accordingly
different agent architectures that represent and implement this concept in different ways and to
different degrees. The term ‗agent architecture‘ refers to the software architecture for the decision-
making agents in the environment, as well as their internal mechanisms and representations
[Wooldridge, 2002; Bousquet & Le Page, 2004].

Two issues should be taken into consideration regarding this term: first that in the context of
agents, architectures are generally referred as being abstract (closer to reality) or concrete (closer to
implementation); and second that several authors differ on the classification of agent‘s architectures.

The following classification of abstract architectures3 is given by [Wooldridge, 2002]:

 Deliberative Architectures (also known as Symbolic or Logical AI) that manages explicit
representations of desires (goals), beliefs (what the AI agent knows), intentions (what it wants
to do), actions (what it does) and uses abstract reasoning tools. Deductive and deliberative
agents appear in these architectures as well as the BDI Architecture (Belief, Desire, Intention)4;

 Reactive Architectures that enable intelligence without having explicit representations, or
abstract reasoning, but as an emergent property of certain complex systems. In this kind of
architectures the agent has no previous knowledge and simply reacts based on a set of rules;
and

 Hybrid Architectures that include a deliberative as well as a reactive component.

2.3.3 Definition of Multi-Agent System

After introducing what an agent is and considering agents that operate alone, the agency theory can
be extended to let agents interact within a so-called Multi-Agent System (MAS). According to
[Wooldridge, 2002]: ―A Multi-Agent System consists of a number of agents which interact with one-another.
[…] To successfully interact, they will require the ability to cooperate, coordinate, and negotiate with each
other.‖

In MAS there is no central control and all information and control is distributed among the various
agents. Figure 5 presents an illustration of a MAS (based on [Wooldridge, 2002] and [Ferber, 1999]).

3 In order to be able to implement software using such architectures, more detail and design must be considered.
4 BDI architectures resemble human decision-making: belief is what the agent knows (its experience), desire is
what the agent is willing to do, and intentions are desires plus the commitment to achieve them. In these
architectures agents spent time not only doing things but also deliberating about what they should do. After
choosing a plan to execute according to their current intentions, they are able to constantly introspect about the
validity of such plan at each step of it, and if necessary, change the plan in order to better accomplish their goals.
However, [Deffuant et al., 2003] explain that BDI models are not necessarily more realistic than the simple models
and BDI architectures do not necessarily rely on robust scientific basis and do not derive from neuroscience
precepts, nor psychology and neither of philosophy.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 17 of 112

Figure 5: A Multi-Agent System.

As previously discussed, agents are able to perceive part (or all) of the environment and are also
able to act upon part (or all) of it depending on the type of environment (refer to Appendix A for MAS
environments). This can be represented by spheres of influence that determine the portion of the
environment that one agent is able to interact with. Interactions between agents allow agents to
cooperate, coordinate and negotiate as needed. Finally, interacting agents can also be organized to
form higher-level organizational units.

To these concepts [Ferber, 1995] adds the concept of object as being a passive entity subject to
manipulation (consumption and production) by agents (which in turn are defined as a subset of those
objects but with the ability to be active). All of these are also defined to be located, meaning that at
each time it is possible to locate each object and agent within the environment. Finally Ferber
introduces the idea that each agent possess its own (internal) representation of the environment, of the
objects and of other agents.

In this thesis the term Agent-Based Modeling will be used indistinctively from the term Multi-
Agent System since the first is no more than the process of modeling a certain reality using agents in
order to build a multi-agent system5.

A concept that enables further elaboration on the agency theory in a multi-agent environment is
the one of a role. A role is the functional or social part which an agent, embedded in a multi-agent
environment, plays in a process like problem solving, planning or learning [Lind, 2008]. Roles are a
useful abstraction considering the widely accepted meaning of the term in the real world that can be
used to help describe and understand the system by describing the consistency of an agent‘s behavior
within that system (as well as within the organization to which the agent belongs).

In MAS agents interact with each other, and this interaction can lead to cooperation (when
different agents share objectives) or negotiation (when the interests are not aligned). Negotiation is the
process of reaching agreements on matters of common interest [Wooldrigde, 2002].

2.4 Agent-Based Modeling of Complex Systems

This section presents the applicability of the agent-based modeling approach to complex adaptive
systems, and then discusses the suitability of the approach to agro-ecosystems as special case of
complex systems.

2.4.1 Applicability of Agent-Based Models to Complex Adaptive Systems

Besides from the similarities between complex adaptive systems and the agent-based modeling
approach that could already be noticed, this section further justifies the use of the latter to represent
the former (refer to Appendix A for more reasons).

The following four points help clarifying why the ABM approach is suitable for representing CAS:

 Regarding Emergence: ABMs allow to define the low-level behavior of each individual agent
in order to let them interact (over time and space) to see whether some emergent property
arises or not, and if it does, under which circumstances.

5 This is also supported by [Bousquet and Le Page, 2004]: ―Recently, several researchers have started to use multi-agent
systems, also called agent-based modeling, in different fields.‖

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 18 of 112

 Regarding Self-Organization: ABMs do not have any kind of central intelligence that governs
all agents. On the contrary, the sole interaction among agents along with their feedbacks is
what ultimately ‗controls‘ the system. This lack of a centralized control is what enables (and
enforces) its self-organization.

 Coupled Human-Natural Systems: ABMs allow considering together both, social
organizations with their human decision-making with biophysical processes and natural
resources. This conjunction of subsystems enables ABMs to explore the interrelations between
them, allowing analyzing the consequences of one over the other.

 Spatially Explicit: the feature of ABMs of being able to spatially represent an agent or a
resource is of particular interest when communications and interactions among neighbors is a
key issue. This can either imply some kind of internal representation of space or even the use of
a Geographical Information System (GIS) with real data. This feature is of special interest in the
case of agro-ecosystems.

The following Section presents how some special features of agro-ecosystems can be modeled
using an ABM approach.

2.4.2 Modeling of Agro-Ecosystems using an ABM Approach

Section 2.2.2 presented agro-ecosystems as a case of complex adaptive systems, while Section 2.4.1
showed the suitability of the ABM approach to model complex adaptive systems. Nevertheless, this
section provides some views on the topic by different authors working on ABM approach to agro-
ecosystems and presents some specific features of agro-ecosystems that can also be tackled with it.

According to [Ferber, 1999, p. 36]:

“Multi-agent systems bring a radically new solution to the very concept of modeling and
simulation in environmental sciences, by offering the possibility of directly representing
individuals, their behavior and their interactions […] it is thus possible to represent a
phenomenon as the fruit of the interactions of an assembly of agents with their own operational
autonomy.”

The relations and heterogeneity in the social part of the MAS depend on the agent‘s social
neighborhood, whereas the variability from the physical and ecological point of view can be achieved
by considering spatial heterogeneity of the environment in the MAS.

The addition of spatially explicit features is especially important in agro-ecosystems where spatial
heterogeneity can be relevant, for example by means of different land-uses, soil qualities, natural
resources, etc. on each land-unit. Just as land-units can be organized to form higher-level spatial
elements, social networks can be formed between agents or can emerge as a consequence of agent‘s
behavior and interactions. What makes ABMs rather unique is that both of these organizational
dimensions can be considered together, allowing exploring the consequences of one over the other.

Finally, it is worth noting that even though agents, from the ABM point of view, can be any
autonomous and goal-driven entity, from the agro-ecosystems perspective agents are generally
aspects of human societies or animal populations that organize among themselves, interact with the
environment, and they are affected in their decisions by that environment [Matthews, 2006]. Figure 6
shows these relationships similarly as Figure 2 (in Section 2.1) showed an abstract complex system:

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 19 of 112

Figure 6: Model of an Agro-Ecosystem using an ABM Approach.

The actual implementation of an agent-based model is ultimately about developing a
computational model, that is, software. Therefore, in order to analyze, design, implement and every
other step involved in developing such systems, certain software development methodology must be
used. The following section compares the agent and object-oriented paradigms. Appendix B completes
this comparison by comparing the AOSE and OOSE methodologies.

2.5 Comparison Between Agent-Oriented and Object-Oriented Paradigms

In 1989 Yoav Shoham coined the term agent-oriented programming [Shoham, 2010] and defined it as a
new programming paradigm based on a societal view of computation. This societal view implies
(according to Shoham) ascribing mental qualities to agents such as beliefs, capabilities, choices and
commitments (in the same way than BDI architectures propose to conceive agents in terms of beliefs,
desires and intentions).

The idea behind these mental qualities includes the use of mental constructs to design
computational systems. This is the main difference between AOP and OOP: while OOP uses
abstractions based on objects which are generic entities that comprise identity (a property inherent to all
objects that allows to differentiate them), state (attributes by which the object can be characterized) and
behavior (operations that the object can be asked to do by means of messages), AOP considers
abstractions based on human societies and mental properties.

Another important difference between both approaches is the autonomy that agents have. While in
OOP objects just reply to messages sent from other objects in a predefined way, in AOP agents are
supposed to be proactive and initiate actions over themselves or over other agents.

The following table summarizes some of the differences between OOP and AOP:

 OOP AOP

Basic unit Object (instance of a Class) Agent instance of an Agent Type

Constraints defining the
state of the basic unit

None Mental properties (beliefs, desires,
etc.)

Autonomy Not necessarily present May be present

Types of messages
(interaction)

Unconstrained Speech acts (inform, request, etc.)

Concept of role Not necessarily present
(comparable to using interfaces)

May be present

Table 1: Comparison between OOP and AOP paradigms.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 20 of 112

This short list of differences illustrates that even though OOP and AOP have important similarities,
these arise because AOP can be seen as a specialization of OOP, a new paradigm thought as
constraining the extremely general-purpose of the OOP paradigm and aligning those constraints to
mental and societal properties.

The value (and innovation) of AOP is in providing useful abstractions for understanding and
developing systems in terms of agents and societies of agents. In words of [Jennings, 2001]: ―When
designing software, the most powerful abstractions are those that minimize the semantic gap between the units of
analysis that are intuitively used to conceptualize the problem, and the constructs present in the solution
paradigm.

For a comparison between OOSE and AOSE methodologies, refer to Appendix B.

2.6 Final Remarks

This chapter introduced the fundamental topics needed as background for the rest of this thesis. For a
deeper state-of-the-art, refer to Appendix A. This chapter also showed that the systems approach
along with concepts such as complexity and emergence provide a suitable way to conceptualize agro-
ecosystems and their related problems at various scales, and that the agent-based modeling approach
provides a way to operationalize these concepts into computational models that allow for simulation
when direct experimentation is not possible. However, it is imperative for the software engineering
discipline to provide the necessary guidance for developing such computational models. This Agent-
Oriented Software Engineering discipline is the focus of the next chapter.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 21 of 112

3 Agent-Oriented Software Engineering
This chapter presents the main ideas behind Agent-Oriented Software Engineering (Section 3.1). It
presents a summary and comparison of the most well-known agent-oriented software development
methodologies (Section 3.2) and shows the most common steps of these (Section 3.3). The chapter ends
with some concluding remarks (Section 3.4).

3.1 Introduction to AOSE

Since developing software is much more than just writing a program, the software engineering
discipline has become increasingly important. This implies not only following certain development
process but also following certain development paradigm. While the former deals with issues like
Waterfall or Iterative & Incremental development processes, the latter deals with the way in which the
software is conceived, including how the problem is tackled, requirements are analyzed, a solution is
designed and finally how this design is implemented in a programming language, all of which can be
summarized as the approach for (thinking and) developing software.

In the same way that applying the object-oriented paradigm to develop software has led to Object-
Oriented Software Engineering (OOSE), applying the agent-oriented paradigm has led to Agent-
Oriented Software Engineering (AOSE).

Even though this thesis emphasizes the adoption of an agent-oriented methodology for ultimately
developing an agro-ecosystem simulation, AOSE can be seen as a promise for tackling the ever-
growing complexities of software development in general. In many cases it is recognized that the
behavior of a large-scale software system can be assimilated more appropriately to a human
organization aimed at reaching a global organizational goal, or to a society in which the overall global
behavior derives from self-interested intentional behavior of its individual members, than to a logical
or mechanical system [Petra et al., 2003]. Some authors go further stating that it seems very likely that
the software engineering of tomorrow for addressing more complex societal problems will be agent-
oriented, such as that of today is object-oriented6 [Perez and Batten, 2006].

3.2 Review of AOSE Methodologies

This section provides a summary of the ten most well-known agent-oriented software development
methodologies, which are presented in [Henderson-Sellers and Giorgini, 2005]7 as well as a very broad
comparison between them..

The following is a very brief summary of these ten methodologies:

 The Tropos methodology [Bresciani, Giorgini et al., 2004] provides guidance for the four
major development phases of application development. One of its primary contributions is
placing an emphasis on modeling goals and their relationship with the system‘s actors, tasks,
and resources.

 MAS-CommonKADS [Iglesias et al., 1996] is based on both CommonKADS and object-
oriented (OO)-based methodologies. This enables the developer to build agent based
systems while leveraging the experience of pre-agent methodologies and employing familiar
techniques and diagrams.

 The PASSI methodology [Cossentino, 2005] brings a particularly rich development lifecycle
that spans initial requirements through deployment and, in addition, emphasizes the social
model of agent-based systems.

 From an AI planning-execution perspective, Prometheus [Padgham & Winikoff, 2002]
provides an especially rich goal-driven approach for its BDI-like agents. Its methodology is
used today to develop systems on commercial BDI-based agent platforms, such as JACK or
Agentis.

6
 ―I've always felt that the future of our field [computer science] is more to be found in what the AI [Artificial Intelligence]

folks were trying to do, than in what the workaday programmers in academia and business concern themselves with.‖ Prof.
Alan Kay, OOP and GUI pioneer (URL: http://www.amazon.com/gp/blog/post/PLNKVUNBWIDAS9YQ)
7 ―This book [referring to Henderson-Sellers and Giorgini, 2005] is the first to present and explore the ten most

prominent methodologies for developing agent-based systems.‖ James Odell.

http://www.amazon.com/gp/blog/post/PLNKVUNBWIDAS9YQ

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 22 of 112

 Gaia [Wooldridge, Jennings & Kinny, 2000] is one of the earliest agent methodologies and
now reflects this experience in version two of its approach. Using the analogy of human
based organizations, Gaia provides an approach that both a developer and a non-technical
domain expert can understand—facilitating their interaction.

 ADELFE [Bernon, Gleizes, Picard & Glize, 2002] is a specialized methodology that
emphasizes cooperative agents that self-organize and possibly result in emergent systems.
More specifically, it addresses designing complex adaptive systems and anticipating
emergence within its software agents.

 Resulting from a two-year, European-funded EURESCOM project, MESSAGE [Caire et al.,
2001] extends existing object-oriented methodologies for agent-oriented applications.
Chartered to address telecommunications applications, its resulting RUP-based approach
also supports more general applications.

 The INGENIAS methodology [Pavón, Gomez-Sanz & Fuentes, 2005] supports a notation
based on five metamodels that define the different views and concepts of a multi-agent
system. Using metamodels provides flexibility for evolving the methodology and adopting
changes to its notation.

 RAP [Taveter & Wagner, 2005] is concerned with distributed information systems (such as
enterprise resource planning and supply-chain management systems) and places less
emphasis on AI-based systems. The philosophy of the Model Driven Architecture (MDA) is
adopted with the goal that executable software agents can be generated using RAP artifacts.

 MaSE [DeLoach, 1999] is a comprehensive methodology that has been used to develop
systems ranging from heterogeneous database integration applications to biologically based,
computer-virus immune systems and cooperative robotics systems. Its hybrid approach can
be applied to multi-agent systems that involve implementations, such as distributed human
and machine planning.

Figure 7 shows a schematic representation of the relations between object-oriented and agent-
oriented methodologies, showing direct and indirect influences between them (simplified from
[Henderson-Sellers and Giorgini, 2005]). The figure shows all ten methodologies plus others that also
served as influence (represented in italic white font in the figure) but which will not be further
discussed:

Figure 7: Influences between various OO and AO methodologies.

As it can be noticed in the figure, all ten methodologies (represented in bold above) except for
Tropos, have been influenced by object-oriented techniques (represented as ―OO‖ in the figure). Also
several are reported to be inspired (according to [Henderson-Sellers and Giorgini, 2005]) on the
Rational Unified Process (RUP) [Kruchten, 1999]. The Object Modeling Technique (OMT) [Rumbaugh
et al., 1991] was one of the first OO methodologies which in turn influenced other methodologies like

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 23 of 112

the Australian Artificial Intelligence Institute methodology (AAII) [Kinny, Georgeff & Rao8, 1996], and
the OO methodology called Fusion [Coleman et al., 1994].

An interesting case is the one of Tropos9, which is influenced by the ―i* organizational modeling
framework‖ [Yu, 1995]. This framework proposes an AOP approach to requirements centered on the
intentional characteristic of agents. Even though the main concepts (actor, goal and dependency) are
rather general, Tropos uses this framework to model early and late requirements, architectural design
and detailed design for developing an agent-based software system.

Even though there are other methodologies for developing AOP-based software systems, this
thesis is based on the ten presented in [Henderson-Sellers and Giorgini, 2005] since they are arguably
the most referenced and cited elsewhere (for instance, in the International Workshop on AOSE [AOSE,
2010] that since 2008 is held in conjunction with the Journal of Autonomous Agents and Multi-Agent
Systems [JAAMAS, 2010]).

The following table contains a brief comparison between these ten methodologies according to a
certain criteria. The intention of this comparison is not to be exhaustive in the comparison (which is
already done in Chapter 12 of [Henderson-Sellers and Giorgini, 2005]) but to point out some
differences between them.

8 Michael Georgeff and Anand Rao are pioneers in the research of BDI-like architectures, especially on the
necessary logic behind them to represent beliefs, desires and intentions.
9 Web-site: www.troposproject.org

http://www.troposproject.org/

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 24 of 112

Table 2: Comparing the ten AOSE methodologies (based on [Henderson-Sellers and Giorgini, 2005])

Gaia Tropos
MAS-

Common
KADS

Prometheus Passi Adelfe Mase Rap Message Ingenias

P
ro

ce
ss

-R
e

la
te

d

C
ri

te
ri

a

Application
domain

Independent Independent Independent Independent Independent
Dependent
(adaptive
systems)

Independent

Dependent
(distributed

organizational
inf. systems)

Independent Independent

Size of MAS
<=100 agent

classes
N/A

N/A (possibly
any size)

Any size N/A
N/A (possibly

any size)
<=10 agent

classes
Any size

N/A (possibly
any size)

N/A (possibly
any size)

Agent nature Heterog. BDI-like Heterog. BDI-like Heterog. Adaptive
N/A (possibly

Heterog.)
Reactive Heterog.

Agents with goals
and states

MAS approach OO i* Knowledge Eng. OO OO OO OO OO OO OO

Use of roles Yes No No No Yes No Yes Yes Yes Yes

M
o

d
e

l-
R

e
la

te
d

C

ri
te

ri
a

Autonomy Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adaptability Possibly No No No No Yes No No Possibly Possibly

Cooperative Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Communication No Yes Yes Yes Yes Yes Yes Yes Yes Yes

Reactivity Possibly Yes Yes Yes Yes Yes Yes Yes Yes Yes

Persistence No No No No No No No No No No

Deliberative Yes Yes Yes Yes Yes Yes Yes No Yes Yes

S
u

p
p

o
rt

iv
e

-
F

e
a

tu
re

C

ri
te

ri
a

SW support No No No Yes Yes Yes Yes Yes Yes Yes

Open systems Yes No No No No Yes No No No No

Dynamic structure No No No No Yes No Possibly No No No

Legend: N/A stands for ‗information non available‘.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 25 of 112

The following is a description of the different criteria groups that were used in Table 2. This serves the
better understanding of the table as well as it facilitates a deeper insight on these general-purpose
AOSE methodologies, and the AOSE discipline itself.

Process-Related Criteria: These criteria look at the applicability of the methodology, the steps
provided for its development process and the development approach followed:

 Application domain: Is the methodology applicable to any application domain (i.e. domain
independent) or to a specific domain (i.e. domain specific)?

 Size of MAS: To what size of MAS is the methodology suited?

 Agent nature: Does the methodology supports, agents of any architecture, reasoning
mechanism, and/or knowledge representation (i.e. heterogeneous agents), or only agents of a
particular type (i.e. homogeneous agents).

 Generic MAS development approach: for instance OO approach or knowledge engineering
approach.

 Approach towards using “role” in MAS development: Does the methodology employ the
concept of ―role‖ in MAS analysis and design?

Model-Related Criteria: These criteria evaluate the various aspects of a methodology‘s models and
notational components:

 Autonomy: Can the models support and represent the autonomous feature of agents (i.e. the
ability to act without direct intervention of humans or others and to control their own states
and behavior)?

 Adaptability: Can the models support and represent the adaptability feature of agents (i.e. the
ability to learn and improve with experience)?

 Cooperative behavior: Can the models support and represent the cooperative behavior of
agents (i.e. the ability to work together with other agents to achieve a common goal)?

 Communication ability: Can the models support and represent knowledge-level
communication ability (i.e. the ability to communicate with other agents with language
resembling human-like speech acts)?

 Reactivity: Can the models support and represent the reactivity of agents (i.e. the ability to
selectively sense and act in a timely manner)?

 Persistence (temporal continuity): Can the models support and represent temporal continuity
of agents (i.e. persistence of identity and state over long periods of time)?

 Deliberative behavior: Can the models support and represent the deliberative behavior of
agents (i.e. the ability to decide in a deliberation or proactiveness)?

Supportive-Feature Criteria: These criteria assess the various high-level, supplementary features of an
AOSE methodology:

 Software and methodological support: Is the methodology supported by tools and libraries?

 Open systems: Does the methodology provide support for open systems (i.e. that allow for
dynamic addition/removal of agents)?

 Dynamic structure: Does the methodology provide support for dynamic structure (i.e. allows
for dynamic reconfiguration of the system)?

From analyzing these ten AOSE methodologies it follows that none of them is aimed at simulating a
MAS, and neither to be applied to agro-ecosystems. In a broader search, no AOSE methodology was
found to be specially aimed at simulating agro-ecosystems. In an attempt to build such a methodology
(or at least a methodological framework) the next sections will use those steps as a basis, that
generally appear on these ten AOSE methodologies.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 26 of 112

3.3 Standard Steps of an AOSE Methodology

An important finding in [Henderson-Sellers and Giorgini, 2005] is that there is no study that identifies
the ―standard‖ steps that can be followed in any AOSE development process. This ―standard list of
steps‖ would enable to have a common framework from which to compare the different
methodologies (e.g. How does Met. A differs from Met. B regarding their process steps?) and could be
a basis for building an AOSE methodological framework.

Based on this, Tran & Low proposed 19 ―standard steps‖ and in order to verify their validity, they
conducted a survey of experts who expressed their opinions on the importance of these steps. The
survey confirmed their validity but unfortunately the authors gave no details about who these experts
were.

It is understood that no single methodology will include all of these standard steps, but each will
provide support to a subset of these, and furthermore, some will provide an explicit support for
certain step while others may provide implicit or partial support (for a complete list comparing each
of the ten methodologies with these 19 steps refer to Chapter 12 of [Henderson-Sellers and Giorgini,
2005]).

For the purpose of this thesis, such a list of standard steps allows to see the general activities
shared among several methodologies, giving a more abstract view than the analysis each and every
one of the ten methodologies, and may also allow to identify which of these steps are needed in order
to successfully design and develop agro-ecosystem simulation‘s models.

From these original 19 general steps, Tran and Low recently distilled 16 general steps [Tran and
Low, 2008] which are shown in Table 3. Table 4 contains the particular to each methodology. The
reason for including the latter is because one or more ―specific steps‖ could be identified, which could
be useful for developing agro-ecosystem simulations.

Even though the different general steps in Table 3 are numbered and presented in that order, this
doesn‘t mean that these steps should be performed (if at all) in that order. As said, these steps do not
actually represent any particular AOSE methodology; they were abstracted from several AOSE
methodologies.

 AOSE Step Description

Problem
domain
analysis

steps

1. Identify system
functionality

Determine what the system should do in terms of functionalities (the
same as traditional requirement engineering techniques).

2. Identify roles Identify the roles that should later be played by the different agents.
This step may include analyzing the organizational context in which
the MAS will be deployed since roles commonly (and naturally)
appear in real organizational contexts.

3. Identify agent classes Identify which types of agents are needed (agent classes). This can be
related to roles in the sense that a certain agent class can be created to
cope with certain role characteristics.

4. Model domain
conceptualization

Identify the domain‘s main concepts and relationships. This step is
frequently associated with developing the so-called ―ontologies‖ in
several methodologies, which are very similar to domain diagrams
(conceptual modeling), easily depicted in UML Class Diagrams.

Agent
interaction

design
steps

5. Specify acquaintances
between agent classes

Determine basic relationships between agent classes (such as who
knows who, possible hierarchies, etc.)

6. Define interaction
protocols

Define how agents can interact by defining communication protocols
between them.

7. Define content of
exchanged messages

Define what the messages between agents will contain. These 3 steps
(which comprise the ―Agent Interaction Design‖) are very related and
can be considered altogether.

Agent
internal
design

8. Specify agent
architecture

Determine the specific (internal) architecture for each agent class (like
for example BDI architecture). The specific architecture to choose will
depend on the characteristics that the different agent classes should
present (e.g. if they must conceptualize beliefs, goals and plans, or if

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 27 of 112

steps they will be just reactive).

9. Define agent mental
attitudes

If the agent is to present mental attitudes like goals, beliefs, plans or
commitments, define these for each agent class. This step includes
trying to identify how these attitudes will be design internally for the
agents‘ classes that need them.

10. Define agent behavioral
interface

Determine the capabilities, services, contracts and any other
programming interface that the agent must provide. This will depend
on the agent architecture (e.g. if it is a deliberative agent or if it is a
reactive agent).

Overall
system
design
steps

11. Specify system
architecture

Overview of all components and their connections (in a higher level
than Agent Architecture). This step also includes resources and
environment (if they are of interest) and their relation to the agent
classes.

12. Specify organizational
structure/inter-agent
social relationships

If the system can be analyzed in terms of organizational concepts,
then specify the organizational structure and the inter-agent social
relationships. This step can be related to Step 2 (Identify Roles) since
roles are generally crucial in any organizational structure, as well as
hierarchies between them. There are also several pre-defined
organizational structures available (e.g. peer to peer, hierarchical,
etc.).

13. Model MAS
environment

If the environment is relevant, then identify its resources, facilities and
characteristics. Although part of this step can be done in Step 12
(mainly those structural environmental aspects) others (mainly those
functional aspects) may not.

14. Specify agent-
environment interaction
mechanism

Closely related to the previous two steps, it involves detailing how the
different agent classes are to be related to their environment,
(analogous to interaction protocols, but instead of agent-agent
interactions here we see agent-environment interactions). It is worth
noting that this step can actually influence the architecture chosen for
the different agent classes (this stresses the idea that these general
steps are not necessarily presented in order).

15. Instantiate agent classes They determine how many agent instances will be needed for each
agent class at initialization of a simulation.

16. Specify agent instances
deployment

Determine where the agent instances are to be (physically) deployed.
This includes specifying agent platforms, nodes (with processing
power), connection between nodes, etc. UML Deployment diagrams
can be used.

Table 3: The 16 general steps identified by [Tran and Low, 2008] present in the major AOSE methodologies.

Step Description

Specify organizational rules Identify rules that must be respected by the organization for it to work
coherently, and specify how the dynamics of the organization should evolve
over time.

Identify initial sub-systems Determine whether multiple organizations have to co-exist in the system and
become autonomous interacting MASs

Implementation Map the system design components to concrete components in the
development framework and generate codes using code-generation tools.

Elaborate and validate UI
prototypes

Specify the GUIs through which users will interact with the systems, and the
relationships between GUIs.

Table 4: Other steps (not included in Table 3) that are only specific of certain AOSE methodologies.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 28 of 112

3.4 Final Remarks

This chapter introduced the main concepts behind AOP and AOSE. It also presented the most well-
known AOSE methodologies, none of which are specifically targeted to simulating a MAS, nor they
are aimed at the domain of agro-ecosystems.

Since the objective of this thesis is to find, or build an AOSE methodology targeted at
simulating an agro-ecosystem, and none was found to meet these requirements, the 16 general steps
find by Tran and Low will serve as the basis for building such a methodology.

To this end, the following chapter aims at identifying, from these 16 general AOSE steps,
those that would be useful in the context of this work, and adding others if necessary.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 29 of 112

4 Towards a Methodological Framework for
Developing Agro-ecosystem Simulations

The aim of this chapter is to build a methodological framework for developing agro-ecosystem
simulation software based on the agent-based modeling approach. This problem could be divided into
two parts. First, how to simulate a MAS, and second, how to simulate a MAS that represents an agro-
ecosystem.

To this end, this chapter presents the general guidelines that will be considered for the
methodological framework (Section 4.1), and then the requirements for simulating a MAS (Section
4.2). Based upon these requirements, the 16 general AOSE steps introduced in Chapter 3 are analyzed
in order to select only those that cope with them (Section 4.3). Since new steps, besides these 16, may
be needed, Section 4.4 discusses which new steps could be added for successfully simulate a MAS.
Later, Chapter 5 presents the more specific agro-ecosystem requirements and how the methodological
framework supports them.

 The premise of this chapter is that none of the studied AOSE methodologies explicitly support
the development of agro-ecosystem simulations. As introduced in Chapter 1, the full definition of a
detailed methodology for developing agro-ecosystem simulations is out of the scope of this thesis.

4.1 Guidelines for the Proposed Methodological Framework

Even though the steps will be presented in a sequential order, the intended approach of the
methodological framework is iterative and incremental. This means that any of the steps may be
revisited several times, one per iteration, and each time giving a more complete solution.

 Several options are available when simulating certain processes using software, like discrete-
event, continuous and time-stepped simulations. The method by default for the methodological
framework will be time-stepped.

By comparing the time-step scheduling and discrete-events approach [Galler, 1997] notes the
advantages and disadvantages of each. He studied how different approaches can address the issue of
simultaneous events and competitive activities, but also their respective performances in terms of
computing time. Without concluding a preference for either, he notes that the continuous time
approach does not provide clear benefit. Because the development and implementation of an event-
based simulator are not obvious, many errors difficult to detect can occur. The author then concludes
that for practical reasons, it is better to use a discrete time approach, which greatly simplifies the
development of simulations, but the granularity of time must be accurately determined.

Also, the time-stepped approach has shown to be very natural when discussing with
stakeholders (especially producers), since these tend to think of their activities and decision-making
on a time-step fashion, like decisions taken every day, month, season or year.

 There are also several different graphical modeling languages that could be used to express
the different artifacts. Some of them are general-purpose, like UML [UML, 2010] and others are
specific to MAS, like the Agent Modeling Language or AML [AML, 2010]. Since the aim is to facilitate
developer‘s uptake so that they can use their preexisting knowledge of both, OOP and UML, the
methodological framework will use plain UML diagrams. Nevertheless it is worth noting that using
MAS-specific languages like AML allows for better specifications, since specific MAS constructions
are available. Interestingly, AML itself was inspired by five of the ten general-purpose AOSE
methodologies presented in [Henderson-Sellers and Giorgini, 2005] and discussed in Chapter 3,
namely TROPOS, GAIA, PASSI, PROMETHEUS and MESSAGE10, something that also stresses out the
relevance of these methodologies.

 In addition to the use of a graphical modeling language for specifying the various MAS
constructs, developers also need a programming language for implementing them. Here some Agent-
Oriented Programming Languages are also available, but in order to achieve the uptake objective
already mentioned, the Object-Oriented Programming paradigm will be followed.

 Regarding the software development process, an Iterative & Incremental process is
encouraged. This means that certain steps may be revisited. Because it is out of the scope of this thesis
to define a complete and comprehensive software development methodology, further references and

10 AML specification can be found at: http://www.whitestein.com/library/whitestein_aml-specification_v09.pdf

http://www.whitestein.com/library/whitestein_aml-specification_v09.pdf

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 30 of 112

details on how to follow this Iterative & Incremental approach will be omitted. Nevertheless, this
implies that the proposed artifacts need not be developed in the sequential order in which they are
presented here.

 Since the aim is to develop an agro-ecosystem agent-based model for simulation, there are two
ways to achieve this: either to develop the entire software or to use an already existing MAS
simulation software package (also known as MAS simulation frameworks). These are general-purpose
software packages that provide abstract classes and commonly used behaviors for the developer to
use and extend, all in the context of MAS (that is, providing constructs at least for the concept of
agent). Even though the steps of the proposed methodological framework will be useful for both
ways, it is recommended to use, whenever possible, an already existing MAS simulation framework,
since the workload may be significantly reduced. This is why the steps will be presented assuming
that such a framework will be used.

 Finally, the work of [Le Page and Bommel, 2005]11 also served as an inspiration for this thesis,
given that they propose the use of UML as a means for specifying and CORMAS [CORMAS, 2010] as a
means for implementing MAS simulations. Nevertheless, they present in a very general way how
some UML Diagrams could be used to implement a CORMAS simulation, without providing further
methodological aspects on how a software methodology could be followed (e.g. steps and artifacts to
build on those steps). There is also no mapping given on how the most relevant features present in
agro-ecosystems could be successfully represented using those diagrams; no details on how to model
the simulation aspects (such as initial configuration, input and output parameters or visualization). In
addition to this, the notion of role is not used, and they only provide a ―toy-model‖ example instead
of a real-world one.

In summary, the guidelines that will be taken into consideration for building the methodological
framework will be the following:

 Iterative & Incremental: although not thoroughly presented in this thesis, the methodological
framework will be assumed to be followed in an Iterative & Incremental way.

 Time-step: it will assume a time-step type of simulation, where the time-step duration should
be defined and it will remain constant throughout each simulation run.

 UML: plain UML diagrams will be used.

 OOP: the OOP paradigm will be suggested for implementation.

 Simulation framework: the use of an already existing simulation framework software
package is suggested, and this thesis‘ case study (Chapter 6) will make use of the CORMAS
simulation platform as it is dedicated to natural resources management (i.e. to model and
simulate agro-ecosystems).

4.2 MAS Simulation Requirements

In order to model and simulate an agro-ecosystem using the agent-based modeling approach, the
following elements should be taken into account:

 Agents: they will naturally be at the core of any attempt to develop a simulation using an
ABM approach. This also includes interactions between agents.

 Environment: it is what surrounds the agent, where the agent is located, and a means by
which the agent receives input.

 Resources: they represent what the agents produce and/or consume. Even though this
concept is not generally defined as a separate aspect of an ABM, it is particularly useful in the
context of agro-ecosystems due to the importance of representing the production and/or
consumption of resources and the relation between resources and the environment. In this
context, resources are generally thought of as passive objects that are, for example, produced
by the environment and consumed by agents within certain process (like crop production).

 Simulation capabilities: since the objective is to simulate agents, environment and resources,
the methodological framework must allow this to happen. This includes (but is not limited to):
the notion of time, the possibility to configure different initial situations from which to start
the simulation, configuration of input parameters, and output results.

11 Which is available at: http://cormas.cirad.fr/pdf/AsiaBook/20_LePage_2005_BC.pdf

http://cormas.cirad.fr/pdf/AsiaBook/20_LePage_2005_BC.pdf

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 31 of 112

All of these elements configure a good starting point since they give an overview of the
requirements that must be met in order to develop an agro-ecosystem simulation. The next section
takes these into account for selecting, from the 16 general AOSE steps of Table 3, those that meet these
requirements.

4.3 Selecting Steps

This Section presents an analysis of each of the 16 general AOSE steps presented in Table 3 in order to
identify those which are suitable for developing a MAS simulation. That is, those that cope with the
requirements of Section 4.2. For each general step, a discussion is presented to justify whether to
select it or not for the methodological framework (under the title ―Discussion about considering this
step‖). Furthermore, an analysis on what information would be manipulated in the step (under the
title ―What information should be generated in this step?‖), and how that information could be best
represented (by means of artifacts, usually models, under the title ―Possible artifacts of this step‖).

Problem Domain Analysis Steps

General Step 1: Identify System Functionality

Discussion about considering this step
This step determines what the system (software) should do. It was thought as part of a general AOSE
methodology, so as in any general-purpose software engineering methodology, it is vital to state what
the software should do (e.g. register all the sales, including the customers that purchased them and
perform queries over that data). On the other hand, MAS like those being studied in this thesis already
have a special focus: MAS simulation, and more specifically, agro-ecosystem simulation. This greatly
reduces the scope of what the system should do, although the software developer must state, within
that specific scope, what the system should simulate, and more importantly, the objective of the
simulation. This is why this step will be considered, but also renamed as ―Identify System Purpose‖.

What information should be generated in this step?
This step should define the purpose of the simulation (its objective), as well as provide an overview of
the context in which the simulation will be developed (e.g. what would be the use of it, who would
use it and develop it, who would be represented in it, why the simulation would be developed and
what would be expected from it). This very much resembles the first documents generated in general-
purpose software engineering methodologies, but it should contain some other information not
generally present in these, namely to clearly explicit the objective of the simulation‘s model, and the
people involved, either being modeled and represented inside the simulation as well as those that will
be the modelers and developers. The reason for adding this information is that any model will
invariably include the modeler‘s perspective or point of view. This may not be relevant if the subject
being modeled is an invoice or a product purchase, but agro-ecosystems will represent human
behavior as well as real-world problems and conflicts, and depending on how the modeler models
this, the result of the simulation may change. Depending on sensitivity issues, even small differences
on perspectives between modelers that affect their models may have a tremendous impact on
simulation output. Like [Grimm & Railsback, 2005] point out, clarifying the purpose of the model is
essential because it provides a framework for its whole description.

Possible artifacts of this step
Since this step doesn‘t include any modeling, a text document should be enough. This document will
include (but not be limited to) the following items:

 General system purpose: representing the general objective and giving an overview of why
the simulation system is to be built.

 Questions that the system should answer: representing specific objectives.

 Stakeholders: including anybody that has an interest, either direct or indirect on the system
that will be developed, or on the results that could be obtained.

 Target population: for which stakeholders the system will be developed, differentiating those
that will be modeled into the system and those that will use the system.

 Modelers: who will model and develop the system, in order to help identifying any risk of
adding a perspective or bias.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 32 of 112

General Step 2: Identify Roles and

General Step 3: Identify Agent Classes

Discussion about considering these steps

A role is the functional or social part which an agent, embedded in a multi-agent environment, plays
in a process like problem solving, planning or learning [Lind, 2008]. The role defines what the agent is
expected to do within certain organization and considering other agents. In the context at hand, the
system will probably present several different roles, like farmer, consumer, local authority, etc. These
are roles people play in a society and in an agro-ecosystem. Roles help determine agent types (or
‗agent classes‘ as called in the general AOSE Step 3). Moreover, agent classes can be viewed as
specializations of roles, more concerned about agents than about social behaviors (as roles do). An
important issue about roles is that any given agent can play multiple roles, either simultaneously or in
turns. This may lead to define agent classes that take this into account (e.g. an agent class ‗farmer
authority‘ that merges two roles: farmer and local authority). Since these concepts may be crucial to
model and simulate agro-ecosystems, and are related to each other, these steps will be considered
together and renamed as ―Identify Roles and Agent Types‖.

What information should be generated in this step?
This merged step involves specifying the expected behavior of the role within the system and with
respect to other roles (hence to other agents). Since roles are a functional or social part and define what
the agent playing that role is expected to do, then a comprehensive description of a role must state the
expected behavior of any agent that will play that role.

Since the methodological framework is intended to have an iterative and incremental approach,
this step could only identify, at first, roles and agent types (e.g. assigning them a name and overview),
and only later on be revisited when the modeler/developer has enough information to fully describe
each role and agent type.

Possible artifacts of this step
There are several artifacts that could be built since different information is needed:

 Roles: text document including the names and general description for each role. The
description should include the goals of each role as well as a general overview of the
responsibilities related to that role (that agent types playing that role must present) as well as
relations with other roles (if they apply).

 Agent Types: text document identifying the names of the different kinds of agents that will be
modeled, their goals, objectives and relation with the roles identified. This identification
should be consistent with the Domain Model Conceptualization Step since it represents the
structure of the system, which includes the different kinds of agents (e.g. if three different
types of agents are identified, then those three kinds should appear as domain concepts).

 Agent Types’ Behavior: a thorough description of each agent types‘ behavior. This behavior
must be specified for a certain moment in time, representing those decisions that the agent
type will make at that time (with the information available at that moment). This means that
this decision-making will be executed during the simulation at every time step (e.g. describe
the logic of decision-making of local authorities at the beginning of the year, assuming a
yearly time step). Even though these behavioral descriptions could be documented by means
of a textual description, UML Activity Diagrams can be used to complement such
descriptions.

General Step 4: Model Domain Conceptualization

Discussion about considering this step
This step looks for the domain‘s main concepts and relationships. It is a static (structural) view of
reality, in contrast with roles and behaviors which are a dynamic (behavioral) view. This is why they
complement each other and they must also be consistent with each other. This step has exactly the
same purpose than domain models of traditional OOSE methodologies: to identify those concepts that
are most relevant for the domain being studied and that will be of interest for the system to be built (in
this case, for the simulation that will be developed). Since it is not possible to automatically identify
those most relevant concepts, the modeler must get involved with the domain and determine which

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 33 of 112

elements, from the nearly infinite number of elements that reality is composed of, will be part of the
domain model. This step will be considered, using its original name ―Domain Model Conceptualization‖.

What information should be generated in this step?
Since only one domain model conceptualization will be built, it must include not only the agent types
but also the most relevant elements that compose the environment as well as resources. All of this
must be modeled by their structural nature, since behaviors are not to be included in this model.
Based on Section 4.2, the domain model (applied to agro-ecosystems) will group three kinds of
concepts: those related to agents, those related to the environment and those related to resources.

Possible artifacts of this step
The most well-known artifact for domain models is UML Static Structure Diagrams, also known as
Class Diagrams. As stated before, the methodological framework is based on the use of plain UML.

Agent Interaction Design Steps

General Step 5: Specify Acquaintances between Agent Classes

Discussion about considering this step
The aim of this step is to identify which other agent classes each one knows. This was already done,
either when identifying agent types and roles, and/or when modeling the domain conceptualization,
by means of associations between concepts, hence this step will not be considered by itself but as part
of previous steps.

General Step 6: Define Interaction Protocols and

General Step 7: Define Content of Exchanged Messages

Discussion about considering these steps
Communication between individual agents (each being an instance of an agent type) must be allowed,
and will depend on how each agent type interacts with the others (e.g. for letting agent instance ‗a‘ of
type A communicate with ‗b‘ of type B, types A and B must know each other). Because their very
nature agents can be autonomous, it is not expectable that they already know how to establish a
communication with each other (in contrast with common OOP objects that already know each other‘s
interfaces beforehand). That‘s why this communication involves determining some common
interaction protocol as well as defining all possible messages that could be exchanged. Nevertheless,
in the case of developing an agro-ecosystem simulation, agent types will be developed altogether, so
the autonomy and independence of individual agents is much reduced compared to other MAS
scenarios. This facilitates the task of communication between agents, and enables considering these
two steps as one, renamed as ―Define Agent Interaction‖.

What information should be generated in this step?
This step should determine when, how and what the different agents will communicate. When implies
stating what triggers the communication, how implies defining the interaction protocol that agents will
follow, and what implies knowing the content of the exchanged messages.

Possible artifacts of this step
There are specific agent-interaction diagrams such as those proposed by the Foundation for Intelligent
Physical Agents or FIPA [FIPA, 2010], which allow for accurate and domain-specific representations
of interactions in general-purpose MAS scenarios. However, considering on one hand (as previously
discussed) that in the case of agro-ecosystem simulations agent‘s autonomy is much reduced, and on
the other hand remembering one of the aims of the proposed methodological framework of helping
developers uptake the methodological framework by using languages they already know, this step
will use UML Sequence Diagrams in order to specify these interactions.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 34 of 112

Agent Internal Design Steps

General Step 8: Specify Agent Architecture

Discussion about considering this step
This step involves specifying the internal architecture of each agent type. As Section 2.3.2 introduced,
there are already-defined general agent architectures, namely deliberative (that manage explicit
representations of goals, beliefs, actions and use abstract reasoning tools), reactive (where agents
simply react with an action triggered by some stimuli) and hybrid (that include a deliberative as well
as a reactive component). Every agent type must present one of these architectures and since the
software design will become much more complex if a deliberative architecture is chosen (and much
simpler if a reactive one is) this step will be considered, although also including internal agent type
class design. That is, after deciding the agent type architecture, design the internal agent type
structure and behavior that supports and details that architecture. This step will be renamed as ―Agent
Architecture and Design‖.

What information should be generated in this step?
This step should generate enough information for detailing the agent type‘s internal class design,
following the chosen agent architecture. In general terms this means describing how the agent will be
able to follow the Perceive/Reason/Act cycle presented in Figure 4. This step is similar to the
Architecture and Design steps of an OOSE methodology where the aim is to first decide over an
architectural style (e.g. Layered) and then define the necessary classes that will populate that style.

Possible artifacts of this step
UML Class Diagram for specifying each agent type architecture as well as their internal design. In
order to represent internal design behavior (functional aspects) UML Behavioral Diagrams may also
be used if necessary (e.g. Communication, Activity or State-Transition Diagrams).

General Step 9: Define Agent Mental Attitudes

Discussion about considering this step
Mental attitudes should be involved if a deliberative (or hybrid) architecture is chosen, so this step
will be considered as part of the previous step (if needed).

General Step 10: Define Agent Behavioral Interface

Discussion about considering this step
Originally this step aimed at determining the agent‘s capabilities and services it will provide. Since
this thesis focuses on agro-ecosystems simulations, the only capabilities and services an agent will
present are those already considered in its role, agent type description, domain model concepts and
agent interaction. The agents of the agro-ecosystem will not provide services to other software entities
(as agents in other context may do) so the ―services‖ they have are actually the messages they will
exchange between them (which were already considered in the “Define Agent Interaction” step). In
summary, what should happen is that this step should not add anything not already considered by
other steps, since it was originally thought for more general purpose MAS. This is why this step will
not be considered.

Overall System Design Steps

General Step 11: Specify System Architecture

Discussion about considering this step
The original idea for this step was to give an overview of all components and their connections in the
highest possible level. Once again, since the context is agro-ecosystems, this high level overview is
already given (agents interacting with other agents as well as with their environment and resources).
Another useful situation where the architectural view may be of assistance is when having physically
distributed components, which is not the case for the agro-ecosystem simulations considered in this
thesis. This step will therefore not be considered.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 35 of 112

General Step 12: Specify Organizational Structure/Inter-Agent Social Relationships

Discussion about considering this step
Even though agro-ecosystems may involve some kind of organizational structure (like farmers
organizations) they are not driven by any organizational metaphor as this step assumes. Also, no
inter-agent social relationship was defined in “Identify Roles and Agent Types” or in “Define Agent
Interaction”, so this step will not be considered.

General Step 13: Model MAS Environment

Discussion about considering this step
The environment is indeed one of the crucial elements to consider, as Section 4.2 pointed out. It could
already be modeled in “Model Domain Conceptualization” at least from a structural point of view.
Nevertheless, other aspects may also be need consideration, like those concerning a functional point of
view for both, the environment and the resources it may provide. This is why this step will be
included, although renamed, so as to include resources: “Model Environment and Resources”.

What information should be generated in this step?
This step could, first, give a more detailed structural description of the environment and/or resources
that may have not been included in the Domain Model (e.g. because generally domain models are
very early developed, and in the Iterative & Incremental approach, more details about the
environment and resources may appear afterwards and may introduce too much detail to the domain
model). Second, behavioral aspects of the environment and resources where yet never specified (e.g.
the behavior of a certain resource over time, or how it interacts with other resources and with the
environment).

Possible artifacts of this step
UML Class Diagrams will allow for that detailed structural specification and UML behavioral
diagrams will allow for specifying those behavioral aspects of the environment and resources that
were not yet captured. An example of specifying the behavior of a resource could be to develop a
UML Activity Diagram, much like those developed for agents, that determines how the resource
behaves at each time step (e.g. how does certain crop grows over time). An example of environment
behavior could be to develop a State-Transition Diagram for modeling the different stages of grass
over time.

General Step 14: Specify Agent-Environment Interaction Mechanism

Discussion about considering this step
Even though it is possible to determine the interaction between agents and the environment as a
separate step (as this general step suggests) it is just another kind of agent interaction. Considering
them as separate steps (agent-agent interaction in one step, and agent-environment interaction on
another step) may complicate the simulation and it would give benefits only for the case where each
of these interactions is complex. Therefore these two steps will be performed simultaneously. This
means to specify agent-environment interaction at the same time with agent-agent interaction. This is
why this step will not be considered by itself but as part of either “Identify Roles and Agent Types” or
“Define Agent Interaction”.

General Step 15: Instantiate Agent Classes

Discussion about considering this step
This step involves determining how many agent instances will be needed for each agent type . This is
indeed necessary for agro-ecosystem simulations but as part of the initial configuration of the
simulation, which will evolve over time. There are also a number of other elements to initialize, so this
step will not be considered by itself but as part of a new step that will come from simulation
requirements (later discussed in Section 4.4).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 36 of 112

General Step 16: Specify Agent Instances Deployment

Discussion about considering this step
Since the entire agro-ecosystem simulation will be run in only one computer, there is no need to
consider physical distribution or deployment. Therefore this step will not be considered.

Table 5 summarizes the results of this section:

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 37 of 112

 General AOSE Steps Selected Steps Artifacts for Selected Steps

P
ro

b
le

m
 d

o
m

a
in

 a
n

a
ly

si
s

st
e

p
s

1. Identify system functionality 1. Identify System Purpose Text Document: including system objective, questions that the system should answer, identification of
stakeholders, target population, and modelers.

2. Identify roles 2. Identify Roles and Agent
Types

Text Document: for role‘s identification and description.

Text Document: for identifying agent types and their relation to roles.

UML Activity Diagrams: for agent type‘s behavior specification
3. Identify agent classes

4. Model domain
conceptualization

3. Model Domain
Conceptualization

UML Class Diagram: for modeling the domain‘s main concepts.

A
g

e
n

t
in

te
ra

ct
io

n

d
e

si
g

n
 s

te
p

s

5. Specify acquaintances
between agent classes

No. This is either included in “2. Identify Roles and Agent Types” or in “3. Model Domain Conceptualization”

6. Define interaction protocols 4. Define Agent Interaction UML Sequence Diagrams: for representing the interactions between agents and between agents and the
environment.

7. Define content of exchanged
messages

A
g

e
n

t
in

te
rn

a
l

d
e

si
g

n

st
e

p
s

8. Specify agent architecture 5. Agent Architecture and
Design

UML Class Diagram: for architecting and designing the internal structure of each agent type.

UML Behavioral Diagrams: for specifying internal communications between objects (if necessary)

9. Define agent mental attitudes No. If mental attitudes are to be considered for certain agent type (e.g. because a deliberative architecture is chosen) then these attitudes will be defined in
the previous step.

10. Define agent behavioral
interface

No. Interfaces between agents and with the environment will be the only ones and are specified in “4. Define Agent Interaction” and “6. Model
Environment and Resources” respectively.

O
v

e
ra

ll
 s

y
st

em
 d

e
si

g
n

 s
te

p
s

11. Specify system architecture No. The overview of components and connections is already given by the context of agro-ecosystem simulations.

12. Specify organizational
structure/inter-agent social
relationships

No. Agro-ecosystem simulations are not driven by organizational metaphors. This step is either included in “2. Identify Roles and Agent Types” or in
“4. Define Agent Interaction”.

13. Model MAS environment 6. Model Environment and
Resources

UML Class Diagram: for further modeling structural aspects of the environment and resources.

UML Behavioral Diagrams: for modeling functional (behavioral) aspects of the environment and resources.

14. Specify agent-environment
interaction mechanism

No. This step is either included in “2. Identify Roles and Agent Types” or in “4. Define Agent Interaction”.

15. Instantiate agent classes No. This step is part of the initial configuration of the simulation.

16. Specify agent instances
deployment

No. There is no interest in physical distribution of agent types.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 38 of 112

Even though this new set of steps covers the overall requirements stated in Section 4.2, there is
still one that has not been met: simulation capabilities. This stated that agents, resources and
environment should be placed into simulation runs, and this would imply such things as determining
the time step of the simulation, what to do at every time step, the initial state of the system, input
parameters that feed each simulation step, and output visualization.

The following section proposes which new steps could be added to the methodological
framework in order to take the simulation requirements into account.

4.4 New Steps

This section introduces which steps could be added to the previous selected steps in order to have a
methodological framework for developing agro-ecosystem simulations. For each new proposed step, a
brief description will be given as well as the information that this step should generate and possible
artifacts, similarly to Section 4.3.

New Step: Simulation Configuration

Description of this step

The aim of this step is to define those fundamental elements that will enable a simulation to be run.
Since the simulation will be done by a simulation framework, it will need precise definitions for the
initial state, input parameters, time step, etc. It is important to note that in order to properly perform
this step, many elements should already have been defined (e.g. it would be impossible to state how
the initial configuration would look like if no agents were yet defined). Also, besides the need for
certain preceding elements, some of the information in this step may already be defined, like the case
of the Time Step Definition or Task Scheduling. This may be because that information could have been
needed for making decisions earlier in the development, and as stated in Section 4.1 the
methodological framework proposes an Iterative & Incremental approach. If that is the case, then that
already defined information must only be recorded here.

What information should be generated in this step?
This step should define the following information:

 Initial Configuration: a simulation needs some starting point over which all the already-
developed models and artifacts will act upon. This is called the initial configuration and
determines the state of the simulation at time zero. The main elements to be determined are
the initial number of agent instances (for each agent type), the distribution of these over the
environment, the initial volume of resources and their location, among others. This
information heavily depends on the actual reality (domain) being simulated.

 Time Step Definition: states how much time is considered to pass between two time steps (so
called ―step granularity‖). The state of the simulation will change only at these time steps.
Since these simulations are time-stepped the real-world meaning of passing one time step
must be determined. This may impact on, for example, the decision-making of agents since
agent behavior will probably not be the same if a time step represents one day or one year.

 Task Scheduling: in previous steps several elements (e.g. agents and resources) were
assigned certain behavior (e.g. for decision-making and for evolution, respectively). This
behavior is supposed to be called upon the simulation at every time step, in order to give each
individual element (e.g. agent instance or resources instance) the chance to do something.
What remains yet undetermined is the relative order in which these calls should be made.
That is: at each time step the simulation should call agents to decide what to do and resources
to evolve, but in what order? Is it the same to first have the agents make decisions and then let
the resources to evolve? Or the other way around? And if the first scheduling is taken (first
the agents and then the resources), are the agents randomly chosen to act or the order between
them is important? Task scheduling means defining the order in which actions will occur at
every time step of the simulation.

 Input Parameters: input parameters can be divided into two groups: static or dynamic. Static
input parameters are those that will be fixed for the entire simulation period, so they
represent data that is external to the various elements being modeled, although this is

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 39 of 112

assumed to remain constant over time (e.g. an interest rate). Dynamic input parameters are
those that can vary within the simulation period, so they represent data that is external but
that may change over time (e.g. seed prices varying in each season). Within the latter, two
more subgroups can be defined: those that vary independently from the simulation results
(e.g. international oil price that is independent from agent-decision at local scale12) and those
whose value is (partially) determined by certain simulation results (e.g. certain crop whose
price depends –among other factors- on the amount of product being produced in the
simulation run). These possibilities finally lead to input parameters that can have the shape of
constant values (e.g. 90) or functions (e.g. wheat_price(t)). Another aspect that is relevant to
input parameters is where to take the values from. Two possibilities can be considered: a) to
take historical values from the real world and b) to generate random values. Finally, it is
important to note that input parameters are the main way to represent external elements of
the system being modeled, and since no system can be completely isolated from its
surroundings, input parameters may play a crucial role.

Possible artifacts of this step

Even though this step concerns several pieces of information which are crucial for the simulation, all
of these will appear directly on the code, or if necessary may be properly described in text documents
without the need of any special representation. Henceforth, further details about artifacts are not
necessary. The only information that may take advantage of a tool such as UML is Task Scheduling.
UML Sequence Diagrams capture the behavior of certain scenario [Fowler, 2003], so they are
particularly useful for specifying the order in which things happen at every time step.

New Step: Simulation Output

Description of this step
Up to this point there is no way the simulation may answer any of the questions stated in the first
step, therefore it will fail to achieve its objective. The reason is that there is no output coming out of
the simulation. Thus, this step involves defining the output that the simulation should yield, as well as
the way in which it should be visualized by users.

What information should be generated in this step?
This step should define the following information:

 Output: at this point, this output could be viewed as the analogous to the input parameters, in
order to monitor what is actually happening inside the simulation, to see how certain key
aspects are evolving (e.g. how many agents are dying or how much of a certain resource is left
at every time step).

 Visualization: in relation to the output it is very useful to have some way of visually
presenting results, values, and outputs to the user that is running the simulation (e.g. graphs).
Besides output parameters, the environment can be shown in two or three-dimensional grids
along with resources and agents. For example, resource levels can be graphically represented
by a color scheme (red indicating low levels and green high levels), and agents can be viewed
as they move along the cells of the grid. The way in which the simulation will show its results
and current state is related to the user that will be running it: the more technical the user, the
less visual representations he/she may need to correctly understand (and interpret) the
results. However, the less technical the user, the more relevant the visual representations
become.

Possible artifacts of this step

Similarly to what happened in the previous step, there is not much need for extra artifacts other than
the source code itself (usually already done by the simulation framework) and, if necessary,
explanatory text documents.

Figure 8 summarizes several of the concepts introduced in the previous two steps. It shows the change
in the state of the simulation and which concepts influence it:

12 These are also called ―forcing variables‖ or ―time-series input variables‖.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 40 of 112

Figure 8: Schematic representation of the simulation
concepts involved in a simulation run.

The previous (eight) steps build up the methodological framework for developing agro-ecosystem

simulations. The following (two) steps are not the focus of this thesis and their introduction is merely
for the sake of putting the previous ones in the context hence their detailed description is beyond the
scope of this thesis.

New Step: Implementation

After completing each and every one of the previous steps, there should be enough information and
models in order to start their implementation into a programming language. Either using an already
existing simulation framework software package (as it is recommended in this thesis in order to write
less code), or starting coding from zero without the help of these frameworks, the developer should
have enough elements (as well as enough understanding of the problem) to start coding.

New Step: Simulation Run and Sensitivity Analysis

This step involves gathering all the necessary data for allowing the simulation to be run and to
perform some explorations about how the output of the simulation is affected when certain elements
are changed. This is known as sensitivity analysis13.

Data gathering is related to input parameters, since these may need historical real-world data for
dynamic parameters (e.g. evolution of certain price over time taken from real-world databases) or the
definition of single-value static parameters (e.g. determine the price of oil that will be used for the
entire simulation). This may also involve importing large amounts of data from spreadsheets or
databases, so these aspects should be considered carefully, not only because of the possible technical
difficulties that may arise14, but also because a correct definition of input values determines the output
of the simulation.

Sensitivity analysis aims at showing how the outputs of the simulation are susceptible to its
inputs, or if a more white-box approach is made, susceptible to the decisions the developer makes (e.g.
in the form of UML models).

If a black-box approach is taken, simulation outputs will only be analyzed for sensitivity against
input parameters. This means, for example, how does certain resource level (like grass height)
depends on certain input parameter (like sun radiation). These analysis help not only in finding
potential errors but also to better understand the relationships between inputs and outputs, and
considering the importance of relationships in complex systems, this becomes particularly relevant.
Several methods exist for analyzing the sensitivity of certain output parameters in terms of several
input parameters, either by changing one input parameter at a time (which assumes no

13

 "New modelers often see building a model as their main task, but analyzing a model is every bit as essential as building it
[…]. Analyzing a model means doing research on a model to learn about its behavior and to learn about the system the model
represents. Objectives of this research typically include verifying that the software does what we want it to, finding good
model structures and theory for individual traits, finding good parameter values, and finally solving the problems we design
the model for in the first place and learning something about ecosystems." [Grimm & Railsback, 2005].
14 Like obtaining data from Microsoft Excel files or connecting to certain DBMS (database management system).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 41 of 112

interrelationship between them) or by simultaneously changing several. Further details are out of the
scope of this thesis.

If a white-box approach is taken, simulation outputs will be analyzed against the very internal
decisions the software is making. For example: how does the production of certain resource (e.g.
volume of wheat harvested) depends on certain agent‘s decision (e.g. either apply fertilizers or not)?
This may lead to analyzing the output of the simulation considering the agent‘s decision (e.g. fertilize)
and then without considering it (e.g. not fertilize). If this decision was already built in, for example,
the UML Activity Diagram that represents the agent‘s decision making, then this diagram should be
changed in order to analyze its impact on the output parameter. Since this involves knowing how the
simulation works internally (and changing it) it is considered as a white-box approach.

Finally, both (input parameters, data-gathering and sensitivity analysis) strongly depend on the
objectives of the simulation and on the questions it is supposed to answer. If for example, one of the
key questions is ―Examine the relationship between oil prices and producer‘s debt‖, then the focus of
data gathering should be obtaining precise real-world historical values of oil prices (or thoughtfully
determine some way of estimating it for the future) and the focus of sensitivity analysis should be in
changing oil prices and exploring its impact on producers going in debt (black-box approach), and
possibly also analyzing how and when producers go in debt (white-box approach).

4.5 Final Remarks

Table 6 summarizes all the steps of the proposed methodological framework discussed in this
chapter.

These ten steps, six of which were taken from the 16 general-purpose AOSE steps (Section 4.3)
and four added later (Section 4.4), have the overall aim of assisting in developing software that
represents a MAS simulation, whose requirements where established in Section 4.2.

Since agro-ecosystems are a kind of complex system (Section 2.2.2) and these can be modeled
using the ABM approach (Section 2.4), it naturally follows that an agro-ecosystem can be modeled
and simulated using an ABM approach, and particularly following the methodological framework
introduced in this chapter.

Nevertheless, there are quite specific agro-ecosystem features that are worth analyzing, such as
how they could be represented, modeled and simulated by this methodological framework. This is the
aim of the following chapter.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 42 of 112

Proposed Step Aim of the Step Artifacts

1. Identify System
 Purpose

Define the purpose of the
simulation, including its
objective and questions to be
answered.

Text Document including the purpose of the
simulation, an overview of the context in which the
simulation will be developed, including why the
simulation will be developed and what will be
expected from it.

2. Identify Roles and
 Agent Types

Identify agent types and roles,
especially agent behavior.

Text Documents for role‘s identification and
description and for identifying agent types and their
relation to roles; UML Activity Diagrams for agent
type‘s behavior specification.

3. Model Domain
 Conceptualization

Depict the structure of the
problem, including entities
and relationships.

UML Class Diagram for modeling main concepts,
including those mentioned in steps 2 and 6.

4. Define Agent
 Interaction

Determine when, how and
what the different agents will
communicate.

UML Sequence Diagrams for modeling interactions.

5. Agent Architecture
 and Design

Define internal agent design
(structure and behavior) in
order to fulfill its
perceive/reason/act cycle,
within a simulation
framework software package.

UML Class Diagram for designing the internal
structure of each agent type; and UML Behavioral
Diagrams for designing the internal behavior of each
agent type.

6. Model
Environment
 and Resources

Determine behavioral aspects
(evolution) of resources and
environment, and completing
structural aspects.

UML Class Diagrams for further modeling structural
aspects of the environment and resources; and UML
Behavioral Diagrams for modeling functional
(behavioral) aspects of the environment and resources.

7. Simulation
 Configuration

Define those fundamental
elements that will enable a
simulation to be run.

Source Code and explanatory text documents (if
needed) for documenting the configuration and UML
Sequence Diagram for tasks scheduling.

8. Simulation Output Define the output that the
simulation will produce along
with its visual representation.

Source Code and explanatory text documents (if
needed).

9. Implementation Codify the simulation. Source Code.

10. Simulation Run &
 Sensitivity Anal.

Answer the simulation‘s
objectives and questions.

Text Documents with the conclusions.

Table 6: Summary of the steps that compose the proposed methodological framework.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 43 of 112

5 Agro-ecosystems’ Features Supported by the
Proposed Methodological Framework

This chapter presents those features that characterize an agro-ecosystem and shows how they are
supported by the methodological framework proposed in the previous chapter (see Figure 9). The
objective is to show that this methodological framework can successfully represent them with the
available steps and artifacts, leaving no relevant agro-ecosystem feature uncovered. The features
presented were introduced in Section 2.2.1.

Some of the features that are presented in this chapter are often outside the boundaries of an
agro-ecosystem. Nevertheless they are relevant because they affect it in some way that is of interest,
but since they do not belong to the agro-ecosystem they will not be explicitly modeled (i.e. there will
not be artifacts representing them). They will be considered mainly as restrictions in the inputs to the
agro-ecosystem (more details are given in their corresponding sections within this chapter).

First, natural, human, capital and production resources-related features are shown to be
supported (Sections 5.1 to 5.4). Afterwards other features are mapped into various steps and artifacts
of the proposed methodological framework (Section 5.5). Finally, this chapter ends with some
concluding remarks (Section 5.6).

Climate

Org. of
Farmers

Natural
Processes

Farmers

Market
Prices

Money,
Savings,

Loans

Land Plots

Water

Vegetation

Crops Livestock

Goods &
Services

Landscape

Agro-ecosystem

Government

Figure 9: Schematic representation of relevant agro-ecosystem features.

5.1 Natural Resources Related Features

Natural resources are the given elements of land, soil fertility, water, climate and vegetation that are
exploited by the farmer. All of these constitute crucial features that agro-ecosystems present that must
be supported. The following sections first introduce the feature and then show how it can be mapped
into the methodological framework in terms of its steps and artifacts.

Feature: Land

The space over which farmers live, crops grow and animals feed. Land can be divided into plots, and
vicinity may be important. It can be modeled either into two or three dimensions, mainly depending
on the topography (slopes, geographical accidents, elevations, etc.), and its relevance in the system
under study.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 44 of 112

Mapping to Methodological Framework

This feature is fundamentally supported by the concept of cellular automata (introduced in Appendix

A) so it is an inherent part of the MAS approach. Also the land, along with water and climate, are
natural candidates to be considered as components of the environment as introduced in Section 4.2
(―environment is what surrounds the agent, where the agent is located‖). Regarding the
methodological framework, the step ―Model Domain Conceptualization‖ proposes to identify those
concepts that are most relevant for the domain and explicitly addresses the case of the environment.
The Domain Model can represent ‗plots‘ which can be thought of as land components, providing more
flexibility by decomposing the land in several elements. About each plot, it can model its location (e.g.
by coordinates), its vicinity (e.g. by associations with neighboring plots) as well as the relation
between agents and plots (e.g. representing ownership) and between plots and resources (e.g.
representing which resources are hosted in which plots). Plots allow for an easy geographical
representation of land, where each plot is represented by a cell in a grid that can be shown to the user.
Even depending on the objective of the simulation and the capabilities of the simulation framework
software package being used, plots can be related to GIS (Geographical Information Systems) in order
to visualize a real-world map instead of an abstract grid. Also depending on these capabilities, 2D and
3D grids of cells can be manipulated.

Feature: Water

Any form of water is generally so important to the agro-ecosystem that representing it is often
necessary. It may be a river, a lake, or the ground water, but also the ―water reservoir‖ due to the
small pores of the soil that serve at supplying water to plants and other organisms during the rain-less
period. The geographical relation to the land can also be of interest (e.g. how land plots determine
access to water resources).

Mapping to Methodological Framework

Water can be represented as cells in a grid, so the problem is reduced to map a special kind of plot,
which was discussed above. For more sophisticated models, water may be a soil property or even a
water reservoir entity with its own complex dynamics.

Feature: Climate

Since weather directly affects an agro-ecosystem, elements such as rain, temperature, moisture or
climatic events may be considered.

Mapping to Methodological Framework

Even though important, climate is not to be modeled within an agro-ecosystem simulation, but is to be
considered as an input. The main reason for not modeling climate is simply because it is out of the
agro-ecosystem limits. The first step added called ―Simulation Configuration‖ allows to define which
input parameters are to be used during each time step of the simulation, so it should consider climate
information in it.

Feature: Native Vegetation

This is usually native vegetation already present in the land. As crop vegetation (cocoa trees, pasture,
corn, etc.) is a key element of agro-ecosystems, it is described separately (see Section 5.4).

Mapping to Methodological Framework

Native vegetation can be represented jointly with land plots since it will grow over them. It is worth
noting that crops are not considered vegetation but production resources.

5.2 Human Resources Related Features

As introduced in Section 2.2.1, human resources are the people who live and work within the farm
and use its resources for agricultural production. This can be further analyzed by considering not only
farmers which are the primary human resource, but also by considering different kinds of farmers
(and leveraging the MAS approach that enables heterogeneous agents) as well as organizations of
farmers or manpower labor forces.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 45 of 112

Feature: Farmers

Since humans are what determine an agro-ecosystem, they must be represented. Even when different
kinds of actors can be present, farmers are the ones that will always be present. Others (such as local
authorities) can also be considered if it is important to include them as part of the system or, on the
contrary, they can be considered out of the boundaries of the system and be indirectly represented by,
for example, constraints on certain system elements (such as water availability because of local
authority regulation). What should be modeled is the farmer‘s behavior, which makes them what they
are. Labor availability is often another important factor related to human resources (e.g. how many
healthy adults compose each family and their working capacity, for example, in hours per week).
Even when considering only one kind of actor (farmers) it is rarely the case that they are so
homogenous that can be lumped altogether. That‘s why different categories of farmers allow a much
richer representation of reality, and since MAS specifically allows the interaction of heterogeneous
agents, this gives much more richness to the model.

Mapping to Methodological Framework

Despite the importance of this feature in the real world, the aim is not to model and simulate
individual real world farmers, but instances of types of farmers. This implies that first it is necessary
to categorize the different kinds of farmers that are present in the system under study. In other words,
the modeler must first identify and model a typology of farmers, in order to then populate the
simulation with several instances of each type of farmer. To this aim, the proposed methodology
includes the following steps:

 ―Identify Roles and Agent Types‖: this step involves identifying the different roles the agents
may play as well as the typology and the relations between roles and agent types. An
important part of this step is to define the behavior of each agent type at each time step with
UML Activity Diagrams.

 ―Domain Model Conceptualization‖: this step builds a UML Class Diagram that not only helps in
visually representing each agent type but also captures their structural aspects, like their
attributes and relationships with other agent types, resources and environment.

 ―Define Agent Interaction‖: this step captures the way in which the different agent types
communicate with each other, including communication protocols and speech acts if
necessary with UML Sequence Diagrams.

Feature: Organizations of Farmers

Along with the possibility to distinguish different kinds of farmers, it is often the case that farmers
organize themselves. This implies a special kind of communication between those individuals that
belong to the organization, differentiating them from those that do not.

Mapping to Methodological Framework

As a new agent type that is related to its members (which are other agent types). This involves a new
concept in the ―Model Domain Conceptualization‖ step with associations (aggregations) to its members
in order to determine whether an agent instance is organized or not, and if it is, with whom. If
belonging to an organization implies certain behavior in its members, then new roles can be defined
for them in the ―Identify Roles and Agent Types‖ step and agents should be able to change their behavior
when playing this new role. Finally, if new forms of communication are introduced because of the
organization, then it should be specified in the ―Define Agent Interaction‖ step.

5.3 Capital Resources Related Features

These are goods and services created, purchased, or borrowed by the people associated with the farm
to facilitate their exploitation of natural resources for agricultural production.

Feature: Goods and Services Consumed by Farmers

These are generally of two kinds: those which are used as inputs for production (like fertilizers and
machinery), and those which are used as family consumption (like the electricity bill, health care or a
new car). The former has to do with production resources while the latter with farmers‘ livelihood,
needs and expectations.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 46 of 112

Mapping to Methodological Framework

If any of these features are relevant concepts of the system as a whole, they should appear in the
“Domain Model Conceptualization” step. Since they refer to consumption, which is simulated at each
time step, they could also be modeled as part of each agent type behavior (therefore within UML
Activity Diagrams of step ―Identify Roles and Agent Types‖). It is also generally the case that these
goods and services have a cost that is not fixed for all time steps, so input parameters may also be
needed (e.g. the cost of irrigation may be dependent on climate conditions modeled as input
parameters), which are defined in the ―Simulation Configuration‖ step.

Feature: Money, Savings, and Loans

Financial issues can take the form of savings, loans took by the farmers or farmers‘ organizations, the
money that currently the farmer has on his/her pocket, the interest rate over a loan, etc. Variations on
these elements are usually the result of production activities and family consumption, but also
farmer‘s decisions. This feature is also commonly an important output parameter to monitor.

Mapping to Methodological Framework

The concepts involved in this feature may be divided into two: the activities that led to an
increase/decrease (e.g. buying or selling) and the quantities (e.g. current amount of money the farmer
has or how much debt he/she owes). The former can be modeled in the behavior of the farmer
(―Identify Roles and Agent Types‖), and the latter as an attribute in the “Domain Model Conceptualization”
(e.g. an attribute ‗current_money‘ in the concept ‗Farmer‘). If, on the other hand, it is relevant to keep
track of the evolution of certain quantity and not only its effect over the current amount (e.g. to know
each time the farmer took a loan) then it could appear as a separate concept (e.g. ‗Loan‘) in the
Domain Model. Regarding the need for monitoring this quantities (e.g. to know how the current
balance of each farmer), the step ―Simulation Configuration‖ allows for defining the output parameters
that will be monitored at each time step.

5.4 Production Resources Related Features

These refer to the agricultural output of the farm, which becomes capital resources when sold, and
residues (crops, manure) are nutrient inputs reinvested in the system. Even though the production
resources may be diverse, when focusing on agro-ecosystems and farms the two that appear as central
are crops and livestock.

Feature: Crops & Livestock

At the heart of any farm or productive unit there will be crops and/or livestock. These are what
determine that the production process must take place over the land and not inside an industrial
compound, making farmers live in a farm and not in a city. They are the center of the agro-ecosystem
(together with farmers) since inputs are used by them, outputs are generated (including the money
that results from commercializing them), behaviors and expectations largely affect them (through
management practices) and their evolution over time may determine aspects like soil and water
quality and natural processes.

Mapping to Methodological Framework

The mapping of these features is to model them as resources in the ―Model Environment and Resources‖
step. They can either be associated to a certain land plot (as in the case of crops or farm animals), or
not (livestock as a global not located quantity of animals). If a resource presents certain dynamics,
these may be expressed in UML Activity Diagrams, much like the behavior of agents, but applied to
resources. Since they are very relevant, they would also be (structurally) modeled in the ―Domain
Model Conceptualization‖. In order to initialize the simulation, the step ―Simulation Configuration‖
would need to define the initial configuration of these resources (e.g. how many crops and crop types
are present, and where), as well as define any relationship with input parameters, or if any monitoring
is needed for them (output parameters).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 47 of 112

5.5 Other Features

Also mentioned in Section 2.2.1, the following elements usually appear as a requirement when
modeling agro-ecosystems.

Feature: Natural Processes

On the other end of the scale (compared to landscape) natural processes may be important in certain
agro-ecosystem problems since they affect crops and livestock and are affected by weather and
management practices. Examples of natural processes include organic matter evolution (how the
organic matter of the soil evolve over time), and erosion (how much soil is lost due to rain or lack of
cover plants). These processes are part of the biophysical subsystem.

Mapping to Methodological Framework

Since natural processes are not resources in themselves, but are closely related to them, it is useful to
conceive both at the same time in the ―Model Environment and Resources‖ step. Natural processes may
be modeled by UML Activity Diagrams and be run at each time step, and the activities involved in
this diagram will affect its related resources. As the ―Crops & Livestock Feature‖ discussed before,
resources may present certain dynamics to be run at each time step, so it should be clearly defined
whether these dynamics actually represent natural processes or if they are only concerned with the
resource itself. This implies that natural processes may be explicitly modeled as another feature of the
agro-ecosystem, or implicitly considered when modeling resources. It may also be the case that the
land itself presents certain dynamics of a natural process (e.g. organic matter evolution), and this
could also be defined in the ―Model Environment and Resources‖ step.

Feature: Landscape

Landscape represents the high level result of the interactions of all the previous features, and
depending on the scale over which the modeler is to work, it can be of interest to have a certain view
of it. Farmers can also be localized (geo-referenced) over the landscape, and patterns can be
discovered as an emergent property of lower level interactions.

Mapping to Methodological Framework

The initial landscape can be determined by the modeler in the initial configuration, for example by
determining how many plots are used for agriculture and how many for livestock. After the first time
step occurs, leaving the initial configuration behind, the landscape will be the result of the interactions
between the various components of the simulation, so rather than considering it an output of the
simulation it should be considered as an outcome of it. This outcome should be easily viewable for
example in a two-dimensional grid, where for each land cover a different color is assigned (using the
corresponding visualization tool).

Feature: Market Prices and Evolution

Markets are always involved when commercializing goods and services. This could imply, for
example, to know (and maybe keep track of) prices of crops and livestock.

Mapping to Methodological Framework

Since it is generally the case that the price over which production resources are sold is not controlled
nor determined by the system under study, prices are considered as an external input to the
simulation, determined in the ―Simulation Configuration‖ step. In relation to this feature, although not
considered as market price nor evolution, the cost of production of a farmer can be important, for
example for determining farmer‘s profit (which is a commonly used output parameter), and can be
defined as an attribute of each farmer in the ―Domain Model Conceptualization‖ step.

Feature: Government Policies

Government decisions may greatly affect agro-ecosystems. Examples of this could be the increase of a
certain tax over crop exports, or local authorities fostering new ways of farmers‘ organizations. The
impact that government decisions/policies have over the system are generally so important that it is
of interest to take them into account.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 48 of 112

Mapping to Methodological Framework

This feature is not directly modeled into the simulation. This means there is no government agent
type, because it is assumed that the government is outside the boundaries of the system under study.
The interest will therefore be to compare the evolution of the simulation with and without the
introduction of certain government policy. This requires modifying the simulation in order to take
them into account. The modifications can range between changing input parameter values (e.g.
because of an increase in taxes) and changing the behavior of agents (e.g. by introducing new ways of
associations of farmers). These changes will then lead to the exploration of different scenarios
(prospection).

5.6 Final Remarks

Table 7 summarizes the previous agro-ecosystem features and their corresponding representation
under the methodological framework.

 Feature Represented in step As

N
a

tu
ra

l

R
e

so
u

rc
e

s

Land Plots
Model Domain
Conceptualization

Environment concepts in the UML Class Diagram

Water A special kind of Land Plot

Climate
Simulation
Configuration

Input parameters and Text Documents (if needed)

Vegetation
Model Domain
Conceptualization

Attributes of the Land Plot concepts or as
environment concepts by themselves in the UML
Class Diagram

H
u

m
a

n

R
e

so
u

rc
e

s

Farmers‘ Types

Model Domain
Conceptualization

Agent concepts in the UML Class Diagram

Identify Roles & Agent
Types

Text Document for role‘s identification and
description and UML Activity Diagrams for behavior

Define Agent
Interaction

UML Sequence Diagrams for agent-agent interaction

Organizations
of Farmers

A special kind of Farmer Type

C
a

p
it

a
l

R
e

so
u

rc
e

s Goods &
Services

Model Domain
Conceptualization

Resource concepts in the UML Class Diagram

Identify Roles & Agent
Types

Actions in the UML Activity Diagram that correspond
to those agent types that consume them.

Money, Savings
& Loans

The same as Goods & Services.

P
ro

d
.

R
e

s.

Crops &
Livestock

Model Domain
Conceptualization

Resource concepts in the UML Class Diagram

Model Environment &
Resources

Resources

O
th

e
r

F
e

a
tu

re
s

Natural
Processes

Model Environment &
Resources

UML Activity Diagrams

Landscape The aggregation of all Land Plots

Market Prices
& Evolution

Simulation
Configuration

Input parameters and Text Documents (if needed)

Government
Policies

Involves changing the simulation models or input parameters and re-running
them

Table 7: Summary of agro-ecosystem features and their correspondence within the proposed

methodological framework, including which step and which artifact.

This chapter presented the most common features that compose an agro-ecosystem and how they
could be supported by the methodological framework. As a conclusion of this chapter, the
methodological framework indeed gives support to all of these features.

The discussions in this chapter were given in a very general level, not giving any details on
exactly how the steps and artifacts represent each feature. Therefore, the following chapter applies the
methodological framework to a real-world case study.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 49 of 112

6 Applying the Proposed Methodological
Framework to a Case Study

The primary objective of this chapter is to have a first (but not full) validation of the methodological
framework presented in this thesis by applying it to a relevant real-world problem.

Not necessarily all the artifacts are going to be needed to successfully develop this case study,
since the methodological framework was not tailor-made to it, but to agro-ecosystems in general.

A secondary objective of this chapter is to show examples of real-world agro-ecosystems‘
problems and how they were modeled and represented by the different artifacts contained in the
proposed methodological framework.

As stated in Chapter 1, the objective of this thesis is not to precisely define a complete and
comprehensive software development methodology, but to define a methodological framework for
agro-ecosystem simulations. Nevertheless, this chapter needs a specific order of steps to be followed
to show how the methodological framework can be applied. This is why the steps presented in
Chapter 4 are here precisely sequenced, as shown in Figure 10. This doesn‘t mean that the steps
should always be ordered this way.

Figure 10: A possible order in which to follow the methodological framework.
This order is followed for the case study.

This chapter starts with an introduction and motivation of the case study (Section 6.1), which is
followed by the documentation of the steps of the proposed methodological framework (Sections 6.2
to 6.11), and ends with the most important conclusions of applying this methodology (Section 6.12).

This chapter assumes no previous knowledge in the field of agro-ecosystems, and particularly no
knowledge of cattle-breeding farmers, which are the target population of the case study. Therefore
descriptions or definitions could be given when considered necessary for understanding.
Nevertheless, a Glossary is given in Appendix C.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 50 of 112

6.1 Case Study Introduction

The case study presented in this chapter is a simplified version of a MAS model developed for a
research project titled ―Development, validation and evaluation of a modeling and simulation
participatory methodology that contributes in the understanding and communication of the draught
phenomena, and improves the adaptation capacity of livestock farmers in the basalt‖15.

This is a two-year project (2009-2010) financed by Instituto Nacional de Investigación
Agropecuaria [INIA, 2010] and executed by Instituto Plan Agropecuario [IPA, 2010]. The former is an
institution that develops and fosters agricultural research nation-wide and whose mission is ―to
contribute to the development of farmers and the entire agricultural sector‖ of Uruguay. The latter is an
institution that mainly develops agricultural extension (to farmers) focused on livestock farmers and
livestock production, and whose mission is ―to contribute to the sustainable and innovative development of
livestock production and farmers, mainly small and medium size farmers, in order to improve their financial,
family and human situations through training, extension, information and inter-institutional articulation‖.

The research project was motivated due to severe draughts that affected the region (North
Uruguay) in the last century, namely in 1916/17, 1942/43, 1964/65, 1988/89, 2005/06, among others.
The severity of these jeopardizes farm sustainability in all of its three dimensions: economically
(because of the loss of income and competitiveness), ecologically (because of cattle mortality and
possible loss of grass variety), and socially (because of bankruptcy, emigration to cities and even
suicides).

Also, the IPA team at North Uruguay knew that there was certain knowledge among farmers on
how to adapt to these extreme situations. Moreover, some of this knowledge could be regarded as true
adaptation strategies, but it was unclear about how they worked exactly, and which one was better.

This also evidenced the need for new methodological tools for the IPA team to work with, which
also facilitate communication of these strategies (among farmers, but also between agronomists and
farmers).

Finally, even though a draught is never good, the situation at North Uruguay makes it worse
because of its basalt soils. This means that soils are very superficial (sometimes having only a few
centimeters depth), and with basalt rock underneath them (therefore the name of the region). Because
of this, the draught appears much more rapidly than in deeper soils, and its effect extends for much
longer. Figures 11 and 12 show examples of this effect over the soil and cattle.

Moreover, producers of this region cannot simply change to a different production activity, since
the basalt soils are very poor and unproductive, making them not suitable for other agricultural
productions (like soybean or rice).

The research project‘s general objective is ―to contribute to the sustainability of basalt-soil
livestock farmers‖ and its specific objective is ―to evaluate a modeling and simulation participatory
methodology for improving the understanding and communication of livestock farmer‘s adaptation
strategies under draught phenomena‖.

This is one of the research projects in which the author of this thesis has worked as modeler.

15 The project‘s description can be found here:
http://www.inia.org.uy/busqueda/proy_detalle.phtml?id=186&origen=1

http://www.inia.org.uy/busqueda/proy_detalle.phtml?id=186&origen=1

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 51 of 112

Figure 11: Cattle trying to feed during the 2005/06 draught (picture taken by IPA).

Figure 12: A cow during the 2005/06 draught (picture taken by IPA).

The following sections develop this case study and correspond to those steps presented in Figure 10.
They include the corresponding artifacts needed at each step.

6.2 Step 1: Identify System Purpose

The aim of this step is to define the purpose of the simulation, including its objective and questions to
be answered. It contains just one artifact, a text document:

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 52 of 112

Document: System Purpose

System name:

The name of the simulation model to be built is “Basalt Draught”.

Context:

Several draughts have been suffered in Uruguay in the last century, especially affecting the
Northern Uruguayan region, because of the presence of basalt-soils. These are very thin and are
settled over basalt rock, so the draught phenomenon appears earlier, and it is suffered longer. This
threatens livestock farmers‘ sustainability in all of its three dimensions: economically (because of the
loss of competitiveness), ecologically (because of cattle mortality and possible loss of grass variety)
and socially (because of migration to cities).

The IPA is very concerned about this to the point of proposing (and winning) an INIA-funded
project that aims at applying a participatory modeling and simulation methodology for improving the
understanding and communication of livestock farmer‘s adaptation strategies under draught
phenomena.

Simulation objectives:

The objectives that were defined between the modelers and the IPA team were:
 * To simulate the evolution of farmers under different draught strategies.
 * To build prospective scenarios under the assumption that future conditions will be

 similar to previous (historical) ones.

Questions to be answered:

* Which draught strategy is more effective?
* For a certain draught strategy: What is the influence of the initial condition of producers
 (like the initial number of plots, cattle or initial budget)?
* Under what circumstances does a certain draught strategy succeed?
* What policies could be implemented in order to minimize the impact of a draught?
* Which could be the vulnerability indicators in order to build a vulnerability map of the
 basalt region?

Stakeholders:

IPA team: composed of six agronomists that work for IPA. Their role is to execute the project,
trying to answer the above questions and reach the project‘s objectives.

Basalt livestock farmers: composed of around 20.000 small and medium-size producers (mainly
family producers) that work and live at North Uruguay basalt region. These are considered breeders
since they are the most common ones in the region.

INIA: the funding agency. Its role is to oversee the project‘s execution.
Government: although there is no one that represents the government, the results of the model

could be of interest to policy-makers.

Target Population:

Basalt livestock farmers.

Modelers:

Pierre Bommel: member of the GREEN team at the CIRAD [CIRAD, 2010] with deep knowledge
and expertise in the agent-based modeling and simulation domain. He holds a PhD in these topics and
is nowadays based in Brazil, working as associate professor at the University of Brasilia. He also
maintains the CORMAS simulation platform. His role is to be responsible for the modeling and
simulation of the project.

Jorge Corral: assistant professor at the Engineering School of the University of the Republic,
Uruguay. He holds an engineering diploma in computer science and for the last 3 years has been
studying and working with agent-based models. His role is to assist Dr. Bommel and to use the project

as a case study for his MSc thesis.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 53 of 112

6.3 Step 2: Identify Roles and Agent Types

The aim of this step is to identify agent types and roles, especially agent behavior. The first artifact is a
text document identifying roles and agent types:

Document: Roles and Agent Types

Roles:

Since the interest is in the modeling, simulation and prospective evolution of basalt farmers, it
naturally follows that the first thing to do is to identify the different roles these farmers play. Even
though it could have also been possible to include certain governmental role, this option was
dismissed from the start, since the focus is placed on the farmers.

In order to identify the different farmer‘s roles, the IPA team had previously conducted several
meetings with different producers in order to discuss the draught phenomenon and to share
experiences and information. In all these meetings, the IPA team handed out polls that helped in the
ordering and systematization of these experiences16.

The result was that two very different strategies where identified that producers apply under
draught conditions, so these were considered as the two roles identified: Proactive Producers and
Reactive Producers.

Conceptually (without going into details), the Proactive Producer looks mainly at grass
availability in order to trigger draught-related activities, and gives priority to cattle condition over
cattle quantity. This means that they would rather have less animals but well fed ones, than more
animals with less food (grass). The Reactive Producer looks mainly at the cattle condition in order to
trigger draught-related activities, and gives priority to the number of animals in its plots.

Draught-related activities include supplementing the animals (e.g. with grains), rent more plots
in order to have more grass availability (more food), make unusual sells (this means to sell animals
that under normal circumstances would not be sold), among others.

Because the activities that take place within the context of a draught may greatly vary among the
different seasons, the time step of the simulation must be set to one season.

Agent Types:

Because the model to be built was not going to consider the possibility to change the draught
strategy of any producer, and because each producer only follows one strategy, it was not considered
necessary to differentiate between Roles and Agent Types. Therefore, the agent types (agent classes)
that are to be considered coincide with the identified roles. This means that one agent type is called
Proactive while the other agent type is called Reactive.

Interestingly, this case study does not require two-dimensional grid visualization like many other
MAS simulations do. This is because there is no need to work with coordinates (locations) since, for
instance, it does not matter where the cattle is, and the entire plot is assumed to have an homogeneous
distribution of animals (assuming they will walk around and uniformly eat the grass). Also because
the simulation runs with one producer at a time, there is no need to geographically locate them;

actually it is not important where the farm is located, as long as it is in the basalt region.

The second artifact is a UML Activity Diagram for each agent type. In this case, since agents strategies
vary among the different seasons, there will be four diagrams for each of the two strategies. For clarity
reasons only two diagrams are shown that best represent the differences between both strategies: the
activities performed in winter by each agent type. Before presenting the diagrams, a brief introduction
is given.

Even though the draught strategies of the two types of producers are different, they can both do
the same activities. The following is a list of activities that both agent types may perform at winter
(since both diagrams will refer to that season):

 Pay farm costs: the first thing a producer does when a season starts is to pay over the costs of
the previous season‘s activities. These costs only include those associated to the exploitation of
the farm, not including family costs. The effect of this is to decrease the producer‘s balance.

16

 More than a thousand producers attended these meetings during the 2005/2006 and 2008/2009 draughts.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 54 of 112

 Pay interests: only if the balance is negative the producer pays a certain percentage of its debt
(financial cost). This is relevant information since the balance is one important outcome of the
simulation and because producers never go in bankruptcy (it could easily be added a rule that
makes a producer go bankrupt if his balance is negative). As in the previous activity, the effect
is a decrease in the balance.

 Mating: since both types of producers are considered breeders, they need to mate the cows
(both empty as well as lactating) with a bull in order to make them pregnant. The effect of this
activity is to mark up all mated cows in order to know afterwards if they got pregnant or not.
This will depend on the cow‘s condition score (healthier cows are more likely to get pregnant
than weaker ones).

 Sell steers: because producers are considered to be breeders, they do not make much effort on
retaining steers (young bulls). It is worth noting that these steers come from the previous
seasonal step, and not from the mating explained above. The effect of this activity is to
decrease the number of steers for that producer and to increase its balance because of the
money earned by the sale.

 Sell empty cows: winter is the worst season facing a draught, since it is when the grass grows
more slowly (because of the decrease in sun radiation). This justifies selling some cows for
two reasons: first for lowering the total number of animals to face the winter, and second to
increase producer‘s income. Empty cows are preferred since pregnant cows have more value
and lactating ones are needed by their calves.

 Adjust stocking rate: analogous to the previous activity, adjusting stocking rate has the effect
of decreasing the total number of animals and increasing income. Nevertheless, both agent
types will choose different rates: while one will focus on retaining animals (reactive) the other
one will focus on maintaining condition score (proactive) so it will reduce more than the
former. This reduction only takes place in winter because of the reasons explained above.

 Graze: when the effects of a draught start to appear, grazing is a natural option for producers.
It implies moving a certain amount of animals to another (rented) plot in order to increase
grass availability. The effect of this activity is that animals are best fed but the producer must
pay for the rented plot. Here again, each agent type is willing to pay more or less for each
rented plot for grazing.

 Return from graze: after a draught or if the grazing prices are too high, producers may choose
to return their animals from rented graze back into their own farms. The effect is to reduce the
total available area (and grass availability) for animals to feed, and stop paying the
corresponding grazing prices.

 Extraordinary sale: when the effect of a draught is severe, producers may do extraordinary
sales that under other circumstances they would not. Nevertheless, the prices paid for the
animals must be considered ―good‖. In the simulation a price for a certain category of animal
is considered to be ―good‖ if it is similar to those prices paid over the last two years. The effect
of this activity is to reduce the animal stock and to increase producer‘s balance.

 Supplement: if prices are not good enough for an extraordinary sale, producers may
supplement their animals. This generally means to buy special food (including grains) with
very high nutritive value. The effect of this activity is to increase the condition score of the
animals and to decrease producer‘s balance (because he has to pay for it). Here again, the
circumstances under which both agent types choose to supplement their cattle will be
different: while one will focus on animal survival (reactive) the other one will focus on animal
maintenance (proactive).

It is important to note that even though both agent types can do all of these activities, this does not
mean that they will both choose the same activities at the same time, since often their criteria for
deciding what to do will differ. This translates, for example, into differences in the guards of the
decisions in the UML Activity Diagram, or even not including an activity, like mating in winter, which
is not a choice for the proactive agent type (he only mates his cattle in summer).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 55 of 112

Graze
[CS<=2.5] [grazing<$20]

Extraordinary sale

[good
prices]

Supplement

[mortality
>=10%]

Pay farm costs

[balance<0]
Pay interests

[CS>3.5 or
grazing>$20]

Return from graze

Mating

Sell steers

[else]

[steers=1.5years
or balance<0]

Adjust stocking rate to 1.2

Sell empty cows

[else]

[CS>2.5][else]

[else]

[bad
prices][else]

Figure 13: Winter strategy for a reactive producer (CS stands for Condition Score).

Graze
[grass<3cm] [grazing<$30]

Extraordinary sale

[stocking rate > 0.5
and
good prices]

Supplement

Pay farm costs

[balance<0]
Pay interests

[grass>5cm
or

grazing>$30]

Return from graze

[else]

Adjust stocking rate to 0.7

Sell empty cows

[else]

[else]

[else]

[grass>=3cm]

Figure 14: Winter strategy for a proactive producer.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 56 of 112

6.4 Step 3: Model Domain Conceptualization

The aim of this step is to depict the structure of the problem, including entities and relationships. A
simplified17 version of the domain model developed is shown in Figure 15:

maxWinterStockingRate=1.2

Reactive

maxWinterStockingRate=0.7

Proactive

balance
bestHistoricalPrices

Producer

numAnimals

Herd

normalMortRate=2%
avgConditionScore

Cattle

AnimalUnits=0.18
weightPerAnimal
dailyConsumption
kgMeatPerAnimal

Sheep

area

Plot

numAnimals
age
weightPerAnimal
ConditionScore
dailyConsumption

Cohort

AnimalUnits=0.2
initialWeight=40kg

BornCalf

AniamlUnits=0.5
initialWeight=150kg
minWeight=60kg

WeanedCalf

AnimalUnits=0.7
initialWeight=150kg
minWeight=100kg

Steer

AnimalUnits=0.7
initialWeight=200kg
minWeight=100kg

Heifer

Empty

excepMortRate=30%
lastMatingAge

Pregnant

AnimalUnits=1
initialWeight=180kg
minWeight=180kg
excepMortRate=15%
mated?

Cow

excepMortRate=23%
weightGainGraze

State

Lactating

height
kgCmsRate
nutQualityWinter
nutQualitySpring
nutQualityOutum
nutQualitySummer
energyPerKg

Grass1 *

*

1

1

1

1

1

1

eats >

stock

owns >

rents >

< feeds

< has

Figure 15: Domain Model for the case study.

The following list briefly introduces each concept, organizing them as agents, resources and
environment:

Agent-related concepts:

 Producer: the general concept for both agent types. Its main attribute is the current balance of
each agent instance.

 Reactive & Proactive: they both represent the two different agent types identified in Step 2.
The figure shows how they differ in the maximum winter stocking rate (one adjusts to 1.2 at
the beginning of winter while the other to 0.7). Although not included in the Domain Model
(but in the Class Diagram of Step 5) they will both include the different steps for each season
(as methods of their corresponding classes).

Resources-related concepts:

 Herd, Cattle & Sheep: even though the farmers represented in the simulation were described
as cattle breeders, they generally also have a flock of sheep. This is especially useful in
draught scenarios since sheep are nearly not affected by draughts since they are able to get
more grass than cattle (because of their teeth). Nevertheless, the focus is on cattle, and this is
why several categories were defined, since the average condition score of the cattle herd is
important to make decisions, while sheep are considered to be all the same. This means that
the flock of sheep never evolves over time, it is always fixed (this assumption was validated
with the farmers and was found to be more suitable than it looks). Finally, it is worth noting
that each producer has only one herd of cattle and one herd (flock) of sheep.

 Cohort & State: as already discussed, a strong focus is placed in the cattle herd (because
producers are breeders). This implies a fine-grained modeling of cattle evolution that may
have led to represent individual animals in the model. Nevertheless it was not considered
necessary (or useful) to individually identify each one of the animals a producer has (e.g. by
ear tags), neither to consider the entire cattle herd as one uniform set of animals (like the
sheep herd) because this would lumped altogether different categories of bovines, with
different age, weight, sex, condition score, etc. Therefore the solution was in the middle: lump
together animals (bovines) that have the same category, age, weight, etc. This is represented

17 The simplification only involved attributes, not the structure of the Domain Model.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 57 of 112

by the Cohort concept (which means ―a group of people who share a characteristic, usually
age‖). The characteristics shared by the cohort are represented by the State concept, further
discussed below. An example of a cohort instance is a set of 10 newly born calves, all siblings,
sharing the same category (BornCalf) and the same age (e.g. 1 month).

 Cow, Empty, Pregnant & Lactating: these concepts represent the different states in which a
cow can be, therefore in which a cohort of cows can be. Empty means the cow is not Pregnant
and Lactating means the cow is feeding its newly born calves (which are known to her thanks
to the ―feeds‖ association). At each one of these states the dynamics of the simulation are
different. The fertility rate that is obtained after mating (the percentage of cows of a cohort
that actually get pregnant) as well as the exceptional mortality rate (the percentage of cows of
a cohort that die because of starvation) are calculated by formulas that depend not only on the
cow‘s condition score, but also on their state (if they are lactating or empty). The energy that a
cow needs also depends on these categories: the amount of grass consumed (therefore the
energy obtained) is not the same for a lactating cow than for an empty one. Finally, the prices
over which the bovines are sold also depend on their categories. All of these justify the fined-
grained representation of cows and their categories in the model.

 Borned Calf, Weaned Calf, Steer & Heifer: similarly, it is important to differentiate when a
born calf is still with its mother than when it is weaned (taken away from her and given
special supplement) in order to let her mate again with a bull. Also the distinction between
steers (males) and heifers (females) is important because producers are mainly breeders, and
they tend to sell their steers but keep their heifers, since the latter will turn into cows.

Environment-related concepts:

 Plot: each farmer owns one 500 ha plot of land over which he puts his animals (represented by
the ―owns‖ association). Nevertheless, the Graze activity allows him to rent other plots (of
variable size) when conditions are harsh (represented by the ―rents‖ association). An
assumption was made that plots have no divisions (fields) and that the availability and
quality of the grass is the same on all plots (owned and rented). In other terms, the farm is not
spatialized. This choice comes from the fact that the focus of the model is not on individual
cows but rather at the level of the herd.

 Grass: represents the (only) kind of grass that is available to all animals and all producers. The
grass grows depending mainly on three factors: the season (e.g. it grows much more in
summer than in winter), the weather on that season (e.g. the more rain the better), and the
previous availability of grass. The importance of the seasons in these calculations helped in
determining the seasonal time step of the entire simulation. The rates over which the grass
grows for each time step is calculated (seasonally) considering the weather of that season (an
external factor that is taken into the simulation via input parameters) and the grass
availability at the end of the previous step (an internal factor that is affected by animal
consumption). Here it is also very important to have a fine-grained representation of reality
since grass availability is what ultimately affects animals‘ condition score, and the grass-
animal dynamic was needed to be very fine-tuned and confident before introducing
producer‘s decisions (Section 6.10 describes the phases in which the simulation was
developed).

6.5 Step 4: Define Agent Interaction

The aim of this step is to determine when, how and what the different agents will communicate with
each other.

Because the aim of the project does not involve nor require interaction between the different
producers, this step does not apply for this case study.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 58 of 112

6.6 Step 5: Define Agent Architecture and Design

The aim of this step is to define agent design (structure and behavior) in order to fulfill its
perceive/reason/act cycle, within a simulation framework software package.

As introduced in Section 2.3.2, agent architectures can be classified in an abstract way (closer to
reality) as deliberative, reactive or hybrids; which are further supported by concrete software
architectures (closer to implementation). This case study follows a reactive architecture, so there will
be no explicit representations of beliefs, desires, intentions or environment, but rather each agent will
act upon a set of predefined rules, which were already shown in the Activity Diagrams of Step 2 (e.g.
if it is winter, the grass is 2cms and grazing is cheap, then put the animals to graze).

Regarding the concrete architecture referred to in Section 2.3.2, which implements the abstract
architecture in a certain software environment, and since this case study uses CORMAS, then an
analysis should be done in order to determine which CORMAS classes should be used or extended so
that it supports the reactive architecture. In other words, design each agent type by means of new
classes, extended CORMAS classes and/or interfaces.

Before presenting the UML Class Diagram showing the final agent design, and which CORMAS
classes were extended, a brief introduction to those CORMAS classes will be made. Figure 16 shows
an excerpt of CORMAS main classes and their relationships (attributes, operations and auxiliary
classes where omitted).

Entity

SpatialEntityAgent PassiveObject

Group AgentComm AgentLocation

GroupComm AgentCommLocation

GroupCommLocation

ObjectLocation

*

*

*

*

*
11

neighbours

acquantances

acquantances

*

SpatialEntitySet

SpatialEntityElement

*

 Figure 16: UML Class Diagram for CORMAS main classes.

As the figure shows, CORMAS natively supports the three main MAS concepts discussed in
Section 4.2: agents (the Agent class and subclasses), environment (the SpatialEntity class) and
resources (the PassiveObject class and its subclass).

Furthermore, CORMAS defines three dimensions that can be applied in combination to these
three concepts: the ability to group together, communicate or locate. The following table summarizes
these three dimensions and shows the relation between these and certain CORMAS entities:

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 59 of 112

CORMAS class name Description

Represents
an entity that
is capable of
grouping
with others?

Represents
an entity
that is
spatially
located?

Represents an
entity that is
capable of
communicating
with others?

Entity General base class N/A N/A N/A

Agent Agent base class N/A N/A N/A

SpatialEntity Spatial entities‘ base class
SpatialEntityElement A spatial entity
SpatialEntitySet Group of spatial entities
PassiveObject Other entities‘ base class
Group Group of agents
AgentComm A communicating agent
AgentLocation A located agent
ObjectLocation A located passive entity
GroupComm Group of communicating agents
AgentCommLocation A located and communicating agent

GroupCommLocation
Group of located and
communicating agents

Table 8: CORMAS main classes description and relation to the three
already-defined dimensions: group, location and communication.

Since producers are only located at their farm and need no communication with other producers,

nor they need to group, both agent classes extend the CORMAS AgentLocation class indirectly, by
making the Producer class extend it. This is shown in Figure 17:

Reactive Proactive

Producer

AgentLocation

 Figure 17: Both agent types extend
 the CORMAS AgentLocation class.

The following step includes all the other classes included in this case study and completes the

entire UML Class Diagram for the case study.

6.7 Step 6: Model Environment and Resources

The aim of this step is to determine behavioral aspects (evolution) of resources and environment, and
to complete structural aspects.

Regarding the structural design of the environment-related classes, Figure 18 shows the result,
which simply implies extending CORMAS SpatialEntityElement class.

Plot

Grass

SpatialEntityElement

1

 Figure 18: The Plot class extends the CORMAS SpatialEntityElement class.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 60 of 112

The dynamics of grass growth required a thorough analysis, which involved obtaining real data
about grass growth rates for each station (obtained by satellite images) and making it dependent on
the initial height for each season (for example, it would not be the same growth if the initial height of
grass in winter was 1cm or 5cms). This analysis is out of the scope of this thesis since it involved
complex but purely agronomical and biophysical calculations (and mathematics), but no software
complexity.

It is worth noting at this point that other environment-related features like the weather where
considered as input to the simulation, so the only impact on the design was to include a class called
Environment (shown in Figure 21) with methods that, for each time step, returned the weather
conditions for that step. As it was discussed in Section 5.1, climate is considered to be outside the
system, so its influence is in the form of time-series input parameters, so it will be discussed within the
Simulation Configuration step.

Concerning the behavior of resources, in this case, animals, the main challenge was first to
understand, model and implement their natural lifecycle, like feeding, mating and reproduction, and
then to include farmers‘ decisions into them, like sales. Figure 19 shows a UML State-Transition
Diagram (a kind of UML Behavioral Diagram) containing cattle lifecycle for the Reactive farmer.
Technically, the diagram shows the different states for any object that is instance of the State class,
which in reality means the different states of a cohort.

Cow

Alive

BornedCalf

Heifer

Steer

Sold

(pseudo-state)

Lactating Empty

WeanedCalf

Pregnant

increase age by
0.25years (one season)

ap
p

ly
 m

o
rt

al
it

y
ra

te
s

wean

1 year-old males
and good grass and
good balance

1 year-old
females

1 year-old
males and bad
grass or bad
balance

1,5 years-old
or bad grass
or bad
balance

weight
>280kg

ef
fe

ct
iv

e
m

at
in

g

wean

effective
mating

delivery

8 years-
old

extraordinary
sale

Figure 19: UML State-Transition Diagram showing
cattle lifecycle for a Reactive Producer.

Finally, Figure 20 shows all the classes (except from the already mentioned Environment class

that will be discussed below) that compose the design of the case study, including the extended
CORMAS classes (all attributes and operations are omitted).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 61 of 112

Reactive Proactive

Producer

Herd

Cattle Sheep

Plot

Cohort

BornCalf

WeanedCalf

Steer

Heifer

Empty Pregnant

Cow

State

Lactating

Grass

AgentLocation

SpatialEntity
Element

PassiveObject

11

1

1

*

owns

rents

stock

*
< has

1

< feeds

1

*

eats

1

Figure 20: UML Class Diagram for the case study showing extended
CORMAS classes (shown in color) and omitting attributes and operations.

The Environment class shown in Figure 21, represents external features such as the weather,

cattle and sheep prices, grass growth rates, etc. for each season. Therefore, each time a class needs any
of this information for the current season, it asks for it to the Environment class.

This class is also strongly related to the input parameters, since the information it contains
represents external features. This issue is further discussed in the following step.

+initSeasons()
+initYears()
+initCattlePrices()
+initGrassGrowth()
+initGrazeAvailability()
+initGrazePrices()
+initWeatherCoeff()
+getSeason() : String
+getYear() : Integer
+getCattlePrice(in State) : Double
+getGrassGrowth() : Double
+isGrazeAvailable() : Boolean
+getGrazePrice() : Double
+getWeatherCoeff() : Double
+getSheepWoolPrice() : Double
+getSheepMeatPrice() : Double
+getSupplementPrice() : Double

-seasons : Vector
-currentSeason : String
-years : Vector
-currentYear : Integer
-cattlePrices : Matrix
-grassGrowth : Vector
-grazeAvailability : Vector
-grazePrices : Vector
-weatherCoeff : Vector
-sheepWoolPrice : Double
-sheepMeatPrice : Double
-supplementPrices : Vector

Environment

Figure 21: UML Class Diagram showing (part of) the Environment class that designs
how the input parameters are used within the simulation. The initXXX() methods

correspond to the initialization of the input parameters and is discussed in the
following step.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 62 of 112

6.8 Step 7: Simulation Configuration

The aim of this step is to define those fundamental elements that will enable a simulation to be run.
These are (as Section 4.4 introduced):

 Initial configuration, which is explained in the following text document but is mainly
represented in raw source code;

 Time step definition, which is defined in the text document;

 Task scheduling, which is represented by a UML Sequence Diagram, and

 Input parameters, which like the initial configuration, is explained in the text document but
represented directly in source code.

Document: Simulation Configuration

Initial Configuration:

 The initial configuration for this case study basically involves defining how many cows of each
kind will be at time zero (how many cohorts), how many sheep will be (the number of sheep of the
flock is fixed during the simulation), the initial grass height, the initial budget for the producer (how
much money he has in his pocket at time zero), and initial input parameters (which are discussed
below), which will depend on the initial season selected.
 An important issue is to be able to easily modify this initial configuration in order to test
different scenarios, each of them varying its initial state. To this end, CORMAS provides a simple
definition of different ―init‖ methods that can be written (coded) altogether and then simply select one
each time the simulation is run. This enables, for example, to inspect if different trajectories emerge for
a certain type of producer by only changing his initial state.

Time Step Definition:
 Like the Roles and Agent Types Document introduced, the time step for the case study was
defined to be a season (i.e. 3 months) because the activities that could take place within a draught may
greatly vary from season to season. This means that four steps actually represent the passing of one
year.

Task Scheduling:

 At each time step (season) the following events occur (it should be noted that these events are
assumed to be executed the first day of the season since it is a simulation and not the real world):
 1) The weather and prices are updated (refer to Input Parameters below) for the current
season, meaning that this new weather and prices will be valid through this season.
 2) The producer decides and performs its seasonal activities. This implies choosing the
UML Activity Diagram that corresponds to the producer‘s type and current season. This is also called
the Producer‘s Step Method in CORMAS. Here is worth noting that the producer decides and
immediately executes those decisions (again, for the sake of the simulation).
 3) The grass grows for this season. Here, even though the grass grows immediately, the one
consumed by the animals (in the following two events) is calculated with the average grass height in
order to make it more real; otherwise the animals will always eat at maximum grass height.
 4) The sheep evolve. This only means that they feed themselves (eat grass) and that they
produce certain amount of wool and meat (refer to the Domain Model Conceptualization Step for the
attributes of the sheep flock).
 5) The cattle evolve. This means not only they feed but also reproduce, since cattle lifecycle
is relevant for the case study (as already explained).
 See Figure 22 for a UML Sequence Diagram showing these events. The Scheduler is actually a
CORMAS class that orchestrates all seasonal activities, invoking the necessary methods over their
corresponding classes.

Input Parameters:
 The input parameters needed for this case study already appeared in the Environment class
shown in the previous step, namely: the years during which the simulation will be run (this

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 63 of 112

information is not usually needed in MAS simulations but in this case, historical real-world data was
used as time-series input parameters, so it was important to map that data within the year and season
in which it occurred in order to find any inconsistencies); the weather, taken from historical real-
world data (this was represented as a coefficient for each season that multiplied by the grass growth
for that season determines the final grass growth); the prices for cattle and sheep (for sheep it is
maintained always the same, but for cattle it varies depending on the season using the historical real-
world data that was gathered, and on the category of the animal since it is not the same the price for a
newly born calf than for a fully grown cow); the grazing availability and its rent prices (that is, the
price that producers have to pay per animal, per season, in order to put them into grazing); and the
supplement prices (how much it costs to feed an animal during a season with supplement).
 All of these data was initialized (in their corresponding initXXX() method) using historical real-
world data that was gathered and/or estimated for the basalt region, making the simulation more
accurate for this region.
 Finally, it is worth noting that a draught condition implies that the grass growth is low (because
of poor rain), the weather coefficient is also low (therefore grass height will be compromised), grazing
prices are high (because the demand for grazing rises, pushing its prices), and cattle prices for all
categories are low (because cattle supply increases, making prices decrease). Such a condition can then
be easily forced into the simulation, simply by changing these input parameter values before running

it.

:Scheduler :Environment :Producer :Cattle

update weather and prices

grow

:Grass

perform seasonal activities

evolve

:Sheep

evolve

eat

eat

reproduce

 Figure 22: UML Sequence Diagram showing the
task scheduling for each season.

6.9 Step 8: Simulation Output

The aim of this step is to define the output that the simulation will produce along with its visual
representation. Table 9 summarizes the output parameters that where defined for the case study,
along with the desired visual representation for each output parameter (all of them are shown on a
per-season basis):

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 64 of 112

Output Description Visualization

Cattle-generated
Income

Shows the income generated by selling cattle in this season. This allows for
inspecting which of the two kinds of animals (sheep and cattle) is giving
more profit to the producer.

Graph

Sheep-generated
Income

Analogous to the previous, but for sheep. Graph

Producer‘s
Income

This value includes the previous two (with positive sign) and exploitation
costs (with negative sign), so it can be positive (the producer gained money
in the season), or negative (he lost money).

Graph

Producer‘s
Balance

Show how much money the producer has in his pocket (previous balance +
cattle-generated income + sheep-generated income – exploitation costs).

Graph

Producer‘s Total
Assets

This value represents how much the producer is worth (value of cattle
herd + value of sheep herd + current balance).

Graph

Avg. Condition
Score (only for
cattle)

Shows the average condition score of the entire cattle herd. This is relevant
to get a picture of the animal‘s overall health. It is not necessary for sheep
since they are assumed not to be affected by draught (so they maintain
their condition score, so it is not interesting to keep track of a constant-
value).

Graph

Cattle Stock How many animals of each category (state) the producer has. Graph

Cattle Death How much cattle is dying because of draught phenomena, (the natural
mortality rate should be excluded from this figure).

Graph

Weather Show the current weather conditions in order to properly interpret and
analyze the output.

Graph

Season & Year For the same reason mentioned before, show the current season and year
(e.g.: Fall-2008).

Label

Table 9: Output parameters defined for the case
study along with their visualization requirements.

The previous output parameters where chosen because in combination, they can help answering
the case study questions (and therefore their objective) defined in Step 1.

6.10 Step 9: Implementation

The aim of this step is to codify the simulation in a programming language. The implementation
phase of this case study involved three iterations, each achieving a fully functional, but reduced
version:

 Grass Model: the first version of the model consisted only of the grass evolution over time.
This decision was supported on the grounds that grass growth was very important in the
model since it determined how much food the animals will have at each season, and the
calculations needed for this were not trivial. The results that this first version yielded were the
grass height at each season, according to the weather conditions present in that season. After
validating these results with the experts, the team defined the scope of the second version: to
include cattle and sheep but not yet producers.

 Wild Model: this second version of the model added the animals to the first one, but as if they
lived wildly in the farm, that is, without producers managing them18. This let the team test
and validate with the experts the behavior of the animals regarding how much they were
eating (and weighting), how the reproduction cycle was done, etc. The only thing that was
different from a truly wild model was that mating occurred only once per year and not
permanently as it would be the case in a real wild condition. After getting confidence on the
grass-animal interaction, the team moved on to the third and final version: include the
producers.

 Final Model: the last version of the model added human actions over the previous wild
model version. Specifically, each agent-type (Proactive and Reactive) was now able to behave
as their role specified (Step 2) following the activities defined in its UML Activity Diagram.
Producer‘s actions directly affect the animals (like mating, supplement, sales) and indirectly
affect grass (through animals).

18 Actually, within the team, this second version was called the ―Hernandarias Version‖, after the man who
introduced cattle in Uruguay back in the 17th century.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 65 of 112

This iterative and incremental approach helped to divide the workload (and not to manage all
features together from zero), and to have early feedback from the experts (since there were two
intermediate versions that could be validated long before the final one).

As introduced before, this case study was developed using the CORMAS simulation platform,
which is a MAS software package that allows developing this kind of simulations. The language in
which CORMAS was developed was Smalltak [SMALLTALK, 2010] and so was this case study. The
development environment and compiler were Cincom‘s VisualWorks [CINCOM, 2010].

Regarding the programming that was required to make the final version complete and running,
and since VisualWorks does not have a place where the programmer can look at the entire source
code all at once (it always shows a partial view of the code), it is not easy to estimate how many lines
of code the final version has. However, VisualWorks converts all code into a single XML document for
saving and restoring the project, so the lines of XML code could be fairly comparable to the lines of
actual Smalltalk code. The XML document for this case study has 6.000 lines.

Another measure could be made by considering the number of classes included in the final
version, which are 19, as Step 6 showed before (including the Environment class).

The implementation of the case study took approximately 7 weeks (considering working days) of
the entire team (including the two modelers), with a full-time dedication, divided in:

 From March 11th to March 13th of 2009: project definition and first discussions in Tandil,
Argentina.

 From October 5th to October 9th of 2009: Formal project kick-off. Involved several discussions
and the main output were UML diagrams, followed by small prototype versions in CORMAS
as proof of concept (Salto, Uruguay).

 From November 30th to December 5th of 2009: Grass Model construction (1st version) and
validation with stakeholders (Salto, Uruguay).

 From February 25th to March 5th of 2010: Wild Model construction (2nd version) and validation
with stakeholders (Salto and Artigas, Uruguay).

 From September 11th to September 17th of 2010: Final Model construction (3rd version) and
validation workshop with stakeholders (mainly with producers in Salto and Artigas,
Uruguay).

 To come: From March 14th to March 18th of 2011: Debugging of Final Model and construction
of Interactive Model for use in a workshop with producers in Salto, Uruguay (the concept of
Interactive Model is introduced in the next step).

6.11 Step 10: Simulation Run and Sensitivity Analysis

The aim of this step is to achieve the simulation‘s objective and answer its questions. As it was shown
in the previous step, the Final Model Version is yet to be further debugged in order to get full
confidence in its results, and to use it as a tool for the March 2011 workshop with producers. In this
workshop, producers will use the simulation as a game where they are represented by their avatar
(Proactive or Reactive) inside the model.

For this workshop, a more interactive version of the model is being constructed, which can be
called Interactive Model, basically consisting of the same as the Final Model Version but letting the
user (in this case the producers) pause and interact with the simulation. The only difference between
the Interactive Model and the Final Model Version is that while the latter automatically runs through
the seasons, the former pauses at each season and asks the user what to do (from a pool of valid
options). This means that instead of automatically running without interaction through a whole
period (say 20 years) the Interactive Model asks for user decision making. This was thought as a way
to engage the producers more actively in this ―game‖, while opening the black-box that the Final
Model Version may seem to them at the same time (in other words, passing from a black-box to a
white-box).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 66 of 112

6.12 Conclusions of Applying the Methodological Framework to the Case Study

This section provides some conclusions and final remarks about applying the methodological
framework to this case study.

Overall, the methodological framework successfully supported the development of the case
study. Knowing what steps should be taken and what artifacts should be constructed provides
confidence, saves time, and keeps people focused. Having a mapping between the most common
features found in an agro-ecosystem and how they can be represented using the methodological
framework was shown to be of high value.

The iterative and incremental approach was not initially considered in the development of the
case study, but once the scope and complexity were more clearly identified, this approach was taken
and proved to give not only a macro-level organization (which features should be considered in which
version) but also much more confidence on each version before getting into the other. This confidence
was the result of receiving early feedback and of having the previous version as the tested and trusted
baseline over which to build the next one.

In a truly interdisciplinary team, like the one that developed this case study, to share a basic
vocabulary and to have a common understanding of the basic concepts is crucial. To this end, the
Domain Model served as a glossary of the most important concepts and provided this common
understanding much in the same way an ontology would do.

Another interesting conclusion was reached in the use of UML diagrams. At the beginning of the
project, all IPA members were convinced that they all shared the same knowledge about basalt
breeders. However, the use of UML, particularly the Activity Diagrams in this case, demanded experts
to explicit their knowledge and assumptions in order to unambiguously build the diagrams. From this
process, several contradictory opinions emerged between the different experts, so several discussions
took place to arrive at the final versions of these diagrams. This is an example where implicit and
explicit/shared knowledge did not coincide, and the use of a formalism showed this situation.

Regarding the producers, along the several workshops, they felt they were being accurately
represented by the UML Activity Diagrams, and even when other variants were proposed (e.g. like
considering a third kind of producer as the result of a mix of the other two) the great majority did
coincide that the two types of agents (Reactive and Proactive) indeed represented them.

Other aspects of applying the methodological framework did not go so smoothly, and are
revisited in Chapter 7 as future work.

First, the architecture chosen for the case study, as Step 5 showed, was a reactive agent-
architecture. This is by far the simplest architecture of all three (reactive, deliberative and hybrid).
Nevertheless, the system as a whole already became quite complex. This means that if another
architectural style was chosen, the final solution would have been even more complex. However, it
would be of great value to try using the other two along with the methodological framework.

Second, the dependency between steps is not as straightforward as the methodological
frameworks suggests. Particularly the time step definition, for example, could be defined earlier.
These aspects should be revised in the context of a more comprehensive software development
methodology.

Third, input parameters proved to be very important in the development. However, they got
little attention in the methodological framework. Even though it does not seem easy to further
propose structures, or rules for them because of their very disparate nature, a more thorough analysis
should be done. This includes their definition (which input parameters the system will need?), their
representation (which data structures and functions they will have?), initialization and evolution over
time.

Finally, because of the very nature of the case study, Step 4 (Define Agent Interaction) could not be
applied; it was not needed in this case. This left behind the opportunity to test how the
methodological framework supports the definition of the interaction between multiple agents.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 67 of 112

7 Conclusions & Future Work
This chapter presents this thesis‘ conclusions (Section 7.1) as well as possibilities for future work
(Section 7.2).

7.1 Conclusions

In a world concerned with ecological, social and economic sustainability, in keeping biodiversity,
controlling carbon dioxide emissions, managing natural resources exploitation, and feeding our
population, among others, agro-ecosystems should be at the core of any approach concerning these
problems, since it brings together two fundamental components: the social sub-system and the natural
sub-system. Therefore, any attempt to study an agro-ecosystem should jointly consider human actions
and natural resources. Chapter 2 showed that the multi-agent systems approach was a natural and
powerful metaphor for modeling such a complex system, with the benefit of setting the ground for the
construction of a computational model, which can simulate the evolution of the agro-ecosystem over
time, synthesizing complex knowledge, envisioning possible future scenarios and enabling
prospective analysis. This simulation gains even more relevance because this kind of systems cannot
be directly manipulated.

A successful modeling and simulation of such a system needs the skills of different people,
therefore urging for an interdisciplinary team. These skills include (but are not limited to): social
sciences (e.g. sociologists and anthropologists) for planning and conducting workshops, interviews
and any activity involving producers; natural sciences (e.g. agronomist, ecologists and extensionists)
for understanding natural processes, and the dynamics that take place when humans manipulate an
ecosystem; economics (e.g. economists) for understanding one of the major forces that play in any
human activity: money; and computer science (e.g. software developers and modelers) for putting all
this information together into models (e.g. following the UML formalism), and later into
computational models (i.e. software) that allow these models to take life.

This thesis makes a contribution by proposing the first AOSE methodology (in its early stages,
therefore referred to as methodological framework in Chapter 4), that guides a software developer into
constructing agro-ecosystem simulations using the multi-agent systems approach.

Even though many AOSE methodologies already exist (as shown in Chapter 3), they are general-
purpose. This implies that they do not consider the simulation of a multi-agent system and neither the
specificities/features of agro-ecosystems. There is a difference in developing software for, say, an
Internet robot, than for simulation purposes, even though both are cases of multi-agent systems. There
is also a big gap when trying to use these general-purpose AOSE methodologies for a specific context
such as an agro-ecosystem, especially when representing the features discussed in Chapter 5.

In the current context where software developers (and programming skills in general) are scarce,
a methodology that leverages the object-oriented background of a developer, defining specific steps
and artifacts for this niche of agro-ecosystem simulations, should lower the learning curve and ease
the burden over programmers to get productive as quickly as possible.

The case study presented in Chapter 6 takes this methodological framework one step further by
applying it to a very relevant problem: the draught phenomena in the Uruguayan basalt region. This
allowed to show in a real-world situation the applicability and usefulness of the methodological
framework, at the time that it helped in studying and understanding the draught strategies of basalt
producers and their consequences over cattle, and their financial balance of adopting them.

Finally, an extract of the work included in this thesis was submitted as a paper to the 2011
International Conference on Agents and Artificial Intelligence to be held in Rome [ICAART, 2011]. The
paper was accepted as a poster in the conference and can be found in Appendix D.

The results obtained so far are very promising and encourage us to continue working and
investigating on these topics. Therefore, the following section introduces several future work related
to that already done in this thesis.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 68 of 112

7.2 Future Work

The future work proposed in this section is divided into several points: those concerning the
methodological framework, those concerning the case study, and those concerning the tools that
support it. Some of the points here discussed were already aforementioned in Chapter 6.

Future work concerning the methodological framework:

 Thorough AOSE Methodology Comparison: even though Chapter 3 presented several
general-purpose AOSE methodologies, a thorough comparison between these and the
methodological framework was not given. Such a comparison could give the latter new
elements not currently considered. It is noteworthy to remember that the methodological
framework presented in Chapter 4 was originated from another methodology that
summarized others. This may have led to ignoring details from these already existing AOSE
methodologies that could be useful in the context of agro-ecosystem simulation.

 Propose a Complete Software Development Methodology: as it was mentioned several
times, the methodological framework is a guideline that only focuses on the software
development activities and artifacts, but completely ignores other relevant aspects such as
resource, time and risk management, budget and effort estimation, team work, and testing.
Proposing a truly comprehensive software development methodology from this software
engineering point of view may benefit from a more widely adoption, since it would cover all
major aspects of the development, and not only the software product.

 Relation to Other Disciplines: somehow related to the previous point, it would be interesting
to further analyze which disciplines are indeed needed to successfully achieve an agro-
ecosystem simulation using this methodology. For example, what profiles are needed, with
what skills, and how they should interact with each other.

 Further Investigate Input Parameters: as stated in Chapter 6, input parameters influence the
development at several points, and they are mostly left behind by the proposed
methodological framework. This should encourage to further investigate their role within the
methodology, along with guidance on how to define, represent, initialize and use them.

 Further Investigate Complex Adaptive Systems Support: even though the case study is far
from being regarded as ‗simple‘, it cannot be regarded as a case of complex adaptive system
as introduced in Section 2.1. Features such as emergence, self-organization and learning do
not appeared in the case study of Chapter 6. This leaves room for further investigations on
whether the proposed methodological framework can effectively support the development of
truly complex and adaptive systems.

 Define Agro-Ecosystem Patterns: just as design patterns can be applied when designing an
OOP system, the agro-ecosystem simulation taken as a specific domain can also give place to
patterns (e.g. already defined pieces of UML diagrams including some constructs to represent
widely used features or configurations). Moreover, an agro-ecosystem catalog of patterns may
be constructed and even implemented over certain agent-based simulation platform (as
CORMAS), in order to let the user drag and drop these pre-defined pieces of models and
software into a new simulation project.

 Use of other time management: as Section 4.1 established, the methodological framework
assumes a time-stepped simulation. Nevertheless, other forms of time management are
available, most notably discrete-event, which is the approach of the MIMOSA tool [MIMOSA,
2010].

 Use of a Domain Specific Language (DSL): this thesis assumed the use of plain UML
diagrams in order to facilitate developer‘s uptake. Nevertheless, the use of more specific
languages such as AML could benefit the methodological framework by giving more accurate
constructs (e.g. being able to natively model an agent or a resource on a diagram).
Furthermore, the use of DSLs would allow modeling not just an ―agent‖ natively but a
―farmer‖, a ―strategy‖ and any of the agro-ecosystems‘ features introduced in Chapter 5. This
would also relate to the use of a simulation tool that natively supports such DSLs constructs
(refer to the point ―DSL Simulation Tool” below).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 69 of 112

Future work concerning the case study:

 Define Agent Interaction: Step 5 of the methodological framework did not get the chance of
being applied to the case study. Therefore, a new case study should be defined (or at least the
actual one be modified) in order to analyze how this step really contributes to the problem of
defining and representing which agents communicate to which others, what they exchange,
when and how.

 Use of other Agent Architectures: the case study used a Reactive architecture, and similarly
to the previous point, this did not give the chance to see how the methodological framework
supports the use of other agent architectures, so new case studies should be defined that
tackle this.

 Use a General AOSE Methodology: in order to better understand and compare the
methodological framework presented in this thesis with already existing AOSE
methodologies, these could be applied to the simulation of an agro-ecosystem. This
comparison should show the benefits of counting with a specialized methodology for agro-
ecosystem simulation.

Future work concerning the tools that support the methodological framework:

 Use of other Simulation Software: as it is clear from the case study, this thesis used the
CORMAS simulation platform. Even though it proved to be extremely useful and powerful,
no alternatives where analyzed. It would be important to study other agent-oriented
simulation platforms, discuss which of them could be more aligned with the proposed
methodological framework, and use a couple of these in case studies, maybe even
implementing this very same case study on other simulation platforms and compare the
results19.

 Other AOSE Tools: related to the first point (Thorough AOSE Methodology Comparison) it
would be worth to study which tools do these already existing and general purpose AOSE
methodologies use as assistants for the actual programming and/or modeling. These tools
could be even integrated to mainstream Integrated Development Environments such as
Eclipse [Eclipse, 2010] or NetBeans [NetBeans, 2010] or be standalone tools that were built
specially for a certain AOSE methodology. The proposed methodological framework could
incorporate new ideas from these and even use them if possible.

 New Tool for the Proposed Methodological Framework: apart from studying other tools as
the previous point proposes, an analysis could be made of which tools would best support the
current methodological framework (or its ―full-size‖ one as already proposed). Such a tool
could be imagined to be designed from zero to be completely aligned to support the steps
here presented. It would be a custom-made tool (or set of tools) especially designed and
implemented, tailored for the proposed methodological framework. This could facilitate even
more the adoption of this methodology for standard OOP software developers.

 DSL Simulation Tool: relating the previous point with the point ―Use of a Domain Specific

Language‖ a specific simulation tool could be developed that natively maps the domain-
specific constructs (agent, resource, crop) to programming code. This implies developing a
library of classes that serve as base classes for all of these domain-specific constructs, along
with a graphical tool that would allow the user/programmer to declaratively define/draw
using the DSL and the tool would produce the corresponding code. To this end, several
undergraduate projects have been conducted using CORMAS and Eclipse as the
programming environments [FING1, 2008; FING2, 2009; FING3, 2010].

19 Railsback et al., (2006) have described a simple model, called ―Stupid Model‖ which has been used as a
benchmark model to compare existing agent-based simulation platforms.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 70 of 112

References
Altieri, M. 1987. Agroecology: The Science of Sustainable Agriculture. Westview Press.

AML, 2010. Website: www.whitestein.com/aml Last visited: December 2010.

AOSE, 2010. Website: http://grasia.fdi.ucm.es/aose08/index.html Last visited: December 2010.

Axelrod, R. 1984. Evolution of cooperation. Basic Books, New York, New York, USA.

Beck, K. Extreme Programming Explained: Embrace Change. Addison-Wesley.

Bernon, C., Gleizes, M.-P., Picard, G., & Glize, P. 2002. The ADELFE methodology for an intranet system
design. In P. Giorgini, Y. Lespérance, G. Wagner, & E. Yu (Eds.), Proceedings of Agent-Oriented
Information Systems, AOIS-2002: 1-15.

Birtwistle, G.M., O.-J. Dahl, B. Myhrhaug and K. Nygaard. 1973. SIMULA Begin, AUERBACH
Publishers Inc.

Booch, G. 1983. Software Engineering with Ada. Benjamin-Cummings Publishing Co., CA, USA.

Booch, G. 1995. Object Solutions: Managing the Object-Oriented Project. Reading, MA. Addison-Wesley.

Bousquet, F., Le Page, C. 2004. Multi-agent simulations and ecosystem management: a review. Ecological
Modeling 176:313-332.

Bousquet, F., Cambier, C., Morand, P. 1994. Distributed artificial intelligence and object-oriented modeling
of a fishery. Math. Comp. Model. 20: 97-107.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. 2004. Tropos: An agent-oriented
software development methodology. In Autonomous Agents and Multi-Agent Systems, 8(3), 203-236.

Briggs, D. J., Courtney, F. M.1985. Agriculture and Environment. Longman Press, London.

Brooks, R. 1990. Elephants Don‟t Play Chess. Robotics and Autonomous Systems 6: 3-15.

Budd, T. 2001. Understanding Object-Oriented Programming with Java. Pearson Education.

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P., Stark, J., Evans,
R., & Massonet, P. 2001. Agent-oriented analysis using MESSAGE/UML. In M. Wooldridge, G. Wei,
& P. Ciancarini (Eds.), Agent-oriented software engineering II (p. 119-135). LNCS 2222. Berlin:
Springer-Verlag.

CIRAD, 2010. Website: www.cirad.fr Last visited: December 2010.

Coleman, G., Verbruggen, R. 1998. A Quality Software Process for Rapid Application Development.
Software Quality Control 7, 2: 107-122.

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., & Gilchrist, H. 1994. Object-oriented development. The
fusion method. Englewood Cliffs, NJ: Prentice Hall.

CORMAS, 2010. Website: http://cormas.cirad.fr Last visited: December 2010.

Cossentino, M. 2005. From requirements to code with the PASSI methodology. In B. Henderson-Sellers & P.
Giorgini (Eds.), Agent-oriented methodologies (Chapter 4). Hershey, PA: Idea Group.

CSIRO, 2008. Complex or just complicated: what is a complex system? CSIRO fact sheet. URL:
www.csiro.au/resources/AboutComplexSystems.html Last visited: November 2008.

Davis, R. 1980. Reports on the workshop on Distributed AI. ACM Sigart Newsletter 73: 42-52.

Dawn, P., Hessl, A., Davis, S. 2008. Complexity, land-use modeling, and the human dimension: Fundamental
challenges for mapping unknown outcome spaces. Geoforum, Volume 39 Issue 2: 789-804.

Deffuant G., Weisbuch G., Amblard F. and Faure T. 2003. Simple is beautiful ... and necessary. Journal of
Artificial Societies and Social Simulation, vol. 6, no. 1 http://jasss.soc.surrey.ac.uk/6/1/6.html

http://www.whitestein.com/aml
http://grasia.fdi.ucm.es/aose08/index.html
http://www.cirad.fr/
http://cormas.cirad.fr/
http://www.csiro.au/resources/AboutComplexSystems.html
http://jasss.soc.surrey.ac.uk/6/1/6.html

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 71 of 112

DeLoach, S.A. 1999. Multiagent Systems Engineering: A methodology and language for describing agent
systems. In Proceedings of the First International Bi-conference Workshop on Agent-Oriented
Information Systems (AOIS ‘99), Seattle, USA.

Durkheim, E. 1979. Suicide: A Study in Sociology. Free Press, NJ.

Eclipse, 2010. Website: www.eclipse.org Last visited: December 2010.

Ellen, R. 1982. Environment, Subsistence and Systems. Cambridge University Press, New York.

Ferber, J. 1995. Les Systèmes Multi-Agents. Vers une Intelligence Collective. InterEditions, Paris.

Ferber, J. 1999. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence. Addison-
Wesley, Reading, MA.

FING1, 2008. Domain Specific Language for Multi-Agent System Simulations (DSL4MASS). Diego Salido &
Horacio Blanco. Proyecto de Grado, Facultad de Ingeniería, UdelaR. Uruguay.

FING2, 2009. Framework de Simulación Basado en Sistemas Multi-Agente. Diego Guerra, Yanella Sanchez
& Paola Iraola. Proyecto de Grado, Facultad de Ingeniería, UdelaR. Uruguay.

FING3, 2010. Framework de Simulación en Java Basado en Sistemas Multi-Agente. Ramiro Simón, Bruno
Caetano, Carlos Cristoforone & Magela Cairo, Proyecto de Grado, Facultad de Ingeniería,
UdelaR. Uruguay.

FIPA, 2010. Website: www.fipa.org Last visited: December 2010.

Fowler, M. 1996. Analysis Patterns: Reusable Object Models. Addison-Wesley.

Fowler, M. 2003. UML Distilled. Third Edition. Addison-Wesley.

Galler, H.P. 1997. Discrete-time and continuous-time approaches to dynamic microsimulation reconsidered.
Online Technical Paper - TP13. October 1997, NATSEM, University of Canberra

Gamma, E., Helm R., Johnson R., Vlissides J. 1994. Design Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley.

Gardner, M., 1970. The fantastic combinations of John Conway‟s new solitaire game ´life´. Scientific
American 223: 120-123.

Gliessman, S. R. 1997. Agroecology: ecological processes in sustainable agriculture. Ann Arbor Press

Gosling, J., Joy, B., Stelle, G., Bracha, G. 2005. The Java Language Specification. Third Edition. Addison-
Wesley.

Grimm V, Railsback SF. 2005. Individual-based Modeling and Ecology. Princeton University Press,
Princeton N.J., 428 pp.

Hecht, S. 1987. The Evolution of Agricultural Thought. In [Altieri, 1987].

Henderson-Sellers, B., Giorgini, P. (Eds.) 2005. Agent-oriented Methodologies. Hershey, PA: Idea Group.

Hogeweg, P., Hesper, B. 1983. The ontogeny of the interaction structure in bumble bee colonies: a mirror
model. Behavioral Ecological Sociobiology 12: 271-283.

Huston, M., DeAngelis, D., Post, W. 1988. New computer models unify ecological theory. Bioscience 38:
682-691.

ICAART, 2011. Website: www.icaart.org Last visited: December 2010.

Iglesias, C.A., Garijo, M., Gonzalez, J.C., & Velasco, J.R. 1996. A methodological proposal for multiagent
systems development extending CommonKADS. In Proceedings of 10th KAW, Banff, Canada.

INIA, 2010. Website: www.inia.org.uy Last visited: December 2010.

IPA, 2010. Website: www.planagropecuario.com.uy Last visited: December 2010.

JAAMAS, 2010. Website: www.ifaamas.org Last visited: December 2010.

http://www.eclipse.org/
http://www.fipa.org/
http://www.icaart.org/
http://www.inia.org.uy/
http://www.planagropecuario.com.uy/
http://www.ifaamas.org/

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 72 of 112

Jennings, N. 2001. An agent-based approach for building complex software systems. In Communications of
the ACM. Volume 44, Issue 4.

Kay, A. 1993. The Early History of Smalltalk. ACM.

Kinny, D., Georgeff, M., & Rao, A. 1996. A methodology and modeling techniques for systems of BDI agents.
Technical Note 58, Australian Artificial Intelligence Institute, also published in Proceedings of
Agents Breaking Away, the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World (MAAMAW‟96) (pp. 56-71). Springer-Verlag.

Kruchten, P. The Rational Unified Process: An Introduction. Third Edition. Addison-Wesley.

Kruchten, P. 1999. The Rational Unified Process: An Introduction. First Edition. Addison-Wesley.

Langton, C. 1988. Artificial Life. In: Langton, C. (ed.), Artificial Life. Addison-Wesley, pp. 1-47.

Lansing, J. S., Kramer, J. N. (eds.) 1994. Emergent Properties of Balinese Water Temple Networks:
Coadaptation on a Rugged Fitness Landscape. In: Langton, C. (ed.) Artificial Life III. Addison-Wesley,
Santa Fe.

Lind, J. Website 2008. Website: www.agentlab.de Last visited: December 2010.

Matthews, R., 2006. The People and Landscape Model (PALM): Towards full integration of human decision-
making and biophysical simulation models. Ecol. Model. 194, 329–343.

McCarthy, J., Minsky, M. L., Rochester, N., Shannon, C. E. 1955. A proposal for the Dartmouth summer
research project on Artificial Intelligence. Dartmouth College, USA.

Mellor, S., Balcer, M. 2002. Executable UML: A foundation for model-driven architecture. Addison-Wesley.

Michener, W. K., Baerwald, T. J., Firth, P., Palmer, M. A., Rosenberger, J. L., Sandlin, E. A.,
Zimmerman, H. 2001. Defining and Unraveling Biocomplexity. Bioscience, Volume 51 Number 12:
1018-1023.

Microsoft‘s .NET‘s 2008. Website: www.microsoft.com/NET/ Last visited: December 2010.

Miller, J.H., Page, S.E. 2007. Complex adaptive systems: an introduction to computational models of social life.
Princeton University Press.

MIMOSA, 2010. Website: http://mimosa.sourceforge.net Last visited: December 2010.

NetBeans, 2010. Website: www.netbeans.org Last visited: December 2010.

Object Management Group Website. 2008. Website: www.omg.org Last visited: December 2010.

Odum, E. P. 1969. The strategy of ecosystem development. Science 164: 262:270.

Odum, E. P. 1984. Properties of Agroecosystems. In: Agricultural Ecosystems. Lowrance et al. (eds), Wiley
Interscience, New York.

Padgham, L. & Winikoff, M. 2002. Prometheus: A methodology for developing intelligent agents. In F.
Giunchiglia, J. Odell, & G. Weiss (Eds.), Agent-oriented Software Engineering III Proceedings of the
Third International Workshop on Agent-Oriented Software Engineering (AAMAS‟02) (pp. 174-185).
LNCS 2585.

Parker, D.C., Manson, S.M., Janssen, M.A., Hoffmann, M.J., Deadman, P. 2003. Multi-Agent Systems for
the Simulation of Land-Use and Land-Cover Change: A Review. Annals of the Association of American
Geographers, Volume 93, Issue 2: 314-337.

Parrott, L. 2002. Complexity and the limits of Ecological Engineering. In: American Society of Agricultural
Engineers, Volume 45, Issue 5: 1697-1702.

Pavón, J., Gomez-Sanz, J., & Fuentes, R. 2005. The INGENIAS methodology and tools. In B. Henderson-
Sellers & P. Giorgini (Eds.), Agent-oriented methodologies (Chapter 4). Hershey, PA: Idea Group.

Perez, P., Batten, D. (editors). 2006. Complex Science for a Complex World, Exploring Human Ecosystems
with Agents. The Australian National University Press, Australia.

http://www.agentlab.de/
http://www.microsoft.com/NET/
http://mimosa.sourceforge.net/
http://www.netbeans.org/
http://www.omg.org/

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 73 of 112

Petra, P., Tolksdorf, R., Zambonelli, F. 2003. Lecture notes in Artificial Intelligence. In Engineering,
Societies in the Agents World III. Springer.

Pfleeger, S. L. Atlee, J. 2006. Software Engineering. Theory and Practice. Third Edition. Pearson.

Rammel, C., Stagl, S., Wilfing, H., 2007. Managing complex adaptive systems — A co-evolutionary
perspective on natural resource management. Ecol. Econ. 63, 9–21.

Railsback, S. F., Lytinen, S. L., & Jackson, S. K. 2006. Agent-based simulation platforms: review and
development recommendations. Simulation, 82(9): 609-623.

Reynolds, C. 1987. Flocks, herds and schools: a distributed behavioral model. Comput. Graph. 21: 25-34.

Royce, W. 1970. Managing the Development of Large Software Systems. Proceedings on IEEE WESCON 26:
1-9.

Rumbaugh, J., Jacobson, I., Booch, J. 1998. The Unified Modeling Language Reference Manual. Addison-
Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. 1991. Object-oriented modeling and
design. Englewood Cliffs, NJ: Prentice-Hall.

Shelling, T. C. 1971. Dynamic models of segregation. Journal of Mathematical Sociology 1: 143-186.

Shelling, T. C. 1978. Micromotives and macrobehavior. W. W. Norton, New York, New York, USA.

Senge, P. 1994. The fifth discipline: the art and practice of the learning organization. Doubleday Business,
NY.

Shoham, Y. 2010. Website: http://hci.stanford.edu/courses/cs547/abstracts/94-95/950113-
shoham.html Last visited: December 2010.

Smith, A. 1776. An Inquiry into the Nature and Causes of the Wealth of Nations. Edited by Andrew
Skinner. New York: Pelican Books, 1970.

Software Industry Report. 1997. Corporate America plans to spend big on object-oriented software. Software
Industry Report January 1997. Source: http://www.allbusiness.com/technology/computer-
software/603292-1.html Last visited: December 2010.

Sommerville, I. 2006. Software Engineering. Eighth Edition. Pearson.

Stepp, J.R., Jones, E.C., Pavao-Zuckerman, M., Casagrande, D., Zarger, R.K. 2003. Remarkable properties
of human ecosystems. In: Conservation Ecology, Volume 7 Issue 3: 11.

Stroustrup, B. 1991. What is „Object-Oriented Programming‟? AT&T Bell Laboratories Paper, Murray
Hill, New Jersey. Source: www.research.att.com/~bs/whatis.pdf Last visited: December 2010.

Stroustrup, B. 1994. The Desgin and Evolution of C++. First Edition. Addison-Wesley.

Taveter, K. & Wagner, G. 2005. Towards radical agent-oriented software engineering processes based on AOR
modelling. In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-oriented methodologies (Chapter 10).
Hershey, PA: Idea Group.

Travers, M. D. 1996. PhD Dissertation. Massachusetts Institute of Technology.

Tran, Q.N., Low, G. 2008. MOBMAS: A methodology for ontology-based multi-agent systems development.
In Information and Software Technology, 50: 697-722.

Turner, M. 2006. Microsoft Solutions Framework Essentials. Microsoft Press.

UML, 2010. Website: www.uml.org Last visited: December 2010.

Von Bertalanffy, L. 1968. General System Theory. George Braziller, NY.

Wooldridge, M. 2002. An Introduction to Multiagent Systems. Wiley & Sons.

http://hci.stanford.edu/courses/cs547/abstracts/94-95/950113-shoham.html
http://hci.stanford.edu/courses/cs547/abstracts/94-95/950113-shoham.html
http://www.allbusiness.com/technology/computer-software/603292-1.html
http://www.allbusiness.com/technology/computer-software/603292-1.html
http://www.research.att.com/~bs/whatis.pdf
http://www.uml.org/

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 74 of 112

Wooldridge, M. Website 2008. Lecture Notes on Introduction to Multiagent Systems Course based on
based on [Wooldridge, 2002]. Website: www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html Last
visited: December 2010.

Wooldridge, M., Jennings, N. R. 1995. Intelligent agents: theory and practice. The Knowledge Engineering
Review 10(2): 115-152.

Wooldridge, M., Jennings N.R., & Kinny, D. 2000. The Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and Multi-Agent Systems, 3: 285-312.

Yu, E. 1995. Modelling strategic relationships for process reengineering. PhD Thesis, University of Toronto,
Department of Computer Science.

http://www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 75 of 112

Appendix A: State-of-the-Art of MAS
This appendix gives a more in-depth state-of-the-art of the topics presented in Chapter 2. Section 1
presents fundamental concepts and principles related to complex systems which are the general
context for agro-ecosystems presented in Section 2. Section 3 introduces the agent-based modeling
approach, and Section 4 shows the applicability of the agent-based modeling approach to complex
systems in general and to agro-ecosystems in particular. Section 5 gives some basic definitions of
software engineering concepts, and Section 6 presents a comparison between the Object-Oriented
Programming and the Agent-Oriented Programming paradigms.

1. Complex Systems

In natural sciences and computer science, the most common approach to understand or analyze a
system is based on a decomposition of the system into its elementary parts and the isolated and in-
depth study of these in order to understand the whole, i.e. the reductionism of Descartes. A good
example, very well-known in computer science, is the ‗divide and conquer‘ approach, which suggests
to decompose the original system (or problem) into smaller and simpler parts, and to understand (or
solve) each individual part and finally add up all of these partial understandings (or partial solutions)
in order to achieve the complete understanding of the system (or a complete solution). Early notions,
such as modularity (in both, data structures and functionality) and object orientation also correspond
to this idea.

The systemic approach (also called ‗systems approach‘, ‗holistic approach‘ or ‗systems thinking‘)
starts by first examining and understanding the relations between the different elements of the
system. As the very term ‗holistic‘ suggests, the idea is to never forget the system as a whole, for what
it is essential to pay constant attention to the interrelations between the elements. The systemic
approach is a general theory since its principles can be applied to any discipline or area. Its origins go
back to half of the 20th century with the work of the Austrian biologist Ludwig von Bertalanffy
[Bertalanffy, 1968]. One of the most common ways for addressing the systemic approach is to say that
‗the whole is more than just the sum of its parts‘, or in the words of [Miller and Page, 2007]: “The field
of complex systems challenges the notion that by perfectly understanding the behavior of each component part of
a system we will then understand the system as a whole”.

Both complicated and complex systems are composed of a large number of interacting elements,
but two properties set a complex system apart from one that is merely complicated: emergence and
self-organization. Emergence is the appearance of behavior that could not be anticipated from the
knowledge of the parts of the system alone [CSIRO, 2008]. Moreover, the newly emerged properties
can in turn feedback to the original lower-level entities, entering a feedback loop where each element
(micro/marco level) interacts. Both positive and negative feedback loops are possible; positive
feedback loops lead to expansion of a given behavior or dynamics, and negative feedback results in
mitigation and control. Self-organization means that there is no external controller or planner
engineering the appearance of the emergent features; they appear spontaneously [CSIRO, 2008]. The
motivation for studying complex systems is that many of current opportunities and challenges
(globalization, sustainability, terrorism, epidemics, climate change) are complex. Each of these
domains consists of a set of diverse entities and actors that dynamically interact, and are immersed in
a sea of feedback [Miller and Page, 2007]. Figure A.1 shows a schematic representation of a complex
system based on [Parrott, 2002].

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 76 of 112

Figure A.1: Schematic Conceptual Model of a Complex System.

A key feature of real systems that has proved to be essential in the appearance of rich emergent
features is local interaction. In other words, elements of a system only interact with their neighbors
[CSIRO, 2008]. Well-known and simple rules in the micro-level can make the emergence of system-
level phenomena, as in the case of John Conway‘s Game of Life [Gardner, 1970] where a simple set of
rules about when a certain pixel is considered ‗alive‘ (black pixel) or ‗dead‘ (white pixel) depending on
the number of ‗alive‘ neighbors, gives rise to a perfectly clear pattern of 5-pixel ‗flying gliders‘ that
flies across the screen with a perfectly defined trajectory20, which is not predictable from the simple set
of rules. Another example of emergence comes from Durkheim‘s study of suicide21 [Durkheim, 1979]
where a process that seems to be governed by chance, when viewed at the level of individuals, turns
out to be strikingly predictable at the level of society as a whole [Perez and Batten, 2006].

Probably the earliest reference in history to complexity (involving social sciences) and emergence is
Adam Smith‘s Wealth of Nations [Smith, 1776] book, where he describes the concept of an ‗invisible
hand‘ leading collections of self-interested agents into well-formed structures that are no part of any
single agent‘s intention.

Emergent properties and complexity usually arise when the relations among the elements of the
system are not linear. This means that the behavior of a single element is not the result of a linear
combination of the individual behaviors of related elements, leading to a non-linearity. Another
source of complexity appears when there are time and scale differences between cause and effect. That
is, if an action in certain level of organization or hierarchy at a certain time ends up having its effect
over a long period of time and over different levels of organization or hierarchies (different scales),
then the understanding of the causeeffect relationship vanishes [Senge, 1994].

Even though several renowned scientists (for example in the Santa Fe Institute22) are behind the
idea that very different realities and problems can share some common principles (described by
complex systems theory), critics also disbelieve such generally-applicable principles (as it is shown in
the article titled ―From Complexity to Perplexity‖ from John Horgan, Scientific American senior
writer, June 199523).

Complex Adaptive Systems‘ (CAS) are defined as systems that are capable to adapt and self-
organize in response to perturbations or distortions in the environment, or by the result of certain
interrelations between the elements. System adaptation is ultimately concerned with the adaptation of
each individual element of the system, since there is no centralized control and therefore no single
‗object‘ that represents the entire system. This also relates to the concept of co-evolution of the
different elements or parts of the system, which by means of their interrelations evolve their behavior
over time, adapting themselves to new situations [Rammel et al., 2007].

Adaptation of a single element is commonly associated with the display of alternative behaviors.
Learning can be defined as a mechanism to attain the ability to exhibit different behavior over time.

20 An on-line interactive application is freely available at: http://www.bitstorm.org/gameoflife/
21 ―It is impossible to predict which of them are likely to kill themselves. Yet the number of Parisians who commit
suicide each year is even more stable than the general mortality rate.‖ [Durkheim, 1979]
22 The Santa Fe Institute coined the term ‗complex adaptive systems‘ (www.santafe.edu)
23 Available at: http://www.econ.iastate.edu/tesfatsi/hogan.complexperplex.htm

http://www.bitstorm.org/gameoflife/
http://www.santafe.edu/
http://www.econ.iastate.edu/tesfatsi/hogan.complexperplex.htm

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 77 of 112

The larger the capacity to learn, the more capable it will be to adapt to new conditions. One well-
known researcher on adaptive systems is John Holland, one of the first PhDs ever in computer science,
who created the genetic algorithms which aim at evolving generation over generation of a certain
population, by mutations or cross-breeding between individuals that present the best survival
capacities (measured for example, by a fitness function) and constitute an example of a computer
science adaptation strategy. Adaptation and learning mechanisms generally increase the complexity of
the whole system, since the behavior of the elements is able to change and evolve over time through
adaptation processes.

2. Agro-Ecosystems

This section introduces the notion of agro-ecosystem and related concepts. Also, agro-ecosystems are
presented as a special case of complex systems. Finally, the importance of modeling and simulation of
agro-ecosystems is highlighted.

2.1 What is an Agro-ecosystem?

An agro-ecosystem is the human manipulation and alteration of ecosystems for the purpose of
establishing agricultural production [Gliessman, 1997]. Agro-ecosystems result from the interplay
between endogenous biological and environmental features of the agricultural fields, and exogenous
social and economic factors, and are delimited by arbitrarily chosen boundaries. They are semi-
domesticated ecosystems that fall on a gradient between ecosystems that have experienced minimal
human impact, and those under maximum human control [Hecht, 1987].

According to [Odum, 1984] the four major characteristics of agro-ecosystems are:

 They include external sources of energy like human, animal or fuel energy to enhance
productivity of particular crops;

 Diversity may be reduced compared with natural ecosystems (those with no human
intervention);

 The dominant animals and plants are under artificial selection rather natural selection; and

 The system controls are external rather than internal via subsystem feedback, in the sense that
the natural resources are no less dependent on natural factors because of human intervention.

Even though this is a good starting point according to [Hecht, 1987] it does not reflect agro-
ecosystems that can be relatively diverse and its lack of attention to the social determinants of
agriculture limits its explanatory power. Agricultural systems are human artifacts, and the
determinants of agriculture do not stop at the boundaries of the field. Agricultural strategies respond
not only to environmental, biotic24, and cultivar constraints, but also reflect human subsistence
strategies and economic conditions [Hecht, 1987; Ellen, 1982]. This stresses the importance of social
factors like labor availability, access and conditions of credit, subsidies, perceived risk, price
information, association obligations, family size, and access to other forms of livelihood, which are
often critical to understanding the logic of a farming system [Hecht, 1987].

An agro-ecosystem thus, has physical parts with particular relationships (the structure of the
system) that together take part in dynamic processes (the function of the system) [Gliessman, 1997].
The structure can be viewed as organized in several levels, ranging from individual elements, such as
organisms or crops, up to regions, landscapes or entire countries. This organization also allows the
analysis of the different scales present in an agro-ecosystem, as well as the relations between scales.
The functioning of the agro-ecosystem refers to the dynamic processes occurring within ecosystems:
the flow of matter and energy and the interactions and relationships of the organisms and materials in
the system.

Any system uses its processes and resources to convert its inputs into its outputs. Concerning the
resources commonly found in agro-ecosystems, [Norman, 1979] suggests the following classification:

 Natural resources: the given elements of land, water, climate and natural vegetation that are
exploited by the farmer.

 Human resources: the people who live and work within the farm and use its resources for
agricultural production, based on their traditional or economic incentives.

24 Associated with or derived from living organisms (English On-Line Dictionary).

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 78 of 112

 Capital resources: the goods and services created, purchased, or borrowed by the people
associated with the farm to facilitate their exploitation of natural resources for agricultural
production.

 Production resources: the agricultural output of the farm, such as crops and livestock. These
become capital resources when sold, and residues (crops, manure) are nutrient inputs
reinvested in the system.

Several of all the previous concepts are summarized in Figure A.2, based on [Altieri, 1995] and
[Briggs and Courtney, 1985]:

Figure A.2: Representation of an agro-ecosystem.

It is worth noting that human intervention is represented by the inputs, but mainly by the
management practices executed by farmers.

Other concepts that are also commonly associated to agro-ecosystems include natural processes
(like erosion), the landscape to which the agro-ecosystem belongs, market prices and prices evolution
(regarding for example international crop prices), and government policies (which may affect virtually
any part of the agro-ecosystem).

Finally, the main differences between natural ecosystems and agricultural ecosystems can be,
according to [Gliessman, 1997] and closely related to the characteristics of agro-ecosystems of
Norman, summarized25 as:

 Differences in energy flow: energy is taken away at each harvest rather than stored in
biomass;

 Differences in nutrient cycling: recycling of nutrients is minimal in most agro-ecosystems and
considerable quantities are lost in harvest or as a result of erosion;

 Differences in population regulation mechanisms: due to simplification (reduction of
diversity) populations (crops or animals) are rarely self-reproducing or self-regulating, rather,
human inputs (seeds, control agents) determine population sizes; and

 Differences in stability: due to their reduced structural and functional diversity, agro-
ecosystems have much less resilience than natural ecosystems.

Figure A.2 and the previous concepts suggest that agro-ecosystems can be seen as a case of
complex systems. The following section looks further into this idea.

2.2 Agro-ecosystems as Complex Adaptive Systems

Any ecosystem by itself can already be considered as a case of complex adaptive system, considering
its various components, organization levels, micro and macro interactions and their feedbacks, and
even more if including a social subsystem (with heterogeneous behaviors) as in the case of agro-
ecosystems.

The interactions between the social and natural subsystems inside an agro-ecosystem, such as
farmers‘ practices affecting natural resources, are examples of local interactions at a small scale which
may produce negative or positive feedbacks affecting in turn the decision-making of social actors.
Repeating these interactions on a daily basis can produce emergent properties and new organizations

25 Other structural and functional differences between natural ecosystems and agro-ecosystems can be found in
Gliessman, 1997 and Odum, 1969 (also in http://www.agroecology.org/Principles_Eco.html).

http://www.agroecology.org/Principles_Eco.html

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 79 of 112

across the agro-ecosystem in the long-term, like a change in soil quality, as a long-term consequence of
the adoption of certain management practice or the emergence of a certain land-use pattern.

Furthermore, according to [Dawn et al., 2008] the sources of complexity in coupled human-natural
systems (as is the case of agro-ecosystems) arises mainly from temporal, spatial and scale mismatches
between actions and their impacts (similarly to what Senge proposes), which occur due to the indirect
and imperfect nature of these interactions between human actions and their impact on the
environment.

Aside from natural processes, also the interactions between the social actors can lead to complex
behaviors like, for example, communications between neighboring producers which can affect each
producer‘s performance (e.g. knowing about certain new market because of participation in an
organization can lead to improvements in the income of those producers that receive the correct
information at the right moment).

[Gliessman, 1997] addresses some of these issues and states what could be considered the ultimate
emerging property of an agro-ecosystem:

“An important characteristic of ecosystems is that at each level of organization properties
emerge that were not present at the level below. These emergent properties are the result of the
interaction of component parts of that level of ecosystem organization. In an agro-ecosystems
context, this principle means in essence that the farm is greater than the sum of its individual
crop plants. Sustainability can be considered the ultimate emergent quality of an ecosystem
approach to agriculture.”

On the other hand, the sources of adaptation come from the capacity of humans to adapt their
behavior by learning from their experience, and from the capacity of this environment to adapt to new
conditions and constraints. According to [Perez and Batten, 2006] these kinds of coupled systems,
involving people, other living entities, an environment, information exchange and the co-evolution of
all of these things over time, are inherently complex and adaptive due to the ability of human beings
to switch from rational to deductive reasoning. This flow of information, besides the matter and
energy flows, is also referred to by [Stepp et al., 2003].

Recently a new term has been coined: biocomplexity. This is defined as properties emerging from
the interplay of behavioral, biological, chemical, physical, and social interactions that affect, sustain or
are modified by living organisms, including humans [Michener et al., 2001]. One of the very first uses
of the term which triggered further research was adopted by a new US National Science Foundation26
Priority Area on Biocomplexity, who started funding programs on 1999 with a very broad sense of
biocomplexity, but then moved towards more specific issues, being one of them the ‗Dynamics of
Coupled Natural and Human Systems‘.

Finally, as stated in [Michener et al., 2001] two particularly salient features of biocomplexity are
that 1) it arises as temporal, conceptual and spatial boundaries are breached; and 2) the system may
exhibit emergent or unexpected properties (i.e. the behavior of the whole is often not predictable
based on a study of its component parts).

This makes more evident the relation between agro-ecosystems as complex systems and
biocomplexity as a new area, as well as demonstrates current interest in research over these topics by
providing extensive funding (approximately 125 million dollars on the first three NSF Biocomplexity
Phases [Michener et al., 2001]).

2.3 The Importance of Simulation in Agro-ecosystems

Since these coupled human-natural systems cannot be manipulated and tested as other systems, due
to scale and resource difficulties (setting up farms managed by people over decades just to see the
effects) the possibility of simulating them is crucial.

The objective of simulating these kind of systems is not trying to figure out exactly what will
happen in the future if the present conditions are X, the behavior of each part is Y and the evolution of
certain parameters is Z. In contrast, simulation in these contexts should have the objective of
prospection of scenarios were the interest is not in the ‗fortune-teller‘ features of the simulation but in
discovering possible outcomes under certain conditions and being able to easily modify these
conditions and check again the outcomes (as in a virtual laboratory). Another objective can be to

26 NSF‘s Biocomplexity Priority Area: www.nsf.gov/news/priority_areas/biocomplexity/index.jsp

http://www.nsf.gov/news/priority_areas/biocomplexity/index.jsp

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 80 of 112

deepen the understanding (and also possibly learning/teaching) of a coupled human-natural system,
since the more micro/macro level study of each part as well as their interactions require an in-depth
understanding of them in order to obtain a simulation that is close to reality. Yet other objective can be
to explore the consequences of manipulating certain system in order to understand how the different
parts will co-exist in the future due to that manipulation (e.g. how does a water shortage affects the
productivity of a farm, or how certain economic policy impacts in the long term).

Section 3 presents an approach that can be used to develop such simulations in the form of
software systems that will be able to simulate the different parts of an agro-ecosystem and monitor
(observe) certain parameters over time in order to analyze their evolution.

3. Agent-Based Modeling

The basic ideas around agent-based modeling will be presented in this section with special care in
maintaining enough generality and abstraction, trying to (objectively) introduce the topic without any
bias of any special discipline or tendency. Later on, several of these general concepts will be put in the
particular context of a certain domain, especially in computer science and agro-ecosystems. First, a
definition of agent will be given followed by different classifications of agent environments. From that
point, the concept of multi-agent system is introduced, as well as its origins and different applications.

Agent based modeling (ABM) is a computer science approach that enables the simulation of
heterogeneous populations of interacting individuals or agents, in many cases in a non-agent
environment, which can also contain non-agent passive objects (commonly known as resources). The
agents can exhibit a set of different behaviors, and the selected behavior is dependent on the local
interactions with other individuals in their neighborhood and the state of the environment, thus the
agents may be adaptive. The mechanism of selection of behavior can range from simple procedural
logic to highly sophisticated reasoning. The repertoire of behaviors can be fixed or extensible, and the
latter implies that the agents should be able of learning. The intelligence of the agent depends on its
abilities to reason and to learn. The adaptive behavioral patterns enable self-organization of the
population and can result in emergent phenomena. Consequently, the ABM approach is suitable to
address complex adaptive systems. These concepts will be further studied in the following sections.

3.1 Definition of Agent

There is no consensus on the definition of agents, but the most used definitions were proposed by
[Wooldridge and Jennings, 1995] and [Ferber, 1999]. These definitions have been used alongside each
other in a non-competitive way, partly due to the fact that agent models have been applied to many
disciplines ranging from computer science to sociology, which pose different demands on ‗attributes
of agency‘ [Wooldridge, 2002]. Moreover, the definitions share common principles.

A definition that supports the computer science focus presented in this thesis is proposed by
[Wooldridge, 2008]: ―An agent is a computer system that is capable of independent action on behalf of
its user or owner (figuring out what needs to be done to satisfy design objectives, rather than
constantly being told [what to do]‖. In this definition, the word ‗independent‘ refers to agent
autonomy, capable of acting independently and exhibiting control over its internal state. Thus an
agent is a computer system capable of autonomous action in some environment in order to meet its
design objectives [Wooldridge, 2002&2008] (Section 3.3 further discusses agents‘ environments).

According to [Wooldridge, 2002] an intelligent agent is a computer system capable of flexible
autonomous action in some environment27 and proposes the following properties in order to let an
agent show intelligent behavior: reactive, proactive and social.

 Reactive: A reactive system is one that maintains an ongoing interaction with its environment,
and responds to changes that occur in it (in time for the response to be useful) [Wooldridge,
2002]. Even though a changing environment makes agent design harder, it allows the
representation of much more complex (and interesting) situations.

 Proactive: Since agents should be able to do something according to their design objectives
(goals) they should have some way to direct their behavior towards those goals. Proactiveness

27 One of the best known examples of agents are robots. From industry manufacturing to NASA explorers and
soccer-playing, robots can be seen as a ―physical instantiation of an agent‖ according to Wooldridge. Being their
objective to ensemble a car, collect and analyze rocks or score a goal, being alone or in groups, each of these share,
to more or less extent, the properties discussed here.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 81 of 112

means generating and attempting to achieve goals, not driven solely by events, as in the case of
reactivity, but by actually taking the initiative [Wooldridge, 2002].

 Social: The real world is a multi-agent environment. As [Wooldrigde, 2002] states: ―we cannot
go around attempting to achieve goals without taking others into account‖. Social ability in
agents is the ability to interact with other agents via some kind of agent-communication
protocol or language, and perhaps also cooperate or negotiate with others.

In order to formalize some of the previous topics and to simplify future discussions without losing
generality, the following concepts are introduced, which were extracted from [Wooldridge, 2002] and
[Lind, 2008]. In order to let agents react (or take the initiative) according to changes in the
environment, agents must perceive their environment and have some way to act upon it, after
reasoning what to do. This leads agent to a Perceive/Reason/Act cycle, shown in Figure A.3.

Figure A.3: General representation of an agent with its environment.

Based upon these concepts, the following can be defined:

 E the environment, defined as the set of all possible states in which the environment can be;

 D the knowledge of the agent, defined as the set of all past perceptions it has received from the

environment;

 A the actions available for the agent, defined as the set of actions that the agent can do;

 perceive: E T a function that determines how the environment is perceived by the agent,

resulting in the observation T;

 update: D x T D a function used to update the agent‘s knowledge of occurred events;

 select: D x T A a function used to select one action based on the previous knowledge (D) and

current perceived events (T); and

 act: A x E E a function that determines the new state of the environment after executing an

action.

Using these definitions an agent can be defined as a 7-tuple <D, T, A, perceive, update, select, act>.

This is illustrated in Figure A.4.

Figure A.4: The Perceive/Reason/Act Cycle Revisited

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 82 of 112

3.2 Agent Architectures

Since there are multiple ways to achieve this Perceive/Reason/Act cycle, there are accordingly
different agent architectures that represent and implement this concept in different ways and to
different degrees. The term ‗agent architecture‘ refers to the software architecture for the decision-
making agents in the environment, as well as their internal mechanisms and representations
[Wooldridge, 2002; Bousquet & Le Page, 2004].

Two issues should be taken into consideration regarding this term: first, that in the context of
agents, architectures are generally referred as being abstract (closer to reality) or concrete (closer to
implementation); and second, that several authors differ on the classification of agent‘s architectures.

The following classification of abstract architectures28 is given by [Wooldridge, 2002]:

 Deliberative Architectures (also known as Symbolic or Logical AI) that manages explicit
representations of desires (goals), beliefs (what the AI agent knows), intentions (what it wants
to do), actions (what it does) and uses abstract reasoning tools. Deductive and deliberative
agents appear in these architectures as well as the BDI Architecture (Belief, Desire, Intention)29;

 Reactive Architectures that enable intelligence without having explicit representations, or
abstract reasoning, but as an emergent property of certain complex systems. In this kind of
architectures the agent has no previous knowledge (D) and simply reacts based on a set of

rules; and

 Hybrid Architectures that include a deliberative as well as a reactive component.

The first type of architecture was the most common in the first stages of Artificial Intelligence
which suffered from several drawbacks and difficulties that led to the second type of architecture and
to the third type (Section 3.5 shows this historical evolution).

3.3 Different Classifications of Agent‟s Environments

The environment is what surrounds the agent, where the agent is located, and a means by which the
agent receives input from the outside (out of the agent‘s system). In a context with several agents (as
Section 3.4 will present) the environment also allows agents to communicate with each other.

For example, reactivity means that an agent is able to react upon changes on the environment,
acting upon it as a reaction to that change. Therefore the relation between the agent and its
environment is crucial since it can trigger agent‘s actions; allow the agent to perceive more or less
accurately what happened, etc. The following are some classification of environments (based on
[Wooldridge, 2002]):

 Accessible vs. Inaccessible: an accessible environment is one in which the agent can obtain
complete, accurate, up-to-date information about the environment‘s state. If any constraints
exist then the environment is called inaccessible. This can be represented imposing restrictions
in the perceive function by limiting the agent‘s perception (if T < E) or not (if T = E);

 Deterministic vs. Non-deterministic: a deterministic environment is one in which any action
has a single guaranteed effect –there is no uncertainty about the state that will result from
performing an action.

 Static vs. Dynamic: a static environment is one that can be assumed to remain unchanged
except by the performance of actions by agents. A dynamic one has other processes operating
on it and which hence changes in ways beyond the agent‘s control.

 Discrete vs. Continuous: an environment is discrete if there is a fixed, finite number of actions
and percepts in it.

28 In order to be able to implement software using such architectures, more detail and design must be considered.
29 BDI architectures resemble human decision-making: belief is what the agent knows (its experience), desire is
what the agent is willing to do, and intentions are desires plus the commitment to achieve them. In these
architectures agents spent time not only doing things but also deliberating about what they should do. After
choosing a plan to execute according to their current intentions, they are able to constantly introspect about the
validity of such plan at each step of it, and if necessary, change the plan in order to better accomplish their goals.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 83 of 112

3.4 Definition of Multi-Agent System

After introducing what an agent is and considering agents that operate alone, the agency theory can
be extended to let agents interact within a so-called Multi-Agent System (MAS). According to
[Wooldridge, 2002] ―A Multi-Agent System consists of a number of agents which interact with one-
another. […] To successfully interact, they will require the ability to cooperate, coordinate, and
negotiate with each other.‖

In MAS there is no central control and all information and control is distributed among the various
agents. Figure A.5 presents an illustration of a MAS (based on [Wooldridge, 2002] and [Ferber, 1999]).

Figure A.5: A Multi-Agent System

As previously discussed, agents are able to perceive part (or all) of the environment and are also
able to act upon part (or all) of it, depending on the type of environment (accessible or inaccessible).
This can be represented by spheres of influence that determine the portion of the environment that
one agent is able to interact with. Interactions between agents allow agents to cooperate, coordinate
and negotiate as needed. Finally, interacting agents can also be organized to form higher-level
organizational units.

To these concepts [Ferber, 1995] adds the concept of object as being a passive entity subject to
manipulation (consumption and production) by agents (which in turn are defined as a subset of those
objects, but with the ability to be active). All of these are also defined to be located, meaning that at
each time it is possible to locate each object and agent within the environment. Finally Ferber
introduces the idea that each agent possesses its own (internal) representation of the environment, of
the objects and of other agents.

In this thesis the term Agent-Based Modeling will be used indistinctively from the term Multi-
Agent System since the first simply refers to the process of modeling a certain reality using agents in
order to build a multi-agent system30.

[Wooldridge, 2002] defines the problem of how to build agents capable of independent,
autonomous action so that they can successfully fulfill their objectives as agent design, while the issue
of how to build agents capable of interacting with other agents to fulfill those objectives, especially
when other agents cannot be assumed to share these same objectives (which is introduced by having
multiple agents) as society design.

A concept that enables further elaboration on the agency theory in a multi-agent environment is
the one of a role. A role is the functional or social part which an agent, embedded in a multi-agent
environment, plays in a process like problem solving, planning or learning [Lind, 2008]. Roles are a
useful abstraction considering the widely accepted meaning of the term in the real world that can be
used to help describe and understand the system by describing the consistency of an agent‘s behavior
within that system (as well as within the organization to which the agent belongs). Some roles present
mutual dependencies and can only exist if other roles also exist (like the role of a teacher), and an
agent can play several roles even at the same time (called role multiplicity). As in real societies, a role
must be determined by a set of coherent behaviors, and not every set of behaviors constitutes a role.

30 This is also supported by [Bousquet and Le Page, 2004]: ―Recently, several researchers have started to use
multi-agent systems, also called agent-based modeling, in different fields.‖

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 84 of 112

Using the more formal definitions already given, a role can be viewed as an extension of an agent‘s
current knowledge (D), possible actions (A) and consequently it‘s perceive, update, select and act

functions: Dnew = D U Dr and Anew = A U Ar where Dr and Ar represent the knowledge and actions

(respectively) of the added role r.

In MAS agents interact with each other, and this interaction can lead to cooperation (when
different agents share objectives) or negotiation (when the interests are not aligned). Negotiation is the
process of reaching agreements on matters of common interest [Wooldrigde, 2002]. Negotiation is
very often needed in a MAS environment since each agent has its own goals which can be in conflict
with other agent‘s goals. Alternatives to negotiation include simply doing nothing or trusting a third
party (mediation). According to this author any negotiation setting has four components: a) a set of
possible proposals that agents can make; b) a protocol; c) a (private) strategy for each agent to follow;
and d) a rule that determines when a deal has been struck and what the agreement deal is.

Negotiation is not a simple task to accomplish within a MAS environment, since not only one-to-
one negotiations can exist, but also between one agent and many others.

3.5 Origins of MAS in Relation to Other Disciplines

The origins of MAS can be found in several disciplines around the second half of the 20th century. The
most cited disciplines involved are artificial intelligence, artificial life and computer science (although
at its beginning very related to mathematics), but also with contributions from other fields such as
economics and ecology.

The following figure exemplifies some of the milestones (and their dates) that led to the origin of
MAS:

Figure A.6: Timeline of milestones that led to MAS

Following is a short list of the first applications of MAS to land-use systems (extracted from
[Bousquet and Le Page, 2004]) since they relate to the topics tackled in this thesis:

 1983: Hogeweg & Hesper work on bee colonies [Hogeweg and Hesper, 1983]. Using a model
that considered the interactions of individual bees, the authors show that the combination of
the population dynamics of a bumble bee colony and simple behavior of the adult bees on the
comb is sufficient to generate the social interaction structure of the colony.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 85 of 112

 1987: Reynolds work on boids [Reynolds, 1987]. The author shows how the aggregate motion
of an entire herd (of fishes or birds called ‗boids‘) can be simulated by defining a set of simple
rules over each one of them.

 1994: Lansing & Kremer work on water management (social-natural interactions) [Lansing and
Kremer, 1994]. The authors show that Balinese water-temple networks dedicated to
agricultural deities can have macroscopic effects on the topography of the landscape.

 1994: Bousquet et al. work on fisheries (social-natural interactions) [Bousquet et al., 1994]. The
authors developed an object-oriented simulation model of the fishing in Niger as one of the
first agent-based software models.

4. Agent-Based Modeling of Complex Systems

This section presents the applicability of the agent-based modeling approach to complex adaptive
systems, and then discusses the suitability of the approach to agro-ecosystems as special case of
complex systems.

4.1 Applicability of Agent-Based Models to Complex Adaptive Systems

Besides from the similarities between complex adaptive systems and the agent-based modeling
approach that could already be noticed, this section further justifies the use of the latter to represent
the former and gives a list of advantages of the ABM approach (including some comparisons with
conventional approaches) for modeling complex adaptive systems.

The following four points help clarifying why the ABM approach is suitable for representing CAS:

 Regarding Emergence: ABMs allow to define the low-level behavior of each individual agent
in order to let them interact (over time and space) to see whether some emergent property
arises or not, and if it does, under which circumstances.

 Regarding Self-Organization: ABMs do not have any kind of central intelligence that governs
all agents. On the contrary, the sole interaction among agents along with their feedbacks is
what ultimately ‗controls‘ the system. This lack of a centralized control is what enables (and
enforces) its self-organization.

 Coupled Human-Natural Systems: ABMs allow considering together both, social
organizations with their human decision-making and communications with biophysical
processes and natural resources. This conjunction of subsystems enables ABMs to explore the
interrelations between them, allowing analyzing the consequences of one over the other.

 Spatially Explicit: the feature of ABMs of being able to spatially represent an agent or a
resource is of particular interest when communications and interactions among neighbors is a
key issue. This can either imply some kind of internal representation of space or even the use
of a Geographical Information System (GIS) with real data. This feature is of special interest in
the case of agro-ecosystems.

Furthermore, [Miller and Page, 2007] introduce several benefits of a computational model such as
ABMs over other more conventional approaches (such as mathematical or textual representations):

 Flexibility vs. precision: flexibility occurs when the model can capture a wide class of
behaviors; while precision requires the elements of the model to be exactly defined. While long
textual descriptions of elements and phenomena appear as a very flexible tool, natural
language lacks precision. On the other hand, mathematical tools allow for precise descriptions
(including formal problem-solving methods) with the cost of less flexibility. Computational
models (such as ABM) present an interesting trade-off between flexibility and precision. These
models allow flexibility while at the same time requiring precision in order to be able to
implement it in the model (i.e. code it in a programming language);

 Process oriented: for a computational model to run, every aspect of how agents are allowed to
interact must be well defined, and are the very basics of model behavior. Such details are often
ignored in other approaches (like mathematical or economical models), and even when they
could be incorporated, the inherent difficulties to do so often lead to gross simplifications or to
rely on parameters to represent them;

 Adaptive agents: an important issue in social systems is how bounds on the ability of agents to
rationally process information impact the behavior of that agent and of the whole system, and
how does agent learning influences both. The flexibility of computational tools makes them

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 86 of 112

well suited for considering models of boundedly rational agents who adapt their behavior.
Moreover, computational models of learning have been already developed in the field of
computer science. Early works on this area focused on high-level cognitive (symbolic) systems,
and while with initial success, real problems proved much more difficult than initially thought.
Lower-level adaptive learning (like the already mentioned genetic algorithms) appears as an
alternative to high-level cognitive systems.

 System’s dynamics: agent-based models are inherently dynamic in the sense that the processes
they model need not be in equilibrium. This allows studying systems in which equilibrium
may or may not be reached. When transition paths between equilibrium states are short and
conditions are stable, static models may accurately represent reality. In many systems though,
this is not the case. Even when the conditions are right for equilibrium analysis, understanding
the dynamics of the system may still be important. In situations where equilibria are a
possibility, understanding the dynamics is likely to be insightful; in situations where equilibria
are nonexistent or transition paths are long, understanding the dynamics is crucial.

 Heterogeneous agents and asymmetry: one of the key issues of ABM is that they allow for
incorporating heterogeneous agents rather than having homogeneous agent behavior
averaging out the differences. Whether a model should include heterogeneous behavior or not
is an important issue and having an approach that allows for experimenting both scenarios is
crucial. The amount of symmetry that the system presents and how much of that is actually
modeled is also important. Symmetry assumptions usually simplify calculations, even though
asymmetry may be an influential feature of the system.

 Scalability: the ability to solve a model analytically is often tied to the number of agents that
are used. Thus, traditional methods typically focus on models composed of either very few or
very many agents (e.g. competition models in economics or planetary motion models in
physics). Once the behavior of a single agent is described, agent-based models can be easily
scale up exploring the behavior of a system of arbitrary size by simply adding more agent
instances. This scalability may be very important in many cases where just by adding one
agent affects the whole system behavior (like in the case of monopolies or duopolies or in
systems that present a tipping point31). Scaling also allows seeing emergent behavior that could
not rise if the number of agents is not enough.

 Other advantages of agent-based computational models:

o Repeatable: experiments can be repeated over and over again, and the same results can
be obtained while maintaining the initial conditions. This enables extraordinarily
precise manipulations in the virtual world that would be impossible in the real world.

o Constructive: ABMs give a complete constructive and generative view of a
phenomenon, from its origins to its manifestation. This ability to generate from the
bottom up often can provide new insights and understanding.

o Low cost: while developing the initial computational model can be costly, these models
tend to be very cost effective, since the marginal cost of running and modifying is
usually very low, allowing several runs to accommodate any statistical necessity.

The following Section presents how some special features of agro-ecosystems can be modeled
using an ABM approach, which in conjunction with these previous advantages, make them the
suitable tool for exploring such systems.

4.2 Modeling & Simulation of Agro-Ecosystems using an ABM Approach

Section 2.2 presented agro-ecosystems as a case of complex adaptive systems, while Section 4.1
showed the suitability of the ABM approach to model complex adaptive systems. Nevertheless, this
section provides some views on the topic by different authors working on ABM approach to agro-
ecosystems and presents some specific features of agro-ecosystems that can also be tackled with it.

According to [Ferber, 1999, pp 36]:

31 A system is said to have a tipping point if by adding just one more element (e.g. an agent instance) the behavior
of the entire system changes dramatically.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 87 of 112

“Multi-agent systems bring a radically new solution to the very concept of modeling and
simulation in environmental sciences, by offering the possibility of directly representing
individuals, their behavior and their interactions […] it is thus possible to represent a
phenomenon as the fruit of the interactions of an assembly of agents with their own operational
autonomy.”

The environmental sciences had, according to [Bousquet and Le Page, 2004], for ten years the
challenge to develop a new approach focusing more on the interactions between ecological and social
components and taking into account the heterogeneity of these, where ecology, for which the
environment is a fundamental notion, plays a key role in specifying concepts and developing
appropriate tools.

The relations and heterogeneity in the social part of the MAS depend on the agent‘s social
neighborhood, whereas the variability from the physical and ecological point of view can be achieved
by considering spatial heterogeneity of the environment in the MAS. The neighborhood and the
environment can be represented in different ways. For example, a tightly coupled representation is
supported by cellular automata, and a rather loose coupling can be reached by implementing the
social neighborhood as a network and the environment in a Geographical Information System (GIS).

A cellular automata model works with a grid of neighboring cells. Each cell represents a spatial
unit and an individual or agent. Within the grid, the neighborhood is fixed (e.g. 4 or 8 neighboring
cells if a square-shape cell grid is used), and more advanced models allow the use of non-local
neighbors. Each cell can be at one of several states, and future states depend on transition rules based
on a local spatiotemporal neighborhood [Parker et al., 2003]. Time advances in discrete steps. Cellular
automaton are also very suited for using GIS since actual images or representations of real landscapes
can be mapped to each cell, enabling more realistic analysis of the grid.

To address more complex neighborhoods and environments to simulate socio-ecological dynamics
in agro-ecosystems and human decision making therein, more loosely coupled social and
environmental representation in ABM are needed. The link between the two subsystems can be
achieved by assigning a number of elements in the GIS (e.g. fields) to the responsibility of selected
agents (e.g. farmers) as their sphere of influence. These kinds of joint work have led to many new
applications of MAS for simulating land use and land cover changes, also known as MAS/LUCC
[Parker et al., 2003].

The addition of spatially explicit features is especially important in agro-ecosystems where spatial
heterogeneity can be relevant, for example by means of different land-uses, soil qualities, natural
resources, etc. on each land-unit. Just as land-units can be organized to form higher-level spatial
elements, social networks can be formed between agents or can emerge as a consequence of agent‘s
behavior and interactions. What makes ABMs rather unique is that both of these organizational
dimensions can be considered together, allowing exploring the consequences of one over the other.

Finally, it is worth noting that even though agents, from the ABM point of view, can be any
autonomous and goal-driven entity, from the agro-ecosystems perspective agents are generally
aspects of human societies or animal populations that organize among themselves, interact with the
environment, and they are affected in their decisions by that environment [Matthews, 2006]. Figure

A.7 shows these relationships similarly as Figure A.1 (in Section 1) showed an abstract complex
system:

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 88 of 112

Figure A.7: Model of an Agro-Ecosystem using an ABM Approach

The actual implementation of an agent-based model is ultimately about developing a
computational model, that is, software. Therefore, in order to analyze, design, implement and every
other step involved in developing such systems, certain software development methodology must be
used.

5. Software Development

5.1 Object Oriented Programming (OOP)

Most software is currently being developed using the object-oriented paradigm. Born with the ideas of
the Simula programming language in 1965-67 [Birtwistle, 1973] and immediately followed by
Smalltalk language around the 70‘s [Kay, 1993] object-oriented programming (OOP from now on,
term coined by Alan Kay) becomes mainstream in the mid 1980‘s with the C++ programming
language [Stroustrup, 1994] and even more widely used thanks to Sun‘s Java in the mid 1990‘s
[Gosling, 2005] and from the beginning of 2000 with Microsoft‘s .NET Framework and the C#
programming language [Microsoft, 2008].

OOP is a technique for programming, a paradigm, while an OOP language is a programming
language that provides mechanisms that support the object-oriented style of programming
[Stroustrup, 1991]. OOP also involves such concepts as encapsulation, modularity, data-hiding,
message-passing, inheritance and polymorphism. The main idea behind this paradigm is to design
certain object structure along with its behavior that allows objects to interact (by means of messages)
to achieve some goal. The concept of object itself comprises internal data and operations that
manipulate that data in an indivisible entity.

This is represented in Figure A.8:

Figure A.8: Objects (data + functions) communicating via messages in OOP.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 89 of 112

One of the most powerful features of OOP is that it serves as a metaphor32,33 not only for
implementing (coding) programs but also to design them (including design patterns [Gamma et al,
1994]) and to model reality in terms of objects and interactions (OO-analysis, including analysis
patterns [Fowler, 1996]). All of this provides powerful abstractions that help bridging the gap between
the (real-world) problem and the (software) solution, passing through OO-analysis and OO-design
stages.

An example of such an abstraction that shows the power of this metaphor is the concept of object
itself, which can represent anything in real life that has certain state and certain behavior. Each person
has a name, age, hair color, etc. and each one of us can buy, sell, pay, etc. The state of each person will
be represented by the attributes of the Person class and the behavior by the methods of the Person
class. Another example is the possibility to define categories of concepts by using the OOP feature of
inheritance.

5.2 Software development methodologies and tools

This thesis assumes that software development methodology is the same as software development process (or
software process for short). This means to follow certain process in order to obtain a software product as
the result of it34. [Pfleeger and Atlee, 2006] define a process in the context of software development as:

―A process is a series of steps involving activities, constraints, and resources that produce an
intended output of some kind. A process prescribes all of the major process activities; […] uses
resources subject to constraints; […] produces intermediate and final products; […] may be
composed of subprocesses; […] each process activity has entry and exit criteria so that we
know when the activity begins and ends; […] activities are organized in a sequence […]; has a
set of guiding principles; […] and constraints and controls may apply to an activity, resource,
or product.‖

A tool is an instrument or automated system for accomplishing something in a better way and a
paradigm represents a particular approach or philosophy for building software [Pfleeger and Atlee,
2006].

According to [Booch, 1995] a software development process has four roles:

1) To provide guidance as to the order of a team‘s activities;

2) To specify which artifacts should be developed and when should be developed;

3) To direct the tasks of individual developers and the team as a whole; and

4) To offer criteria for monitoring and measuring the project‘s products and activities.

This thesis will focus on the first two of these objectives since it will focus on the specific activities
and products that should be done rather than on the team involved or the process measures needed.

What lays in the core of all current software development methodologies is the iterative and
incremental development of software. Traditionally software was developed using the so-called
waterfall process [Royce, 1970], consisting of sequential phases of design, implementation and testing.
In this sequential process, one phase must be ended before starting the next one (breaking the whole
project based on these phases). In contrast, iterative and incremental processes iterate several times
through a set of phases obtaining in each cycle a (partial) version of the product, each time bigger,
until the final product is achieved by the succession of several iterations (breaking the whole project
by subsets of functionality that are tackled on each iteration) [Pfleeger and Atlee, 2006; Fowler, 2003].

Figure A.9 shows a representation of an iterative and incremental process:

32 ―An easily overlooked benefit to the use of object-oriented techniques is the power of metaphor.‖ [Budd, 2001]
33 ―OOP is an interesting example of a programming methodology explicitly organized around a powerful
metaphor.‖ [Travers, 1996]
34 ―A software process is a set of activities and associated results that produce a software product.‖ [Sommerville,
2006]

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 90 of 112

Figure A.9: Iterative & Incremental Process

According to Grady Booch35 in [Kruchten, 2003] there are at least six software best practices that
should be taken into account by the software process in order to successfully develop software. These
are:

1) To develop software iteratively;

2) To manage requirements;

3) To use component-based architectures;

4) To visually model software;

5) To continuously verify software quality; and

6) To control changes to software.

These best practices are adopted in current mainstream software processes that are special cases of
the iterative and incremental approach. These are Rational Unified Process (also known as RUP)
[Kruchten, 2003] and eXtreme Programming (also known as XP, one of the most well-known agile
processes36) [Beck, 1999]. Others include Microsoft Solution Framework (also known as MSF) [Turner,
2006] and Dynamic Systems Development Method (also known as DSDM) [Coleman and Verbruggen,
1998].

Each of these vary on the product deliverables (how many deliverables and when) as well as on
administrative tasks (documentation, metrics, team work, etc.) but they all coincide in the use of
iterations, mainly through the phases of analysis, design and implementation.

In relation to the fourth best-practice suggested by Booch (visually model software) the Unified
Modeling Language (UML from now on) [Rumbaugh et al, 1998] is by far the most used graphical tool
for modeling software. The UML has become a de-facto standard not only in industry but also in
academy, created around 1995-96 by three very renowned authors in computer science (Grady Booch,
James Rumbaugh and Ivar Jacobson) and is under the responsibility of the Object Management Group
[OMG, 2008].

UML allows the visualization, specification, documentation and discussion of the artifacts that
compose a software system. It is itself a specification composed of 13 different types of diagrams (in its
2.0 version) that provide graphical notation for modeling several aspects of a software system. All of
these types of diagrams can be classified in structural diagrams and behavioral diagrams. The former
are used to model structural elements and relationships of several software aspects while the latter are
used to model dynamic behavior of elements (where time and sequencing are relevant).

Also, UML helps in the second best practice (manage requirements) by providing especial artifacts
known as Use Cases along with related diagrams, and for the third best practice (use component-
based architectures) by providing several diagrams for designing, documenting and discussing the
system‘s architecture, each giving a different and complementary view.

35 Booch proposed one of the earliest iterative processes in [Booch, 1983].
36 According to Martin Fowler [Fowler, 2003] one of the authors of the agile manifesto: http://agilemanifesto.org

http://agilemanifesto.org/

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 91 of 112

Even though UML is a very useful conceptual tool, it was not intended for implementation
(although research is being conducted to allow UML diagrams to actually be executed37). Therefore
when facing the implementation of a software design, other tools must be used, such as Integrated
Development Environments (IDE).

6. Comparison Between Agent-Oriented and Object-Oriented Paradigms

In 1989 Yoav Shoham coined the term agent-oriented programming [Shoham, 2010] and defined it as a
new programming paradigm based on a societal view of computation. This societal view implies
(according to Shoham) ascribing mental qualities to agents such as beliefs, capabilities, choices and
commitments (in the same way than BDI architectures propose to conceive agents in terms of beliefs,
desires and intentions).

The idea behind these mental qualities or properties shared among several artificial intelligence
and MAS-related authors [Shoham, 2010; McCarthy et al, 1955] include the use of mental constructs to
design computational systems. This is the main difference between AOP and OOP: while OOP uses
abstractions based on objects which are generic entities that comprise identity (a property inherent to
all objects that allows to differentiate them), state (attributes by which the object can be characterized)
and behavior (operations that the object can be asked to do by means of messages), AOP considers
abstractions based on human societies and mental properties.

Even though the approach of using mental and societal abstractions gives powerful metaphors,
there exists the risk of overusing them: everything can be considered to have mental or societal
properties.

It is then straightforward that it is absolutely necessary to consider the AOP approach only ‗when
useful‘, which generally implies that the ascriptions help in understanding, analyzing, designing or
implementing the problem at hand (thinking of light switches as agents just makes things more
complex than adopting a more mechanistic approach). Therefore it will be more useful to ascribe
mental qualities when applied to entities whose structure or functioning is not as well-known as the
examples given.

Another important difference between both approaches is the autonomy that agents have. While in
OOP objects just reply to messages sent from other objects in a predefined way, in AOP agents are
supposed to be proactive and initiate actions over themselves or over other agents.

But AOP is not just OOP + proactivity. AOP can be viewed as a specialization of OOP. Whereas
OOP proposes viewing a computational system as made up of modules (objects) that are able to
communicate with one another and that have individual ways of handling incoming messages, AOP
specializes it by fixing the sate (now called mental state) of the objects (now called agents) to consist of
precisely defined components called beliefs (including beliefs about the environment, about
themselves and about others), capabilities, choices and other similar notions. A computation consists
of these agent‘s informing, requesting, offering, accepting, rejecting, competing and assisting one
another. Regarding the fundamental concepts of each paradigm, objects in OOP can be compared to
instance agents in AOP, and correspondingly, classes can be compared to agent types.

Furthermore, roles in AOP can be compared to interfaces in OOP since they specify the (partial)
behavior of an agent type in one case and of an object in the other. A single class can present as many
behaviors as interfaces it implements, the same way a single agent type can present as many behaviors
as roles it plays.

It is also noteworthy that in OOP in order to define the entire behavior of a class it is not enough to
only define its interfaces. First, because classes may have additional behavior that was not specified by
any interface. Second, because it may be some relationship between the interfaces a class implements
and the behavior that that class presents.

Translated this to AOP, if an agent type plays two roles at the same time, it may not be enough just
defining those roles, since the agent type may behave differently when playing these two roles
together, and this difference in behavior must not be described in either role since it is not specific to
them, but of the agent type, so it must be defined within the agent type itself.

The following table summarizes these differences:

37 This is known as Model Driven Architecture (MDA) [Mellor et al, 2002].

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 92 of 112

 OOP AOP

Basic unit Object (instance of a Class) Agent instance of an Agent Type

Constraints defining the
state of the basic unit

None Mental properties (beliefs, desires,
etc.)

Autonomy Not necessarily present May be present

Types of messages
(interaction)

Unconstrained Speech acts (inform, request, etc.)

Concept of role Not necessarily present
(comparable to using interfaces)

May be present

Table A.1: Comparison between OOP and AOP paradigms.

This short list of differences illustrates that even though OOP and AOP have important similarities,
these arise because AOP can be seen as a specialization of OOP, a new paradigm thought as
constraining the extremely general-purpose of the OOP paradigm and aligning those constraints to
mental and societal properties.

The value (and innovation) of AOP is in providing useful abstractions for understanding and
developing systems in terms of agents and societies of agents. In words of [Jennings, 2001]:

―When designing software, the most powerful abstractions are those that minimize the
semantic gap between the units of analysis that are intuitively used to conceptualize the problem,
and the constructs present in the solution paradigm.”

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 93 of 112

Appendix B: Comparison between AOSE and
OOSE Methodologies

The aim of this section is not to present an exhaustive comparison between the 16 general steps of
AOSE methodologies and the steps and activities found in mainstream object-oriented methodologies,
but to summarize the main differences and common points between them. Such a comparison can
help in understanding the main ideas behind AOSE methodologies by contrasting them with much
well-known OOSE methodologies.

The comparison will be based on general steps aiming at showing each methodology‘s
suggestions about what to do rather than when to do it. In other words, the focus will be in comparing
which steps are suggested in each methodology, in which order and which is the expected result.
Concepts more specific to the life-cycle of each methodology (like for example iterations) and that help
defining when the steps will occur will be left aside, not because they are not important but because
the AOSE methodologies do not explicitly address them (maybe because they are not yet mature
enough) and comparing their steps is considered to be of utmost importance. How to develop each
step (for example what artifacts to deliver or what language to use) will be compared when possible.

Analogous to the 16 AOSE general steps, Table B.1 presents such general steps but for
mainstream Iterative & Incremental Methodologies38. For the sake of the comparison between both
methodologies (AOSE and OOSE) the following table assumes that the system will be developed
following some kind of component-based architecture. This allows to explicitly include in the table
those steps especially suited for component development in the OOSE methodology, since they can be
closely related to the concept of agent class in the AOSE methodology, allowing for a more precise
(and real) comparison between them. This doesn‘t bias or restricts the OOSE methodology in any way
since many mainstream of them explicitly call for using such architectures.

38 Steps involved in Business Modeling are left out in order to concentrate on developing software and not on
understating the business or organization in which the software will perform.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 94 of 112

 OOSE Step Description

System
requirements
and analysis

steps

1. Identify overall
system requirements

Involves eliciting both, functional and non-functional
requirements (quality attributes) as well as identifying actors.

2. Domain model
conceptualization

Traditional conceptual diagrams the same as described for AOSE
(typically using UML Class Diagrams as notation).

3. Specify overall
expected system
behavior

Involves functional requirements analysis, typically with
techniques such as Use Cases. Even though the behavior of the
entire system should be specified, each component can be
associated to a subset of these in order to maintain traceability and
to better organize each component‘s development.

System
architecture

steps

4. Specify system
architecture

Specify the system‘s overall architecture using components
(component-based) like for example client/server, layered, etc.

5. Identify component
interfaces

Identify (at least in a broad sense) the interfaces that will be
provided and consumed by each component. If possible, specify
the behavior of each of these interfaces (operations).

6. Specify component
internal architecture

Specify each component‘s internal architecture, which will be
encapsulated (and hidden) within that component.

System

design steps

7. Specify component‘s
object interactions

Specify, only for those requirements that should be fulfilled by
each component, how the component‘s elements (classes,
interfaces, objects, datatypes) will interact.

8. Specify component‘s
class structure

Based upon the previous step, specify the entire class structure for
each component. This structure should populate the already
defined component architecture (Step 6).

Implementation 9. Implement
components

Implement (in an OO programming language) the detailed design
made for each component in Steps 7 and 8.

Deployment 10. Specify component‘s
deploy

Specify how many instances of each component will be deployed
and over which node (processing and data-storage unit). This
should be related (or it could be even already defined) to the
overall system architecture (depending on how exhaustive the
latter was).

Table B.1: Most common OOSE steps.

On the other hand, the 16 general AOSE steps can be found in Table 3 of Chapter 3.

Not surprisingly, AOSE methodology focuses of identifying agent classes (Step 3), specifying their
interactions with other agent classes (Steps 5 to 7), their architecture (Step 8) and their interfaces (Step
10). This great deal of attention to agent classes‘ analysis and design derives from the crucial concept
of agent autonomy, and even of agent mental attitudes (Step 9).

On the other hand, OOSE methodology focuses on the system as a whole, and classes (and their
interactions) are only means to achieve the desired system-level functionality (in words of OOP, object
collaborate with each other in order to achieve system requirements). Here, classes are designed
altogether and organized with these system requirements in mind; while in AOSE each agent class has
its own goals, which may or not mean collaboration, so their design must be much more independent
from one another than in the OOSE case.

Actually, under the OOSE methodology, agent classes could be more appropriately compared with
stand-alone components, since OOSE applies in such architectures the concepts seen in AOSE:
interactions between components, individual component architecture, individual component internal
design, component interfaces, communications between components, etc.

Nevertheless these differences, as Figure 7 of Chapter 3 showed, nearly all AOSE methodologies
directly or indirectly derive and use the Object-Oriented paradigm, therefore huge differences should
not be expected.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 95 of 112

Appendix C: Case Study Glossary
This appendix presents basic definitions for several of the agronomical concepts used in Chapter 6 of
this thesis.

Activity
(or Production Activity)

Is any activity or management practice that a farmer/producer can
perform, exploiting in some way its farm in order to obtain some benefit.
Some production activities present in North Uruguay are cattle, soybean,
or forestry.

Basalt A volcanic rock. Basalt-soils are named because underneath the soil,
basalt rock is present, sometimes having only few centimeters of soil
above the basalt rock.

Born Calf A newly born calf that has to spend some time lactating with its mother.

Breeder
(or Cattle Breeder)

A farmer whose main production activity is livestock and specializes in

Calf The young of domestic cattle.

Cattle See Livestock.

Cohort A group of people (in this case animals) who share a characteristic,
usually age.

Condition Score (CS) Also known as Body Condition Score: is a system for evaluating an
animal level of body condition (amount of stored fat) and assessing a
numeric score to facilitate comparison. In the context of this thesis, a cow
with a CS of 2 would be dead or near death, while a CS of 3 would be
minimal, and anything above will be considered better.

Ear Tag A plastic or metal object used for identification of domestic livestock and
other animals.

Empty Cow A cow that is not pregnant.

Fertility Rate In the context of this thesis, it represents the probability of a cow to
effectively deliver after being mated. A percentage scale was used.

Flock A herd of sheep.

Graze (or Grazing) To put an animal to feed from natural grass. In the context of this thesis,
this implies renting to other farmers their plots.

Heifer A young cow before she has her first calf.

Herd A group of animals.

Livestock Also known as Cattle: domesticated animals raised in an agricultural
setting to produce commodities such as food or leather.

Mating The pairing of opposite-sex animals for copulation.

Plot In the context of this thesis: the land plot that each farmer owns or rents
for grazing.

Proactive Producer In the context of this thesis: a producer more concerned with keeping
reasonable condition scores in animals. This producer looks mainly at the
grass availability, therefore anticipating the future animal‘s condition
score.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 96 of 112

Reactive Producer

In the context of this thesis: a producer more concerned with keeping
animals. This producer looks mainly at the animals and makes more
radical decisions when they start to die.

Steer A young bull.

Stocking Rate A number that represents how many animal units a producer has. The
bigger the stocking rate, the more animals the producer has. Each kind of
animal (sheep and cattle) has different animal units: an adult cow
represents 1.0 units in the stocking rate while one sheep 0.2 units. Each
producer adjusts his stocking rate at different levels and at different
seasons (e.g.: proactive producers adjust to 0.7 at winter while reactive to
1.2 in that same season).

Supplement A nutrient supplement given to cattle, generally made from grain, grass
and fiber. Since it has certain cost associated, producers only invest on
supplement when they feel it is absolutely necessary.

Wean Take the newly born calf away from his mother. It can be done naturally
(after approximately 9 months) or artificially by the producer. In the
latter, the producer must give supplement to the born calf in order to
substitute his mother.

Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral

Page 97 of 112

Appendix D: ICAART 2011 Paper

TOWARDS AN AGENT-BASED METHODOLOGY

FOR DEVELOPING AGRO-ECOSYSTEM

SOFTWARE SIMULATIONS

Jorge Corral and Daniel Calegari
Instituto de Computación, Universidad de la República, J.Herrera y Reissig 565, Montevideo, Uruguay

corral@fing.edu.uy, dcalegar@ fing.edu.uy

Keywords: Multi-Agent Systems, Agro-Ecosystem, Software Development, Simulation.

Abstract: The agent-based modeling (ABM) approach allows modeling complex systems, involving different kinds of

interacting autonomous agents with heterogeneous behavior. Agro-ecosystems (ecological systems subject

to human interaction) are a kind of complex system whose simulation is of interest to several disciplines

(e.g. agronomy, ecology or sociology). In this context, the ABM approach appears as a suitable tool for

modeling agro-ecosystems, along with a corresponding agent-oriented software engineering (AOSE)

methodology for the construction of the simulation. Nevertheless, existing AOSE methodologies are

general-purpose, have not yet accomplished widespread use, and clear examples of applications to agro-

ecosystems are hard to find. This article sets the ground for a new software development methodology for

developing agro-ecosystem simulations based on the ABM approach as well as on these already existing

AOSE methodologies, but tailored to tackle specific agro-ecosystem features.

1 INTRODUCTION

Many of the current challenges and opportunities

(e.g. globalization, sustainability, terrorism,

epidemics or climate change) can be seen as

complex systems (Miller and Page, 2007).

Understanding the components, behavior and

interactions in these systems is the first step to

whatever analysis is needed about them. Models, as

simplifications of certain reality or problem, are a

fundamental tool to this aim. Moreover, the

possibility of direct experimentation over these

systems is rare if not impossible, so the need for

simulation becomes imperative. Even though not at

global scale, agro-ecosystems are complex systems,

were modeling and simulation allow for

understanding system dynamics as well as to explore

future scenarios.

Several approaches or methodologies can be

used for modeling an agro-ecosystem. In particular,

the agent-based modeling (ABM) approach appears

as a suitable tool for its aim (Miller and Page, 2007).

In the other hand, simulating generally means

developing a software system, representing the

agent-based model. This requires the use of some

agent-oriented software engineering (AOSE)

methodology.

Several AOSE methodologies are currently

available for guiding a programmer in order to

develop software following the ABM approach

(Henderson-Sellers and Giorgini, 2005). However,

they are general-purpose methodologies, so the

programmer is faced with a trade-off between using

an already existing one and not leveraging the

specificities of agro-ecosystems, or to follow an ad-

hoc methodology that pays detail to those features.

Up to our knowledge there are no specific AOSE

methodologies for this purpose. Nevertheless, there

are some related work (Le Page and Bommel, 2005)

that address the simulation of agro-ecosystems using

an ABM approach without a methodological

framework.

In this work we propose an AOSE

methodological framework for modeling and

simulating agro-ecosystems that is based upon other

general-purpose AOSE methodologies, relies on a

standard graphical modeling language (UML),

covers the most common agro-ecosystem features,

and is intended for easy uptake from programmers

only knowing object-oriented programming. The

methodological framework is not a methodology

Page 99 of 112

itself. It focuses on identifying relatively general

steps and artifacts (produced by the steps) that could

be ensemble for developing such a simulation, whilst

other methodological aspects, as defining a strict

order among steps and identifying roles for that

steps, are not yet considered.

The rest of the paper is structured as follows.

Section 2 briefly presents the background of our

work. Section 3 resumes existing AOSE

methodologies, while Section 4 describes how these

methodologies are considered in a methodological

framework for the development of agro-ecosystem

simulations. Section 5 describes how agro-

ecosystem features are supported in the proposed

methodological framework, and Section 6 presents a

case study which stands as a proof of concepts.

Finally, the conclusions and an outline for further

work are described in Section 7.

2 Background
This section first introduces complex systems and

presents agro-ecosystems as a special case of these.

The ABM approach is then described and applied to

represent an agro-ecosystem.

2.1 Complex Systems

Complex systems are composed of a large number of

interacting elements, and two properties set a

complex system apart from one that is merely

complicated: emergence and self-organization.

Emergence is the appearance of behavior that could

not be anticipated from the knowledge of the parts of

the system alone. Self-organization means that there

is no external controller or planner engineering the

appearance of the emergent features; they appear

spontaneously (CSIRO, 2008).

A key feature of real systems that has proved to

be essential in the appearance of rich emergent

features is local interaction. In other words, elements

of a system only interact with their neighbors

(CSIRO, 2008). Well-known and simple rules in the

micro-level can make the emergence of system-level

phenomena.

Emergent properties and complexity usually

arise when the relations among the elements of the

system are not linear. This means that the behavior

of a single element is not the result of a linear

combination of the individual behaviors of related

elements, leading to a non-linearity. Another source

of complexity appears when there are time and scale

differences between cause and effect. That is, if an

action in certain level of organization or hierarchy at

a certain time ends up having its effect over a long

period of time and over different levels of

organization or hierarchies (different scales), then

the understanding of the causeeffect relationship

vanishes.

Complex Adaptive Systems are defined as

systems that are capable to adapt and self-organize

in response to perturbations or distortions in the

environment or by the result of certain interrelations

between the elements. System adaptation is

ultimately concerned with the adaptation of each

individual element of the system, since there is no

centralized control and therefore no single element

that represents the entire system. This also relates to

the concept of co-evolution of the different elements

or parts of the system, which by means of their

interrelations evolve their behavior over time,

adapting themselves to new situations (Rammel,

Stagl and Wilfing, 2007).

2.2 Agro-Ecosystems as a Case of
Complex Systems

An agro-ecosystem is the human manipulation and

alteration of ecosystems for the purpose of

establishing agricultural production (Gliessman,

1997). Agro-ecosystems results from the interplay

between endogenous biological and environmental

features of the agricultural fields and exogenous

social and economic factors, and is delimited by

arbitrarily chosen boundaries.

Agricultural strategies respond not only to

environmental, biotic, and cultivar constraints, but

also reflect human subsistence strategies and

economic conditions (Ellen, 1982). This stresses the

importance of social factors like labor availability,

access and conditions of credit, subsidies, perceived

risk, price information, association obligations,

family size, and access to other forms of livelihood

are often critical to understanding the logic of a

farming system (Hecht, 1987).

Any system uses its processes and resources to

convert inputs into outputs. Concerning the

resources commonly found in agro-ecosystems,

Norman (1979) suggests the following classification:

1) Natural resources: the given elements of land,

water, climate and natural vegetation that are

exploited by the farmer; 2) Human resources: the

people who live and work within the farm and use its

resources for agricultural production; 3) Capital

resources: the goods and services created,

purchased, or borrowed by the people associated

with the farm to facilitate their exploitation of

natural resources for agricultural production; and 4)

Production resources: the agricultural output of the

farm such as crops and livestock.

Any ecosystem by itself can already be

considered as a case of complex adaptive system,

considering its various components, organization

levels, micro and macro interactions and their

feedbacks, and even more if including a social

subsystem (with heterogeneous behaviors) as in the

case of agro-ecosystems. The interactions between

Page 100 of 112

the social and natural subsystems inside an agro-

ecosystem, such as farmers‘ practices affecting

natural resources, are examples of local interactions

at a small scale which may produce negative or

positive feedbacks affecting in turn the decision-

making of social actors. Repeating these interactions

on a daily basis can produce emergent properties and

new organizations across the agro-ecosystem in the

long-term.

According to Dawn, Hessl and Davis (2008) the

sources of complexity in coupled human-natural

systems (as is the case of agro-ecosystems) arises

mainly from temporal, spatial and scale mismatches

between actions and their impacts which occur

because of the indirect and imperfect nature of these

interactions between human actions and their impact

on the environment. The sources of adaptation come

from the capacity of humans to adapt their behavior

by learning from their experience, and from the

capacity of this environment to adapt to new

conditions and constraints. According to Perez and

Batten (2006) these kinds of coupled systems,

involving people, other living entities, an

environment, information exchange and the co-

evolution of all of these things over time, are

inherently complex and adaptive due to the ability of

human beings to switch from rational to deductive

reasoning.

2.3 Agent-Based Modeling

There is no consensus on the definition of agents. A

well-known definition that supports the computer

science focus presented in this article is proposed by

Wooldridge (2008): ―An agent is a computer system

that is capable of independent action on behalf of its

user or owner, figuring out what needs to be done to

satisfy design objectives, rather than constantly

being told [what to do]‖. In this definition, the word

‗independent‘ refers to agent autonomy, capable of

acting independently and exhibiting control over its

internal state. Thus an agent is a computer system

capable of autonomous action in some environment

in order to meet its design objectives (Wooldrige,

2002 and 2008).

In order to let agents react (or take the initiative)

according to changes in the environment, agents

must perceive their environment and have some way

to act upon it, after reasoning what to do. This leads

agent to a Perceive/Reason/Act cycle, shown in

Figure 1.

Figure 1: General representation of an agent with its

environment.

The agency theory can be extended to let agents

interact within a so-called multi-agent system

(MAS). According to Wooldridge (2002) ―A Multi-

Agent System consists of a number of agents which

interact with one-another. […] To successfully

interact, they will require the ability to cooperate,

coordinate, and negotiate with each other.‖ In MAS

there is no central control and all information and

control is distributed among the various agents.

Figure 2 presents an illustration of a MAS based on

(Wooldridge, 2002) and (Ferber, 1999).

Figure 2: A Multi-Agent System.

As previously discussed, agents are able to

perceive part (or all) of the environment and are also

able to act upon part (or all) of it depending on the

type of environment. This can be represented by

spheres of influence that determine the portion of the

environment that one agent is able to interact with.

Interactions between agents allow agents to

cooperate, coordinate and negotiate as needed.

Finally, interacting agents can also be organized to

form higher-level organizational units.

A concept that enables further elaboration on

the agency theory in a multi-agent environment is

the one of a role. A role is the functional or social

part which an agent, embedded in a multi-agent

environment, plays in a process like problem

solving, planning or learning (Lind, 2008).

Roles are a useful abstraction considering the

widely accepted meaning of the term in real world

that can be used to help describe and understand the

system by describing the consistency of an agent‘s

behavior within that system (as well as within the

organization to which the agent belongs).

Page 101 of 112

In summary, the ABM approach enables the

simulation of heterogeneous populations of

interacting agents, which can also contain non-agent

passive objects (commonly referred to as resources).

The agents can exhibit a set of different behaviors,

and the mechanism of selection can range from

simple procedural logic to highly sophisticated

reasoning. The repertoire of behaviors can be fixed

or extendible, and the latter implies that the agents

should be able of learning. The intelligence of the

agent depends on its abilities to reason and to learn.

The adaptive behavioral patterns enable self-

organization of the population and can result in

emergent phenomena. Consequently, the ABM

approach is suitable to address complex adaptive

systems.

2.4 Agent-Based Modelling of Agro-
Ecosystems

Since the ABM approach can be used to model

complex adaptive systems, and since agro-

ecosystems are a special case of these, it naturally

follows that the ABM approach is suitable for

modeling agro-ecosystems. There are also numerous

arguments that support this, like those presented in

(Miller and Page, 2007), but nevertheless it is worth

analyzing how the ABM approach specifically

addresses the following issues, which characterize

an agro-ecosystem: 1) Emergence: ABMs allow to

define the low-level behavior of each individual

agent in order to let them interact to see whether

some emergent property arises or not, and if it does,

under which circumstances; 2) Self-Organization:

ABMs do not have any kind of central intelligence

that governs all agents. On the contrary, the sole

interaction among agents along with their feedbacks

is what ultimately ‗controls‘ the system; 3) Human-

Natural Systems: ABMs allow to consider together

both, social organizations with their human decision-

making and social communications and biophysical

processes and natural resources. This conjunction of

subsystems enables ABMs to explore the

interrelations between them, allowing to analyze the

consequences of one over the other; and 4) Spatially

Explicit: the feature of ABMs of being able to

spatially represent an agent or a resource is of

particular interest when communications and

interactions among neighbors is a key issue. This

feature is of special interest in the case of agro-

ecosystems.

Resources are not generally defined as a separate

aspect of an ABM. However, there are particularly

useful in the context of agro-ecosystems, where they

are generally thought of as passive objects that are,

for example, produced by the environment and

consumed by agents within certain process (like crop

production), in contrast to agents which are

(pro)active objects with decision-making capacities

that allows them to affect those resources

The actual implementation of an agent-based model

is ultimately about developing a computational

model, that is, software. Therefore, in order to

analyze, design, implement and every other step

involved in developing such systems, certain

software development methodology must be used.

Since these coupled human-natural systems cannot

be manipulated and tested as other systems, due to

scale and resource difficulties, the possibility of

simulating them is crucial. The objective of

simulating this kind of systems is to prospect

scenarios were the interest is not in the ‗fortune-

teller‘ features of the simulation but on discovering

possible outcomes under certain conditions,

exploring the consequences of manipulating certain

system. Another objective can be to deepen the

understanding (and also possibly learning/teaching)

of a coupled human-natural system, since the more

micro/macro level study of each part as well as their

interactions require an in-depth understanding of

them in order to obtain a simulation that is close to

reality.

In the next sections we address the problem of

developing an agent-based methodology for the

simulation of agro-ecosystems.

3 Existing AOSE
Methodologies

Even though there are several methodologies for

developing agent-oriented software systems, this

article is based on those ten presented in Henderson-

Sellers and Giorgini (2005) since they are arguably

the most referenced and cited elsewhere. These are:

GAIA, Tropos, MAS-Common CADS, Prometheus,

Passi, Adelfe, Mase, Rap, Message, and Ingenias.

From these ten AOSE methodologies, Tran and Low

(2008) summarize 16 general steps, which are shown

in Table 1.

At this point, it is reasonable to think that any

new AOSE methodology will be strongly related

with these 16 general AOSE steps. Nevertheless,

notice that these steps are not tailored for simulating

an agent-based model, neither for developing agro-

ecosystem simulations. Up to our knowledge there

are no methodologies for these purposes. These will

be indeed the drivers of the methodological

framework which is proposed in the next section.

Page 102 of 112

Table 1: General AOSE steps taken from ten AOSE methodologies.

 AOSE Step Description

P
ro

b
le

m
 d

o
m

ai
n

 a
n

al
y

si
s

st
ep

s

17. Identify system

functionality

Determine what the system should do in terms of functionalities (the same as

traditional requirements engineering techniques).

18. Identify roles Identify the roles that should later be played by the different agents. This step may

include analyzing the organizational context in which the MAS will be deployed since

roles commonly (and naturally) appear in real organizational contexts.

19. Identify agent classes Identify which types of agents are needed. This can be related to roles in the sense that

a certain agent class can be created to cope with certain role.

20. Model domain

conceptualization

Identify the domain‘s main concepts and relationships.

A
g

en
t

in
te

ra
ct

io
n

d
es

ig
n

 s
te

p
s

21. Specify acquaintances

between agent classes

Determine basic relationships between agent classes (such as who knows who, possible

hierarchies, etc.)

22. Define interaction

protocols

Define how agents can interact by defining communication protocols between them.

23. Define content of

exchanged messages

Define what the messages between agents will contain. These 3 steps (which comprise

the ―Agent Interaction Design‖) are strongly related and can be considered altogether.

A
g

en
t

in
te

rn
al

 d
es

ig
n

st
ep

s

24. Specify agent

architecture

Determine the specific (internal) architecture for each agent class. The specific

architecture to choose will depend on the characteristics that the different agent classes

should present (e.g. if they must conceptualize beliefs, goals and plans, or if they will

be just reactive).

25. Define agent mental

attitudes

If the agent is to present mental attitudes like goals, beliefs, plans or commitments,

define these for each agent class. This step includes trying to identify how these

attitudes will be design internally for the agents‘ classes that need them.

26. Define agent

behavioural interface

Determine the capabilities, services, contracts and any other interface that the agent

must provide. This will depend on the agent architecture.

O
v

er
al

l
sy

st
em

 d
es

ig
n
 s

te
p

s

27. Specify system

architecture

Overview of all components and their connections (in a higher level than Agent

Architecture). This step also includes resources and environment (if they are of interest)

and their relation to the agent classes.

28. Specify organizational

structure/inter-agent

social relationships

If the system can be analyzed in terms of organizational concepts, then specify the

organizational structure and the inter-agent social relationships. This step can be related

to Step 2 (Identify Roles) since roles are generally crucial in any organizational

structure, as well as hierarchies between them.

29. Model MAS

environment

If the environment is relevant, then identify its resources, facilities and characteristics.

Although part of this step can be done in Step 12 (mainly those structural

environmental aspects) others (mainly those functional aspects) may not.

30. Specify agent-

environment

interaction mechanism

Closely related to the previous two step, involves detailing how the different agent

classes are to be related to their environment (analogous to interaction protocols but

instead of agent-agent interactions agent-environment interactions).

31. Instantiate agents Determines how many agent instances will be needed for each agent class.

32. Specify agent

instances deployment

Determine where the agent instances are to be (physically) deployed. This includes

specifying agent platforms, nodes (with processing power), connections, etc.

Page 103 of 112

4 Methodological
Framework

The purpose of our work is to propose an AOSE

methodological framework for modelling and

simulating agro-ecosystems. We want this

methodological framework to be based on the

general AOSE steps introduced in the previous

section in order to strengthen the proposal.

We also want to rely on a standard graphical

modelling language in order to support the

development process by facilitating the interchange

between domain experts and simulation developers.

In this article we use plain UML 2.0 (OMG, 2005).

However, the methodology will be best supported by

a more specific language for representing software

systems based on software agent concepts, e.g. AML

(Cervenka and Trencansky, 2007) and those

diagrams promoted by the Foundation for Intelligent

Physical Agents [FIPA, 2010]. Since these

languages are not tailored for agro-ecosystems

simulations, it must also be adapted to our

methodological framework (in future work).

Finally, we will assume that the simulation will be

finally developed within an existing simulation

framework software package, e.g. CORMAS

(CORMAS, 2010). However, we will not make any

assumption about what simulation paradigm it uses,

i.e. continuous, time-step or discrete-events. This

will be indeed later matter of discussion.

We present next the methodological framework, by

identifying relatively general steps and artifacts

(produced by the steps) that could be ensemble for

modelling and simulating agro-ecosystems.

4.1 Requirements

In order to model and simulate and agro-ecosystem

using an ABM approach, the following elements

should be taken into account: 1) Agents: they will

naturally be at the core of any attempt to develop a

simulation using an ABM approach. This includes

interactions between agents; 2) Environment: is

what surrounds the agent, where the agent is located,

and a means by which the agent receives input; 3)

Resources: represent what the agents produce

and/or consume; and 4) Simulation Capabilities:

since the objective is to simulate agents,

environment and resources, the methodological

framework must allow this to happen. This includes

(but is not limited to): the notion of time (or time

steps), the possibility to configure different initial

situations from which to start the simulation,

configuration parameters that go along with the

simulation run, and output visualization.

4.2 Selecting Steps

Each one of the 16 general AOSE steps was

analyzed in order to determine its convenience for

the methodological framework, and even though a

thorough study has been conducted for each step.

Table 2 summarizes the results obtained. Most of the

selected steps were renamed in order to better

understand its purpose in the context of MAS

simulations.

4.3 New Steps

The steps analyzed before do not specifically cover

simulation capabilities. To this end, three more steps

are added.

The 7. Simulation Configuration step aims at

defining those fundamental elements that will enable

the simulation to be run, namely: 1) Initial

Configuration: determine the state of the simulation

at time zero (e.g. initial number of instances for each

agent type and their distribution over the

environment, initial volume of resources and their

location, etc.); 2) Time Definition: determine how

time passes, i.e. continuous, fixed steps or event-

based (e.g. agent instances are called upon their

behavior twice a year if the time step is defined to be

six months); 3) Task Scheduling: determine what to

do while time passes: the order in which the

behaviors of agents is called upon, resources evolve

and environment changes (e.g. at each time step,

first let agents execute and then let the resources

evolve); 4) Input Parameters: determine which

data is needed as input to the simulation (e.g. the

price of oil and its evolution); 5) Output: determine

the calculations and variables the simulation is to

generate (e.g. producers‘ income) and how often this

output is generated; and 6) Visualization: determine

which output parameters are to be visualized by the

user and how (e.g. producers‘ income as a numerical

value and land cover as colored cells in a grid).

The 8. Implementation step involves coding the

agent-based simulation using an already existing

simulation framework software package. The

developer should have enough elements (as well as

enough understanding of the problem) to start

coding. In this sense, the developer should be based

on the information provided by the artifacts

developed in the previous steps.

The 9. Simulation Run & Sensitivity Analysis

step involves gathering all the necessary real-world

Page 104 of 112

data (including possible historical data) for allowing

the simulation to be run and to perform explorations

about how the output of the simulation is affected

when certain elements are changed.

Table 2: Summary of the steps selected from the 16 general AOSE steps with their corresponding artifacts.

 General AOSE Step Selected Step Analysis

P
ro

b
le

m
 d

o
m

ai
n

 a
n

al
y

si
s

st
ep

s

1. Identify system

functionality

1. Identify System

Purpose

Since we are concerned with simulations, identifying the system

functionality is transformed into identifying the system purpose (what

should the system simulate and why), including those questions that

the system should answer (the objective of the simulation).

2. Identify roles 2. Identify Roles

and Agent Types

The system will probably represent several different roles people play

in an agro-ecosystem (e.g. farmer). Roles help in determine agent

types (or ‗agent classes‘ as called in the general step). Moreover,

agent classes can be viewed as specializations of roles, more

concerned on agents than in social behaviors (as roles do). Since

these concepts may be crucial for agro-ecosystems, these steps will

be considered together.

3. Identify agent

classes

4. Model domain

conceptualization

3. Model Domain

Conceptualization

It is very useful to have a structural overview of the agent types, the

resources, and the most relevant elements that compose the

environment, as well as its relations, so this step is selected as is.

A
g

en
t

in
t.

 d
es

ig
n
 s

te
p

s

5. Specify

acquaintances

between agent

classes

This can be either included when identifying agent types and roles (2. Identify Roles and

Agent Types) or when modelling the domain conceptualization, by means of associations

between concepts (3. Model Domain Conceptualization), so this step will not be considered

by itself but as part of previous steps.

6. Define

interaction

protocols

4. Define Agent

Interaction

In the case of developing an agro-ecosystem simulation, agent types

will be developed altogether, so the autonomy and independence of

individual agents is much reduced compared to other MAS scenarios.

This facilitates the task of communication between agents, and

enables considering these two steps as one.
7. Define content

of ex-changed

messages

A
g

en
t

in
te

rn
al

 d
es

ig
n
 s

te
p

s 8. Specify agent

architecture

5. Agent Architecture

and Design

This step should generate enough information for detailing the agent

type‘s internal design, describing how the agent will be able to follow

the Perceive/Reason/Act cycle already presented.

9. Define agent

mental attitudes

If mental attitudes are to be considered for certain agent type then these attitudes will be

defined in the previous step (5. Agent Architecture and Design).

10. Define agent

behavioural

interface

The agents of the agro-ecosystem will not provide services to other software entities (as

agents in other contexts may do) so the ―services‖ they have are actually the messages they

will exchange between them (considered in 4. Define Agent Interaction) and with the

environment (considered in 6. Model Environment and Resources).

O
v

er
al

l
sy

st
em

 d
es

ig
n
 s

te
p

s

11. Specify system

architecture

The overview of components and connections is already given by the context of agro-

ecosystem simulations, and also by the architecture imposed by the simulation framework

software package chosen for implementing the simulation over it (ej: CORMAS).

12. Specify org.

structure/inter-

agent social

relationships

Even though agro-ecosystems may involve some kind of organizational structure they are not

driven by any organizational metaphor as this step assumes. Any ‗inter-agent social

relationship‘ was already defined in ―2 Identify Roles and Agent Types” and in ―4 Define

Agent Interaction”.

13. Model MAS

environment

6. Model

Environment and

Resources

The environment is indeed a crucial element to consider. Since

resources are within the environment, they are considered altogether.

This step provides a detailed view of both, extending its structure

(considered in 3. Model Domain Conceptualization), and defining its

behavior.

14. Specify agent-

env. interaction

mechanism

In an agro-ecosystem simulation, the agent behavior strongly depends on the environment so

this interaction mechanism could be either considered in ―2. Identify Roles and Agent Types‖

and in ―4. Define Agent Interaction‖.

15. Instantiate agent

classes

This step is part of the initial configuration of the simulation as considered later.

Page 105 of 112

16. Specify agent

instances

deployment

Since the entire agro-ecosystem simulation will be run in only one computer, there is no need

to consider physical distribution.

4.4 Steps and Artifacts

Table 3 summarizes the steps of the proposed

methodological framework, including its aim and

artifacts. Since we do not have yet any specific

modeling language tailored for agro-ecosystems

simulations, for the sake of a better understanding

we consider here plain UML 2.0 diagrams. Since

agro-ecosystems are a kind of complex system

(Section 2.2) and these can be modeled using the

ABM approach (Section 2.4), it naturally follows

that agro-ecosystem can be modeled and simulated

using an ABM approach, and particularly following

the methodological framework introduced in this

section. Nevertheless, there are quite specific agro-

ecosystem features that are worth analyzing how

could they be represented, modeled and simulated

by this methodological framework. This is analyzed

in the next section.

Table 3: Summary of steps that compose the proposed methodology.

Proposed Step Aim of the Step Artifacts

1. Identify System

 Purpose

Define the purpose of the

simulation, including its

objective and questions to be

answered.

Text Document including the purpose of the simulation, an

overview of the context in which the simulation will be

developed, including why the simulation will be developed and

what will be expected from it.

2. Identify Roles and

 Agent Types

Identify agent types and roles,

especially agent behavior.

Text Documents for role‘s identification and description and for

identifying agent types and their relation to roles; UML

Activity Diagrams for agent type‘s behavior specification.

3. Model Domain

 Conceptualization

Depict the structure of the

problem, including entities and

relationships.

UML Class Diagram for modeling main concepts, including

those in steps 2 and 6.

4. Define Agent

 Interaction

Determine when, how and what

the different agents will

communicate.

UML Sequence Diagrams for modeling interactions.

5. Agent Architecture

 and Design

Define internal agent design

(structure and behavior) in order

to fulfill its perceive/reason/act

cycle, within a simulation

framework software package.

UML Class Diagram for designing the internal structure of each

agent type, as well as any other UML Structure Diagram (like

Package and Component Diagram); and UML Communication

Diagrams for designing the internal behavior of each agent

type, as well as other UML Behavioral Diagrams (like Activity

and State-Transition Diagrams).

6. Model

Environment

 and Resources

Determine behavioral aspects

(evolution) of resources and

environment, and completing

structural aspects.

Text Document for complementing other diagrams; UML

Structure Diagrams for further modeling structural aspects of

the environment and resources; and UML Behavioral Diagrams

for modeling functional (behavioral) aspects of the environment

and resources.

7. Simulation

 Configuration

Define those fundamental

elements that will enable a

simulation to be run.

Text Documents for documenting the configuration; UML

Object Diagram for the initial configuration; and UML

Sequence Diagram for tasks scheduling.

8. Implementation Codify the simulation. Code.

9. Simulation Run &

 Sensitivity Anal.

Answer the simulation‘s

objectives and questions.

Text Documents with the conclusions.

Page 106 of 112

5 MAPPING AGRO-ECOSYSTEM

features

This section presents those features that characterize

an agro-ecosystem and shows how they are covered

by the methodological framework proposed in the

previous section. The objective is to show that this

methodological framework can successfully

represent them with the available steps and artifacts,

leaving no relevant agro-ecosystem feature

uncovered. The features considered here are

schematically presented in Figure 3.

Three of the features are outside the limits of

the agro-ecosystem: climate, government and market

prices. Nevertheless they are relevant because they

affect it in some way that is of interest, but since

they do not belong to the agro-ecosystem they will

not be explicitly modeled (i.e. there will not be

artifacts representing them) but considered mainly as

inputs to the agro-ecosystem.

Table 4: Summary of agro-ecosystem‘s features and their representations within the proposed methodology.

 Feature Representation

N
at

u
ra

l
R

es
o

u
rc

es

Land Plots Plots can be thought of as land components, giving more flexibility by decomposing the land in

several elements. About each plot, it can model its location (e.g. by coordinates), its vicinity (e.g. by

associations with neighboring plots) as well as the relation between agents and plots (e.g. representing

ownership) and between plots and resources (e.g. representing which resources are hosted in which

plots). Plots allow for an easy geographical representation of land, where each plot is represented by a

cell in a grid that can be shown to the user (visualization).

Water As a special kind of land plot or as a resource within a land plot.

Climate As an input in the 7. Simulation Configuration step.

Vegetation As an attribute of the land plot or a resource within a land plot.

H
u

m
an

R

es
o

u
rc

es
 Farmers‘

Types

As agent types. Since the behavior of a farmer can dynamically evolve over time, different agent roles

can be defined.

Organizatio

n of Farmers

As a new agent type that is related to its members (which are other agent types). If belonging to an

organization implies certain behavior in its members, then new roles can be defined for them and

agents should be able to change its behavior when playing this new role.

C
ap

it
al

 R
es

o
u

rc
es

Goods &

Services

These are generally of two kinds: those which are used as inputs for production (like fertilizers and

machinery) and those which are used as family consumption (like the electricity bill, health care or a

new car). The former has to do with resources (and in some cases represented as an attribute of a

farmer) while the latter with farmers‘ livelihood, needs and expectations (considered within the

behavior of farmers).

Money,

Savings &

Loans

Similarly to the last feature, the concepts here involved may be divided in two: the activities that led to

an increase/decrease (e.g. buying or selling) and the quantities (e.g. current amount of money the

farmer has or how much debt he/she owes). The former can be modeled in the behavior of the farmer,

and the latter as an attribute of it.

P
ro

d
.

R
es

. Crops &

Livestock

As resources which can either be associated to a certain land plot (as in the case of crops) or not

(livestock). If a resource presents certain dynamics, these may be expressed, much like the behavior of

agents, but applied to resources (which are passive in contrast to agents).

O
th

er
 F

ea
tu

re
s

Natural

Processes

Since natural processes are not resources themselves, but are closely related to them, it is useful to

conceive both at the same time within the environment. As the Crops & Livestock feature, resources

may present certain dynamics to be run during the simulation, so it should be clearly defined whether

these dynamics actually represent natural processes or if they are only concerned with the resource

itself. This implies that natural processes may be explicitly modeled as another feature of the agro-

ecosystem, or implicitly considered when modeling resources.

Landscape As an aggregation of all land plots. The initial landscape can be determined by the modeler in the

initial configuration, e.g. by determining how many plots are used for agriculture.

Market

Prices and

Evolution

Since it is generally the case that the price over which production resources are sold is not controlled

nor determined by the system under study (e.g. a farm), prices are considered as an external input to

the simulation, and therefore it is considered as an input parameter.

Page 107 of 112

Government

Policies

This feature is not directly modeled into the simulation since the government is outside the boundaries

of the system. The interest is to compare the evolution of the simulation with and without the

introduction of certain government policy. This requires modifying the simulation in order to take

them into account. The modifications can range between changing input parameter values (e.g.

because of an increase in taxes) and changing the behavior of agents (e.g. by introducing new ways of

associations of farmers). This changes lead to the exploration of different scenarios.

Finally, one feature partially appears as part of

the agro-ecosystem, the landscape, since it is

collectively constructed with other elements outside

the boundaries of the agro-ecosystem.

In Table 4 we summarize how each of these

agro-ecosystem features can be represented by the

proposed methodological framework. The features

were organized around the four categories of

resources (in the sense of an agro-ecosystem, not in

the sense of ABM) introduced in Section 2.2 plus a

fifth category including other features commonly in

this context: natural processes, landscape, market

prices and evolution, and government policies.

Climate

Org. of
Farmers

Natural
Processes

Farmers

Market
Prices

Money,
Savings,

Loans

Land Plots

Water

Vegetation

Crops Livestock

Goods &
Services

Landscape

Agro-ecosystem

Government

Figure 3: Schematic representation of 13 relevant agro-

ecosystem features.

6 CASE STUDY

This section exemplifies the proposed

methodological framework. The case study shows

the dynamics between cattle and crop production in

a certain basin and it is based in a real world

situation (further details are omitted to keep it

anonymous). For each step of the proposed

methodological framework, an exemplifying artifact

will be presented.

It is worth noting that even though the steps can

be executed in an iterative and incremental way (as

mainstream software development methodologies

suggest), in order to simplify the exposition, the

following steps are presented in a sequential order.

Finally, all but the last two steps (8. Implementation

and 9. Simulation Run & Sensitivity Analysis) are

exemplified with the Case Study since they do not

reveal any singularity from the proposed

methodological framework point of view.

Step 1: Identify System Purpose

The purpose of this simulation is to understand the

long-term consequences on land use of producer‘s

strategies, regarding cattle and soybean production

in the basin.

The general context is that traditional producers

of the basin historically had a production strategy

based on looking for a balance between cattle and

agricultural production, alternating pasture and

crops. Recently (approx. in the year 2000) a new

kind of producer entered the system: investment

fund managers. These are multinational companies

whose strategy is continuous soybean production

over rented land. This puts pressure on land prices

(since both kinds of producers compete for the same

land) and forces traditional producers to either

intensify their production or to give up for rent their

plots to the investment fund managers.

The questions that are to be answered by the

simulation include the following: What are the

effects in the long-term over land use (system-level)

of the strategies of both kinds of producers (agent-

level)? How does land property evolves over time?

Under what conditions do small traditional

producers (those that start the simulation with fewer

plots) exit the system? Which is the effect of

international soybean prices in land use, either with

or without the presence of investment fund

managers?

Step 2: Identify Roles & Agent Types

Two (very) different agent types are identified:

traditional producers and investment fund managers

(which are also producers). Under the first category,

three subtypes are further identified: small, medium

and big traditional producers which are

differentiated only by the initial amount of plots

assigned (at time zero of the simulation), but all of

them sharing the same traditional producer‘s

Page 108 of 112

behaviour (rationale). Both agent types are

represented by a hierarchy of concepts in the UML

Class Diagram of Figure 4.

Regarding roles, each of the two agent types

have distinct behaviours, which are represented by

UML Activity Diagrams. For space reasons only the

behavior of traditional producers (one year step) is

shown in Figure 5. There is no role exchange (agent

instances do not change their behavior over time)

neither role multiplicity (each agent instance only

plays one role at a time), so there is a simple one-to-

one relationship between agent types and roles.

Step 3: Model Domain Conceptualization

The domain conceptualization is shown in the UML

Class Diagram of Figure 4. It also includes the

structural aspects of the environment and resources,

which will be completed by adding the dynamics on

step 6. This figure shows at the left-hand side the

two agent types (InvestmentFundManager and

Traditional) which inherit from the (abstract)

concept Producer.

accumulatedProfit

consumption

productivity

Producer

consumption = USD 0

productivity = 1.3

InvestmentFundManager

consumption = USD 12000

productivity = 1.0

type = {small, medium, big}

Traditional

1
 rents_to

landValue = USD 10000

size = 100 ha

Plot

*

manages

*

owns

cost

price

productivity

LandUse

1

has

cost = 109USD/ha

price = 900USD/ha

productivity = 0.31T/ha

Cattle

cost = 424USD/ha

price = 106USD/ha

productivity = 4.6T/ha

SoyBean

cost = 0USD/ha

price = 0USD/ha

productivity = 0T/ha

Empty

Figure 4: Domain Model Conceptualization for the Case Study.

At the middle, the concept Plot represents the

environment which is always associated with one

LandUse, which in turn can be Cattle, SoyBean or

(temporarily) Empty. These three specialized

concepts where identified as resources. Finally, the

relation of land ownership (owns ►) as well as a

relation for knowing who rents to who (◄ rents_to)

and which plots are managed by which producers

(manages ►) are represented in the figure. The

figure also includes some exemplifying attributes

with initial values for each concept.

Step 4: Define Agent Interaction

Figure 6 shows the agent-agent interaction that

occurs when an instance of

InvestmentFundManager is willing to rent plots to

an instance of Traditional producer.

Page 109 of 112

Figure 5: Traditional producer‘s behavior (at each time step).

:Traditional
:InvestmentFund

Manager

ok := askForRent(numberOfPlots : Integer) : Boolean

colPlots := rent(numberOfPlots : Integer) : Set(Plot)

opt [ok=true]

Figure 6: Example of agent-agent interaction.

Step 5: Agent Architecture & Design

This step deals with specifying the internal agent

design that enables agents to fulfill their design

goals. In this case, a simple reactive architecture was

followed, and its design exactly corresponds to those

concepts shown in the Domain Model

Conceptualization of Figure 4. Therefore any other

diagram showing the agent‘s design is omitted.

Step 6: Model Environment & Resources

Resources are not necessarily static objects that do

not suffer any change or evolution over time. For

example, considering cattle as a resource, and

assuming reproduction as an important issue of the

model, then a UML State-Transition Diagram as the

one in Figure 7 could be used to represent the vital

cycle of each animal. The diagram shows that cows

are assumed to be born as a calf, that after one year

and a half are considered as cows, that one year later

are pregnant for 9 months and finally after 8 more

years they exit the system (e.g. because they are

sold). On the other hand, the plots (which are the

environment) need no extra artifacts in this case.

Step 7: Simulation Configuration

Since this step involves the specification of several

elements, all of them are briefly explained:

1) Initial Configuration: based on on-field

information in the basin, 40 Traditional agent

instances of type ‗small‘, 20 of type ‗medium‘ and

10 of type ‗big‘, all of them geographically

randomly assigned and with equal chance of

producing cattle or soybean; and 5 instances of

InvestmentFundManager.

calc. this year's profit and

update accum. profit

giv e up for rent up to

25% of owned plots

produce up to 25%

of managed plots

giv e up for

rent one plot

bankruptcy

recov er a

rented plot

consume

buy one

plot

sell one

plot

{accumulated_profit >

 2 * (production_costs +

 family_consumption)}

AND

have at least one rented plot

AND

rent is not the best alternative

{accumulated_profit >

 2 * (production_costs +

 family_consumption)

 + land_value}

AND

there are plots for sell

family's

consumption

for this year

NOTE:

NOTE:

NOTE:

 [accum. profit is not enough for next year]

 [sti l l own plots]

 [accumulated

 profit is enough only

 for next year] [else]

 [can buy one plot]

 [can recover

a rented plot]

 [can g ive up for

 rent one plot]

 [else]

 [else]

 [else]

 [rent is the

 best alternative] [else]

 [else]

 [else]

Page 110 of 112

Calf Cow
1.5 years

8 years

1 year

9 months

Pregnant

Figure 7: Cattle life cycle.

2) Time Definition: it will be a time-step

simulation developed in CORMAS. Each time step

represents one year, so every action taken in the

simulation must be done on an early basis.

3) Task Scheduling: Figure 8 shows a

possible task scheduling, where at each time step the

scheduler (a component of the simulation framework

software package) first lets resources evolve (e.g.

calling the cattle life cycle) and then calls the agent‘s

behaviour.

4) Input Parameters: international soybean

prices are a good example of input parameters, since

they are not determined nor affected by the system.

5) Output: producer‘s income, total number

of traditional producers, total number of plots used

for cattle and for soybean (land use).

6) Visualization: view land use with different

colours over each cell that represents a plot (e.g. red

for a cattle production and green for a soybean

production).

:Producer:LandUse:Scheduler

evolve()

step()

loop [foreach plot]

[foreach producer]loop

Figure 8: Task scheduling.

7 CONCLUSIONS

This article introduced a new methodological

framework for developing agro-ecosystem

simulations, based on the ABM approach and

already existing general purpose AOSE

methodologies as well as a widely used graphical

modelling language as UML 2.0. Even though it is

not (yet) a complete and fully comprehensive

software development methodology, it has already

been successfully used by our team in some research

projects (not given yet for anonymity).

Although the steps were presented in a

sequential order, an iterative & incremental

approach may well be adopted, benefiting from

user‘s feedback, in the same way current mainstream

software development methodologies do. This

would also imply that a single step would be visited

more than once during the development process.

Also some of the steps may change if other type of

simulation is used, like event-based simulation.

Further work is ongoing in different topics with

the overall aim of achieving a methodology that is of

easy uptake for programmers. From our experience

we believe this is a very important issue since

human resources for the programming tasks are

usually (very) scarce, and the more specific

knowledge we require the programmers to have, the

more scarce the resources becomes. This is why it is

important to keep the methodology simple, using

tools and techniques already familiar to

programmers (like object-oriented programming,

UML and iterative and incremental development).

This further work includes: a) The completeness

of the methodology, including aspects such as which

roles (in the development process) do what, when

and how; b) Evaluate the use of specific graphical

modelling languages such as AML and particularly

analyze the benefits of including it against the

requirement for the programmers to know it; c)

Develop the necessary software tools to assist in the

development process (like plug-ins to certain

integrated development environment); d) Propose a

semi-automatic construction process from models to

simulation code, supported by the model-driven

approach of the methodology; e) Continue to use

and refine the methodology and get programmer‘s

feedback about its chances to get real uptake.

REFERENCES

Cervenka. R., Trencansky, I. (2007). The Agent Modeling

Language - AML: A Comprehensive Approach to

Modeling Multi-Agent Systems (1st ed).

CORMAS (n.d.). WebSite: http://cormas.cirad.fr

CSIRO (2008). Complex or just complicated: what is a

complex system? CSIRO fact sheet. URL:

www.csiro.au/resources/AboutComplexSystems.html

Dawn, P, Hessl, A, Davis, S (2008). Complexity, land-use

modeling, and the human dimension: Fundamental

challenges for mapping unknown outcome spaces.

Geoforum, Volume 39 Issue 2: 789-804.

Ellen, R. (1982). Environment, Subsistence and Systems.

Cambridge University Press, New York.

http://cormas.cirad.fr/
http://www.csiro.au/resources/AboutComplexSystems.html

Page 111 of 112

Ferber, J. (1999). Multi-Agent Systems: An Introduction to

Distributed Artificial Intelligence. Addison-Wesley,

Reading, MA.

FIPA (n.d.) Website: www.fipa.org

Gliessman, S. R. (1997). Agroecology: ecological

processes in sustainable agriculture. Ann Arbor

Press

Hecht, S. (1987). The Evolution of Agricultural Thought.

In Altieri, M. (1987). Agroecology: The Science of

Sustainable Agriculture. Westview Press.

Henderson-Sellers, B., Giorgini, P. (eds) (2005). Agent-

oriented Methodologies. Hershey, PA: Idea Group.

Le Page, C., Bommel, P., (2005). A methodology for

building agent-based simulations of common-pool

resources management: from a conceptual model

designed with UML to its implementation in

CORMAS. In: Bousquet François, Trébuil Guy,

Hardy Bill (eds). Companion modeling and multi-

agent systems for integrated natural resource

management in Asia. Metro Manila: IRRI, p. 327-

349.

Lind, J. (2008). Website: www.agentlab.de/

Miller, J.H., Page, S.E. (2007). Complex adaptive systems:

an introduction to computational models of social

life. Princeton University Press.

Norman M. (1979): Annual Cropping Systems in the

Tropics. Gainnesville: University Press of Florida

OMG (2005). The Unified Modeling Language

Specification v2.0. Website: www.uml.org

Perez, P., Batten, D. (eds) (2006). Complex Science for a

Complex World, Exploring Human Ecosystems with

Agents. The Australian National University Press,

Australia.

Rammel, C., Stagl, S., Wilfing, H., (2007). Managing

complex adaptive systems — A co-evolutionary

perspective on natural resource management. Ecol.

Econ. 63, 9–21.

Tran, Q.N., Low, G. (2008). MOBMAS: A methodology

for ontology-based multi-agent systems development.

Information and Software Technology, 50: 697-722.

Wooldridge, M. Website (2008). Lecture Notes on

Introduction to Multiagent Systems Course:

www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html

Wooldridge, M. (2002). An Introduction to Multiagent

Systems. Wiley & Son

http://www.fipa.org/
http://www.agentlab.de/
http://www.uml.org/
http://www.csc.liv.ac.uk/~mjw/pubs/imas/teaching.html

Page 112 of 112

