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Abstract 

 
The agent-based modeling (ABM) approach allows modeling 
complex systems, involving different kinds of interacting 
autonomous agents with heterogeneous behavior. Agro-ecosystems 
(ecological systems subject to human interaction) are a kind of 
complex system whose analysis and simulation is of interest to 
several disciplines (e.g. agronomy, ecology or sociology). In this 
context, the ABM approach appears as a suitable tool for modeling 
agro-ecosystems, along with a corresponding agent-oriented 
software engineering (AOSE) methodology for the construction of 
the simulation. Nevertheless, existing AOSE methodologies are 
general-purpose, they have not yet accomplished widespread use, 
and clear examples of applications to agro-ecosystems are hard to 
find. This thesis sets the ground for a new software development 
methodology for developing agro-ecosystem simulations based on 
the ABM approach as well as on these already existing AOSE 
methodologies, but tailored to tackle specific agro-ecosystem 
features. 
 

Keywords: Multi-Agent Systems, Agro-Ecosystem, Software 
Development, Simulation. 
 
 
 
 
 

Resumen 
 
El enfoque de modelado basado en agentes (ABM) permite el 
modelado de sistemas complejos en los que interactúan diferentes 
tipos de agentes autónomos con comportamientos heterogéneos. Los 
agro-ecosistemas (sistemas ecológicos sujetos a la presencia humana) 
son un tipo de sistema complejo cuyo análisis y simulación resulta 
de interés para diversas disciplinas (ej.: agronomía, ecología o 
sociología). En este contexto, el enfoque ABM aparece como una 
herramienta adecuada para el modelado de agro-ecosistemas, junto 
con una correspondiente metodología de desarrollo de software 
también orientada a agentes (AOSE) para la construcción de dicha 
simulación. Si bien ya existen metodologías AOSE, éstas son de 
propósito general, no han logrado un amplio uso y ejemplos claros 
de aplicaciones a agro-ecosistemas son difíciles de encontrar. Esta 
tesis establece los fundamentos para crear una nueva metodología de 
desarrollo de software basada en el enfoque de agentes para el 
desarrollo de simulaciones de agro-ecosistemas, basándose en las 
metodologías AOSE ya existentes, pero personalizada para soportar 
las características específicas de los agro-ecosistemas. 
 
Palabras clave: Sistemas Multi-Agente, Agro-ecosistema, Desarrollo 
de Software, Simulación. 
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1.  Introduction 
Many of the current world challenges and opportunities (e.g. globalization, sustainability, terrorism, 
epidemics or climate change) can be seen as complex systems [Miller and Page, 2007]. Understanding 
the components, behavior and interactions in these systems is the first step to whatever analysis is 
needed about them.  

Agro-ecosystems are natural ecosystems subject to human interaction. Therefore they are 
composed of a natural sub-system and a social (or human) sub-system. Even though not at global 
scale, agro-ecosystems can be seen as a case of complex systems that can represent altogether the 
natural and human aspects, as well as their interactions and feedback over time. However, the 
possibility for direct experimentation of such systems is rare, if not impossible, so the need for 
modeling and simulation becomes relevant.  

Several approaches or methodologies can be used for modeling an agro-ecosystem. In particular, 
the agent-based modeling (ABM) approach appears as a suitable tool for this purpose since they can 
be used for modeling complex systems. On the other hand, simulating generally means developing a 
software system, in this case, representing the agent-based model. This requires the use of some agent-
oriented software engineering (AOSE) methodology. Several AOSE methodologies are currently 
available for guiding a programmer in developing software following the ABM approach. However, 
they are general-purpose methodologies, so the programmer is faced with a trade-off between using 
an already existing one and not leveraging the specificities of agro-ecosystems, or to follow an ad-hoc 
methodology that pays detail to those features. Up to our knowledge there are no specific AOSE 
methodologies for this purpose. Nevertheless, there are some related work [Le Page and Bommel, 
2005] that address the simulation of agro-ecosystems using an ABM approach but without a 
methodological framework behind it. 

The overall objective of this thesis is to contribute to the development of an agent-based 
methodology for developing agro-ecosystem simulation software.  

The work presented here aims at contributing to the development of such a methodology, but it 
does not attempt to develop a fully comprehensive one. Many topics considered relevant for a 
software development methodology, such as resource, time and risk management, budget and effort 
estimation, team work, and testing, among others, are not included in this thesis. Only those aspects 
directly related to constructing a program are considered, such as the analysis, design and 
implementation phases, along with their artifacts and techniques. This is why this thesis uses the term 
methodological framework in order to distinguish it from a fully-featured methodology. 

The focus on the agent-based approach comes from its close relation to agro-ecosystems, more 
specifically because the latter can naturally be modeled using the former.  

The interest in agro-ecosystems comes from my involvement in several agronomical research 
projects in the years before starting this thesis. Even though I played the role of ―pure‖ software 
engineer, the multidisciplinary teams in which I had the honor to work, the new frontiers that these 
people showed me, the new real-world and real-people problems I was faced to, and the chance to re-
focus my previous expertise into these topics, all of this showed me a window of opportunity ready to 
be opened.  

Because of the very nature of the systems under study (natural and human), there is a need for 
simulating different scenarios and test various hypothesis, and in order to do this, we must count not 
only on software tools and packages to assist us, but also on methodological tools to guide the process.  
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Therefore, this thesis‘ specific objectives are the following: 

 Present the state-of-the-art in the multi-agent systems (MAS) field that, apart from 
relating the necessary concepts, shows a clear separation of the different areas of 
study that are involved (i.e. complex systems, agents, multi-agent systems, artificial 
intelligence), including a solid line of thought that clearly justifies the use of multi-
agent systems and the agent-based modeling (ABM) approach to modeling (and later 
simulating) an agro-ecosystem (Chapter 2). 

 Present the state-of-the-art in the agent-oriented software engineering (AOSE) 
methodologies and show that none of them is specific to the modeling and simulation 
of agro-ecosystems (Chapter 3). 

 Propose a methodological framework that allows developing agro-ecosystem 
software simulations using the agent-based modeling approach, leveraging existing 
AOSE methodologies where possible, as well as leveraging software developers‘ 
object-oriented programming (OOP) and Unified Modeling Language (UML) 
knowledge (Chapter 4). 

 Verify that all relevant agro-ecosystem‘s features are covered by the proposed 
methodological framework (Chapter 5). 

 Achieve an initial validation of the methodological framework by applying it to a real-
world complex case study (Chapter 6). 

Having all these objectives accomplished, this thesis‘ contributions are the following: 

 The only methodological framework for developing agro-ecosystem simulations 
using the agent-based modeling approach. Up to our knowledge, there is no other 
methodology (nor methodological framework) that copes with this problem. 

 The only case in which the ABM approach was applied to a Uruguayan agro-
ecosystem problem, in this case the draught phenomena in the basalt region and a 
study on how it affects cattle breeders and their draught strategies.  

 The possibility to get regular OOP+UML software developers to quickly start writing 
agro-ecosystem simulation software, without previous knowledge of MAS. This 
becomes increasingly important because it reduces the time and skills required to get 
into a multidisciplinary team, especially when software developers are hard to find.  

 The possibility to formalize a methodology that allows developers (as stated above) as 
well as experts (e.g. agronomists) and producers to jointly participate in the 
development of a simulation, achieving a truly interdisciplinary work.  

 A clear separation of the areas of study and fields that are involved. Usually the 
papers around the topic of ABM and agro-ecosystems do not clearly separate the 
fundamental concepts involved, leading to misunderstandings, which increase the 
time and effort to getting involved in the topic. 
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The structure of this thesis is summarized in Figure 1:  

 

Figure 1: Chapter overview of this thesis. 

Chapter 2 presents the main concepts and state-of-the-art regarding complex systems, agents, 
multi-agent systems, agro-ecosystems and how they relate to each other. It also serves as the necessary 
background knowledge needed to understand the rest of the thesis.  

Chapter 3 presents the main ideas behind Agent-Oriented Software Engineering (AOSE) and a 
summary and comparison of the most well-known AOSE development methodologies. 

Chapter 4 presents the methodological framework that is proposed in this thesis for developing 
agro-ecosystem simulation software based on the agent-based modeling approach and on ideas from 
the existing AOSE of Chapter 3. 

Chapter 5 presents those features that characterize an agro-ecosystem and shows how they are 
covered by the methodological framework proposed in Chapter 4. 

Chapter 6 applies the methodological framework to a case study. 

Chapter 7 concludes this thesis and presents possible future work. 
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2.  Background  
This chapter introduces the main concepts that will be elaborated in this thesis and presents a state-of-
the-art regarding complex systems, agents, multi-agent systems, agro-ecosystems and how they relate 
to each other. It assumes no previous knowledge of concepts related to complex systems, agent-based 
modeling or agro-ecosystems. This chapter is an excerpt of Appendix A. 

Section 2.1 presents fundamental concepts and principles related to complex systems which are the 
general context for agro-ecosystems presented in Section 2.2. Section 2.3 introduces the agent-based 
modeling approach, and Section 2.4 shows the applicability of the agent-based modeling approach to 
complex systems in general and to agro-ecosystems in particular. Section 2.5 compares the Object-
Oriented (OOP) and Agent-Oriented (AOP) programming paradigms. Finally, the chapter ends with 
some concluding remarks in Section 2.6. 

2.1 Complex Systems 

In natural sciences and computer science, the most common approach to understand or analyze a 
system is based on a decomposition of the system into its elementary parts and the isolated and in-
depth study of these in order to understand the whole, i.e. the reductionism of Descartes.  

The systemic approach starts by first examining and understanding the relations between the 
different elements of the system. The systemic approach is a general theory since its principles can be 
applied to any discipline or area. One of the most common ways for addressing the systemic approach 
is to say that ‗the whole is more than just the sum of its parts‘ or in the words of [Miller and Page, 
2007]: “The field of complex systems challenges the notion that by perfectly understanding the behavior of each 
component part of a system we will then understand the system as a whole”. 

Both complicated and complex systems are composed of a large number of interacting elements, 
but two properties set a complex system apart from one that is merely complicated: emergence and 
self-organization. Emergence is the appearance of behavior that could not be anticipated from the 
knowledge of the parts of the system alone [CSIRO, 2008]. Moreover, the newly emerged properties 
can in turn feedback to the original lower-level entities, entering a feedback loop where each element 
(micro/marco level) interacts. Self-organization means that there is no external controller or planner 
engineering the appearance of the emergent features; they appear spontaneously [CSIRO, 2008]. The 
motivation for studying complex systems is that many of current opportunities and challenges 
(globalization, sustainability, terrorism, epidemics, climate change) are complex. Each of these 
domains consists of a set of diverse entities and actors that dynamically interact, and are immersed in 
a sea of feedback [Miller and Page, 2007]. Figure 2 shows a schematic representation of a complex 
system based on [Parrott, 2002]. 

 
Figure 2: Schematic Conceptual Model of a Complex System. 
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Complex Adaptive Systems (CAS) are defined as systems that are capable to adapt and self-
organize in response to perturbations or distortions in the environment or by the result of certain 
interrelations between the elements. System adaptation is ultimately concerned with the adaptation of 
each individual element of the system, since there is no centralized control and therefore no single 
‗object‘ that represents the entire system.  

2.2 Agro-Ecosystems 

This section introduces the notion of agro-ecosystem and related concepts. Also, agro-ecosystems are 
presented as a special case of complex systems. Finally, the importance of modeling and simulation of 
agro-ecosystems is highlighted.   

2.2.1 What is an Agro-ecosystem? 

An agro-ecosystem is the human manipulation and alteration of ecosystems for the purpose of 
establishing agricultural production [Gliessman, 1997]. Agro-ecosystems result from the interplay 
between endogenous biological and environmental features of the agricultural fields and exogenous 
social and economic factors, and are delimited by arbitrarily chosen boundaries. They are semi-
domesticated ecosystems that fall on a gradient between ecosystems that have experienced minimal 
human impact, and those under maximum human control [Hecht, 1987]. 

According to [Odum, 1984] the four major characteristics of agro-ecosystems are: 

 They include external sources of energy like human, animal or fuel energy to enhance 
productivity of particular crops; 

 Diversity may be reduced compared with natural ecosystems (those with no human 
intervention); 

 The dominant animals and plants are under artificial selection rather natural selection; and 

 The system controls are external rather than internal via subsystem feedback, in the sense that 
the natural resources are no less dependent on natural factors because of human intervention. 

Even though this is a good starting point according to [Hecht, 1997] it does not reflect agro-
ecosystems that can be relatively diverse and its lack of attention to the social determinants of 
agriculture limits its explanatory power. Agricultural systems are human artifacts, and the 
determinants of agriculture do not stop at the boundaries of the field. Agricultural strategies respond 
not only to environmental, biotic1, and cultivar constraints, but also reflect human subsistence 
strategies and economic conditions [Hecht, 1987; Ellen, 1982]. This stresses the importance of social 
factors like labor availability, access and conditions of credit, subsidies, perceived risk, price 
information, association obligations, family size, and access to other forms of livelihood are often 
critical to understanding the logic of a farming system [Hecht, 1987]. 

An agro-ecosystem thus has physical parts with particular relationships (the structure of the 
system) that together take part in dynamic processes (the function of the system) [Gliessman, 1997]. 
The structure can be viewed as organized in several levels, ranging from individual elements such as 
organisms or crops up to regions, landscapes or entire countries.  

Any system uses its processes and resources to convert its inputs into its outputs. Concerning the 
resources commonly found in agro-ecosystems, [Norman, 1979] suggests the following classification: 

 Natural resources: the given elements of land, water, climate and natural vegetation that are 
exploited by the farmer. 

 Human resources: the people who live and work within the farm and use its resources for 
agricultural production, based on their traditional or economic incentives. 

 Capital resources: the goods and services created, purchased, or borrowed by the people 
associated with the farm to facilitate their exploitation of natural resources for agricultural 
production.  

 Production resources: the agricultural output of the farm such as crops and livestock. These 
become capital resources when sold, and residues (crops, manure) are nutrient inputs 
reinvested in the system. 

                                                 
1 Associated with or derived from living organisms (English On-Line Dictionary). 
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Several of all the previous concepts are summarized in Figure 3, based on [Altieri. 1995] and 
[Briggs and Courtney, 1985]: 

 
Figure 3: Representation of an Agro-ecosystem. 

It is worth noting that human intervention is represented by the inputs but mainly by the 
management practices executed by farmers. 

Other concepts that are also commonly associated to agro-ecosystems include natural processes 
(like erosion), the landscape to which the agro-ecosystem belongs, market prices and prices evolution 
(regarding for example international crop prices), and government policies (which may affect virtually 
any part of the agro-ecosystem). 

2.2.2 Agro-ecosystems as Complex Adaptive Systems 

Any ecosystem by itself can already be considered as a case of complex adaptive system, considering 
its various components, organization levels, micro and macro interactions and their feedbacks, and 
even more if including a social subsystem (with heterogeneous behaviors) as in the case of agro-
ecosystems. 

The interactions between the social and natural subsystems inside an agro-ecosystem, such as 
farmers‘ practices affecting natural resources, are examples of local interactions at a small scale which 
may produce negative or positive feedbacks affecting in turn the decision-making of social actors. 
Repeating these interactions on a daily basis can produce emergent properties and new organizations 
across the agro-ecosystem in the long-term, like a change in soil quality as a long-term consequence of 
the adoption of certain management practice or the emergence of a certain land-use pattern. 

Aside from natural processes, also the interactions between the social actors can lead to complex 
behaviors like, for example, communications between neighboring producers which can affect each 
producer‘s performance (e.g. knowing about certain new market because of participation in an 
organization can lead to improvements in the income of those producers that receive the correct 
information at the right moment). 

2.2.3 The Importance of Simulation in Agro-ecosystems 

Since these coupled human-natural systems cannot be manipulated and tested as other systems, due 
to scale and resource difficulties (setting up farms managed by people over decades just to see the 
effects) the possibility of simulating them is crucial.  

The objective of simulating these kind of systems is not for trying to figure out exactly what will 
happen in the future if the present conditions are X, the behavior of each part is Y and the evolution of 
certain parameters is Z. In contrast, simulation in these contexts should have the objective of 
prospection of scenarios were the interest is not in the ‗fortune-teller‘ features of the simulation but on 
discovering possible outcomes under certain conditions and being able to easily modify these 
conditions and check again the outcomes (as in a virtual laboratory). Another objective can be to 
deepen the understanding (and also possibly learning/teaching) of a coupled human-natural system, 
since the more micro/macro level study of each part as well as their interactions require an in-depth 
understanding of them in order to obtain a simulation that is close to reality. Yet other objective can be 
to explore the consequences of manipulating certain system in order to understand how the different 
parts will co-exist in the future due to that manipulation (e.g. how does a water shortage affects the 
productivity of a farm, or how does certain economic policy impacts in the long term). 



Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 15 of 112 

 

The next section presents an approach that can be used to develop such simulations in the form of 
software systems that will be able to simulate the different parts of an agro-ecosystem and monitor 
(observe) certain parameters over time in order to analyze their evolution. 

2.3 Agent-Based Modeling 

Agent based modeling (ABM) is a computer science approach that enables the simulation of 
heterogeneous populations of interacting individuals or agents, in many cases in a non-agent 
environment, which can also contain non-agent passive objects (commonly known as resources). The 
agents can exhibit a set of different behaviors, and the selected behavior is dependent on the local 
interactions with other individuals in their neighborhood and the state of the environment, thus the 
agents may be adaptive. The mechanism of selection of behavior can range from simple procedural 
logic to highly sophisticated reasoning. The repertoire of behaviors can be fixed or extensible, and the 
latter implies that the agents should be able of learning. The intelligence of the agent depends on its 
abilities to reason and to learn. The adaptive behavioral patterns enable self-organization of the 
population and can result in emergent phenomena. Consequently, the ABM approach is suitable to 
address complex adaptive systems. These concepts will be further studied in the following sections. 

2.3.1 Definition of Agent 

There is no consensus on the definition of agents, but the most used definitions were proposed by 
Wooldridge and Jennings (1995) and Ferber (1999).  

A definition that supports the computer science focus presented in this thesis is proposed by 
[Wooldridge, 2008]: ―An agent is a computer system that is capable of independent action on behalf of its user 
or owner, figuring out what needs to be done to satisfy design objectives, rather than constantly being told [what 
to do]‖. In this definition, the word ‗independent‘ refers to agent autonomy, capable of acting 
independently and exhibiting control over its internal state. Thus an agent is a computer system 
capable of autonomous action in some environment in order to meet its design objectives [Wooldrige, 
2002&2008] (Section 2.3.3 further discusses agents‘ environments).  

According to [Wooldridge, 2002] an intelligent agent is a computer system capable of flexible 
autonomous action in some environment2 and proposes the following properties in order to let an 
agent show intelligent behavior: reactive, proactive and social. 

 Reactive: A reactive system is one that maintains an ongoing interaction with its environment, 
and responds to changes that occur in it (in time for the response to be useful) [Wooldridge, 
2002]. Even though a changing environment makes agent design harder, it allows the 
representation of much more complex (and interesting) situations. 

 Proactive: Since agents should be able to do something according to their design objectives 
(goals) they should have some way to direct their behavior towards those goals. Proactiveness 
means generating and attempting to achieve goals, not driven solely by events as in the case of 
reactivity but by actually taking the initiative [Wooldridge, 2002].  

 Social: The real world is a multi-agent environment. As [Wooldrigde, 2002] states: ―we cannot 
go around attempting to achieve goals without taking others into account‖. Social ability in 
agents is the ability to interact with other agents via some kind of agent-communication 
protocol or language, and perhaps also cooperate or negotiate with others.  

In order to formalize some of the previous topics and to simplify future discussions without losing 
generality, the following concepts are introduced, which were extracted from [Wooldridge, 2002] and 
[Lind, 2008]. In order to let agents react (or take the initiative) according to changes in the 
environment, agents must perceive their environment and have some way to act upon it, after 
reasoning what to do. This leads agent to a Perceive/Reason/Act cycle, shown in Figure 4. 

                                                 
2 One of the best known examples of agents are robots. From industry manufacturing to NASA explorers and 
soccer-playing, robots can be seen as a ―physical instantiation of an agent‖ according to Wooldridge. Being their 
objective to ensemble a car, collect and analyze rocks or score a goal, being alone or in groups, each of these share, 
to more or less extent, the properties discussed here. 
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Figure 4: General representation of an agent with its environment.  

2.3.2 Agent Architectures 

Since there are multiple ways to achieve this Perceive/Reason/Act cycle, there are accordingly 
different agent architectures that represent and implement this concept in different ways and to 
different degrees. The term ‗agent architecture‘ refers to the software architecture for the decision-
making agents in the environment, as well as their internal mechanisms and representations 
[Wooldridge, 2002; Bousquet & Le Page, 2004]. 

Two issues should be taken into consideration regarding this term: first that in the context of 
agents, architectures are generally referred as being abstract (closer to reality) or concrete (closer to 
implementation); and second that several authors differ on the classification of agent‘s architectures.  

The following classification of abstract architectures3 is given by [Wooldridge, 2002]: 

 Deliberative Architectures (also known as Symbolic or Logical AI) that manages explicit 
representations of desires (goals), beliefs (what the AI agent knows), intentions (what it wants 
to do), actions (what it does) and uses abstract reasoning tools. Deductive and deliberative 
agents appear in these architectures as well as the BDI Architecture (Belief, Desire, Intention)4; 

 Reactive Architectures that enable intelligence without having explicit representations, or 
abstract reasoning, but as an emergent property of certain complex systems. In this kind of 
architectures the agent has no previous knowledge and simply reacts based on a set of rules; 
and  

 Hybrid Architectures that include a deliberative as well as a reactive component. 

 

2.3.3 Definition of Multi-Agent System 

After introducing what an agent is and considering agents that operate alone, the agency theory can 
be extended to let agents interact within a so-called Multi-Agent System (MAS). According to 
[Wooldridge, 2002]: ―A Multi-Agent System consists of a number of agents which interact with one-another. 
[…] To successfully interact, they will require the ability to cooperate, coordinate, and negotiate with each 
other.‖  

In MAS there is no central control and all information and control is distributed among the various 
agents. Figure 5 presents an illustration of a MAS (based on [Wooldridge, 2002] and [Ferber, 1999]). 

                                                 
3 In order to be able to implement software using such architectures, more detail and design must be considered. 
4 BDI architectures resemble human decision-making: belief is what the agent knows (its experience), desire is 
what the agent is willing to do, and intentions are desires plus the commitment to achieve them. In these 
architectures agents spent time not only doing things but also deliberating about what they should do. After 
choosing a plan to execute according to their current intentions, they are able to constantly introspect about the 
validity of such plan at each step of it, and if necessary, change the plan in order to better accomplish their goals. 
However, [Deffuant et al., 2003] explain that BDI models are not necessarily more realistic than the simple models 
and BDI architectures do not necessarily rely on robust scientific basis and do not derive from neuroscience 
precepts, nor psychology and neither of philosophy. 
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Figure 5: A Multi-Agent System. 

As previously discussed, agents are able to perceive part (or all) of the environment and are also 
able to act upon part (or all) of it depending on the type of environment (refer to Appendix A for MAS 
environments). This can be represented by spheres of influence that determine the portion of the 
environment that one agent is able to interact with. Interactions between agents allow agents to 
cooperate, coordinate and negotiate as needed. Finally, interacting agents can also be organized to 
form higher-level organizational units.  

To these concepts [Ferber, 1995] adds the concept of object as being a passive entity subject to 
manipulation (consumption and production) by agents (which in turn are defined as a subset of those 
objects but with the ability to be active). All of these are also defined to be located, meaning that at 
each time it is possible to locate each object and agent within the environment. Finally Ferber 
introduces the idea that each agent possess its own (internal) representation of the environment, of the 
objects and of other agents.  

In this thesis the term Agent-Based Modeling will be used indistinctively from the term Multi-
Agent System since the first is no more than the process of modeling a certain reality using agents in 
order to build a multi-agent system5. 

A concept that enables further elaboration on the agency theory in a multi-agent environment is 
the one of a role. A role is the functional or social part which an agent, embedded in a multi-agent 
environment, plays in a process like problem solving, planning or learning [Lind, 2008]. Roles are a 
useful abstraction considering the widely accepted meaning of the term in the real world that can be 
used to help describe and understand the system by describing the consistency of an agent‘s behavior 
within that system (as well as within the organization to which the agent belongs).  

In MAS agents interact with each other, and this interaction can lead to cooperation (when 
different agents share objectives) or negotiation (when the interests are not aligned). Negotiation is the 
process of reaching agreements on matters of common interest [Wooldrigde, 2002].  

2.4 Agent-Based Modeling of Complex Systems 

This section presents the applicability of the agent-based modeling approach to complex adaptive 
systems, and then discusses the suitability of the approach to agro-ecosystems as special case of 
complex systems. 

2.4.1 Applicability of Agent-Based Models to Complex Adaptive Systems 

Besides from the similarities between complex adaptive systems and the agent-based modeling 
approach that could already be noticed, this section further justifies the use of the latter to represent 
the former (refer to Appendix A for more reasons).  

The following four points help clarifying why the ABM approach is suitable for representing CAS: 

 Regarding Emergence: ABMs allow to define the low-level behavior of each individual agent 
in order to let them interact (over time and space) to see whether some emergent property 
arises or not, and if it does, under which circumstances. 

                                                 
5 This is also supported by [Bousquet and Le Page, 2004]: ―Recently, several researchers have started to use multi-agent 
systems, also called agent-based modeling, in different fields.‖  



Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 18 of 112 

 

 Regarding Self-Organization: ABMs do not have any kind of central intelligence that governs 
all agents. On the contrary, the sole interaction among agents along with their feedbacks is 
what ultimately ‗controls‘ the system. This lack of a centralized control is what enables (and 
enforces) its self-organization. 

 Coupled Human-Natural Systems: ABMs allow considering together both, social 
organizations with their human decision-making with biophysical processes and natural 
resources. This conjunction of subsystems enables ABMs to explore the interrelations between 
them, allowing analyzing the consequences of one over the other. 

 Spatially Explicit: the feature of ABMs of being able to spatially represent an agent or a 
resource is of particular interest when communications and interactions among neighbors is a 
key issue. This can either imply some kind of internal representation of space or even the use of 
a Geographical Information System (GIS) with real data. This feature is of special interest in the 
case of agro-ecosystems. 

The following Section presents how some special features of agro-ecosystems can be modeled 
using an ABM approach. 

2.4.2 Modeling of Agro-Ecosystems using an ABM Approach 

Section 2.2.2 presented agro-ecosystems as a case of complex adaptive systems, while Section 2.4.1 
showed the suitability of the ABM approach to model complex adaptive systems. Nevertheless, this 
section provides some views on the topic by different authors working on ABM approach to agro-
ecosystems and presents some specific features of agro-ecosystems that can also be tackled with it. 

According to [Ferber, 1999, p. 36]: 

“Multi-agent systems bring a radically new solution to the very concept of modeling and 
simulation in environmental sciences, by offering the possibility of directly representing 
individuals, their behavior and their interactions […] it is thus possible to represent a 
phenomenon as the fruit of the interactions of an assembly of agents with their own operational 
autonomy.” 

The relations and heterogeneity in the social part of the MAS depend on the agent‘s social 
neighborhood, whereas the variability from the physical and ecological point of view can be achieved 
by considering spatial heterogeneity of the environment in the MAS.  

The addition of spatially explicit features is especially important in agro-ecosystems where spatial 
heterogeneity can be relevant, for example by means of different land-uses, soil qualities, natural 
resources, etc. on each land-unit. Just as land-units can be organized to form higher-level spatial 
elements, social networks can be formed between agents or can emerge as a consequence of agent‘s 
behavior and interactions. What makes ABMs rather unique is that both of these organizational 
dimensions can be considered together, allowing exploring the consequences of one over the other. 

Finally, it is worth noting that even though agents, from the ABM point of view, can be any 
autonomous and goal-driven entity, from the agro-ecosystems perspective agents are generally 
aspects of human societies or animal populations that organize among themselves, interact with the 
environment, and they are affected in their decisions by that environment [Matthews, 2006]. Figure 6 
shows these relationships similarly as Figure 2 (in Section 2.1) showed an abstract complex system: 
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Figure 6: Model of an Agro-Ecosystem using an ABM Approach. 

 

The actual implementation of an agent-based model is ultimately about developing a 
computational model, that is, software. Therefore, in order to analyze, design, implement and every 
other step involved in developing such systems, certain software development methodology must be 
used. The following section compares the agent and object-oriented paradigms. Appendix B completes 
this comparison by comparing the AOSE and OOSE methodologies.  

2.5 Comparison Between Agent-Oriented and Object-Oriented Paradigms 

In 1989 Yoav Shoham coined the term agent-oriented programming [Shoham, 2010] and defined it as a 
new programming paradigm based on a societal view of computation. This societal view implies 
(according to Shoham) ascribing mental qualities to agents such as beliefs, capabilities, choices and 
commitments (in the same way than BDI architectures propose to conceive agents in terms of beliefs, 
desires and intentions).  

The idea behind these mental qualities includes the use of mental constructs to design 
computational systems. This is the main difference between AOP and OOP: while OOP uses 
abstractions based on objects which are generic entities that comprise identity (a property inherent to all 
objects that allows to differentiate them), state (attributes by which the object can be characterized) and 
behavior (operations that the object can be asked to do by means of messages), AOP considers 
abstractions based on human societies and mental properties. 

Another important difference between both approaches is the autonomy that agents have. While in 
OOP objects just reply to messages sent from other objects in a predefined way, in AOP agents are 
supposed to be proactive and initiate actions over themselves or over other agents.  

The following table summarizes some of the differences between OOP and AOP: 

 

 OOP AOP 

Basic unit Object (instance of a Class) Agent instance of an Agent Type 

Constraints defining the 
state of the basic unit 

None Mental properties (beliefs, desires, 
etc.) 

Autonomy Not necessarily present May be present 

Types of messages 
(interaction) 

Unconstrained Speech acts (inform, request, etc.) 

Concept of role Not necessarily present 
(comparable to using interfaces) 

May be present 

Table 1: Comparison between OOP and AOP paradigms. 
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This short list of differences illustrates that even though OOP and AOP have important similarities, 
these arise because AOP can be seen as a specialization of OOP, a new paradigm thought as 
constraining the extremely general-purpose of the OOP paradigm and aligning those constraints to 
mental and societal properties. 

The value (and innovation) of AOP is in providing useful abstractions for understanding and 
developing systems in terms of agents and societies of agents. In words of [Jennings, 2001]: ―When 
designing software, the most powerful abstractions are those that minimize the semantic gap between the units of 
analysis that are intuitively used to conceptualize the problem, and the constructs present in the solution 
paradigm. 

For a comparison between OOSE and AOSE methodologies, refer to Appendix B. 

2.6 Final Remarks 

This chapter introduced the fundamental topics needed as background for the rest of this thesis. For a 
deeper state-of-the-art, refer to Appendix A. This chapter also showed that the systems approach 
along with concepts such as complexity and emergence provide a suitable way to conceptualize agro-
ecosystems and their related problems at various scales, and that the agent-based modeling approach 
provides a way to operationalize these concepts into computational models that allow for simulation 
when direct experimentation is not possible. However, it is imperative for the software engineering 
discipline to provide the necessary guidance for developing such computational models. This Agent-
Oriented Software Engineering discipline is the focus of the next chapter.   
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3 Agent-Oriented Software Engineering 
This chapter presents the main ideas behind Agent-Oriented Software Engineering (Section 3.1). It 
presents a summary and comparison of the most well-known agent-oriented software development 
methodologies (Section 3.2) and shows the most common steps of these (Section 3.3). The chapter ends 
with some concluding remarks (Section 3.4). 

3.1 Introduction to AOSE 

Since developing software is much more than just writing a program, the software engineering 
discipline has become increasingly important. This implies not only following certain development 
process but also following certain development paradigm. While the former deals with issues like 
Waterfall or Iterative & Incremental development processes, the latter deals with the way in which the 
software is conceived, including how the problem is tackled, requirements are analyzed, a solution is 
designed and finally how this design is implemented in a programming language, all of which can be 
summarized as the approach for (thinking and) developing software. 

In the same way that applying the object-oriented paradigm to develop software has led to Object-
Oriented Software Engineering (OOSE), applying the agent-oriented paradigm has led to Agent-
Oriented Software Engineering (AOSE). 

Even though this thesis emphasizes the adoption of an agent-oriented methodology for ultimately 
developing an agro-ecosystem simulation, AOSE can be seen as a promise for tackling the ever-
growing complexities of software development in general. In many cases it is recognized that the 
behavior of a large-scale software system can be assimilated more appropriately to a human 
organization aimed at reaching a global organizational goal, or to a society in which the overall global 
behavior derives from self-interested intentional behavior of its individual members, than to a logical 
or mechanical system [Petra et al., 2003]. Some authors go further stating that it seems very likely that 
the software engineering of tomorrow for addressing more complex societal problems will be agent-
oriented, such as that of today is object-oriented6 [Perez and Batten, 2006]. 

3.2 Review of AOSE Methodologies 

This section provides a summary of the ten most well-known agent-oriented software development 
methodologies, which are presented in [Henderson-Sellers and Giorgini, 2005]7 as well as a very broad 
comparison between them.. 

The following is a very brief summary of these ten methodologies: 

 The Tropos methodology [Bresciani, Giorgini et al., 2004] provides guidance for the four 
major development phases of application development. One of its primary contributions is 
placing an emphasis on modeling goals and their relationship with the system‘s actors, tasks, 
and resources. 

 MAS-CommonKADS [Iglesias et al., 1996] is based on both CommonKADS and object-
oriented (OO)-based methodologies. This enables the developer to build agent based 
systems while leveraging the experience of pre-agent methodologies and employing familiar 
techniques and diagrams. 

 The PASSI methodology [Cossentino, 2005] brings a particularly rich development lifecycle 
that spans initial requirements through deployment and, in addition, emphasizes the social 
model of agent-based systems. 

 From an AI planning-execution perspective, Prometheus [Padgham & Winikoff, 2002] 
provides an especially rich goal-driven approach for its BDI-like agents. Its methodology is 
used today to develop systems on commercial BDI-based agent platforms, such as JACK or 
Agentis. 

                                                 
6
 ―I've always felt that the future of our field [computer science] is more to be found in what the AI [Artificial Intelligence] 

folks were trying to do, than in what the workaday programmers in academia and business concern themselves with.‖ Prof. 
Alan Kay,  OOP and GUI pioneer (URL: http://www.amazon.com/gp/blog/post/PLNKVUNBWIDAS9YQ) 
7 ―This book [referring to Henderson-Sellers and Giorgini, 2005] is the first to present and explore the ten most 

prominent methodologies for developing agent-based systems.‖ James Odell. 

http://www.amazon.com/gp/blog/post/PLNKVUNBWIDAS9YQ


Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 22 of 112 

 

 Gaia [Wooldridge, Jennings & Kinny, 2000] is one of the earliest agent methodologies and 
now reflects this experience in version two of its approach. Using the analogy of human 
based organizations, Gaia provides an approach that both a developer and a non-technical 
domain expert can understand—facilitating their interaction. 

 ADELFE [Bernon, Gleizes, Picard & Glize, 2002] is a specialized methodology that 
emphasizes cooperative agents that self-organize and possibly result in emergent systems. 
More specifically, it addresses designing complex adaptive systems and anticipating 
emergence within its software agents. 

 Resulting from a two-year, European-funded EURESCOM project, MESSAGE [Caire et al., 
2001] extends existing object-oriented methodologies for agent-oriented applications. 
Chartered to address telecommunications applications, its resulting RUP-based approach 
also supports more general applications. 

 The INGENIAS methodology [Pavón, Gomez-Sanz & Fuentes, 2005] supports a notation 
based on five metamodels that define the different views and concepts of a multi-agent 
system. Using metamodels provides flexibility for evolving the methodology and adopting 
changes to its notation. 

 RAP [Taveter & Wagner, 2005] is concerned with distributed information systems (such as 
enterprise resource planning and supply-chain management systems) and places less 
emphasis on AI-based systems. The philosophy of the Model Driven Architecture (MDA) is 
adopted with the goal that executable software agents can be generated using RAP artifacts. 

 MaSE [DeLoach, 1999] is a comprehensive methodology that has been used to develop 
systems ranging from heterogeneous database integration applications to biologically based, 
computer-virus immune systems and cooperative robotics systems. Its hybrid approach can 
be applied to multi-agent systems that involve implementations, such as distributed human 
and machine planning. 

Figure 7 shows a schematic representation of the relations between object-oriented and agent-
oriented methodologies, showing direct and indirect influences between them (simplified from 
[Henderson-Sellers and Giorgini, 2005]). The figure shows all ten methodologies plus others that also 
served as influence (represented in italic white font in the figure) but which will not be further 
discussed: 

 

Figure 7: Influences between various OO and AO methodologies. 

As it can be noticed in the figure, all ten methodologies (represented in bold above) except for 
Tropos, have been influenced by object-oriented techniques (represented as ―OO‖ in the figure). Also 
several are reported to be inspired (according to [Henderson-Sellers and Giorgini, 2005]) on the 
Rational Unified Process (RUP) [Kruchten, 1999]. The Object Modeling Technique (OMT) [Rumbaugh 
et al., 1991] was one of the first OO methodologies which in turn influenced other methodologies like 
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the Australian Artificial Intelligence Institute methodology (AAII) [Kinny, Georgeff & Rao8, 1996], and 
the OO methodology called Fusion [Coleman et al., 1994]. 

An interesting case is the one of Tropos9, which is influenced by the ―i* organizational modeling 
framework‖ [Yu, 1995]. This framework proposes an AOP approach to requirements centered on the 
intentional characteristic of agents. Even though the main concepts (actor, goal and dependency) are 
rather general, Tropos uses this framework to model early and late requirements, architectural design 
and detailed design for developing an agent-based software system. 

Even though there are other methodologies for developing AOP-based software systems, this 
thesis is based on the ten presented in [Henderson-Sellers and Giorgini, 2005] since they are arguably 
the most referenced and cited elsewhere (for instance, in the International Workshop on AOSE [AOSE, 
2010] that since 2008 is held in conjunction with the Journal of Autonomous Agents and Multi-Agent 
Systems [JAAMAS, 2010]). 

The following table contains a brief comparison between these ten methodologies according to a 
certain criteria. The intention of this comparison is not to be exhaustive in the comparison (which is 
already done in Chapter 12 of [Henderson-Sellers and Giorgini, 2005]) but to point out some 
differences between them. 

   

                                                 
8 Michael Georgeff and Anand Rao are pioneers in the research of BDI-like architectures, especially on the 
necessary logic behind them to represent beliefs, desires and intentions. 
9 Web-site: www.troposproject.org  

http://www.troposproject.org/
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Table 2: Comparing the ten AOSE methodologies (based on [Henderson-Sellers and Giorgini, 2005]) 
 

Gaia Tropos 
MAS-

Common 
KADS 

Prometheus Passi Adelfe Mase Rap Message Ingenias 
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Application 
domain 

Independent Independent Independent Independent Independent 
Dependent 
(adaptive 
systems) 

Independent 

Dependent 
(distributed 

organizational 
inf. systems) 

Independent Independent 

Size of MAS 
<=100 agent 

classes 
N/A 

N/A (possibly 
any size) 

Any size N/A 
N/A (possibly 

any size) 
<=10 agent 

classes 
Any size 

N/A (possibly 
any size) 

N/A (possibly 
any size) 

Agent nature Heterog. BDI-like Heterog. BDI-like Heterog. Adaptive 
N/A (possibly 

Heterog.) 
Reactive Heterog. 

Agents with goals 
and states 

MAS approach OO i* Knowledge Eng. OO OO OO OO OO OO OO 

Use of roles Yes No No No Yes No Yes Yes Yes Yes 

 

M
o

d
e

l-
R

e
la

te
d

 
C

ri
te

ri
a 

Autonomy Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Adaptability Possibly No No No No Yes No No Possibly Possibly 

Cooperative Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Communication No Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Reactivity Possibly Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Persistence No No No No No No No No No No 

Deliberative Yes Yes Yes Yes Yes Yes Yes No Yes Yes 
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SW support No No No Yes Yes Yes Yes Yes Yes Yes 

Open systems Yes No No No No Yes No No No No 

Dynamic structure No No No No Yes No Possibly No No No 

 

Legend: N/A stands for ‗information non available‘. 
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The following is a description of the different criteria groups that were used in Table 2. This serves the 
better understanding of the table as well as it facilitates a deeper insight on these general-purpose 
AOSE methodologies, and the AOSE discipline itself. 

 

Process-Related Criteria: These criteria look at the applicability of the methodology, the steps 
provided for its development process and the development approach followed: 

 Application domain: Is the methodology applicable to any application domain (i.e. domain 
independent) or to a specific domain (i.e. domain specific)? 

 Size of MAS: To what size of MAS is the methodology suited? 

 Agent nature: Does the methodology supports, agents of any architecture, reasoning 
mechanism, and/or knowledge representation (i.e. heterogeneous agents), or only agents of a 
particular type (i.e. homogeneous agents). 

 Generic MAS development approach: for instance OO approach or knowledge engineering 
approach. 

 Approach towards using “role” in MAS development: Does the methodology employ the 
concept of ―role‖ in MAS analysis and design?  

 
Model-Related Criteria: These criteria evaluate the various aspects of a methodology‘s models and 
notational components: 

 Autonomy: Can the models support and represent the autonomous feature of agents (i.e. the 
ability to act without direct intervention of humans or others and to control their own states 
and behavior)? 

 Adaptability: Can the models support and represent the adaptability feature of agents (i.e. the 
ability to learn and improve with experience)? 

 Cooperative behavior: Can the models support and represent the cooperative behavior of 
agents (i.e. the ability to work together with other agents to achieve a common goal)? 

 Communication ability: Can the models support and represent knowledge-level 
communication ability (i.e. the ability to communicate with other agents with language 
resembling human-like speech acts)? 

 Reactivity: Can the models support and represent the reactivity of agents (i.e. the ability to 
selectively sense and act in a timely manner)? 

 Persistence (temporal continuity): Can the models support and represent temporal continuity 
of agents (i.e. persistence of identity and state over long periods of time)? 

 Deliberative behavior: Can the models support and represent the deliberative behavior of 
agents (i.e. the ability to decide in a deliberation or proactiveness)? 
 

Supportive-Feature Criteria: These criteria assess the various high-level, supplementary features of an 
AOSE methodology: 

 Software and methodological support: Is the methodology supported by tools and libraries?  

 Open systems: Does the methodology provide support for open systems (i.e. that allow for 
dynamic addition/removal of agents)? 

 Dynamic structure: Does the methodology provide support for dynamic structure (i.e. allows 
for dynamic reconfiguration of the system)? 

 
From analyzing these ten AOSE methodologies it follows that none of them is aimed at simulating a 
MAS, and neither to be applied to agro-ecosystems. In a broader search, no AOSE methodology was 
found to be specially aimed at simulating agro-ecosystems. In an attempt to build such a methodology 
(or at least a methodological framework) the next sections will use those steps as a basis, that 
generally appear on these ten AOSE methodologies. 
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3.3 Standard Steps of an AOSE Methodology 

An important finding in [Henderson-Sellers and Giorgini, 2005] is that there is no study that identifies 
the ―standard‖ steps that can be followed in any AOSE development process. This ―standard list of 
steps‖ would enable to have a common framework from which to compare the different 
methodologies (e.g. How does Met. A differs from Met. B regarding their process steps?) and could be 
a basis for building an AOSE methodological framework.  

Based on this, Tran & Low proposed 19 ―standard steps‖ and in order to verify their validity, they 
conducted a survey of experts who expressed their opinions on the importance of these steps. The 
survey confirmed their validity but unfortunately the authors gave no details about who these experts 
were. 

It is understood that no single methodology will include all of these standard steps, but each will 
provide support to a subset of these, and furthermore, some will provide an explicit support for 
certain step while others may provide implicit or partial support (for a complete list comparing each 
of the ten methodologies with these 19 steps refer to Chapter 12 of [Henderson-Sellers and Giorgini, 
2005]). 

For the purpose of this thesis, such a list of standard steps allows to see the general activities 
shared among several methodologies, giving a more abstract view than the analysis each and every 
one of the ten methodologies, and may also allow to identify which of these steps are needed in order 
to successfully design and develop agro-ecosystem simulation‘s models. 

From these original 19 general steps, Tran and Low recently distilled 16 general steps [Tran and 
Low, 2008] which are shown in Table 3. Table 4 contains the particular to each methodology. The 
reason for including the latter is because one or more ―specific steps‖ could be identified, which could 
be useful for developing agro-ecosystem simulations.  

Even though the different general steps in Table 3 are numbered and presented in that order, this 
doesn‘t mean that these steps should be performed (if at all) in that order. As said, these steps do not 
actually represent any particular AOSE methodology; they were abstracted from several AOSE 
methodologies. 

 

 AOSE Step Description 

Problem 
domain 
analysis 

steps 

1. Identify system 
functionality 

Determine what the system should do in terms of functionalities (the 
same as traditional requirement engineering techniques). 

2. Identify roles Identify the roles that should later be played by the different agents. 
This step may include analyzing the organizational context in which 
the MAS will be deployed since roles commonly (and naturally) 
appear in real organizational contexts. 

3. Identify agent classes Identify which types of agents are needed (agent classes). This can be 
related to roles in the sense that a certain agent class can be created to 
cope with certain role characteristics.  

4. Model domain 
conceptualization 

Identify the domain‘s main concepts and relationships. This step is 
frequently associated with developing the so-called ―ontologies‖ in 
several methodologies, which are very similar to domain diagrams 
(conceptual modeling), easily depicted in UML Class Diagrams.  

Agent 
interaction 

design 
steps 

5. Specify acquaintances 
between agent classes 

Determine basic relationships between agent classes (such as who 
knows who, possible hierarchies, etc.) 

6. Define interaction 
protocols 

Define how agents can interact by defining communication protocols 
between them. 

7. Define content of 
exchanged messages 

Define what the messages between agents will contain. These 3 steps 
(which comprise the ―Agent Interaction Design‖) are very related and 
can be considered altogether.  

Agent 
internal 
design 

8. Specify agent 
architecture 

Determine the specific (internal) architecture for each agent class (like 
for example BDI architecture). The specific architecture to choose will 
depend on the characteristics that the different agent classes should 
present (e.g. if they must conceptualize beliefs, goals and plans, or if 
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steps they will be just reactive). 

9. Define agent mental 
attitudes 

If the agent is to present mental attitudes like goals, beliefs, plans or 
commitments, define these for each agent class. This step includes 
trying to identify how these attitudes will be design internally for the 
agents‘ classes that need them.  

10. Define agent behavioral 
interface 

Determine the capabilities, services, contracts and any other 
programming interface that the agent must provide. This will depend 
on the agent architecture (e.g. if it is a deliberative agent or if it is a 
reactive agent).  

Overall 
system 
design 
steps 

11. Specify system 
architecture 

Overview of all components and their connections (in a higher level 
than Agent Architecture). This step also includes resources and 
environment (if they are of interest) and their relation to the agent 
classes. 

12. Specify organizational 
structure/inter-agent 
social relationships 

If the system can be analyzed in terms of organizational concepts, 
then specify the organizational structure and the inter-agent social 
relationships. This step can be related to Step 2 (Identify Roles) since 
roles are generally crucial in any organizational structure, as well as 
hierarchies between them. There are also several pre-defined 
organizational structures available (e.g. peer to peer, hierarchical, 
etc.). 

13. Model MAS 
environment 

If the environment is relevant, then identify its resources, facilities and 
characteristics. Although part of this step can be done in Step 12 
(mainly those structural environmental aspects) others (mainly those 
functional aspects) may not.  

14. Specify agent-
environment interaction 
mechanism 

Closely related to the previous two steps, it involves detailing how the 
different agent classes are to be related to their environment, 
(analogous to interaction protocols, but instead of agent-agent 
interactions here we see agent-environment interactions). It is worth 
noting that this step can actually influence the architecture chosen for 
the different agent classes (this stresses the idea that these general 
steps are not necessarily presented in order). 

15. Instantiate agent classes They determine how many agent instances will be needed for each 
agent class at initialization of a simulation.  

16. Specify agent instances 
deployment 

Determine where the agent instances are to be (physically) deployed. 
This includes specifying agent platforms, nodes (with processing 
power), connection between nodes, etc. UML Deployment diagrams 
can be used. 

Table 3: The 16 general steps identified by [Tran and Low, 2008] present in the major AOSE methodologies. 

 

Step Description 

Specify organizational rules Identify rules that must be respected by the organization for it to work 
coherently, and specify how the dynamics of the organization should evolve 
over time. 

Identify initial sub-systems Determine whether multiple organizations have to co-exist in the system and 
become autonomous interacting MASs 

Implementation Map the system design components to concrete components in the 
development framework and generate codes using code-generation tools. 

Elaborate and validate UI 
prototypes 

Specify the GUIs through which users will interact with the systems, and the 
relationships between GUIs. 

Table 4: Other steps (not included in Table 3) that are only specific of certain AOSE methodologies. 
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3.4 Final Remarks  

This chapter introduced the main concepts behind AOP and AOSE. It also presented the most well-
known AOSE methodologies, none of which are specifically targeted to simulating a MAS, nor they 
are aimed at the domain of agro-ecosystems.  

Since the objective of this thesis is to find, or build an AOSE methodology targeted at 
simulating an agro-ecosystem, and none was found to meet these requirements, the 16 general steps 
find by Tran and Low will serve as the basis for building such a methodology. 

To this end, the following chapter aims at identifying, from these 16 general AOSE steps, 
those that would be useful in the context of this work, and adding others if necessary. 
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4 Towards a Methodological Framework for 
Developing Agro-ecosystem Simulations 

The aim of this chapter is to build a methodological framework for developing agro-ecosystem 
simulation software based on the agent-based modeling approach. This problem could be divided into 
two parts. First, how to simulate a MAS, and second, how to simulate a MAS that represents an agro-
ecosystem.  

To this end, this chapter presents the general guidelines that will be considered for the 
methodological framework (Section 4.1), and then the requirements for simulating a MAS (Section 
4.2). Based upon these requirements, the 16 general AOSE steps introduced in Chapter 3 are analyzed 
in order to select only those that cope with them (Section 4.3). Since new steps, besides these 16, may 
be needed, Section 4.4 discusses which new steps could be added for successfully simulate a MAS. 
Later, Chapter 5 presents the more specific agro-ecosystem requirements and how the methodological 
framework supports them.  

 The premise of this chapter is that none of the studied AOSE methodologies explicitly support 
the development of agro-ecosystem simulations. As introduced in Chapter 1, the full definition of a 
detailed methodology for developing agro-ecosystem simulations is out of the scope of this thesis. 

4.1 Guidelines for the Proposed Methodological Framework  

Even though the steps will be presented in a sequential order, the intended approach of the 
methodological framework is iterative and incremental. This means that any of the steps may be 
revisited several times, one per iteration, and each time giving a more complete solution. 

 Several options are available when simulating certain processes using software, like discrete-
event, continuous and time-stepped simulations. The method by default for the methodological 
framework will be time-stepped.  

By comparing the time-step scheduling and discrete-events approach [Galler, 1997] notes the 
advantages and disadvantages of each. He studied how different approaches can address the issue of 
simultaneous events and competitive activities, but also their respective performances in terms of 
computing time. Without concluding a preference for either, he notes that the continuous time 
approach does not provide clear benefit. Because the development and implementation of an event-
based simulator are not obvious, many errors difficult to detect can occur. The author then concludes 
that for practical reasons, it is better to use a discrete time approach, which greatly simplifies the 
development of simulations, but the granularity of time must be accurately determined. 

Also, the time-stepped approach has shown to be very natural when discussing with 
stakeholders (especially producers), since these tend to think of their activities and decision-making 
on a time-step fashion, like decisions taken every day, month, season or year. 

 There are also several different graphical modeling languages that could be used to express 
the different artifacts. Some of them are general-purpose, like UML [UML, 2010] and others are 
specific to MAS, like the Agent Modeling Language or AML [AML, 2010]. Since the aim is to facilitate 
developer‘s uptake so that they can use their preexisting knowledge of both, OOP and UML, the 
methodological framework will use plain UML diagrams. Nevertheless it is worth noting that using 
MAS-specific languages like AML allows for better specifications, since specific MAS constructions 
are available. Interestingly, AML itself was inspired by five of the ten general-purpose AOSE 
methodologies presented in [Henderson-Sellers and Giorgini, 2005] and discussed in Chapter 3, 
namely TROPOS, GAIA, PASSI, PROMETHEUS and MESSAGE10, something that also stresses out the 
relevance of these methodologies. 

 In addition to the use of a graphical modeling language for specifying the various MAS 
constructs, developers also need a programming language for implementing them. Here some Agent-
Oriented Programming Languages are also available, but in order to achieve the uptake objective 
already mentioned, the Object-Oriented Programming paradigm will be followed. 

 Regarding the software development process, an Iterative & Incremental process is 
encouraged. This means that certain steps may be revisited. Because it is out of the scope of this thesis 
to define a complete and comprehensive software development methodology, further references and 

                                                 
10 AML specification can be found at: http://www.whitestein.com/library/whitestein_aml-specification_v09.pdf 

http://www.whitestein.com/library/whitestein_aml-specification_v09.pdf
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details on how to follow this Iterative & Incremental approach will be omitted. Nevertheless, this 
implies that the proposed artifacts need not be developed in the sequential order in which they are 
presented here.  

 Since the aim is to develop an agro-ecosystem agent-based model for simulation, there are two 
ways to achieve this: either to develop the entire software or to use an already existing MAS 
simulation software package (also known as MAS simulation frameworks). These are general-purpose 
software packages that provide abstract classes and commonly used behaviors for the developer to 
use and extend, all in the context of MAS (that is, providing constructs at least for the concept of 
agent). Even though the steps of the proposed methodological framework will be useful for both 
ways, it is recommended to use, whenever possible, an already existing MAS simulation framework, 
since the workload may be significantly reduced. This is why the steps will be presented assuming 
that such a framework will be used.  

 Finally, the work of [Le Page and Bommel, 2005]11 also served as an inspiration for this thesis, 
given that they propose the use of UML as a means for specifying and CORMAS [CORMAS, 2010] as a 
means for implementing MAS simulations. Nevertheless, they present in a very general way how 
some UML Diagrams could be used to implement a CORMAS simulation, without providing further 
methodological aspects on how a software methodology could be followed (e.g. steps and artifacts to 
build on those steps). There is also no mapping given on how the most relevant features present in 
agro-ecosystems could be successfully represented using those diagrams; no details on how to model 
the simulation aspects (such as initial configuration, input and output parameters or visualization). In 
addition to this, the notion of role is not used, and they only provide a ―toy-model‖ example instead 
of a real-world one.    

In summary, the guidelines that will be taken into consideration for building the methodological 
framework will be the following: 

 Iterative & Incremental: although not thoroughly presented in this thesis, the methodological 
framework will be assumed to be followed in an Iterative & Incremental way. 

 Time-step: it will assume a time-step type of simulation, where the time-step duration should 
be defined and it will remain constant throughout each simulation run. 

 UML: plain UML diagrams will be used. 

 OOP: the OOP paradigm will be suggested for implementation. 

 Simulation framework: the use of an already existing simulation framework software 
package is suggested, and this thesis‘ case study (Chapter 6) will make use of the CORMAS 
simulation platform as it is dedicated to natural resources management (i.e. to model and 
simulate agro-ecosystems). 

4.2 MAS Simulation Requirements 

In order to model and simulate an agro-ecosystem using the agent-based modeling approach, the 
following elements should be taken into account: 

 Agents: they will naturally be at the core of any attempt to develop a simulation using an 
ABM approach. This also includes interactions between agents. 

 Environment: it is what surrounds the agent, where the agent is located, and a means by 
which the agent receives input.  

 Resources: they represent what the agents produce and/or consume. Even though this 
concept is not generally defined as a separate aspect of an ABM, it is particularly useful in the 
context of agro-ecosystems due to the importance of representing the production and/or 
consumption of resources and the relation between resources and the environment. In this 
context, resources are generally thought of as passive objects that are, for example, produced 
by the environment and consumed by agents within certain process (like crop production).  

 Simulation capabilities: since the objective is to simulate agents, environment and resources, 
the methodological framework must allow this to happen. This includes (but is not limited to): 
the notion of time, the possibility to configure different initial situations from which to start 
the simulation, configuration of input parameters, and output results.  
 

                                                 
11 Which is available at: http://cormas.cirad.fr/pdf/AsiaBook/20_LePage_2005_BC.pdf  

http://cormas.cirad.fr/pdf/AsiaBook/20_LePage_2005_BC.pdf
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All of these elements configure a good starting point since they give an overview of the 
requirements that must be met in order to develop an agro-ecosystem simulation. The next section 
takes these into account for selecting, from the 16 general AOSE steps of Table 3, those that meet these 
requirements.   

4.3 Selecting Steps    

This Section presents an analysis of each of the 16 general AOSE steps presented in Table 3 in order to 
identify those which are suitable for developing a MAS simulation. That is, those that cope with the 
requirements of Section 4.2. For each general step, a discussion is presented to justify whether to 
select it or not for the methodological framework (under the title ―Discussion about considering this 
step‖). Furthermore, an analysis on what information would be manipulated in the step (under the 
title ―What information should be generated in this step?‖), and how that information could be best 
represented (by means of artifacts, usually models, under the title ―Possible artifacts of this step‖).  

 
Problem Domain Analysis Steps 

General Step 1: Identify System Functionality 

Discussion about considering this step 
This step determines what the system (software) should do. It was thought as part of a general AOSE 
methodology, so as in any general-purpose software engineering methodology, it is vital to state what 
the software should do (e.g. register all the sales, including the customers that purchased them and 
perform queries over that data). On the other hand, MAS like those being studied in this thesis already 
have a special focus: MAS simulation, and more specifically, agro-ecosystem simulation. This greatly 
reduces the scope of what the system should do, although the software developer must state, within 
that specific scope, what the system should simulate, and more importantly, the objective of the 
simulation. This is why this step will be considered, but also renamed as ―Identify System Purpose‖. 

 
What information should be generated in this step?  
This step should define the purpose of the simulation (its objective), as well as provide an overview of 
the context in which the simulation will be developed (e.g. what would be the use of it, who would 
use it and develop it, who would be represented in it, why the simulation would be developed and 
what would be expected from it). This very much resembles the first documents generated in general-
purpose software engineering methodologies, but it should contain some other information not 
generally present in these, namely to clearly explicit the objective of the simulation‘s model, and the 
people involved, either being modeled and represented inside the simulation as well as those that will 
be the modelers and developers. The reason for adding this information is that any model will 
invariably include the modeler‘s perspective or point of view. This may not be relevant if the subject 
being modeled is an invoice or a product purchase, but agro-ecosystems will represent human 
behavior as well as real-world problems and conflicts, and depending on how the modeler models 
this, the result of the simulation may change. Depending on sensitivity issues, even small differences 
on perspectives between modelers that affect their models may have a tremendous impact on 
simulation output. Like [Grimm & Railsback, 2005] point out, clarifying the purpose of the model is 
essential because it provides a framework for its whole description. 

 
Possible artifacts of this step 
Since this step doesn‘t include any modeling, a text document should be enough. This document will 
include (but not be limited to) the following items: 

 General system purpose: representing the general objective and giving an overview of why 
the simulation system is to be built. 

 Questions that the system should answer: representing specific objectives. 

 Stakeholders: including anybody that has an interest, either direct or indirect on the system 
that will be developed, or on the results that could be obtained. 

 Target population: for which stakeholders the system will be developed, differentiating those 
that will be modeled into the system and those that will use the system. 

 Modelers: who will model and develop the system, in order to help identifying any risk of 
adding a perspective or bias. 
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General Step 2: Identify Roles and  

General Step 3: Identify Agent Classes 

Discussion about considering these steps 

A role is the functional or social part which an agent, embedded in a multi-agent environment, plays 
in a process like problem solving, planning or learning [Lind, 2008]. The role defines what the agent is 
expected to do within certain organization and considering other agents. In the context at hand, the 
system will probably present several different roles, like farmer, consumer, local authority, etc. These 
are roles people play in a society and in an agro-ecosystem. Roles help determine agent types (or 
‗agent classes‘ as called in the general AOSE Step 3). Moreover, agent classes can be viewed as 
specializations of roles, more concerned about agents than about social behaviors (as roles do). An 
important issue about roles is that any given agent can play multiple roles, either simultaneously or in 
turns. This may lead to define agent classes that take this into account (e.g. an agent class ‗farmer 
authority‘ that merges two roles: farmer and local authority). Since these concepts may be crucial to 
model and simulate agro-ecosystems, and are related to each other, these steps will be considered 
together and renamed as ―Identify Roles and Agent Types‖. 

 
What information should be generated in this step?  
This merged step involves specifying the expected behavior of the role within the system and with 
respect to other roles (hence to other agents). Since roles are a functional or social part and define what 
the agent playing that role is expected to do, then a comprehensive description of a role must state the 
expected behavior of any agent that will play that role.  

Since the methodological framework is intended to have an iterative and incremental approach, 
this step could only identify, at first, roles and agent types (e.g. assigning them a name and overview), 
and only later on be revisited when the modeler/developer has enough information to fully describe 
each role and agent type.  

 
Possible artifacts of this step 
There are several artifacts that could be built since different information is needed: 

 Roles: text document including the names and general description for each role. The 
description should include the goals of each role as well as a general overview of the 
responsibilities related to that role (that agent types playing that role must present) as well as 
relations with other roles (if they apply). 

 Agent Types: text document identifying the names of the different kinds of agents that will be 
modeled, their goals, objectives and relation with the roles identified. This identification 
should be consistent with the Domain Model Conceptualization Step since it represents the 
structure of the system, which includes the different kinds of agents (e.g. if three different 
types of agents are identified, then those three kinds should appear as domain concepts). 

 Agent Types’ Behavior: a thorough description of each agent types‘ behavior. This behavior 
must be specified for a certain moment in time, representing those decisions that the agent 
type will make at that time (with the information available at that moment). This means that 
this decision-making will be executed during the simulation at every time step (e.g. describe 
the logic of decision-making of local authorities at the beginning of the year, assuming a 
yearly time step). Even though these behavioral descriptions could be documented by means 
of a textual description, UML Activity Diagrams can be used to complement such 
descriptions. 

 

General Step 4: Model Domain Conceptualization 

Discussion about considering this step 
This step looks for the domain‘s main concepts and relationships. It is a static (structural) view of 
reality, in contrast with roles and behaviors which are a dynamic (behavioral) view. This is why they 
complement each other and they must also be consistent with each other. This step has exactly the 
same purpose than domain models of traditional OOSE methodologies: to identify those concepts that 
are most relevant for the domain being studied and that will be of interest for the system to be built (in 
this case, for the simulation that will be developed). Since it is not possible to automatically identify 
those most relevant concepts, the modeler must get involved with the domain and determine which 
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elements, from the nearly infinite number of elements that reality is composed of, will be part of the 
domain model. This step will be considered, using its original name ―Domain Model Conceptualization‖. 

 
What information should be generated in this step? 
Since only one domain model conceptualization will be built, it must include not only the agent types 
but also the most relevant elements that compose the environment as well as resources. All of this 
must be modeled by their structural nature, since behaviors are not to be included in this model. 
Based on Section 4.2, the domain model (applied to agro-ecosystems) will group three kinds of 
concepts: those related to agents, those related to the environment and those related to resources.  

 
Possible artifacts of this step 
The most well-known artifact for domain models is UML Static Structure Diagrams, also known as 
Class Diagrams. As stated before, the methodological framework is based on the use of plain UML. 

 
Agent Interaction Design Steps 

General Step 5: Specify Acquaintances between Agent Classes 

Discussion about considering this step 
The aim of this step is to identify which other agent classes each one knows. This was already done, 
either when identifying agent types and roles, and/or when modeling the domain conceptualization, 
by means of associations between concepts, hence this step will not be considered by itself but as part 
of previous steps.  
 

General Step 6: Define Interaction Protocols and  

General Step 7: Define Content of Exchanged Messages 

Discussion about considering these steps 
Communication between individual agents (each being an instance of an agent type) must be allowed, 
and will depend on how each agent type interacts with the others (e.g. for letting agent instance ‗a‘ of 
type A communicate with ‗b‘ of type B, types A and B must know each other). Because their very 
nature agents can be autonomous, it is not expectable that they already know how to establish a 
communication with each other (in contrast with common OOP objects that already know each other‘s 
interfaces beforehand). That‘s why this communication involves determining some common 
interaction protocol as well as defining all possible messages that could be exchanged. Nevertheless, 
in the case of developing an agro-ecosystem simulation, agent types will be developed altogether, so 
the autonomy and independence of individual agents is much reduced compared to other MAS 
scenarios. This facilitates the task of communication between agents, and enables considering these 
two steps as one, renamed as ―Define Agent Interaction‖. 

 
What information should be generated in this step? 
This step should determine when, how and what the different agents will communicate. When implies 
stating what triggers the communication, how implies defining the interaction protocol that agents will 
follow, and what implies knowing the content of the exchanged messages.  

 
Possible artifacts of this step 
There are specific agent-interaction diagrams such as those proposed by the Foundation for Intelligent 
Physical Agents or FIPA [FIPA, 2010], which allow for accurate and domain-specific representations 
of interactions in general-purpose MAS scenarios. However, considering on one hand (as previously 
discussed) that in the case of agro-ecosystem simulations agent‘s autonomy is much reduced, and on 
the other hand remembering one of the aims of the proposed methodological framework of helping 
developers uptake the methodological framework by using languages they already know, this step 
will use UML Sequence Diagrams in order to specify these interactions.  
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Agent Internal Design Steps 

General Step 8: Specify Agent Architecture 

Discussion about considering this step 
This step involves specifying the internal architecture of each agent type. As Section 2.3.2 introduced, 
there are already-defined general agent architectures, namely deliberative (that manage explicit 
representations of goals, beliefs, actions and use abstract reasoning tools), reactive (where agents 
simply react with an action triggered by some stimuli) and hybrid (that include a deliberative as well 
as a reactive component). Every agent type must present one of these architectures and since the 
software design will become much more complex if a deliberative architecture is chosen (and much 
simpler if a reactive one is) this step will be considered, although also including internal agent type 
class design. That is, after deciding the agent type architecture, design the internal agent type 
structure and behavior that supports and details that architecture. This step will be renamed as ―Agent 
Architecture and Design‖. 

 
What information should be generated in this step? 
This step should generate enough information for detailing the agent type‘s internal class design, 
following the chosen agent architecture. In general terms this means describing how the agent will be 
able to follow the Perceive/Reason/Act cycle presented in Figure 4. This step is similar to the 
Architecture and Design steps of an OOSE methodology where the aim is to first decide over an 
architectural style (e.g. Layered) and then define the necessary classes that will populate that style. 

 
Possible artifacts of this step 
UML Class Diagram for specifying each agent type architecture as well as their internal design. In 
order to represent internal design behavior (functional aspects) UML Behavioral Diagrams may also 
be used if necessary (e.g. Communication, Activity or State-Transition Diagrams).  

 

General Step 9: Define Agent Mental Attitudes 

Discussion about considering this step 
Mental attitudes should be involved if a deliberative (or hybrid) architecture is chosen, so this step 
will be considered as part of the previous step (if needed). 

 

General Step 10: Define Agent Behavioral Interface 

Discussion about considering this step 
Originally this step aimed at determining the agent‘s capabilities and services it will provide. Since 
this thesis focuses on agro-ecosystems simulations, the only capabilities and services an agent will 
present are those already considered in its role, agent type description, domain model concepts and 
agent interaction. The agents of the agro-ecosystem will not provide services to other software entities 
(as agents in other context may do) so the ―services‖ they have are actually the messages they will 
exchange between them (which were already considered in the “Define Agent Interaction” step). In 
summary, what should happen is that this step should not add anything not already considered by 
other steps, since it was originally thought for more general purpose MAS. This is why this step will 
not be considered. 

 
Overall System Design Steps 

General Step 11: Specify System Architecture 

Discussion about considering this step 
The original idea for this step was to give an overview of all components and their connections in the 
highest possible level. Once again, since the context is agro-ecosystems, this high level overview is 
already given (agents interacting with other agents as well as with their environment and resources). 
Another useful situation where the architectural view may be of assistance is when having physically 
distributed components, which is not the case for the agro-ecosystem simulations considered in this 
thesis. This step will therefore not be considered.  
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General Step 12: Specify Organizational Structure/Inter-Agent Social Relationships 

Discussion about considering this step 
Even though agro-ecosystems may involve some kind of organizational structure (like farmers 
organizations) they are not driven by any organizational metaphor as this step assumes. Also, no 
inter-agent social relationship was defined in “Identify Roles and Agent Types” or in “Define Agent 
Interaction”, so this step will not be considered. 

 

General Step 13: Model MAS Environment  

Discussion about considering this step 
The environment is indeed one of the crucial elements to consider, as Section 4.2 pointed out. It could 
already be modeled in “Model Domain Conceptualization” at least from a structural point of view. 
Nevertheless, other aspects may also be need consideration, like those concerning a functional point of 
view for both, the environment and the resources it may provide. This is why this step will be 
included, although renamed, so as to include resources: “Model Environment and Resources”. 

 
What information should be generated in this step? 
This step could, first, give a more detailed structural description of the environment and/or resources 
that may have not been included in the Domain Model (e.g. because generally domain models are 
very early developed, and in the Iterative & Incremental approach, more details about the 
environment and resources may appear afterwards and may introduce too much detail to the domain 
model). Second, behavioral aspects of the environment and resources where yet never specified (e.g. 
the behavior of a certain resource over time, or how it interacts with other resources and with the 
environment).  
 
Possible artifacts of this step 
UML Class Diagrams will allow for that detailed structural specification and UML behavioral 
diagrams will allow for specifying those behavioral aspects of the environment and resources that 
were not yet captured. An example of specifying the behavior of a resource could be to develop a 
UML Activity Diagram, much like those developed for agents, that determines how the resource 
behaves at each time step (e.g. how does certain crop grows over time). An example of environment 
behavior could be to develop a State-Transition Diagram for modeling the different stages of grass 
over time. 

 

General Step 14: Specify Agent-Environment Interaction Mechanism 

Discussion about considering this step 
Even though it is possible to determine the interaction between agents and the environment as a 
separate step (as this general step suggests) it is just another kind of agent interaction. Considering 
them as separate steps (agent-agent interaction in one step, and agent-environment interaction on 
another step) may complicate the simulation and it would give benefits only for the case where each 
of these interactions is complex. Therefore these two steps will be performed simultaneously. This 
means to specify agent-environment interaction at the same time with agent-agent interaction. This is 
why this step will not be considered by itself but as part of either “Identify Roles and Agent Types” or 
“Define Agent Interaction”. 

 

General Step 15: Instantiate Agent Classes 

Discussion about considering this step 
This step involves determining how many agent instances will be needed for each agent type . This is 
indeed necessary for agro-ecosystem simulations but as part of the initial configuration of the 
simulation, which will evolve over time. There are also a number of other elements to initialize, so this 
step will not be considered by itself but as part of a new step that will come from simulation 
requirements (later discussed in Section 4.4). 
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General Step 16: Specify Agent Instances Deployment 

Discussion about considering this step 
Since the entire agro-ecosystem simulation will be run in only one computer, there is no need to 
consider physical distribution or deployment. Therefore this step will not be considered. 

 
Table 5 summarizes the results of this section: 
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 General AOSE Steps Selected Steps Artifacts for Selected Steps 
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1. Identify system functionality 1. Identify System Purpose Text Document: including system objective, questions that the system should answer, identification of 
stakeholders, target population, and modelers. 

2. Identify roles 2. Identify Roles and Agent 
Types 

Text Document: for role‘s identification and description. 

Text Document: for identifying agent types and their relation to roles. 

UML Activity Diagrams: for agent type‘s behavior specification 
3. Identify agent classes 

4. Model domain 
conceptualization 

3. Model Domain 
Conceptualization 

UML Class Diagram: for modeling the domain‘s main concepts. 
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5. Specify acquaintances 
between agent classes 

No. This is either included in “2. Identify Roles and Agent Types” or in “3. Model Domain Conceptualization” 

6. Define interaction protocols 4. Define Agent Interaction UML Sequence Diagrams: for representing the interactions between agents and between agents and the 
environment. 

7. Define content of exchanged 
messages 
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8. Specify agent architecture 5. Agent Architecture and 
Design 

UML Class Diagram: for architecting and designing the internal structure of each agent type. 

UML Behavioral Diagrams: for specifying internal communications between objects (if necessary) 

9. Define agent mental attitudes No. If mental attitudes are to be considered for certain agent type (e.g. because a deliberative architecture is chosen) then these attitudes will be defined in 
the previous step. 

10. Define agent behavioral 
interface 

No. Interfaces between agents and with the environment will be the only ones and are specified in “4. Define Agent Interaction” and “6. Model 
Environment and Resources” respectively. 
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11. Specify system architecture No. The overview of components and connections is already given by the context of agro-ecosystem simulations. 

12. Specify organizational 
structure/inter-agent social 
relationships 

No. Agro-ecosystem simulations are not driven by organizational metaphors. This step is either included in “2. Identify Roles and Agent Types” or in 
“4. Define Agent Interaction”. 

13. Model MAS environment 6. Model Environment and 
Resources 

UML Class Diagram: for further modeling structural aspects of the environment and resources. 

UML Behavioral Diagrams: for modeling functional (behavioral) aspects of the environment and resources. 

14. Specify agent-environment 
interaction mechanism 

No. This step is either included in “2. Identify Roles and Agent Types” or in “4. Define Agent Interaction”. 

15. Instantiate agent classes No. This step is part of the initial configuration of the simulation. 

16. Specify agent instances 
deployment 

No. There is no interest in physical distribution of agent types. 
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Even though this new set of steps covers the overall requirements stated in Section 4.2, there is 
still one that has not been met: simulation capabilities. This stated that agents, resources and 
environment should be placed into simulation runs, and this would imply such things as determining 
the time step of the simulation, what to do at every time step, the initial state of the system, input 
parameters that feed each simulation step, and output visualization.  

The following section proposes which new steps could be added to the methodological 
framework in order to take the simulation requirements into account. 

 

4.4 New Steps  

This section introduces which steps could be added to the previous selected steps in order to have a 
methodological framework for developing agro-ecosystem simulations. For each new proposed step, a 
brief description will be given as well as the information that this step should generate and possible 
artifacts, similarly to Section 4.3. 

 
 

New Step: Simulation Configuration 

Description of this step 

The aim of this step is to define those fundamental elements that will enable a simulation to be run. 
Since the simulation will be done by a simulation framework, it will need precise definitions for the 
initial state, input parameters, time step, etc. It is important to note that in order to properly perform 
this step, many elements should already have been defined (e.g. it would be impossible to state how 
the initial configuration would look like if no agents were yet defined). Also, besides the need for 
certain preceding elements, some of the information in this step may already be defined, like the case 
of the Time Step Definition or Task Scheduling. This may be because that information could have been 
needed for making decisions earlier in the development, and as stated in Section 4.1 the 
methodological framework proposes an Iterative & Incremental approach. If that is the case, then that 
already defined information must only be recorded here. 

 
What information should be generated in this step? 
This step should define the following information: 

 Initial Configuration: a simulation needs some starting point over which all the already-
developed models and artifacts will act upon. This is called the initial configuration and 
determines the state of the simulation at time zero. The main elements to be determined are 
the initial number of agent instances (for each agent type), the distribution of these over the 
environment, the initial volume of resources and their location, among others. This 
information heavily depends on the actual reality (domain) being simulated. 

 Time Step Definition: states how much time is considered to pass between two time steps (so 
called ―step granularity‖). The state of the simulation will change only at these time steps. 
Since these simulations are time-stepped the real-world meaning of passing one time step 
must be determined. This may impact on, for example, the decision-making of agents since 
agent behavior will probably not be the same if a time step represents one day or one year.  

 Task Scheduling: in previous steps several elements (e.g. agents and resources) were 
assigned certain behavior (e.g. for decision-making and for evolution, respectively). This 
behavior is supposed to be called upon the simulation at every time step, in order to give each 
individual element (e.g. agent instance or resources instance) the chance to do something. 
What remains yet undetermined is the relative order in which these calls should be made. 
That is: at each time step the simulation should call agents to decide what to do and resources 
to evolve, but in what order? Is it the same to first have the agents make decisions and then let 
the resources to evolve? Or the other way around? And if the first scheduling is taken (first 
the agents and then the resources), are the agents randomly chosen to act or the order between 
them is important? Task scheduling means defining the order in which actions will occur at 
every time step of the simulation.  

 Input Parameters: input parameters can be divided into two groups: static or dynamic. Static 
input parameters are those that will be fixed for the entire simulation period, so they 
represent data that is external to the various elements being modeled, although this is 
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assumed to remain constant over time (e.g. an interest rate). Dynamic input parameters are 
those that can vary within the simulation period, so they represent data that is external but 
that may change over time (e.g. seed prices varying in each season). Within the latter, two 
more subgroups can be defined: those that vary independently from the simulation results 
(e.g. international oil price that is independent from agent-decision at local scale12) and those 
whose value is (partially) determined by certain simulation results (e.g. certain crop whose 
price depends –among other factors- on the amount of product being produced in the 
simulation run). These possibilities finally lead to input parameters that can have the shape of 
constant values (e.g. 90) or functions (e.g. wheat_price(t)). Another aspect that is relevant to 
input parameters is where to take the values from. Two possibilities can be considered: a) to 
take historical values from the real world and b) to generate random values. Finally, it is 
important to note that input parameters are the main way to represent external elements of 
the system being modeled, and since no system can be completely isolated from its 
surroundings, input parameters may play a crucial role.  

 

Possible artifacts of this step 

Even though this step concerns several pieces of information which are crucial for the simulation, all 
of these will appear directly on the code, or if necessary may be properly described in text documents 
without the need of any special representation. Henceforth, further details about artifacts are not 
necessary. The only information that may take advantage of a tool such as UML is Task Scheduling. 
UML Sequence Diagrams capture the behavior of certain scenario [Fowler, 2003], so they are 
particularly useful for specifying the order in which things happen at every time step.  

 
New Step: Simulation Output 

Description of this step 
Up to this point there is no way the simulation may answer any of the questions stated in the first 
step, therefore it will fail to achieve its objective. The reason is that there is no output coming out of 
the simulation. Thus, this step involves defining the output that the simulation should yield, as well as 
the way in which it should be visualized by users. 

 

What information should be generated in this step? 
This step should define the following information: 

 Output: at this point, this output could be viewed as the analogous to the input parameters, in 
order to monitor what is actually happening inside the simulation, to see how certain key 
aspects are evolving (e.g. how many agents are dying or how much of a certain resource is left 
at every time step).  

 Visualization: in relation to the output it is very useful to have some way of visually 
presenting results, values, and outputs to the user that is running the simulation (e.g. graphs). 
Besides output parameters, the environment can be shown in two or three-dimensional grids 
along with resources and agents. For example, resource levels can be graphically represented 
by a color scheme (red indicating low levels and green high levels), and agents can be viewed 
as they move along the cells of the grid. The way in which the simulation will show its results 
and current state is related to the user that will be running it: the more technical the user, the 
less visual representations he/she may need to correctly understand (and interpret) the 
results. However, the less technical the user, the more relevant the visual representations 
become.  
 

Possible artifacts of this step 

Similarly to what happened in the previous step, there is not much need for extra artifacts other than 
the source code itself (usually already done by the simulation framework) and, if necessary, 
explanatory text documents. 
 
Figure 8 summarizes several of the concepts introduced in the previous two steps. It shows the change 
in the state of the simulation and which concepts influence it: 

                                                 
12 These are also called ―forcing variables‖ or ―time-series input variables‖. 
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Figure 8: Schematic representation of the simulation  
concepts involved in a simulation run. 

 
The previous (eight) steps build up the methodological framework for developing agro-ecosystem 

simulations. The following (two) steps are not the focus of this thesis and their introduction is merely 
for the sake of putting the previous ones in the context hence their detailed description is beyond the 
scope of this thesis.  

 
New Step: Implementation 

After completing each and every one of the previous steps, there should be enough information and 
models in order to start their implementation into a programming language. Either using an already 
existing simulation framework software package (as it is recommended in this thesis in order to write 
less code), or starting coding from zero without the help of these frameworks, the developer should 
have enough elements (as well as enough understanding of the problem) to start coding.  

 
New Step: Simulation Run and Sensitivity Analysis 

This step involves gathering all the necessary data for allowing the simulation to be run and to 
perform some explorations about how the output of the simulation is affected when certain elements 
are changed. This is known as sensitivity analysis13.  

Data gathering is related to input parameters, since these may need historical real-world data for 
dynamic parameters (e.g. evolution of certain price over time taken from real-world databases) or the 
definition of single-value static parameters (e.g. determine the price of oil that will be used for the 
entire simulation). This may also involve importing large amounts of data from spreadsheets or 
databases, so these aspects should be considered carefully, not only because of the possible technical 
difficulties that may arise14, but also because a correct definition of input values determines the output 
of the simulation. 

Sensitivity analysis aims at showing how the outputs of the simulation are susceptible to its 
inputs, or if a more white-box approach is made, susceptible to the decisions the developer makes (e.g. 
in the form of UML models).  

If a black-box approach is taken, simulation outputs will only be analyzed for sensitivity against 
input parameters. This means, for example, how does certain resource level (like grass height) 
depends on certain input parameter (like sun radiation). These analysis help not only in finding 
potential errors but also to better understand the relationships between inputs and outputs, and 
considering the importance of relationships in complex systems, this becomes particularly relevant. 
Several methods exist for analyzing the sensitivity of certain output parameters in terms of several 
input parameters, either by changing one input parameter at a time (which assumes no 

                                                 
13

 "New modelers often see building a model as their main task, but analyzing a model is every bit as essential as building it 
[…]. Analyzing a model means doing research on a model to learn about its behavior and to learn about the system the model 
represents. Objectives of this research typically include verifying that the software does what we want it to, finding good 
model structures and theory for individual traits, finding good parameter values, and finally solving the problems we design 
the model for in the first place and learning something about ecosystems." [Grimm & Railsback, 2005]. 
14 Like obtaining data from Microsoft Excel files or connecting to certain DBMS (database management system). 
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interrelationship between them) or by simultaneously changing several. Further details are out of the 
scope of this thesis. 

If a white-box approach is taken, simulation outputs will be analyzed against the very internal 
decisions the software is making. For example: how does the production of certain resource (e.g. 
volume of wheat harvested) depends on certain agent‘s decision (e.g. either apply fertilizers or not)? 
This may lead to analyzing the output of the simulation considering the agent‘s decision (e.g. fertilize) 
and then without considering it (e.g. not fertilize). If this decision was already built in, for example, 
the UML Activity Diagram that represents the agent‘s decision making, then this diagram should be 
changed in order to analyze its impact on the output parameter. Since this involves knowing how the 
simulation works internally (and changing it) it is considered as a white-box approach.  

Finally, both (input parameters, data-gathering and sensitivity analysis) strongly depend on the 
objectives of the simulation and on the questions it is supposed to answer. If for example, one of the 
key questions is ―Examine the relationship between oil prices and producer‘s debt‖, then the focus of 
data gathering should be obtaining precise real-world historical values of oil prices (or thoughtfully 
determine some way of estimating it for the future) and the focus of sensitivity analysis should be in 
changing oil prices and exploring its impact on producers going in debt (black-box approach), and 
possibly also analyzing how and when producers go in debt (white-box approach). 

 

4.5 Final Remarks 

Table 6 summarizes all the steps of the proposed methodological framework discussed in this 
chapter. 

These ten steps, six of which were taken from the 16 general-purpose AOSE steps (Section 4.3) 
and four added later (Section 4.4), have the overall aim of assisting in developing software that 
represents a MAS simulation, whose requirements where established in Section 4.2.  

Since agro-ecosystems are a kind of complex system (Section 2.2.2) and these can be modeled 
using the ABM approach (Section 2.4), it naturally follows that an agro-ecosystem can be modeled 
and simulated using an ABM approach, and particularly following the methodological framework 
introduced in this chapter.  

Nevertheless, there are quite specific agro-ecosystem features that are worth analyzing, such as 
how they could be represented, modeled and simulated by this methodological framework. This is the 
aim of the following chapter. 
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Proposed Step Aim of the Step Artifacts 

1. Identify System  
 Purpose 

Define the purpose of the 
simulation, including its 
objective and questions to be 
answered. 

Text Document including the purpose of the 
simulation, an overview of the context in which the 
simulation will be developed, including why the 
simulation will be developed and what will be 
expected from it. 

2. Identify Roles and  
 Agent Types 

Identify agent types and roles, 
especially agent behavior. 

Text Documents for role‘s identification and 
description and for identifying agent types and their 
relation to roles; UML Activity Diagrams for agent 
type‘s behavior specification. 

3. Model Domain  
 Conceptualization 

Depict the structure of the 
problem, including entities 
and relationships. 

UML Class Diagram for modeling main concepts, 
including those mentioned in steps 2 and 6. 

4. Define Agent  
 Interaction 

Determine when, how and 
what the different agents will 
communicate. 

UML Sequence Diagrams for modeling interactions. 

5. Agent Architecture  
 and Design 

Define internal agent design 
(structure and behavior) in 
order to fulfill its 
perceive/reason/act cycle, 
within a simulation 
framework software package. 

UML Class Diagram for designing the internal 
structure of each agent type; and UML Behavioral 
Diagrams for designing the internal behavior of each 
agent type. 

6. Model 
Environment    
 and Resources 

Determine behavioral aspects 
(evolution) of resources and 
environment, and completing 
structural aspects. 

UML Class Diagrams for further modeling structural 
aspects of the environment and resources; and UML 
Behavioral Diagrams for modeling functional 
(behavioral) aspects of the environment and resources. 

7. Simulation  
 Configuration 

Define those fundamental 
elements that will enable a 
simulation to be run. 

Source Code and explanatory text documents (if 
needed) for documenting the configuration and UML 
Sequence Diagram for tasks scheduling. 

8. Simulation Output Define the output that the 
simulation will produce along 
with its visual representation. 

Source Code and explanatory text documents (if 
needed). 

9. Implementation Codify the simulation. Source Code. 

10. Simulation Run &  
 Sensitivity Anal. 

Answer the simulation‘s 
objectives and questions. 

Text Documents with the conclusions. 

 
Table 6: Summary of the steps that compose the proposed methodological framework. 
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5 Agro-ecosystems’ Features Supported by the 
Proposed Methodological Framework 

This chapter presents those features that characterize an agro-ecosystem and shows how they are 
supported by the methodological framework proposed in the previous chapter (see Figure 9). The 
objective is to show that this methodological framework can successfully represent them with the 
available steps and artifacts, leaving no relevant agro-ecosystem feature uncovered. The features 
presented were introduced in Section 2.2.1.  

Some of the features that are presented in this chapter are often outside the boundaries of an 
agro-ecosystem. Nevertheless they are relevant because they affect it in some way that is of interest, 
but since they do not belong to the agro-ecosystem they will not be explicitly modeled (i.e. there will 
not be artifacts representing them). They will be considered mainly as restrictions in the inputs to the 
agro-ecosystem (more details are given in their corresponding sections within this chapter).   

First, natural, human, capital and production resources-related features are shown to be 
supported (Sections 5.1 to 5.4). Afterwards other features are mapped into various steps and artifacts 
of the proposed methodological framework (Section 5.5). Finally, this chapter ends with some 
concluding remarks (Section 5.6). 

 

Climate

Org. of 
Farmers

Natural 
Processes

Farmers

Market 
Prices

Money, 
Savings, 

Loans

Land Plots

Water

Vegetation

Crops Livestock

Goods & 
Services

Landscape

Agro-ecosystem

Government

 

Figure 9: Schematic representation of relevant agro-ecosystem features. 

5.1 Natural Resources Related Features 

Natural resources are the given elements of land, soil fertility, water, climate and vegetation that are 
exploited by the farmer. All of these constitute crucial features that agro-ecosystems present that must 
be supported. The following sections first introduce the feature and then show how it can be mapped 
into the methodological framework in terms of its steps and artifacts. 

Feature: Land 

The space over which farmers live, crops grow and animals feed. Land can be divided into plots, and 
vicinity may be important. It can be modeled either into two or three dimensions, mainly depending 
on the topography (slopes, geographical accidents, elevations, etc.), and its relevance in the system 
under study.  
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Mapping to Methodological Framework 

This feature is fundamentally supported by the concept of cellular automata (introduced in Appendix 

A) so it is an inherent part of the MAS approach. Also the land, along with water and climate, are 
natural candidates to be considered as components of the environment as introduced in Section 4.2 
(―environment is what surrounds the agent, where the agent is located‖). Regarding the 
methodological framework, the step ―Model Domain Conceptualization‖ proposes to identify those 
concepts that are most relevant for the domain and explicitly addresses the case of the environment. 
The Domain Model can represent ‗plots‘ which can be thought of as land components, providing more 
flexibility by decomposing the land in several elements. About each plot, it can model its location (e.g. 
by coordinates), its vicinity (e.g. by associations with neighboring plots) as well as the relation 
between agents and plots (e.g. representing ownership) and between plots and resources (e.g. 
representing which resources are hosted in which plots). Plots allow for an easy geographical 
representation of land, where each plot is represented by a cell in a grid that can be shown to the user. 
Even depending on the objective of the simulation and the capabilities of the simulation framework 
software package being used, plots can be related to GIS (Geographical Information Systems) in order 
to visualize a real-world map instead of an abstract grid. Also depending on these capabilities, 2D and 
3D grids of cells can be manipulated.  

Feature: Water 

Any form of water is generally so important to the agro-ecosystem that representing it is often 
necessary. It may be a river, a lake, or the ground water, but also the ―water reservoir‖ due to the 
small pores of the soil that serve at supplying water to plants and other organisms during the rain-less 
period. The geographical relation to the land can also be of interest (e.g. how land plots determine 
access to water resources).  

Mapping to Methodological Framework 

Water can be represented as cells in a grid, so the problem is reduced to map a special kind of plot, 
which was discussed above. For more sophisticated models, water may be a soil property or even a 
water reservoir entity with its own complex dynamics. 

Feature: Climate 

Since weather directly affects an agro-ecosystem, elements such as rain, temperature, moisture or 
climatic events may be considered. 

Mapping to Methodological Framework 

Even though important, climate is not to be modeled within an agro-ecosystem simulation, but is to be 
considered as an input. The main reason for not modeling climate is simply because it is out of the 
agro-ecosystem limits. The first step added called ―Simulation Configuration‖ allows to define which 
input parameters are to be used during each time step of the simulation, so it should consider climate 
information in it.  

Feature: Native Vegetation 

This is usually native vegetation already present in the land. As crop vegetation (cocoa trees, pasture, 
corn, etc.) is a key element of agro-ecosystems, it is described separately (see Section 5.4). 

Mapping to Methodological Framework 

Native vegetation can be represented jointly with land plots since it will grow over them. It is worth 
noting that crops are not considered vegetation but production resources.  

5.2 Human Resources Related Features 

As introduced in Section 2.2.1, human resources are the people who live and work within the farm 
and use its resources for agricultural production. This can be further analyzed by considering not only 
farmers which are the primary human resource, but also by considering different kinds of farmers 
(and leveraging the MAS approach that enables heterogeneous agents) as well as organizations of 
farmers or manpower labor forces. 
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Feature: Farmers  

Since humans are what determine an agro-ecosystem, they must be represented. Even when different 
kinds of actors can be present, farmers are the ones that will always be present. Others (such as local 
authorities) can also be considered if it is important to include them as part of the system or, on the 
contrary, they can be considered out of the boundaries of the system and be indirectly represented by, 
for example, constraints on certain system elements (such as water availability because of local 
authority regulation). What should be modeled is the farmer‘s behavior, which makes them what they 
are. Labor availability is often another important factor related to human resources (e.g. how many 
healthy adults compose each family and their working capacity, for example, in hours per week). 
Even when considering only one kind of actor (farmers) it is rarely the case that they are so 
homogenous that can be lumped altogether. That‘s why different categories of farmers allow a much 
richer representation of reality, and since MAS specifically allows the interaction of heterogeneous 
agents, this gives much more richness to the model.  

Mapping to Methodological Framework 

Despite the importance of this feature in the real world, the aim is not to model and simulate 
individual real world farmers, but instances of types of farmers. This implies that first it is necessary 
to categorize the different kinds of farmers that are present in the system under study. In other words, 
the modeler must first identify and model a typology of farmers, in order to then populate the 
simulation with several instances of each type of farmer. To this aim, the proposed methodology 
includes the following steps:  

 ―Identify Roles and Agent Types‖: this step involves identifying the different roles the agents 
may play as well as the typology and the relations between roles and agent types. An 
important part of this step is to define the behavior of each agent type at each time step with 
UML Activity Diagrams.  

 ―Domain Model Conceptualization‖: this step builds a UML Class Diagram that not only helps in 
visually representing each agent type but also captures their structural aspects, like their 
attributes and relationships with other agent types, resources and environment. 

 ―Define Agent Interaction‖: this step captures the way in which the different agent types 
communicate with each other, including communication protocols and speech acts if 
necessary with UML Sequence Diagrams. 

Feature: Organizations of Farmers 

Along with the possibility to distinguish different kinds of farmers, it is often the case that farmers 
organize themselves. This implies a special kind of communication between those individuals that 
belong to the organization, differentiating them from those that do not.  

Mapping to Methodological Framework 

As a new agent type that is related to its members (which are other agent types). This involves a new 
concept in the ―Model Domain Conceptualization‖ step with associations (aggregations) to its members 
in order to determine whether an agent instance is organized or not, and if it is, with whom. If 
belonging to an organization implies certain behavior in its members, then new roles can be defined 
for them in the ―Identify Roles and Agent Types‖ step and agents should be able to change their behavior 
when playing this new role. Finally, if new forms of communication are introduced because of the 
organization, then it should be specified in the ―Define Agent Interaction‖ step. 

5.3 Capital Resources Related Features 

These are goods and services created, purchased, or borrowed by the people associated with the farm 
to facilitate their exploitation of natural resources for agricultural production. 

Feature: Goods and Services Consumed by Farmers 

These are generally of two kinds: those which are used as inputs for production (like fertilizers and 
machinery), and those which are used as family consumption (like the electricity bill, health care or a 
new car). The former has to do with production resources while the latter with farmers‘ livelihood, 
needs and expectations. 
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Mapping to Methodological Framework 

If any of these features are relevant concepts of the system as a whole, they should appear in the 
“Domain Model Conceptualization” step. Since they refer to consumption, which is simulated at each 
time step, they could also be modeled as part of each agent type behavior (therefore within UML 
Activity Diagrams of step ―Identify Roles and Agent Types‖). It is also generally the case that these 
goods and services have a cost that is not fixed for all time steps, so input parameters may also be 
needed (e.g. the cost of irrigation may be dependent on climate conditions modeled as input 
parameters), which are defined in the ―Simulation Configuration‖ step.  

Feature: Money, Savings, and Loans 

Financial issues can take the form of savings, loans took by the farmers or farmers‘ organizations, the 
money that currently the farmer has on his/her pocket, the interest rate over a loan, etc. Variations on 
these elements are usually the result of production activities and family consumption, but also 
farmer‘s decisions. This feature is also commonly an important output parameter to monitor. 

Mapping to Methodological Framework 

The concepts involved in this feature may be divided into two: the activities that led to an 
increase/decrease (e.g. buying or selling) and the quantities (e.g. current amount of money the farmer 
has or how much debt he/she owes). The former can be modeled in the behavior of the farmer 
(―Identify Roles and Agent Types‖), and the latter as an attribute in the “Domain Model Conceptualization” 
(e.g. an attribute ‗current_money‘ in the concept ‗Farmer‘). If, on the other hand, it is relevant to keep 
track of the evolution of certain quantity and not only its effect over the current amount (e.g. to know 
each time the farmer took a loan) then it could appear as a separate concept (e.g. ‗Loan‘) in the 
Domain Model. Regarding the need for monitoring this quantities (e.g. to know how the current 
balance of each farmer), the step ―Simulation Configuration‖ allows for defining the output parameters 
that will be monitored at each time step. 

5.4 Production Resources Related Features 

These refer to the agricultural output of the farm, which becomes capital resources when sold, and 
residues (crops, manure) are nutrient inputs reinvested in the system. Even though the production 
resources may be diverse, when focusing on agro-ecosystems and farms the two that appear as central 
are crops and livestock.  

Feature: Crops & Livestock 

At the heart of any farm or productive unit there will be crops and/or livestock. These are what 
determine that the production process must take place over the land and not inside an industrial 
compound, making farmers live in a farm and not in a city. They are the center of the agro-ecosystem 
(together with farmers) since inputs are used by them, outputs are generated (including the money 
that results from commercializing them), behaviors and expectations largely affect them (through 
management practices) and their evolution over time may determine aspects like soil and water 
quality and natural processes. 

Mapping to Methodological Framework 

The mapping of these features is to model them as resources in the ―Model Environment and Resources‖ 
step. They can either be associated to a certain land plot (as in the case of crops or farm animals), or 
not (livestock as a global not located quantity of animals). If a resource presents certain dynamics, 
these may be expressed in UML Activity Diagrams, much like the behavior of agents, but applied to 
resources. Since they are very relevant, they would also be (structurally) modeled in the ―Domain 
Model Conceptualization‖. In order to initialize the simulation, the step ―Simulation Configuration‖ 
would need to define the initial configuration of these resources (e.g. how many crops and crop types 
are present, and where), as well as define any relationship with input parameters, or if any monitoring 
is needed for them (output parameters). 
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5.5 Other Features 

Also mentioned in Section 2.2.1, the following elements usually appear as a requirement when 
modeling agro-ecosystems. 

Feature: Natural Processes 

On the other end of the scale (compared to landscape) natural processes may be important in certain 
agro-ecosystem problems since they affect crops and livestock and are affected by weather and 
management practices. Examples of natural processes include organic matter evolution (how the 
organic matter of the soil evolve over time), and erosion (how much soil is lost due to rain or lack of 
cover plants). These processes are part of the biophysical subsystem.  

Mapping to Methodological Framework 

Since natural processes are not resources in themselves, but are closely related to them, it is useful to 
conceive both at the same time in the ―Model Environment and Resources‖ step. Natural processes may 
be modeled by UML Activity Diagrams and be run at each time step, and the activities involved in 
this diagram will affect its related resources. As the ―Crops & Livestock Feature‖ discussed before, 
resources may present certain dynamics to be run at each time step, so it should be clearly defined 
whether these dynamics actually represent natural processes or if they are only concerned with the 
resource itself. This implies that natural processes may be explicitly modeled as another feature of the 
agro-ecosystem, or implicitly considered when modeling resources. It may also be the case that the 
land itself presents certain dynamics of a natural process (e.g. organic matter evolution), and this 
could also be defined in the ―Model Environment and Resources‖ step. 

Feature: Landscape 

Landscape represents the high level result of the interactions of all the previous features, and 
depending on the scale over which the modeler is to work, it can be of interest to have a certain view 
of it. Farmers can also be localized (geo-referenced) over the landscape, and patterns can be 
discovered as an emergent property of lower level interactions. 

Mapping to Methodological Framework 

The initial landscape can be determined by the modeler in the initial configuration, for example by 
determining how many plots are used for agriculture and how many for livestock. After the first time 
step occurs, leaving the initial configuration behind, the landscape will be the result of the interactions 
between the various components of the simulation, so rather than considering it an output of the 
simulation it should be considered as an outcome of it. This outcome should be easily viewable for 
example in a two-dimensional grid, where for each land cover a different color is assigned (using the 
corresponding visualization tool).  

Feature: Market Prices and Evolution 

Markets are always involved when commercializing goods and services. This could imply, for 
example, to know (and maybe keep track of) prices of crops and livestock.  

Mapping to Methodological Framework 

Since it is generally the case that the price over which production resources are sold is not controlled 
nor determined by the system under study, prices are considered as an external input to the 
simulation, determined in the ―Simulation Configuration‖ step. In relation to this feature, although not 
considered as market price nor evolution, the cost of production of a farmer can be important, for 
example for determining farmer‘s profit (which is a commonly used output parameter), and can be 
defined as an attribute of each farmer in the ―Domain Model Conceptualization‖ step. 

Feature: Government Policies 

Government decisions may greatly affect agro-ecosystems. Examples of this could be the increase of a 
certain tax over crop exports, or local authorities fostering new ways of farmers‘ organizations. The 
impact that government decisions/policies have over the system are generally so important that it is 
of interest to take them into account. 
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Mapping to Methodological Framework 

This feature is not directly modeled into the simulation. This means there is no government agent 
type, because it is assumed that the government is outside the boundaries of the system under study. 
The interest will therefore be to compare the evolution of the simulation with and without the 
introduction of certain government policy. This requires modifying the simulation in order to take 
them into account. The modifications can range between changing input parameter values (e.g. 
because of an increase in taxes) and changing the behavior of agents (e.g. by introducing new ways of 
associations of farmers). These changes will then lead to the exploration of different scenarios 
(prospection). 

 

5.6 Final Remarks  

Table 7 summarizes the previous agro-ecosystem features and their corresponding representation 
under the methodological framework. 

 
 Feature Represented in step As 

N
a

tu
ra

l 
 

R
e

so
u

rc
e

s 

Land Plots 
Model Domain 
Conceptualization 

Environment concepts in the UML Class Diagram 

Water A special kind of Land Plot 

Climate 
Simulation 
Configuration 

Input parameters and Text Documents (if needed) 

Vegetation 
Model Domain 
Conceptualization 

Attributes of the Land Plot concepts or as 
environment concepts by themselves in the UML 
Class Diagram  

H
u

m
a

n
  

R
e

so
u

rc
e

s 

Farmers‘ Types 

Model Domain 
Conceptualization 

Agent concepts in the UML Class Diagram  

Identify Roles & Agent 
Types 

Text Document for role‘s identification and 
description and UML Activity Diagrams for behavior 

Define Agent 
Interaction 

UML Sequence Diagrams for agent-agent interaction 

Organizations 
of Farmers 

A special kind of Farmer Type 

C
a

p
it

a
l 

 

R
e

so
u

rc
e

s Goods & 
Services 

Model Domain 
Conceptualization 

Resource concepts in the UML Class Diagram  

Identify Roles & Agent 
Types 

Actions in the UML Activity Diagram that correspond 
to those agent types that consume them. 

Money, Savings 
& Loans 

The same as Goods & Services. 

P
ro

d
. 

R
e

s.
 

Crops & 
Livestock 

Model Domain 
Conceptualization 

Resource concepts in the UML Class Diagram  

Model Environment & 
Resources 

Resources 

O
th

e
r 

 

F
e

a
tu

re
s 

Natural 
Processes 

Model Environment & 
Resources 

UML Activity Diagrams  

Landscape The aggregation of all Land Plots 

Market Prices 
& Evolution 

Simulation 
Configuration 

Input parameters and Text Documents (if needed) 

Government 
Policies 

Involves changing the simulation models or input parameters and re-running 
them 

 
Table 7: Summary of agro-ecosystem features and their correspondence within the proposed 

methodological framework, including which step and which artifact. 

 
This chapter presented the most common features that compose an agro-ecosystem and how they 
could be supported by the methodological framework. As a conclusion of this chapter, the 
methodological framework indeed gives support to all of these features. 

The discussions in this chapter were given in a very general level, not giving any details on 
exactly how the steps and artifacts represent each feature. Therefore, the following chapter applies the 
methodological framework to a real-world case study. 
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6 Applying the Proposed Methodological 
Framework to a Case Study 

The primary objective of this chapter is to have a first (but not full) validation of the methodological 
framework presented in this thesis by applying it to a relevant real-world problem.  

Not necessarily all the artifacts are going to be needed to successfully develop this case study, 
since the methodological framework was not tailor-made to it, but to agro-ecosystems in general.  

A secondary objective of this chapter is to show examples of real-world agro-ecosystems‘ 
problems and how they were modeled and represented by the different artifacts contained in the 
proposed methodological framework. 

As stated in Chapter 1, the objective of this thesis is not to precisely define a complete and 
comprehensive software development methodology, but to define a methodological framework for 
agro-ecosystem simulations. Nevertheless, this chapter needs a specific order of steps to be followed 
to show how the methodological framework can be applied. This is why the steps presented in 
Chapter 4 are here precisely sequenced, as shown in Figure 10. This doesn‘t mean that the steps 
should always be ordered this way. 

 

 

Figure 10: A possible order in which to follow the methodological framework.  
This order is followed for the case study. 

 

This chapter starts with an introduction and motivation of the case study (Section 6.1), which is 
followed by the documentation of the steps of the proposed methodological framework (Sections 6.2 
to 6.11), and ends with the most important conclusions of applying this methodology (Section 6.12). 

This chapter assumes no previous knowledge in the field of agro-ecosystems, and particularly no 
knowledge of cattle-breeding farmers, which are the target population of the case study. Therefore 
descriptions or definitions could be given when considered necessary for understanding. 
Nevertheless, a Glossary is given in Appendix C. 
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6.1 Case Study Introduction 

The case study presented in this chapter is a simplified version of a MAS model developed for a 
research project titled ―Development, validation and evaluation of a modeling and simulation 
participatory methodology that contributes in the understanding and communication of the draught 
phenomena, and improves the adaptation capacity of livestock farmers in the basalt‖15.  

This is a two-year project (2009-2010) financed by Instituto Nacional de Investigación 
Agropecuaria [INIA, 2010] and executed by Instituto Plan Agropecuario [IPA, 2010]. The former is an 
institution that develops and fosters agricultural research nation-wide and whose mission is ―to 
contribute to the development of farmers and the entire agricultural sector‖ of Uruguay. The latter is an 
institution that mainly develops agricultural extension (to farmers) focused on livestock farmers and 
livestock production, and whose mission is ―to contribute to the sustainable and innovative development of 
livestock production and farmers, mainly small and medium size farmers, in order to improve their financial, 
family and human situations through training, extension, information and inter-institutional articulation‖.  

The research project was motivated due to severe draughts that affected the region (North 
Uruguay) in the last century, namely in 1916/17, 1942/43, 1964/65, 1988/89, 2005/06, among others. 
The severity of these jeopardizes farm sustainability in all of its three dimensions: economically 
(because of the loss of income and competitiveness), ecologically (because of cattle mortality and 
possible loss of grass variety), and socially (because of bankruptcy, emigration to cities and even 
suicides).  

Also, the IPA team at North Uruguay knew that there was certain knowledge among farmers on 
how to adapt to these extreme situations. Moreover, some of this knowledge could be regarded as true 
adaptation strategies, but it was unclear about how they worked exactly, and which one was better.  

This also evidenced the need for new methodological tools for the IPA team to work with, which 
also facilitate communication of these strategies (among farmers, but also between agronomists and 
farmers).  

Finally, even though a draught is never good, the situation at North Uruguay makes it worse 
because of its basalt soils. This means that soils are very superficial (sometimes having only a few 
centimeters depth), and with basalt rock underneath them (therefore the name of the region). Because 
of this, the draught appears much more rapidly than in deeper soils, and its effect extends for much 
longer. Figures 11 and 12 show examples of this effect over the soil and cattle. 

Moreover, producers of this region cannot simply change to a different production activity, since 
the basalt soils are very poor and unproductive, making them not suitable for other agricultural 
productions (like soybean or rice).  

The research project‘s general objective is ―to contribute to the sustainability of basalt-soil 
livestock farmers‖ and its specific objective is ―to evaluate a modeling and simulation participatory 
methodology for improving the understanding and communication of livestock farmer‘s adaptation 
strategies under draught phenomena‖. 

This is one of the research projects in which the author of this thesis has worked as modeler. 
  

                                                 
15 The project‘s description can be found here: 
http://www.inia.org.uy/busqueda/proy_detalle.phtml?id=186&origen=1 

http://www.inia.org.uy/busqueda/proy_detalle.phtml?id=186&origen=1
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Figure 11: Cattle trying to feed during the 2005/06 draught (picture taken by IPA). 

 
 

 

Figure 12: A cow during the 2005/06 draught (picture taken by IPA). 

 
The following sections develop this case study and correspond to those steps presented in Figure 10. 
They include the corresponding artifacts needed at each step. 

6.2 Step 1: Identify System Purpose 

The aim of this step is to define the purpose of the simulation, including its objective and questions to 
be answered. It contains just one artifact, a text document:  
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Document: System Purpose 
 
System name:  

The name of the simulation model to be built is “Basalt Draught”. 
 
Context: 

Several draughts have been suffered in Uruguay in the last century, especially affecting the 
Northern Uruguayan region, because of the presence of basalt-soils. These are very thin and are 
settled over basalt rock, so the draught phenomenon appears earlier, and it is suffered longer. This 
threatens livestock farmers‘ sustainability in all of its three dimensions: economically (because of the 
loss of competitiveness), ecologically (because of cattle mortality and possible loss of grass variety) 
and socially (because of migration to cities).  

The IPA is very concerned about this to the point of proposing (and winning) an INIA-funded 
project that aims at applying a participatory modeling and simulation methodology for improving the 
understanding and communication of livestock farmer‘s adaptation strategies under draught 
phenomena.  
 
Simulation objectives: 

The objectives that were defined between the modelers and the IPA team were: 
    *  To simulate the evolution of farmers under different draught strategies. 
    * To build prospective scenarios under the assumption that future conditions will be  

                similar to previous (historical) ones. 
 
Questions to be answered: 

* Which draught strategy is more effective? 
* For a certain draught strategy: What is the influence of the initial condition of producers  
  (like the initial number of plots, cattle or initial budget)? 
* Under what circumstances does a certain draught strategy succeed? 
* What policies could be implemented in order to minimize the impact of a draught? 
* Which could be the vulnerability indicators in order to build a vulnerability map of the  
  basalt region? 

 
Stakeholders: 

IPA team: composed of six agronomists that work for IPA. Their role is to execute the project, 
trying to answer the above questions and reach the project‘s objectives. 

Basalt livestock farmers: composed of around 20.000 small and medium-size producers (mainly 
family producers) that work and live at North Uruguay basalt region. These are considered breeders 
since they are the most common ones in the region. 

INIA: the funding agency. Its role is to oversee the project‘s execution. 
Government: although there is no one that represents the government, the results of the model 

could be of interest to policy-makers. 
 
Target Population: 

Basalt livestock farmers. 
 
Modelers: 

Pierre Bommel: member of the GREEN team at the CIRAD [CIRAD, 2010] with deep knowledge 
and expertise in the agent-based modeling and simulation domain. He holds a PhD in these topics and 
is nowadays based in Brazil, working as associate professor at the University of Brasilia. He also 
maintains the CORMAS simulation platform. His role is to be responsible for the modeling and 
simulation of the project. 

Jorge Corral: assistant professor at the Engineering School of the University of the Republic, 
Uruguay. He holds an engineering diploma in computer science and for the last 3 years has been 
studying and working with agent-based models. His role is to assist Dr. Bommel and to use the project 

as a case study for his MSc thesis. 
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6.3 Step 2: Identify Roles and Agent Types 

The aim of this step is to identify agent types and roles, especially agent behavior. The first artifact is a 
text document identifying roles and agent types: 

 

Document: Roles and Agent Types 
 

Roles: 

Since the interest is in the modeling, simulation and prospective evolution of basalt farmers, it 
naturally follows that the first thing to do is to identify the different roles these farmers play. Even 
though it could have also been possible to include certain governmental role, this option was 
dismissed from the start, since the focus is placed on the farmers. 

In order to identify the different farmer‘s roles, the IPA team had previously conducted several 
meetings with different producers in order to discuss the draught phenomenon and to share 
experiences and information. In all these meetings, the IPA team handed out polls that helped in the 
ordering and systematization of these experiences16. 

The result was that two very different strategies where identified that producers apply under 
draught conditions, so these were considered as the two roles identified: Proactive Producers and 
Reactive Producers.  

Conceptually (without going into details), the Proactive Producer looks mainly at grass 
availability in order to trigger draught-related activities, and gives priority to cattle condition over 
cattle quantity. This means that they would rather have less animals but well fed ones, than more 
animals with less food (grass). The Reactive Producer looks mainly at the cattle condition in order to 
trigger draught-related activities, and gives priority to the number of animals in its plots.     

Draught-related activities include supplementing the animals (e.g. with grains), rent more plots 
in order to have more grass availability (more food), make unusual sells (this means to sell animals 
that under normal circumstances would not be sold), among others. 

Because the activities that take place within the context of a draught may greatly vary among the 
different seasons, the time step of the simulation must be set to one season.  

 
Agent Types: 

Because the model to be built was not going to consider the possibility to change the draught 
strategy of any producer, and because each producer only follows one strategy, it was not considered 
necessary to differentiate between Roles and Agent Types. Therefore, the agent types (agent classes) 
that are to be considered coincide with the identified roles. This means that one agent type is called 
Proactive while the other agent type is called Reactive.  

Interestingly, this case study does not require two-dimensional grid visualization like many other 
MAS simulations do. This is because there is no need to work with coordinates (locations) since, for 
instance, it does not matter where the cattle is, and the entire plot is assumed to have an homogeneous 
distribution of animals (assuming they will walk around and uniformly eat the grass). Also because 
the simulation runs with one producer at a time, there is no need to geographically locate them; 

actually it is not important where the farm is located, as long as it is in the basalt region. 

 
The second artifact is a UML Activity Diagram for each agent type. In this case, since agents strategies 
vary among the different seasons, there will be four diagrams for each of the two strategies. For clarity 
reasons only two diagrams are shown that best represent the differences between both strategies: the 
activities performed in winter by each agent type. Before presenting the diagrams, a brief introduction 
is given. 

Even though the draught strategies of the two types of producers are different, they can both do 
the same activities. The following is a list of activities that both agent types may perform at winter 
(since both diagrams will refer to that season): 

 Pay farm costs: the first thing a producer does when a season starts is to pay over the costs of 
the previous season‘s activities. These costs only include those associated to the exploitation of 
the farm, not including family costs. The effect of this is to decrease the producer‘s balance. 

                                                 
16

 More than a thousand producers attended these meetings during the 2005/2006 and 2008/2009 draughts. 



Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 54 of 112 

 

 Pay interests: only if the balance is negative the producer pays a certain percentage of its debt 
(financial cost). This is relevant information since the balance is one important outcome of the 
simulation and because producers never go in bankruptcy (it could easily be added a rule that 
makes a producer go bankrupt if his balance is negative). As in the previous activity, the effect 
is a decrease in the balance. 

 Mating: since both types of producers are considered breeders, they need to mate the cows 
(both empty as well as lactating) with a bull in order to make them pregnant. The effect of this 
activity is to mark up all mated cows in order to know afterwards if they got pregnant or not. 
This will depend on the cow‘s condition score (healthier cows are more likely to get pregnant 
than weaker ones).  

 Sell steers: because producers are considered to be breeders, they do not make much effort on 
retaining steers (young bulls). It is worth noting that these steers come from the previous 
seasonal step, and not from the mating explained above. The effect of this activity is to 
decrease the number of steers for that producer and to increase its balance because of the 
money earned by the sale.  

 Sell empty cows: winter is the worst season facing a draught, since it is when the grass grows 
more slowly (because of the decrease in sun radiation). This justifies selling some cows for 
two reasons: first for lowering the total number of animals to face the winter, and second to 
increase producer‘s income. Empty cows are preferred since pregnant cows have more value 
and lactating ones are needed by their calves. 

 Adjust stocking rate: analogous to the previous activity, adjusting stocking rate has the effect 
of decreasing the total number of animals and increasing income. Nevertheless, both agent 
types will choose different rates: while one will focus on retaining animals (reactive) the other 
one will focus on maintaining condition score (proactive) so it will reduce more than the 
former. This reduction only takes place in winter because of the reasons explained above.  

 Graze: when the effects of a draught start to appear, grazing is a natural option for producers. 
It implies moving a certain amount of animals to another (rented) plot in order to increase 
grass availability. The effect of this activity is that animals are best fed but the producer must 
pay for the rented plot. Here again, each agent type is willing to pay more or less for each 
rented plot for grazing.  

 Return from graze: after a draught or if the grazing prices are too high, producers may choose 
to return their animals from rented graze back into their own farms. The effect is to reduce the 
total available area (and grass availability) for animals to feed, and stop paying the 
corresponding grazing prices.  

 Extraordinary sale: when the effect of a draught is severe, producers may do extraordinary 
sales that under other circumstances they would not. Nevertheless, the prices paid for the 
animals must be considered ―good‖. In the simulation a price for a certain category of animal 
is considered to be ―good‖ if it is similar to those prices paid over the last two years. The effect 
of this activity is to reduce the animal stock and to increase producer‘s balance. 

 Supplement: if prices are not good enough for an extraordinary sale, producers may 
supplement their animals. This generally means to buy special food (including grains) with 
very high nutritive value. The effect of this activity is to increase the condition score of the 
animals and to decrease producer‘s balance (because he has to pay for it). Here again, the 
circumstances under which both agent types choose to supplement their cattle will be 
different: while one will focus on animal survival (reactive) the other one will focus on animal 
maintenance (proactive).  

 
It is important to note that even though both agent types can do all of these activities, this does not 
mean that they will both choose the same activities at the same time, since often their criteria for 
deciding what to do will differ. This translates, for example, into differences in the guards of the 
decisions in the UML Activity Diagram, or even not including an activity, like mating in winter, which 
is not a choice for the proactive agent type (he only mates his cattle in summer). 
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Graze
[CS<=2.5] [grazing<$20]

Extraordinary sale

[good 
prices]

Supplement

[mortality
>=10%]

Pay farm costs

[balance<0]
Pay interests

[CS>3.5 or
grazing>$20]

Return from graze

Mating

Sell steers

[else]

[steers=1.5years 
or balance<0]

Adjust stocking rate to 1.2

Sell empty cows

[else]

[CS>2.5][else]

[else]

[bad 
prices][else]

 

Figure 13: Winter strategy for a reactive producer (CS stands for Condition Score). 

 

Graze
[grass<3cm] [grazing<$30]

Extraordinary sale

[stocking rate > 0.5 
and
good prices]

Supplement

Pay farm costs

[balance<0]
Pay interests

[grass>5cm
or

grazing>$30]

Return from graze

[else]

Adjust stocking rate to 0.7

Sell empty cows

[else]

[else]

[else]

[grass>=3cm]

 

Figure 14: Winter strategy for a proactive producer. 
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6.4 Step 3: Model Domain Conceptualization 

The aim of this step is to depict the structure of the problem, including entities and relationships. A 
simplified17 version of the domain model developed is shown in Figure 15: 

 

maxWinterStockingRate=1.2

Reactive

maxWinterStockingRate=0.7

Proactive

balance
bestHistoricalPrices

Producer

numAnimals

Herd

normalMortRate=2%
avgConditionScore

Cattle

AnimalUnits=0.18
weightPerAnimal
dailyConsumption
kgMeatPerAnimal

Sheep

area

Plot

numAnimals
age
weightPerAnimal
ConditionScore
dailyConsumption

Cohort

AnimalUnits=0.2
initialWeight=40kg

BornCalf

AniamlUnits=0.5
initialWeight=150kg
minWeight=60kg

WeanedCalf

AnimalUnits=0.7
initialWeight=150kg
minWeight=100kg

Steer

AnimalUnits=0.7
initialWeight=200kg
minWeight=100kg

Heifer

Empty

excepMortRate=30%
lastMatingAge

Pregnant

AnimalUnits=1
initialWeight=180kg
minWeight=180kg
excepMortRate=15%
mated?

Cow

excepMortRate=23%
weightGainGraze

State

Lactating

height
kgCmsRate
nutQualityWinter
nutQualitySpring
nutQualityOutum
nutQualitySummer
energyPerKg

Grass1 *

*

1

1

1

1

1

1

eats >

stock

owns >

rents >

< feeds

< has

 

Figure 15: Domain Model for the case study. 

 
The following list briefly introduces each concept, organizing them as agents, resources and 
environment: 

 
Agent-related concepts:  

 Producer: the general concept for both agent types. Its main attribute is the current balance of 
each agent instance. 

 Reactive & Proactive: they both represent the two different agent types identified in Step 2. 
The figure shows how they differ in the maximum winter stocking rate (one adjusts to 1.2 at 
the beginning of winter while the other to 0.7). Although not included in the Domain Model 
(but in the Class Diagram of Step 5) they will both include the different steps for each season 
(as methods of their corresponding classes).   

 
Resources-related concepts: 

 Herd, Cattle & Sheep: even though the farmers represented in the simulation were described 
as cattle breeders, they generally also have a flock of sheep. This is especially useful in 
draught scenarios since sheep are nearly not affected by draughts since they are able to get 
more grass than cattle (because of their teeth). Nevertheless, the focus is on cattle, and this is 
why several categories were defined, since the average condition score of the cattle herd is 
important to make decisions, while sheep are considered to be all the same. This means that 
the flock of sheep never evolves over time, it is always fixed (this assumption was validated 
with the farmers and was found to be more suitable than it looks). Finally, it is worth noting 
that each producer has only one herd of cattle and one herd (flock) of sheep.  

 Cohort & State: as already discussed, a strong focus is placed in the cattle herd (because 
producers are breeders). This implies a fine-grained modeling of cattle evolution that may 
have led to represent individual animals in the model. Nevertheless it was not considered 
necessary (or useful) to individually identify each one of the animals a producer has (e.g. by 
ear tags), neither to consider the entire cattle herd as one uniform set of animals (like the 
sheep herd) because this would lumped altogether different categories of bovines, with 
different age, weight, sex, condition score, etc. Therefore the solution was in the middle: lump 
together animals (bovines) that have the same category, age, weight, etc. This is represented 

                                                 
17 The simplification only involved attributes, not the structure of the Domain Model. 
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by the Cohort concept (which means ―a group of people who share a characteristic, usually 
age‖). The characteristics shared by the cohort are represented by the State concept, further 
discussed below. An example of a cohort instance is a set of 10 newly born calves, all siblings, 
sharing the same category (BornCalf) and the same age (e.g. 1 month). 

 Cow, Empty, Pregnant & Lactating: these concepts represent the different states in which a 
cow can be, therefore in which a cohort of cows can be. Empty means the cow is not Pregnant 
and Lactating means the cow is feeding its newly born calves (which are known to her thanks 
to the ―feeds‖ association). At each one of these states the dynamics of the simulation are 
different. The fertility rate that is obtained after mating (the percentage of cows of a cohort 
that actually get pregnant) as well as the exceptional mortality rate (the percentage of cows of 
a cohort that die because of starvation) are calculated by formulas that depend not only on the 
cow‘s condition score, but also on their state (if they are lactating or empty). The energy that a 
cow needs also depends on these categories: the amount of grass consumed (therefore the 
energy obtained) is not the same for a lactating cow than for an empty one. Finally, the prices 
over which the bovines are sold also depend on their categories. All of these justify the fined-
grained representation of cows and their categories in the model. 

 Borned Calf, Weaned Calf, Steer & Heifer: similarly, it is important to differentiate when a 
born calf is still with its mother than when it is weaned (taken away from her and given 
special supplement) in order to let her mate again with a bull. Also the distinction between 
steers (males) and heifers (females) is important because producers are mainly breeders, and 
they tend to sell their steers but keep their heifers, since the latter will turn into cows.  

 
Environment-related concepts:  

 Plot: each farmer owns one 500 ha plot of land over which he puts his animals (represented by 
the ―owns‖ association). Nevertheless, the Graze activity allows him to rent other plots (of 
variable size) when conditions are harsh (represented by the ―rents‖ association). An 
assumption was made that plots have no divisions (fields) and that the availability and 
quality of the grass is the same on all plots (owned and rented). In other terms, the farm is not 
spatialized. This choice comes from the fact that the focus of the model is not on individual 
cows but rather at the level of the herd. 

 Grass: represents the (only) kind of grass that is available to all animals and all producers. The 
grass grows depending mainly on three factors: the season (e.g. it grows much more in 
summer than in winter), the weather on that season (e.g. the more rain the better), and the 
previous availability of grass. The importance of the seasons in these calculations helped in 
determining the seasonal time step of the entire simulation. The rates over which the grass 
grows for each time step is calculated (seasonally) considering the weather of that season (an 
external factor that is taken into the simulation via input parameters) and the grass 
availability at the end of the previous step (an internal factor that is affected by animal 
consumption). Here it is also very important to have a fine-grained representation of reality 
since grass availability is what ultimately affects animals‘ condition score, and the grass-
animal dynamic was needed to be very fine-tuned and confident before introducing 
producer‘s decisions (Section 6.10 describes the phases in which the simulation was 
developed). 

6.5 Step 4: Define Agent Interaction 

The aim of this step is to determine when, how and what the different agents will communicate with 
each other. 

Because the aim of the project does not involve nor require interaction between the different 
producers, this step does not apply for this case study. 
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6.6 Step 5: Define Agent Architecture and Design 

The aim of this step is to define agent design (structure and behavior) in order to fulfill its 
perceive/reason/act cycle, within a simulation framework software package.  

As introduced in Section 2.3.2, agent architectures can be classified in an abstract way (closer to 
reality) as deliberative, reactive or hybrids; which are further supported by concrete software 
architectures (closer to implementation). This case study follows a reactive architecture, so there will 
be no explicit representations of beliefs, desires, intentions or environment, but rather each agent will 
act upon a set of predefined rules, which were already shown in the Activity Diagrams of Step 2 (e.g. 
if it is winter, the grass is 2cms and grazing is cheap, then put the animals to graze).  

Regarding the concrete architecture referred to in Section 2.3.2, which implements the abstract 
architecture in a certain software environment, and since this case study uses CORMAS, then an 
analysis should be done in order to determine which CORMAS classes should be used or extended so 
that it supports the reactive architecture. In other words, design each agent type by means of new 
classes, extended CORMAS classes and/or interfaces. 

Before presenting the UML Class Diagram showing the final agent design, and which CORMAS 
classes were extended, a brief introduction to those CORMAS classes will be made. Figure 16 shows 
an excerpt of CORMAS main classes and their relationships (attributes, operations and auxiliary 
classes where omitted). 

 

Entity

SpatialEntityAgent PassiveObject

Group AgentComm AgentLocation

GroupComm AgentCommLocation

GroupCommLocation

ObjectLocation

*

*

*

*

*
11

neighbours

acquantances
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*

SpatialEntitySet

SpatialEntityElement

*

 

       Figure 16: UML Class Diagram for CORMAS main classes. 

As the figure shows, CORMAS natively supports the three main MAS concepts discussed in 
Section 4.2: agents (the Agent class and subclasses), environment (the SpatialEntity class) and 
resources (the PassiveObject class and its subclass). 

Furthermore, CORMAS defines three dimensions that can be applied in combination to these 
three concepts: the ability to group together, communicate or locate. The following table summarizes 
these three dimensions and shows the relation between these and certain CORMAS entities: 
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CORMAS class name Description 

Represents 
an entity that 
is capable of 
grouping 
with others? 

Represents 
an entity 
that is 
spatially 
located? 

Represents an 
entity that is 
capable of 
communicating 
with others? 

Entity General base class N/A N/A N/A 

Agent Agent base class N/A N/A N/A 

SpatialEntity Spatial entities‘ base class    
SpatialEntityElement A spatial entity    
SpatialEntitySet Group of spatial entities    
PassiveObject Other entities‘ base class    
Group Group of agents    
AgentComm A communicating agent    
AgentLocation A located agent    
ObjectLocation A located passive entity    
GroupComm Group of communicating agents    
AgentCommLocation A located and communicating agent    

GroupCommLocation 
Group of located and 
communicating agents    

Table 8: CORMAS main classes description and relation to the three  
already-defined dimensions: group, location and communication. 

 
Since producers are only located at their farm and need no communication with other producers, 

nor they need to group, both agent classes extend the CORMAS AgentLocation class indirectly, by 
making the Producer class extend it. This is shown in Figure 17: 

 

Reactive Proactive

Producer

AgentLocation

 

       Figure 17: Both agent types extend  
      the CORMAS AgentLocation class. 

 
The following step includes all the other classes included in this case study and completes the 

entire UML Class Diagram for the case study. 

6.7 Step 6: Model Environment and Resources 

The aim of this step is to determine behavioral aspects (evolution) of resources and environment, and 
to complete structural aspects. 

Regarding the structural design of the environment-related classes, Figure 18 shows the result, 
which simply implies extending CORMAS SpatialEntityElement class. 
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SpatialEntityElement

1

 

       Figure 18: The Plot class extends the CORMAS SpatialEntityElement class. 
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The dynamics of grass growth required a thorough analysis, which involved obtaining real data 
about grass growth rates for each station (obtained by satellite images) and making it dependent on 
the initial height for each season (for example, it would not be the same growth if the initial height of 
grass in winter was 1cm or 5cms). This analysis is out of the scope of this thesis since it involved 
complex but purely agronomical and biophysical calculations (and mathematics), but no software 
complexity.  

It is worth noting at this point that other environment-related features like the weather where 
considered as input to the simulation, so the only impact on the design was to include a class called 
Environment (shown in Figure 21) with methods that, for each time step, returned the weather 
conditions for that step. As it was discussed in Section 5.1, climate is considered to be outside the 
system, so its influence is in the form of time-series input parameters, so it will be discussed within the 
Simulation Configuration step. 

Concerning the behavior of resources, in this case, animals, the main challenge was first to 
understand, model and implement their natural lifecycle, like feeding, mating and reproduction, and 
then to include farmers‘ decisions into them, like sales. Figure 19 shows a UML State-Transition 
Diagram (a kind of UML Behavioral Diagram) containing cattle lifecycle for the Reactive farmer. 
Technically, the diagram shows the different states for any object that is instance of the State class, 
which in reality means the different states of a cohort. 
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Figure 19: UML State-Transition Diagram showing 
cattle lifecycle for a Reactive Producer. 

 
Finally, Figure 20 shows all the classes (except from the already mentioned Environment class 

that will be discussed below) that compose the design of the case study, including the extended 
CORMAS classes (all attributes and operations are omitted). 
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Figure 20: UML Class Diagram for the case study showing extended  
CORMAS classes (shown in color) and omitting attributes and operations. 

 
The Environment class shown in Figure 21, represents external features such as the weather, 

cattle and sheep prices, grass growth rates, etc. for each season. Therefore, each time a class needs any 
of this information for the current season, it asks for it to the Environment class.  

This class is also strongly related to the input parameters, since the information it contains 
represents external features. This issue is further discussed in the following step. 

 

+initSeasons()
+initYears()
+initCattlePrices()
+initGrassGrowth()
+initGrazeAvailability()
+initGrazePrices()
+initWeatherCoeff()
+getSeason() : String
+getYear() : Integer
+getCattlePrice(in State) : Double
+getGrassGrowth() : Double
+isGrazeAvailable() : Boolean
+getGrazePrice() : Double
+getWeatherCoeff() : Double
+getSheepWoolPrice() : Double
+getSheepMeatPrice() : Double
+getSupplementPrice() : Double

-seasons : Vector
-currentSeason : String
-years : Vector
-currentYear : Integer
-cattlePrices : Matrix
-grassGrowth : Vector
-grazeAvailability : Vector
-grazePrices : Vector
-weatherCoeff : Vector
-sheepWoolPrice : Double
-sheepMeatPrice : Double
-supplementPrices : Vector

Environment

 

Figure 21: UML Class Diagram showing (part of) the Environment class that designs  
how the input parameters are used within the simulation. The initXXX() methods  

correspond to the initialization of the input parameters and is discussed in the  
following step. 
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6.8 Step 7: Simulation Configuration 

The aim of this step is to define those fundamental elements that will enable a simulation to be run. 
These are (as Section 4.4 introduced):  

 Initial configuration, which is explained in the following text document but is mainly 
represented in raw source code; 

 Time step definition, which is defined in the text document; 

 Task scheduling, which is represented by a UML Sequence Diagram, and 

 Input parameters, which like the initial configuration, is explained in the text document but 
represented directly in source code. 

 

Document: Simulation Configuration 
 

Initial Configuration: 

            The initial configuration for this case study basically involves defining how many cows of each 
kind will be at time zero (how many cohorts), how many sheep will be (the number of sheep of the 
flock is fixed during the simulation), the initial grass height, the initial budget for the producer (how 
much money he has in his pocket at time zero), and initial input parameters (which are discussed 
below), which will depend on the initial season selected.  
            An important issue is to be able to easily modify this initial configuration in order to test 
different scenarios, each of them varying its initial state. To this end, CORMAS provides a simple 
definition of different ―init‖ methods that can be written (coded) altogether and then simply select one 
each time the simulation is run. This enables, for example, to inspect if different trajectories emerge for 
a certain type of producer by only changing his initial state. 
 
Time Step Definition: 
            Like the Roles and Agent Types Document introduced, the time step for the case study was 
defined to be a season (i.e. 3 months) because the activities that could take place within a draught may 
greatly vary from season to season. This means that four steps actually represent the passing of one 
year. 
 
Task Scheduling: 

            At each time step (season) the following events occur (it should be noted that these events are 
assumed to be executed the first day of the season since it is a simulation and not the real world): 
                   1) The weather and prices are updated (refer to Input Parameters below) for the current 
season, meaning that this new weather and prices will be valid through this season. 
                   2) The producer decides and performs its seasonal activities. This implies choosing the 
UML Activity Diagram that corresponds to the producer‘s type and current season. This is also called 
the Producer‘s Step Method in CORMAS. Here is worth noting that the producer decides and 
immediately executes those decisions (again, for the sake of the simulation). 
                   3) The grass grows for this season. Here, even though the grass grows immediately, the one 
consumed by the animals (in the following two events) is calculated with the average grass height in 
order to make it more real; otherwise the animals will always eat at maximum grass height. 
                   4) The sheep evolve. This only means that they feed themselves (eat grass) and that they 
produce certain amount of wool and meat (refer to the Domain Model Conceptualization Step for the 
attributes of the sheep flock). 
                   5) The cattle evolve. This means not only they feed but also reproduce, since cattle lifecycle 
is relevant for the case study (as already explained). 
            See Figure 22 for a UML Sequence Diagram showing these events. The Scheduler is actually a 
CORMAS class that orchestrates all seasonal activities, invoking the necessary methods over their 
corresponding classes. 
 
Input Parameters: 
           The input parameters needed for this case study already appeared in the Environment class 
shown in the previous step, namely: the years during which the simulation will be run (this 
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information is not usually needed in MAS simulations but in this case, historical real-world data was 
used as time-series input parameters, so it was important to map that data within the year and season 
in which it occurred in order to find any inconsistencies); the weather, taken from historical real-
world data (this was represented as a coefficient for each season that multiplied by the grass growth 
for that season determines the final grass growth); the prices for cattle and sheep (for sheep it is 
maintained always the same, but for cattle it varies depending on the season using the historical real-
world data that was gathered, and on the category of the animal since it is not the same the price for a 
newly born calf than for a fully grown cow); the grazing availability and its rent prices (that is, the 
price that producers have to pay per animal, per season, in order to put them into grazing); and the 
supplement prices (how much it costs to feed an animal during a season with supplement). 
           All of these data was initialized (in their corresponding initXXX() method) using historical real-
world data that was gathered and/or estimated for the basalt region, making the simulation more 
accurate for this region. 
          Finally, it is worth noting that a draught condition implies that the grass growth is low (because 
of poor rain), the weather coefficient is also low (therefore grass height will be compromised), grazing 
prices are high (because the demand for grazing rises, pushing its prices), and cattle prices for all 
categories are low (because cattle supply increases, making prices decrease). Such a condition can then 
be easily forced into the simulation, simply by changing these input parameter values before running 

it. 

 
 

:Scheduler :Environment :Producer :Cattle

update weather and prices

grow

:Grass

perform seasonal activities

evolve

:Sheep

evolve

eat

eat

reproduce

 

       Figure 22: UML Sequence Diagram showing the 
task scheduling for each season. 

 

6.9 Step 8: Simulation Output 

The aim of this step is to define the output that the simulation will produce along with its visual 
representation. Table 9 summarizes the output parameters that where defined for the case study, 
along with the desired visual representation for each output parameter (all of them are shown on a 
per-season basis): 
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Output  Description Visualization 

Cattle-generated 
Income 

Shows the income generated by selling cattle in this season. This allows for 
inspecting which of the two kinds of animals (sheep and cattle) is giving 
more profit to the producer.  

Graph 

Sheep-generated 
Income 

Analogous to the previous, but for sheep. Graph 

Producer‘s 
Income 

This value includes the previous two (with positive sign) and exploitation 
costs (with negative sign), so it can be positive (the producer gained money 
in the season), or negative (he lost money). 

Graph 

Producer‘s 
Balance 

Show how much money the producer has in his pocket (previous balance + 
cattle-generated income + sheep-generated income – exploitation costs). 

Graph 

Producer‘s Total 
Assets 

This value represents how much the producer is worth (value of cattle 
herd + value of sheep herd + current balance). 

Graph 

Avg. Condition 
Score (only for 
cattle) 

Shows the average condition score of the entire cattle herd. This is relevant 
to get a picture of the animal‘s overall health. It is not necessary for sheep 
since they are assumed not to be affected by draught (so they maintain 
their condition score, so it is not interesting to keep track of a constant-
value). 

Graph 

Cattle Stock How many animals of each category (state) the producer has. Graph 

Cattle Death How much cattle is dying because of draught phenomena, (the natural 
mortality rate should be excluded from this figure). 

Graph 

Weather Show the current weather conditions in order to properly interpret and 
analyze the output. 

Graph 

Season & Year For the same reason mentioned before, show the current season and year 
(e.g.: Fall-2008). 

Label 

Table 9: Output parameters defined for the case  
study along with their visualization requirements. 

The previous output parameters where chosen because in combination, they can help answering 
the case study questions (and therefore their objective) defined in Step 1. 

6.10 Step 9: Implementation 

The aim of this step is to codify the simulation in a programming language. The implementation 
phase of this case study involved three iterations, each achieving a fully functional, but reduced 
version: 

 Grass Model: the first version of the model consisted only of the grass evolution over time. 
This decision was supported on the grounds that grass growth was very important in the 
model since it determined how much food the animals will have at each season, and the 
calculations needed for this were not trivial. The results that this first version yielded were the 
grass height at each season, according to the weather conditions present in that season. After 
validating these results with the experts, the team defined the scope of the second version: to 
include cattle and sheep but not yet producers.  

 Wild Model: this second version of the model added the animals to the first one, but as if they 
lived wildly in the farm, that is, without producers managing them18. This let the team test 
and validate with the experts the behavior of the animals regarding how much they were 
eating (and weighting), how the reproduction cycle was done, etc. The only thing that was 
different from a truly wild model was that mating occurred only once per year and not 
permanently as it would be the case in a real wild condition. After getting confidence on the 
grass-animal interaction, the team moved on to the third and final version: include the 
producers. 

 Final Model: the last version of the model added human actions over the previous wild 
model version. Specifically, each agent-type (Proactive and Reactive) was now able to behave 
as their role specified (Step 2) following the activities defined in its UML Activity Diagram. 
Producer‘s actions directly affect the animals (like mating, supplement, sales) and indirectly 
affect grass (through animals).  

                                                 
18 Actually, within the team, this second version was called the ―Hernandarias Version‖, after the man who 
introduced cattle in Uruguay back in the 17th century. 
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This iterative and incremental approach helped to divide the workload (and not to manage all 
features together from zero), and to have early feedback from the experts (since there were two 
intermediate versions that could be validated long before the final one). 

As introduced before, this case study was developed using the CORMAS simulation platform, 
which is a MAS software package that allows developing this kind of simulations. The language in 
which CORMAS was developed was Smalltak [SMALLTALK, 2010] and so was this case study. The 
development environment and compiler were Cincom‘s VisualWorks [CINCOM, 2010]. 

Regarding the programming that was required to make the final version complete and running, 
and since VisualWorks does not have a place where the programmer can look at the entire source 
code all at once (it always shows a partial view of the code), it is not easy to estimate how many lines 
of code the final version has. However, VisualWorks converts all code into a single XML document for 
saving and restoring the project, so the lines of XML code could be fairly comparable to the lines of 
actual Smalltalk code. The XML document for this case study has 6.000 lines. 

Another measure could be made by considering the number of classes included in the final 
version, which are 19, as Step 6 showed before (including the Environment class).  

The implementation of the case study took approximately 7 weeks (considering working days) of 
the entire team (including the two modelers), with a full-time dedication, divided in: 

 From March 11th to March 13th of 2009: project definition and first discussions in Tandil, 
Argentina.  

 From October 5th to October 9th of 2009: Formal project kick-off. Involved several discussions 
and the main output were UML diagrams, followed by small prototype versions in CORMAS 
as proof of concept (Salto, Uruguay).  

 From November 30th to December 5th of 2009: Grass Model construction (1st version) and 
validation with stakeholders (Salto, Uruguay). 

 From February 25th to March 5th of 2010: Wild Model construction (2nd version) and validation 
with stakeholders (Salto and Artigas, Uruguay). 

 From September 11th to September 17th of 2010: Final Model construction (3rd version) and 
validation workshop with stakeholders (mainly with producers in Salto and Artigas, 
Uruguay). 

 To come: From March 14th to March 18th of 2011: Debugging of Final Model and construction 
of Interactive Model for use in a workshop with producers in Salto, Uruguay (the concept of 
Interactive Model is introduced in the next step). 

6.11 Step 10: Simulation Run and Sensitivity Analysis 

The aim of this step is to achieve the simulation‘s objective and answer its questions. As it was shown 
in the previous step, the Final Model Version is yet to be further debugged in order to get full 
confidence in its results, and to use it as a tool for the March 2011 workshop with producers. In this 
workshop, producers will use the simulation as a game where they are represented by their avatar 
(Proactive or Reactive) inside the model.  

For this workshop, a more interactive version of the model is being constructed, which can be 
called Interactive Model, basically consisting of the same as the Final Model Version but letting the 
user (in this case the producers) pause and interact with the simulation. The only difference between 
the Interactive Model and the Final Model Version is that while the latter automatically runs through 
the seasons, the former pauses at each season and asks the user what to do (from a pool of valid 
options). This means that instead of automatically running without interaction through a whole 
period (say 20 years) the Interactive Model asks for user decision making. This was thought as a way 
to engage the producers more actively in this ―game‖, while opening the black-box that the Final 
Model Version may seem to them at the same time (in other words, passing from a black-box to a 
white-box). 
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6.12  Conclusions of Applying the Methodological Framework to the Case Study 

This section provides some conclusions and final remarks about applying the methodological 
framework to this case study.  

Overall, the methodological framework successfully supported the development of the case 
study. Knowing what steps should be taken and what artifacts should be constructed provides 
confidence, saves time, and keeps people focused. Having a mapping between the most common 
features found in an agro-ecosystem and how they can be represented using the methodological 
framework was shown to be of high value.  

The iterative and incremental approach was not initially considered in the development of the 
case study, but once the scope and complexity were more clearly identified, this approach was taken 
and proved to give not only a macro-level organization (which features should be considered in which 
version) but also much more confidence on each version before getting into the other. This confidence 
was the result of receiving early feedback and of having the previous version as the tested and trusted 
baseline over which to build the next one.   

In a truly interdisciplinary team, like the one that developed this case study, to share a basic 
vocabulary and to have a common understanding of the basic concepts is crucial. To this end, the 
Domain Model served as a glossary of the most important concepts and provided this common 
understanding much in the same way an ontology would do. 

Another interesting conclusion was reached in the use of UML diagrams. At the beginning of the 
project, all IPA members were convinced that they all shared the same knowledge about basalt 
breeders. However, the use of UML, particularly the Activity Diagrams in this case, demanded experts 
to explicit their knowledge and assumptions in order to unambiguously build the diagrams. From this 
process, several contradictory opinions emerged between the different experts, so several discussions 
took place to arrive at the final versions of these diagrams. This is an example where implicit and 
explicit/shared knowledge did not coincide, and the use of a formalism showed this situation. 

Regarding the producers, along the several workshops, they felt they were being accurately 
represented by the UML Activity Diagrams, and even when other variants were proposed (e.g. like 
considering a third kind of producer as the result of a mix of the other two) the great majority did 
coincide that the two types of agents (Reactive and Proactive) indeed represented them. 

Other aspects of applying the methodological framework did not go so smoothly, and are 
revisited in Chapter 7 as future work. 

First, the architecture chosen for the case study, as Step 5 showed, was a reactive agent-
architecture. This is by far the simplest architecture of all three (reactive, deliberative and hybrid). 
Nevertheless, the system as a whole already became quite complex. This means that if another 
architectural style was chosen, the final solution would have been even more complex. However, it 
would be of great value to try using the other two along with the methodological framework. 

Second, the dependency between steps is not as straightforward as the methodological 
frameworks suggests. Particularly the time step definition, for example, could be defined earlier. 
These aspects should be revised in the context of a more comprehensive software development 
methodology. 

Third, input parameters proved to be very important in the development. However, they got 
little attention in the methodological framework. Even though it does not seem easy to further 
propose structures, or rules for them because of their very disparate nature, a more thorough analysis 
should be done. This includes their definition (which input parameters the system will need?), their 
representation (which data structures and functions they will have?), initialization and evolution over 
time. 

Finally, because of the very nature of the case study, Step 4 (Define Agent Interaction) could not be 
applied; it was not needed in this case. This left behind the opportunity to test how the 
methodological framework supports the definition of the interaction between multiple agents.  
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7 Conclusions & Future Work 
This chapter presents this thesis‘ conclusions (Section 7.1) as well as possibilities for future work 
(Section 7.2). 

7.1 Conclusions 

In a world concerned with ecological, social and economic sustainability, in keeping biodiversity, 
controlling carbon dioxide emissions, managing natural resources exploitation, and feeding our 
population, among others, agro-ecosystems should be at the core of any approach concerning these 
problems, since it brings together two fundamental components: the social sub-system and the natural 
sub-system. Therefore, any attempt to study an agro-ecosystem should jointly consider human actions 
and natural resources. Chapter 2 showed that the multi-agent systems approach was a natural and 
powerful metaphor for modeling such a complex system, with the benefit of setting the ground for the 
construction of a computational model, which can simulate the evolution of the agro-ecosystem over 
time, synthesizing complex knowledge, envisioning possible future scenarios and enabling 
prospective analysis. This simulation gains even more relevance because this kind of systems cannot 
be directly manipulated. 

A successful modeling and simulation of such a system needs the skills of different people, 
therefore urging for an interdisciplinary team. These skills include (but are not limited to): social 
sciences (e.g. sociologists and anthropologists) for planning and conducting workshops, interviews 
and any activity involving producers; natural sciences (e.g. agronomist, ecologists and extensionists) 
for understanding natural processes, and the dynamics that take place when humans manipulate an 
ecosystem; economics (e.g. economists) for understanding one of the major forces that play in any 
human activity: money; and computer science (e.g. software developers and modelers) for putting all 
this information together into models (e.g. following the UML formalism), and later into 
computational models (i.e. software) that allow these models to take life.  

This thesis makes a contribution by proposing the first AOSE methodology (in its early stages, 
therefore referred to as methodological framework in Chapter 4), that guides a software developer into 
constructing agro-ecosystem simulations using the multi-agent systems approach. 

Even though many AOSE methodologies already exist (as shown in Chapter 3), they are general-
purpose. This implies that they do not consider the simulation of a multi-agent system and neither the 
specificities/features of agro-ecosystems. There is a difference in developing software for, say, an 
Internet robot, than for simulation purposes, even though both are cases of multi-agent systems. There 
is also a big gap when trying to use these general-purpose AOSE methodologies for a specific context 
such as an agro-ecosystem, especially when representing the features discussed in Chapter 5. 

In the current context where software developers (and programming skills in general) are scarce, 
a methodology that leverages the object-oriented background of a developer, defining specific steps 
and artifacts for this niche of agro-ecosystem simulations, should lower the learning curve and ease 
the burden over programmers to get productive as quickly as possible. 

The case study presented in Chapter 6 takes this methodological framework one step further by 
applying it to a very relevant problem: the draught phenomena in the Uruguayan basalt region. This 
allowed to show in a real-world situation the applicability and usefulness of the methodological 
framework, at the time that it helped in studying and understanding the draught strategies of basalt 
producers and their consequences over cattle, and their financial balance of adopting them.  

Finally, an extract of the work included in this thesis was submitted as a paper to the 2011 
International Conference on Agents and Artificial Intelligence to be held in Rome [ICAART, 2011]. The 
paper was accepted as a poster in the conference and can be found in Appendix D. 

The results obtained so far are very promising and encourage us to continue working and 
investigating on these topics. Therefore, the following section introduces several future work related 
to that already done in this thesis. 
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7.2 Future Work 

The future work proposed in this section is divided into several points: those concerning the 
methodological framework, those concerning the case study, and those concerning the tools that 
support it. Some of the points here discussed were already aforementioned in Chapter 6. 

Future work concerning the methodological framework: 

 Thorough AOSE Methodology Comparison: even though Chapter 3 presented several 
general-purpose AOSE methodologies, a thorough comparison between these and the 
methodological framework was not given. Such a comparison could give the latter new 
elements not currently considered. It is noteworthy to remember that the methodological 
framework presented in Chapter 4 was originated from another methodology that 
summarized others. This may have led to ignoring details from these already existing AOSE 
methodologies that could be useful in the context of agro-ecosystem simulation. 

 Propose a Complete Software Development Methodology: as it was mentioned several 
times, the methodological framework is a guideline that only focuses on the software 
development activities and artifacts, but completely ignores other relevant aspects such as 
resource, time and risk management, budget and effort estimation, team work, and testing. 
Proposing a truly comprehensive software development methodology from this software 
engineering point of view may benefit from a more widely adoption, since it would cover all 
major aspects of the development, and not only the software product. 

 Relation to Other Disciplines: somehow related to the previous point, it would be interesting 
to further analyze which disciplines are indeed needed to successfully achieve an agro-
ecosystem simulation using this methodology. For example, what profiles are needed, with 
what skills, and how they should interact with each other.  

 Further Investigate Input Parameters: as stated in Chapter 6, input parameters influence the 
development at several points, and they are mostly left behind by the proposed 
methodological framework. This should encourage to further investigate their role within the 
methodology, along with guidance on how to define, represent, initialize and use them. 

 Further Investigate Complex Adaptive Systems Support: even though the case study is far 
from being regarded as ‗simple‘, it cannot be regarded as a case of complex adaptive system 
as introduced in Section 2.1. Features such as emergence, self-organization and learning do 
not appeared in the case study of Chapter 6. This leaves room for further investigations on 
whether the proposed methodological framework can effectively support the development of 
truly complex and adaptive systems. 

 Define Agro-Ecosystem Patterns: just as design patterns can be applied when designing an 
OOP system, the agro-ecosystem simulation taken as a specific domain can also give place to 
patterns (e.g. already defined pieces of UML diagrams including some constructs to represent 
widely used features or configurations). Moreover, an agro-ecosystem catalog of patterns may 
be constructed and even implemented over certain agent-based simulation platform (as 
CORMAS), in order to let the user drag and drop these pre-defined pieces of models and 
software into a new simulation project. 

 Use of other time management: as Section 4.1 established, the methodological framework 
assumes a time-stepped simulation. Nevertheless, other forms of time management are 
available, most notably discrete-event, which is the approach of the MIMOSA tool [MIMOSA, 
2010]. 

 Use of a Domain Specific Language (DSL): this thesis assumed the use of plain UML 
diagrams in order to facilitate developer‘s uptake. Nevertheless, the use of more specific 
languages such as AML could benefit the methodological framework by giving more accurate 
constructs (e.g. being able to natively model an agent or a resource on a diagram). 
Furthermore, the use of DSLs would allow modeling not just an ―agent‖ natively but a 
―farmer‖, a ―strategy‖ and any of the agro-ecosystems‘ features introduced in Chapter 5. This 
would also relate to the use of a simulation tool that natively supports such DSLs constructs 
(refer to the point ―DSL Simulation Tool” below). 
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Future work concerning the case study: 

 Define Agent Interaction: Step 5 of the methodological framework did not get the chance of 
being applied to the case study. Therefore, a new case study should be defined (or at least the 
actual one be modified) in order to analyze how this step really contributes to the problem of 
defining and representing which agents communicate to which others, what they exchange, 
when and how. 

 Use of other Agent Architectures: the case study used a Reactive architecture, and similarly 
to the previous point, this did not give the chance to see how the methodological framework 
supports the use of other agent architectures, so new case studies should be defined that 
tackle this. 

 Use a General AOSE Methodology: in order to better understand and compare the 
methodological framework presented in this thesis with already existing AOSE 
methodologies, these could be applied to the simulation of an agro-ecosystem. This 
comparison should show the benefits of counting with a specialized methodology for agro-
ecosystem simulation. 

 
Future work concerning the tools that support the methodological framework: 

 Use of other Simulation Software: as it is clear from the case study, this thesis used the 
CORMAS simulation platform. Even though it proved to be extremely useful and powerful, 
no alternatives where analyzed. It would be important to study other agent-oriented 
simulation platforms, discuss which of them could be more aligned with the proposed 
methodological framework, and use a couple of these in case studies, maybe even 
implementing this very same case study on other simulation platforms and compare the 
results19. 

 Other AOSE Tools: related to the first point (Thorough AOSE Methodology Comparison) it 
would be worth to study which tools do these already existing and general purpose AOSE 
methodologies use as assistants for the actual programming and/or modeling. These tools 
could be even integrated to mainstream Integrated Development Environments such as 
Eclipse [Eclipse, 2010] or NetBeans [NetBeans, 2010] or be standalone tools that were built 
specially for a certain AOSE methodology. The proposed methodological framework could 
incorporate new ideas from these and even use them if possible. 

 New Tool for the Proposed Methodological Framework: apart from studying other tools as 
the previous point proposes, an analysis could be made of which tools would best support the 
current methodological framework (or its ―full-size‖ one as already proposed). Such a tool 
could be imagined to be designed from zero to be completely aligned to support the steps 
here presented. It would be a custom-made tool (or set of tools) especially designed and 
implemented, tailored for the proposed methodological framework. This could facilitate even 
more the adoption of this methodology for standard OOP software developers. 

 DSL Simulation Tool: relating the previous point with the point ―Use of a Domain Specific 

Language‖ a specific simulation tool could be developed that natively maps the domain-
specific constructs (agent, resource, crop) to programming code. This implies developing a 
library of classes that serve as base classes for all of these domain-specific constructs, along 
with a graphical tool that would allow the user/programmer to declaratively define/draw 
using the DSL and the tool would produce the corresponding code. To this end, several 
undergraduate projects have been conducted using CORMAS and Eclipse as the 
programming environments [FING1, 2008; FING2, 2009; FING3, 2010]. 

 

                                                 
19 Railsback et al., (2006) have described a simple model, called ―Stupid Model‖ which has been used as a 
benchmark model to compare existing agent-based simulation platforms. 
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Appendix A: State-of-the-Art of MAS 
This appendix gives a more in-depth state-of-the-art of the topics presented in Chapter 2. Section 1 
presents fundamental concepts and principles related to complex systems which are the general 
context for agro-ecosystems presented in Section 2. Section 3 introduces the agent-based modeling 
approach, and Section 4 shows the applicability of the agent-based modeling approach to complex 
systems in general and to agro-ecosystems in particular. Section 5 gives some basic definitions of 
software engineering concepts, and Section 6 presents a comparison between the Object-Oriented 
Programming and the Agent-Oriented Programming paradigms. 

1. Complex Systems 

In natural sciences and computer science, the most common approach to understand or analyze a 
system is based on a decomposition of the system into its elementary parts and the isolated and in-
depth study of these in order to understand the whole, i.e. the reductionism of Descartes. A good 
example, very well-known in computer science, is the ‗divide and conquer‘ approach, which suggests 
to decompose the original system (or problem) into smaller and simpler parts, and to understand (or 
solve) each individual part and finally add up all of these partial understandings (or partial solutions) 
in order to achieve the complete understanding of the system (or a complete solution). Early notions, 
such as modularity (in both, data structures and functionality) and object orientation also correspond 
to this idea. 

The systemic approach (also called ‗systems approach‘, ‗holistic approach‘ or ‗systems thinking‘) 
starts by first examining and understanding the relations between the different elements of the 
system. As the very term ‗holistic‘ suggests, the idea is to never forget the system as a whole, for what 
it is essential to pay constant attention to the interrelations between the elements. The systemic 
approach is a general theory since its principles can be applied to any discipline or area. Its origins go 
back to half of the 20th century with the work of the Austrian biologist Ludwig von Bertalanffy 
[Bertalanffy, 1968]. One of the most common ways for addressing the systemic approach is to say that 
‗the whole is more than just the sum of its parts‘, or in the words of [Miller and Page, 2007]: “The field 
of complex systems challenges the notion that by perfectly understanding the behavior of each component part of 
a system we will then understand the system as a whole”. 

Both complicated and complex systems are composed of a large number of interacting elements, 
but two properties set a complex system apart from one that is merely complicated: emergence and 
self-organization. Emergence is the appearance of behavior that could not be anticipated from the 
knowledge of the parts of the system alone [CSIRO, 2008]. Moreover, the newly emerged properties 
can in turn feedback to the original lower-level entities, entering a feedback loop where each element 
(micro/marco level) interacts. Both positive and negative feedback loops are possible; positive 
feedback loops lead to expansion of a given behavior or dynamics, and negative feedback results in 
mitigation and control. Self-organization means that there is no external controller or planner 
engineering the appearance of the emergent features; they appear spontaneously [CSIRO, 2008]. The 
motivation for studying complex systems is that many of current opportunities and challenges 
(globalization, sustainability, terrorism, epidemics, climate change) are complex. Each of these 
domains consists of a set of diverse entities and actors that dynamically interact, and are immersed in 
a sea of feedback [Miller and Page, 2007]. Figure A.1 shows a schematic representation of a complex 
system based on [Parrott, 2002]. 
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Figure A.1: Schematic Conceptual Model of a Complex System. 

A key feature of real systems that has proved to be essential in the appearance of rich emergent 
features is local interaction. In other words, elements of a system only interact with their neighbors 
[CSIRO, 2008]. Well-known and simple rules in the micro-level can make the emergence of system-
level phenomena, as in the case of John Conway‘s Game of Life [Gardner, 1970] where a simple set of 
rules about when a certain pixel is considered ‗alive‘ (black pixel) or ‗dead‘ (white pixel) depending on 
the number of ‗alive‘ neighbors, gives rise to a perfectly clear pattern of 5-pixel ‗flying gliders‘ that 
flies across the screen with a perfectly defined trajectory20, which is not predictable from the simple set 
of rules. Another example of emergence comes from Durkheim‘s study of suicide21 [Durkheim, 1979] 
where a process that seems to be governed by chance, when viewed at the level of individuals, turns 
out to be strikingly predictable at the level of society as a whole [Perez and Batten, 2006]. 

Probably the earliest reference in history to complexity (involving social sciences) and emergence is 
Adam Smith‘s Wealth of Nations [Smith, 1776] book, where he describes the concept of an ‗invisible 
hand‘ leading collections of self-interested agents into well-formed structures that are no part of any 
single agent‘s intention. 

Emergent properties and complexity usually arise when the relations among the elements of the 
system are not linear. This means that the behavior of a single element is not the result of a linear 
combination of the individual behaviors of related elements, leading to a non-linearity. Another 
source of complexity appears when there are time and scale differences between cause and effect. That 
is, if an action in certain level of organization or hierarchy at a certain time ends up having its effect 
over a long period of time and over different levels of organization or hierarchies (different scales), 
then the understanding of the causeeffect relationship vanishes [Senge, 1994]. 

Even though several renowned scientists (for example in the Santa Fe Institute22) are behind the 
idea that very different realities and problems can share some common principles (described by 
complex systems theory), critics also disbelieve such generally-applicable principles (as it is shown in 
the article titled ―From Complexity to Perplexity‖ from John Horgan, Scientific American senior 
writer, June 199523).  

Complex Adaptive Systems‘ (CAS) are defined as systems that are capable to adapt and self-
organize in response to perturbations or distortions in the environment, or by the result of certain 
interrelations between the elements. System adaptation is ultimately concerned with the adaptation of 
each individual element of the system, since there is no centralized control and therefore no single 
‗object‘ that represents the entire system. This also relates to the concept of co-evolution of the 
different elements or parts of the system, which by means of their interrelations evolve their behavior 
over time, adapting themselves to new situations [Rammel et al., 2007]. 

Adaptation of a single element is commonly associated with the display of alternative behaviors. 
Learning can be defined as a mechanism to attain the ability to exhibit different behavior over time. 

                                                 
20 An on-line interactive application is freely available at: http://www.bitstorm.org/gameoflife/  
21 ―It is impossible to predict which of them are likely to kill themselves. Yet the number of Parisians who commit 
suicide each year is even more stable than the general mortality rate.‖ [Durkheim, 1979] 
22 The Santa Fe Institute coined the term ‗complex adaptive systems‘ (www.santafe.edu)  
23 Available at: http://www.econ.iastate.edu/tesfatsi/hogan.complexperplex.htm 

http://www.bitstorm.org/gameoflife/
http://www.santafe.edu/
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The larger the capacity to learn, the more capable it will be to adapt to new conditions. One well-
known researcher on adaptive systems is John Holland, one of the first PhDs ever in computer science, 
who created the genetic algorithms which aim at evolving generation over generation of a certain 
population, by mutations or cross-breeding between individuals that present the best survival 
capacities (measured for example, by a fitness function) and constitute an example of a computer 
science adaptation strategy. Adaptation and learning mechanisms generally increase the complexity of 
the whole system, since the behavior of the elements is able to change and evolve over time through 
adaptation processes. 

2. Agro-Ecosystems 

This section introduces the notion of agro-ecosystem and related concepts. Also, agro-ecosystems are 
presented as a special case of complex systems. Finally, the importance of modeling and simulation of 
agro-ecosystems is highlighted.   

2.1 What is an Agro-ecosystem? 

An agro-ecosystem is the human manipulation and alteration of ecosystems for the purpose of 
establishing agricultural production [Gliessman, 1997]. Agro-ecosystems result from the interplay 
between endogenous biological and environmental features of the agricultural fields, and exogenous 
social and economic factors, and are delimited by arbitrarily chosen boundaries. They are semi-
domesticated ecosystems that fall on a gradient between ecosystems that have experienced minimal 
human impact, and those under maximum human control [Hecht, 1987]. 

According to [Odum, 1984] the four major characteristics of agro-ecosystems are: 

 They include external sources of energy like human, animal or fuel energy to enhance 
productivity of particular crops; 

 Diversity may be reduced compared with natural ecosystems (those with no human 
intervention); 

 The dominant animals and plants are under artificial selection rather natural selection; and 

 The system controls are external rather than internal via subsystem feedback, in the sense that 
the natural resources are no less dependent on natural factors because of human intervention. 

Even though this is a good starting point according to [Hecht, 1987] it does not reflect agro-
ecosystems that can be relatively diverse and its lack of attention to the social determinants of 
agriculture limits its explanatory power. Agricultural systems are human artifacts, and the 
determinants of agriculture do not stop at the boundaries of the field. Agricultural strategies respond 
not only to environmental, biotic24, and cultivar constraints, but also reflect human subsistence 
strategies and economic conditions [Hecht, 1987; Ellen, 1982]. This stresses the importance of social 
factors like labor availability, access and conditions of credit, subsidies, perceived risk, price 
information, association obligations, family size, and access to other forms of livelihood, which are 
often critical to understanding the logic of a farming system [Hecht, 1987]. 

An agro-ecosystem thus, has physical parts with particular relationships (the structure of the 
system) that together take part in dynamic processes (the function of the system) [Gliessman, 1997]. 
The structure can be viewed as organized in several levels, ranging from individual elements, such as 
organisms or crops, up to regions, landscapes or entire countries. This organization also allows the 
analysis of the different scales present in an agro-ecosystem, as well as the relations between scales. 
The functioning of the agro-ecosystem refers to the dynamic processes occurring within ecosystems: 
the flow of matter and energy and the interactions and relationships of the organisms and materials in 
the system. 

Any system uses its processes and resources to convert its inputs into its outputs. Concerning the 
resources commonly found in agro-ecosystems, [Norman, 1979] suggests the following classification: 

 Natural resources: the given elements of land, water, climate and natural vegetation that are 
exploited by the farmer. 

 Human resources: the people who live and work within the farm and use its resources for 
agricultural production, based on their traditional or economic incentives. 

                                                 
24 Associated with or derived from living organisms (English On-Line Dictionary). 
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 Capital resources: the goods and services created, purchased, or borrowed by the people 
associated with the farm to facilitate their exploitation of natural resources for agricultural 
production.  

 Production resources: the agricultural output of the farm, such as crops and livestock. These 
become capital resources when sold, and residues (crops, manure) are nutrient inputs 
reinvested in the system. 

Several of all the previous concepts are summarized in Figure A.2, based on [Altieri, 1995] and 
[Briggs and Courtney, 1985]: 

 
Figure A.2: Representation of an agro-ecosystem. 

It is worth noting that human intervention is represented by the inputs, but mainly by the 
management practices executed by farmers. 

Other concepts that are also commonly associated to agro-ecosystems include natural processes 
(like erosion), the landscape to which the agro-ecosystem belongs, market prices and prices evolution 
(regarding for example international crop prices), and government policies (which may affect virtually 
any part of the agro-ecosystem). 

Finally, the main differences between natural ecosystems and agricultural ecosystems can be, 
according to [Gliessman, 1997] and closely related to the characteristics of agro-ecosystems of 
Norman, summarized25 as:  

 Differences in energy flow: energy is taken away at each harvest rather than stored in 
biomass;  

 Differences in nutrient cycling: recycling of nutrients is minimal in most agro-ecosystems and 
considerable quantities are lost in harvest or as a result of erosion;  

 Differences in population regulation mechanisms: due to simplification (reduction of 
diversity) populations (crops or animals) are rarely self-reproducing or self-regulating, rather, 
human inputs (seeds, control agents) determine population sizes; and  

 Differences in stability: due to their reduced structural and functional diversity, agro-
ecosystems have much less resilience than natural ecosystems.  

Figure A.2 and the previous concepts suggest that agro-ecosystems can be seen as a case of 
complex systems. The following section looks further into this idea. 

2.2 Agro-ecosystems as Complex Adaptive Systems 

Any ecosystem by itself can already be considered as a case of complex adaptive system, considering 
its various components, organization levels, micro and macro interactions and their feedbacks, and 
even more if including a social subsystem (with heterogeneous behaviors) as in the case of agro-
ecosystems. 

The interactions between the social and natural subsystems inside an agro-ecosystem, such as 
farmers‘ practices affecting natural resources, are examples of local interactions at a small scale which 
may produce negative or positive feedbacks affecting in turn the decision-making of social actors. 
Repeating these interactions on a daily basis can produce emergent properties and new organizations 

                                                 
25 Other structural and functional differences between natural ecosystems and agro-ecosystems can be found in 
Gliessman, 1997 and Odum, 1969 (also in http://www.agroecology.org/Principles_Eco.html). 
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across the agro-ecosystem in the long-term, like a change in soil quality, as a long-term consequence of 
the adoption of certain management practice or the emergence of a certain land-use pattern. 

Furthermore, according to [Dawn et al., 2008] the sources of complexity in coupled human-natural 
systems (as is the case of agro-ecosystems) arises mainly from temporal, spatial and scale mismatches 
between actions and their impacts (similarly to what Senge proposes), which occur due to the indirect 
and imperfect nature of these interactions between human actions and their impact on the 
environment.  

Aside from natural processes, also the interactions between the social actors can lead to complex 
behaviors like, for example, communications between neighboring producers which can affect each 
producer‘s performance (e.g. knowing about certain new market because of participation in an 
organization can lead to improvements in the income of those producers that receive the correct 
information at the right moment). 

[Gliessman, 1997] addresses some of these issues and states what could be considered the ultimate 
emerging property of an agro-ecosystem: 

“An important characteristic of ecosystems is that at each level of organization properties 
emerge that were not present at the level below. These emergent properties are the result of the 
interaction of component parts of that level of ecosystem organization. In an agro-ecosystems 
context, this principle means in essence that the farm is greater than the sum of its individual 
crop plants. Sustainability can be considered the ultimate emergent quality of an ecosystem 
approach to agriculture.” 

On the other hand, the sources of adaptation come from the capacity of humans to adapt their 
behavior by learning from their experience, and from the capacity of this environment to adapt to new 
conditions and constraints. According to [Perez and Batten, 2006] these kinds of coupled systems, 
involving people, other living entities, an environment, information exchange and the co-evolution of 
all of these things over time, are inherently complex and adaptive due to the ability of human beings 
to switch from rational to deductive reasoning. This flow of information, besides the matter and 
energy flows, is also referred to by [Stepp et al., 2003]. 

Recently a new term has been coined: biocomplexity. This is defined as properties emerging from 
the interplay of behavioral, biological, chemical, physical, and social interactions that affect, sustain or 
are modified by living organisms, including humans [Michener et al., 2001]. One of the very first uses 
of the term which triggered further research was adopted by a new US National Science Foundation26 
Priority Area on Biocomplexity, who started funding programs on 1999 with a very broad sense of 
biocomplexity, but then moved towards more specific issues, being one of them the ‗Dynamics of 
Coupled Natural and Human Systems‘.  

Finally, as stated in [Michener et al., 2001] two particularly salient features of biocomplexity are 
that 1) it arises as temporal, conceptual and spatial boundaries are breached; and 2) the system may 
exhibit emergent or unexpected properties (i.e. the behavior of the whole is often not predictable 
based on a study of its component parts).  

This makes more evident the relation between agro-ecosystems as complex systems and 
biocomplexity as a new area, as well as demonstrates current interest in research over these topics by 
providing extensive funding (approximately 125 million dollars on the first three NSF Biocomplexity 
Phases [Michener et al., 2001]). 

2.3 The Importance of Simulation in Agro-ecosystems 

Since these coupled human-natural systems cannot be manipulated and tested as other systems, due 
to scale and resource difficulties (setting up farms managed by people over decades just to see the 
effects) the possibility of simulating them is crucial.  

The objective of simulating these kind of systems is not trying to figure out exactly what will 
happen in the future if the present conditions are X, the behavior of each part is Y and the evolution of 
certain parameters is Z. In contrast, simulation in these contexts should have the objective of 
prospection of scenarios were the interest is not in the ‗fortune-teller‘ features of the simulation but in 
discovering possible outcomes under certain conditions and being able to easily modify these 
conditions and check again the outcomes (as in a virtual laboratory). Another objective can be to 

                                                 
26 NSF‘s Biocomplexity Priority Area: www.nsf.gov/news/priority_areas/biocomplexity/index.jsp 
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deepen the understanding (and also possibly learning/teaching) of a coupled human-natural system, 
since the more micro/macro level study of each part as well as their interactions require an in-depth 
understanding of them in order to obtain a simulation that is close to reality. Yet other objective can be 
to explore the consequences of manipulating certain system in order to understand how the different 
parts will co-exist in the future due to that manipulation (e.g. how does a water shortage affects the 
productivity of a farm, or how certain economic policy impacts in the long term). 

Section 3 presents an approach that can be used to develop such simulations in the form of 
software systems that will be able to simulate the different parts of an agro-ecosystem and monitor 
(observe) certain parameters over time in order to analyze their evolution. 

3. Agent-Based Modeling 

The basic ideas around agent-based modeling will be presented in this section with special care in 
maintaining enough generality and abstraction, trying to (objectively) introduce the topic without any 
bias of any special discipline or tendency. Later on, several of these general concepts will be put in the 
particular context of a certain domain, especially in computer science and agro-ecosystems. First, a 
definition of agent will be given followed by different classifications of agent environments. From that 
point, the concept of multi-agent system is introduced, as well as its origins and different applications. 

Agent based modeling (ABM) is a computer science approach that enables the simulation of 
heterogeneous populations of interacting individuals or agents, in many cases in a non-agent 
environment, which can also contain non-agent passive objects (commonly known as resources). The 
agents can exhibit a set of different behaviors, and the selected behavior is dependent on the local 
interactions with other individuals in their neighborhood and the state of the environment, thus the 
agents may be adaptive. The mechanism of selection of behavior can range from simple procedural 
logic to highly sophisticated reasoning. The repertoire of behaviors can be fixed or extensible, and the 
latter implies that the agents should be able of learning. The intelligence of the agent depends on its 
abilities to reason and to learn. The adaptive behavioral patterns enable self-organization of the 
population and can result in emergent phenomena. Consequently, the ABM approach is suitable to 
address complex adaptive systems. These concepts will be further studied in the following sections. 

3.1 Definition of Agent 

There is no consensus on the definition of agents, but the most used definitions were proposed by 
[Wooldridge and Jennings, 1995] and [Ferber, 1999]. These definitions have been used alongside each 
other in a non-competitive way, partly due to the fact that agent models have been applied to many 
disciplines ranging from computer science to sociology, which pose different demands on ‗attributes 
of agency‘ [Wooldridge, 2002]. Moreover, the definitions share common principles.  

A definition that supports the computer science focus presented in this thesis is proposed by 
[Wooldridge, 2008]: ―An agent is a computer system that is capable of independent action on behalf of 
its user or owner (figuring out what needs to be done to satisfy design objectives, rather than 
constantly being told [what to do]‖. In this definition, the word ‗independent‘ refers to agent 
autonomy, capable of acting independently and exhibiting control over its internal state. Thus an 
agent is a computer system capable of autonomous action in some environment in order to meet its 
design objectives [Wooldridge, 2002&2008] (Section 3.3 further discusses agents‘ environments).  

According to [Wooldridge, 2002] an intelligent agent is a computer system capable of flexible 
autonomous action in some environment27 and proposes the following properties in order to let an 
agent show intelligent behavior: reactive, proactive and social. 

 Reactive: A reactive system is one that maintains an ongoing interaction with its environment, 
and responds to changes that occur in it (in time for the response to be useful) [Wooldridge, 
2002]. Even though a changing environment makes agent design harder, it allows the 
representation of much more complex (and interesting) situations. 

 Proactive: Since agents should be able to do something according to their design objectives 
(goals) they should have some way to direct their behavior towards those goals. Proactiveness 

                                                 
27 One of the best known examples of agents are robots. From industry manufacturing to NASA explorers and 
soccer-playing, robots can be seen as a ―physical instantiation of an agent‖ according to Wooldridge. Being their 
objective to ensemble a car, collect and analyze rocks or score a goal, being alone or in groups, each of these share, 
to more or less extent, the properties discussed here. 
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means generating and attempting to achieve goals, not driven solely by events, as in the case of 
reactivity, but by actually taking the initiative [Wooldridge, 2002].  

 Social: The real world is a multi-agent environment. As [Wooldrigde, 2002] states: ―we cannot 
go around attempting to achieve goals without taking others into account‖. Social ability in 
agents is the ability to interact with other agents via some kind of agent-communication 
protocol or language, and perhaps also cooperate or negotiate with others.  

In order to formalize some of the previous topics and to simplify future discussions without losing 
generality, the following concepts are introduced, which were extracted from [Wooldridge, 2002] and 
[Lind, 2008]. In order to let agents react (or take the initiative) according to changes in the 
environment, agents must perceive their environment and have some way to act upon it, after 
reasoning what to do. This leads agent to a Perceive/Reason/Act cycle, shown in Figure A.3. 

 

Figure A.3: General representation of an agent with its environment.  

Based upon these concepts, the following can be defined: 

 E the environment, defined as the set of all possible states in which the environment can be;  

 D the knowledge of the agent, defined as the set of all past perceptions it has received from the 

environment;  

 A the actions available for the agent, defined as the set of actions that the agent can do; 

 perceive: E  T a function that determines how the environment is perceived by the agent, 

resulting in the observation T;  

 update: D x T  D a function used to update the agent‘s knowledge of occurred events;  

 select: D x T  A a function used to select one action based on the previous knowledge (D) and 

current perceived events (T); and 

 act: A x E  E a function that determines the new state of the environment after executing an 

action. 

Using these definitions an agent can be defined as a 7-tuple <D, T, A, perceive, update, select, act>. 

This is illustrated in Figure A.4. 

 

Figure A.4: The Perceive/Reason/Act Cycle Revisited 
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3.2 Agent Architectures 

Since there are multiple ways to achieve this Perceive/Reason/Act cycle, there are accordingly 
different agent architectures that represent and implement this concept in different ways and to 
different degrees. The term ‗agent architecture‘ refers to the software architecture for the decision-
making agents in the environment, as well as their internal mechanisms and representations 
[Wooldridge, 2002; Bousquet & Le Page, 2004]. 

Two issues should be taken into consideration regarding this term: first, that in the context of 
agents, architectures are generally referred as being abstract (closer to reality) or concrete (closer to 
implementation); and second, that several authors differ on the classification of agent‘s architectures.  

The following classification of abstract architectures28 is given by [Wooldridge, 2002]: 

 Deliberative Architectures (also known as Symbolic or Logical AI) that manages explicit 
representations of desires (goals), beliefs (what the AI agent knows), intentions (what it wants 
to do), actions (what it does) and uses abstract reasoning tools. Deductive and deliberative 
agents appear in these architectures as well as the BDI Architecture (Belief, Desire, Intention)29; 

 Reactive Architectures that enable intelligence without having explicit representations, or 
abstract reasoning, but as an emergent property of certain complex systems. In this kind of 
architectures the agent has no previous knowledge (D) and simply reacts based on a set of 

rules; and  

 Hybrid Architectures that include a deliberative as well as a reactive component. 

The first type of architecture was the most common in the first stages of Artificial Intelligence 
which suffered from several drawbacks and difficulties that led to the second type of architecture and 
to the third type (Section 3.5 shows this historical evolution).   

3.3 Different Classifications of Agent‟s Environments 

The environment is what surrounds the agent, where the agent is located, and a means by which the 
agent receives input from the outside (out of the agent‘s system). In a context with several agents (as 
Section 3.4 will present) the environment also allows agents to communicate with each other.  

For example, reactivity means that an agent is able to react upon changes on the environment, 
acting upon it as a reaction to that change. Therefore the relation between the agent and its 
environment is crucial since it can trigger agent‘s actions; allow the agent to perceive more or less 
accurately what happened, etc. The following are some classification of environments (based on 
[Wooldridge, 2002]):  

 Accessible vs. Inaccessible: an accessible environment is one in which the agent can obtain 
complete, accurate, up-to-date information about the environment‘s state. If any constraints 
exist then the environment is called inaccessible. This can be represented imposing restrictions 
in the perceive function by limiting the agent‘s perception (if T < E) or not (if T = E); 

 Deterministic vs. Non-deterministic: a deterministic environment is one in which any action 
has a single guaranteed effect –there is no uncertainty about the state that will result from 
performing an action.  

 Static vs. Dynamic: a static environment is one that can be assumed to remain unchanged 
except by the performance of actions by agents. A dynamic one has other processes operating 
on it and which hence changes in ways beyond the agent‘s control.  

 Discrete vs. Continuous: an environment is discrete if there is a fixed, finite number of actions 
and percepts in it.  

                                                 
28 In order to be able to implement software using such architectures, more detail and design must be considered. 
29 BDI architectures resemble human decision-making: belief is what the agent knows (its experience), desire is 
what the agent is willing to do, and intentions are desires plus the commitment to achieve them. In these 
architectures agents spent time not only doing things but also deliberating about what they should do. After 
choosing a plan to execute according to their current intentions, they are able to constantly introspect about the 
validity of such plan at each step of it, and if necessary, change the plan in order to better accomplish their goals. 
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3.4 Definition of Multi-Agent System 

After introducing what an agent is and considering agents that operate alone, the agency theory can 
be extended to let agents interact within a so-called Multi-Agent System (MAS). According to 
[Wooldridge, 2002] ―A Multi-Agent System consists of a number of agents which interact with one-
another. […] To successfully interact, they will require the ability to cooperate, coordinate, and 
negotiate with each other.‖  

In MAS there is no central control and all information and control is distributed among the various 
agents. Figure A.5 presents an illustration of a MAS (based on [Wooldridge, 2002] and [Ferber, 1999]). 

 

Figure A.5: A Multi-Agent System 

As previously discussed, agents are able to perceive part (or all) of the environment and are also 
able to act upon part (or all) of it, depending on the type of environment (accessible or inaccessible). 
This can be represented by spheres of influence that determine the portion of the environment that 
one agent is able to interact with. Interactions between agents allow agents to cooperate, coordinate 
and negotiate as needed. Finally, interacting agents can also be organized to form higher-level 
organizational units.  

To these concepts [Ferber, 1995] adds the concept of object as being a passive entity subject to 
manipulation (consumption and production) by agents (which in turn are defined as a subset of those 
objects, but with the ability to be active). All of these are also defined to be located, meaning that at 
each time it is possible to locate each object and agent within the environment. Finally Ferber 
introduces the idea that each agent possesses its own (internal) representation of the environment, of 
the objects and of other agents.  

In this thesis the term Agent-Based Modeling will be used indistinctively from the term Multi-
Agent System since the first simply refers to the process of modeling a certain reality using agents in 
order to build a multi-agent system30. 

[Wooldridge, 2002] defines the problem of how to build agents capable of independent, 
autonomous action so that they can successfully fulfill their objectives as agent design, while the issue 
of how to build agents capable of interacting with other agents to fulfill those objectives, especially 
when other agents cannot be assumed to share these same objectives (which is introduced by having 
multiple agents) as society design.  

A concept that enables further elaboration on the agency theory in a multi-agent environment is 
the one of a role. A role is the functional or social part which an agent, embedded in a multi-agent 
environment, plays in a process like problem solving, planning or learning [Lind, 2008]. Roles are a 
useful abstraction considering the widely accepted meaning of the term in the real world that can be 
used to help describe and understand the system by describing the consistency of an agent‘s behavior 
within that system (as well as within the organization to which the agent belongs). Some roles present 
mutual dependencies and can only exist if other roles also exist (like the role of a teacher), and an 
agent can play several roles even at the same time (called role multiplicity). As in real societies, a role 
must be determined by a set of coherent behaviors, and not every set of behaviors constitutes a role.  

                                                 
30 This is also supported by [Bousquet and Le Page, 2004]: ―Recently, several researchers have started to use 
multi-agent systems, also called agent-based modeling, in different fields.‖  
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Using the more formal definitions already given, a role can be viewed as an extension of an agent‘s 
current knowledge (D), possible actions (A) and consequently it‘s perceive, update, select and act 

functions: Dnew = D U Dr and Anew = A U Ar where Dr and Ar represent the knowledge and actions 

(respectively) of the added role r. 

In MAS agents interact with each other, and this interaction can lead to cooperation (when 
different agents share objectives) or negotiation (when the interests are not aligned). Negotiation is the 
process of reaching agreements on matters of common interest [Wooldrigde, 2002]. Negotiation is 
very often needed in a MAS environment since each agent has its own goals which can be in conflict 
with other agent‘s goals. Alternatives to negotiation include simply doing nothing or trusting a third 
party (mediation). According to this author any negotiation setting has four components: a) a set of 
possible proposals that agents can make; b) a protocol; c) a (private) strategy for each agent to follow; 
and d) a rule that determines when a deal has been struck and what the agreement deal is. 

Negotiation is not a simple task to accomplish within a MAS environment, since not only one-to-
one negotiations can exist, but also between one agent and many others.  

3.5 Origins of MAS in Relation to Other Disciplines 

The origins of MAS can be found in several disciplines around the second half of the 20th century. The 
most cited disciplines involved are artificial intelligence, artificial life and computer science (although 
at its beginning very related to mathematics), but also with contributions from other fields such as 
economics and ecology.  

The following figure exemplifies some of the milestones (and their dates) that led to the origin of 
MAS: 

 

Figure A.6: Timeline of milestones that led to MAS 

Following is a short list of the first applications of MAS to land-use systems (extracted from 
[Bousquet and Le Page, 2004]) since they relate to the topics tackled in this thesis: 

 1983: Hogeweg & Hesper work on bee colonies [Hogeweg and Hesper, 1983]. Using a model 
that considered the interactions of individual bees, the authors show that the combination of 
the population dynamics of a bumble bee colony and simple behavior of the adult bees on the 
comb is sufficient to generate the social interaction structure of the colony. 
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 1987: Reynolds work on boids [Reynolds, 1987]. The author shows how the aggregate motion 
of an entire herd (of fishes or birds called ‗boids‘) can be simulated by defining a set of simple 
rules over each one of them.  

 1994: Lansing & Kremer work on water management (social-natural interactions) [Lansing and 
Kremer, 1994]. The authors show that Balinese water-temple networks dedicated to 
agricultural deities can have macroscopic effects on the topography of the landscape.  

 1994: Bousquet et al. work on fisheries (social-natural interactions) [Bousquet et al., 1994]. The 
authors developed an object-oriented simulation model of the fishing in Niger as one of the 
first agent-based software models.  

4. Agent-Based Modeling of Complex Systems 

This section presents the applicability of the agent-based modeling approach to complex adaptive 
systems, and then discusses the suitability of the approach to agro-ecosystems as special case of 
complex systems. 

4.1 Applicability of Agent-Based Models to Complex Adaptive Systems 

Besides from the similarities between complex adaptive systems and the agent-based modeling 
approach that could already be noticed, this section further justifies the use of the latter to represent 
the former and gives a list of advantages of the ABM approach (including some comparisons with 
conventional approaches) for modeling complex adaptive systems.  

The following four points help clarifying why the ABM approach is suitable for representing CAS: 

 Regarding Emergence: ABMs allow to define the low-level behavior of each individual agent 
in order to let them interact (over time and space) to see whether some emergent property 
arises or not, and if it does, under which circumstances. 

 Regarding Self-Organization: ABMs do not have any kind of central intelligence that governs 
all agents. On the contrary, the sole interaction among agents along with their feedbacks is 
what ultimately ‗controls‘ the system. This lack of a centralized control is what enables (and 
enforces) its self-organization. 

 Coupled Human-Natural Systems: ABMs allow considering together both, social 
organizations with their human decision-making and communications with biophysical 
processes and natural resources. This conjunction of subsystems enables ABMs to explore the 
interrelations between them, allowing analyzing the consequences of one over the other. 

 Spatially Explicit: the feature of ABMs of being able to spatially represent an agent or a 
resource is of particular interest when communications and interactions among neighbors is a 
key issue. This can either imply some kind of internal representation of space or even the use 
of a Geographical Information System (GIS) with real data. This feature is of special interest in 
the case of agro-ecosystems. 

Furthermore, [Miller and Page, 2007] introduce several benefits of a computational model such as 
ABMs over other more conventional approaches (such as mathematical or textual representations): 

 Flexibility vs. precision: flexibility occurs when the model can capture a wide class of 
behaviors; while precision requires the elements of the model to be exactly defined. While long 
textual descriptions of elements and phenomena appear as a very flexible tool, natural 
language lacks precision. On the other hand, mathematical tools allow for precise descriptions 
(including formal problem-solving methods) with the cost of less flexibility. Computational 
models (such as ABM) present an interesting trade-off between flexibility and precision. These 
models allow flexibility while at the same time requiring precision in order to be able to 
implement it in the model (i.e. code it in a programming language); 

 Process oriented: for a computational model to run, every aspect of how agents are allowed to 
interact must be well defined, and are the very basics of model behavior. Such details are often 
ignored in other approaches (like mathematical or economical models), and even when they 
could be incorporated, the inherent difficulties to do so often lead to gross simplifications or to 
rely on parameters to represent them; 

 Adaptive agents: an important issue in social systems is how bounds on the ability of agents to 
rationally process information impact the behavior of that agent and of the whole system, and 
how does agent learning influences both. The flexibility of computational tools makes them 
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well suited for considering models of boundedly rational agents who adapt their behavior. 
Moreover, computational models of learning have been already developed in the field of 
computer science. Early works on this area focused on high-level cognitive (symbolic) systems, 
and while with initial success, real problems proved much more difficult than initially thought. 
Lower-level adaptive learning (like the already mentioned genetic algorithms) appears as an 
alternative to high-level cognitive systems.  

 System’s dynamics: agent-based models are inherently dynamic in the sense that the processes 
they model need not be in equilibrium. This allows studying systems in which equilibrium 
may or may not be reached. When transition paths between equilibrium states are short and 
conditions are stable, static models may accurately represent reality. In many systems though, 
this is not the case. Even when the conditions are right for equilibrium analysis, understanding 
the dynamics of the system may still be important. In situations where equilibria are a 
possibility, understanding the dynamics is likely to be insightful; in situations where equilibria 
are nonexistent or transition paths are long, understanding the dynamics is crucial. 

 Heterogeneous agents and asymmetry: one of the key issues of ABM is that they allow for 
incorporating heterogeneous agents rather than having homogeneous agent behavior 
averaging out the differences. Whether a model should include heterogeneous behavior or not 
is an important issue and having an approach that allows for experimenting both scenarios is 
crucial. The amount of symmetry that the system presents and how much of that is actually 
modeled is also important. Symmetry assumptions usually simplify calculations, even though 
asymmetry may be an influential feature of the system. 

 Scalability: the ability to solve a model analytically is often tied to the number of agents that 
are used. Thus, traditional methods typically focus on models composed of either very few or 
very many agents (e.g. competition models in economics or planetary motion models in 
physics). Once the behavior of a single agent is described, agent-based models can be easily 
scale up exploring the behavior of a system of arbitrary size by simply adding more agent 
instances. This scalability may be very important in many cases where just by adding one 
agent affects the whole system behavior (like in the case of monopolies or duopolies or in 
systems that present a tipping point31). Scaling also allows seeing emergent behavior that could 
not rise if the number of agents is not enough. 

 Other advantages of agent-based computational models: 

o Repeatable: experiments can be repeated over and over again, and the same results can 
be obtained while maintaining the initial conditions. This enables extraordinarily 
precise manipulations in the virtual world that would be impossible in the real world. 

o Constructive: ABMs give a complete constructive and generative view of a 
phenomenon, from its origins to its manifestation. This ability to generate from the 
bottom up often can provide new insights and understanding. 

o Low cost: while developing the initial computational model can be costly, these models 
tend to be very cost effective, since the marginal cost of running and modifying is 
usually very low, allowing several runs to accommodate any statistical necessity.  

The following Section presents how some special features of agro-ecosystems can be modeled 
using an ABM approach, which in conjunction with these previous advantages, make them the 
suitable tool for exploring such systems. 

4.2 Modeling & Simulation of Agro-Ecosystems using an ABM Approach 

Section 2.2 presented agro-ecosystems as a case of complex adaptive systems, while Section 4.1 
showed the suitability of the ABM approach to model complex adaptive systems. Nevertheless, this 
section provides some views on the topic by different authors working on ABM approach to agro-
ecosystems and presents some specific features of agro-ecosystems that can also be tackled with it. 

According to [Ferber, 1999, pp 36]: 

                                                 
31 A system is said to have a tipping point if by adding just one more element (e.g. an agent instance) the behavior 
of the entire system changes dramatically. 



Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 87 of 112 

 

“Multi-agent systems bring a radically new solution to the very concept of modeling and 
simulation in environmental sciences, by offering the possibility of directly representing 
individuals, their behavior and their interactions […] it is thus possible to represent a 
phenomenon as the fruit of the interactions of an assembly of agents with their own operational 
autonomy.” 

The environmental sciences had, according to [Bousquet and Le Page, 2004], for ten years the 
challenge to develop a new approach focusing more on the interactions between ecological and social 
components and taking into account the heterogeneity of these, where ecology, for which the 
environment is a fundamental notion, plays a key role in specifying concepts and developing 
appropriate tools.  

The relations and heterogeneity in the social part of the MAS depend on the agent‘s social 
neighborhood, whereas the variability from the physical and ecological point of view can be achieved 
by considering spatial heterogeneity of the environment in the MAS. The neighborhood and the 
environment can be represented in different ways. For example, a tightly coupled representation is 
supported by cellular automata, and a rather loose coupling can be reached by implementing the 
social neighborhood as a network and the environment in a Geographical Information System (GIS). 

A cellular automata model works with a grid of neighboring cells. Each cell represents a spatial 
unit and an individual or agent. Within the grid, the neighborhood is fixed (e.g. 4 or 8 neighboring 
cells if a square-shape cell grid is used), and more advanced models allow the use of non-local 
neighbors. Each cell can be at one of several states, and future states depend on transition rules based 
on a local spatiotemporal neighborhood [Parker et al., 2003]. Time advances in discrete steps. Cellular 
automaton are also very suited for using GIS since actual images or representations of real landscapes 
can be mapped to each cell, enabling more realistic analysis of the grid. 

To address more complex neighborhoods and environments to simulate socio-ecological dynamics 
in agro-ecosystems and human decision making therein, more loosely coupled social and 
environmental representation in ABM are needed. The link between the two subsystems can be 
achieved by assigning a number of elements in the GIS (e.g. fields) to the responsibility of selected 
agents (e.g. farmers) as their sphere of influence. These kinds of joint work have led to many new 
applications of MAS for simulating land use and land cover changes, also known as MAS/LUCC 
[Parker et al., 2003]. 

The addition of spatially explicit features is especially important in agro-ecosystems where spatial 
heterogeneity can be relevant, for example by means of different land-uses, soil qualities, natural 
resources, etc. on each land-unit. Just as land-units can be organized to form higher-level spatial 
elements, social networks can be formed between agents or can emerge as a consequence of agent‘s 
behavior and interactions. What makes ABMs rather unique is that both of these organizational 
dimensions can be considered together, allowing exploring the consequences of one over the other. 

Finally, it is worth noting that even though agents, from the ABM point of view, can be any 
autonomous and goal-driven entity, from the agro-ecosystems perspective agents are generally 
aspects of human societies or animal populations that organize among themselves, interact with the 
environment, and they are affected in their decisions by that environment [Matthews, 2006]. Figure 

A.7 shows these relationships similarly as Figure A.1 (in Section 1) showed an abstract complex 
system: 
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Figure A.7: Model of an Agro-Ecosystem using an ABM Approach 

 

The actual implementation of an agent-based model is ultimately about developing a 
computational model, that is, software. Therefore, in order to analyze, design, implement and every 
other step involved in developing such systems, certain software development methodology must be 
used. 

5. Software Development  

5.1 Object Oriented Programming (OOP) 

Most software is currently being developed using the object-oriented paradigm. Born with the ideas of 
the Simula programming language in 1965-67 [Birtwistle, 1973] and immediately followed by 
Smalltalk language around the 70‘s [Kay, 1993] object-oriented programming (OOP from now on, 
term coined by Alan Kay) becomes mainstream in the mid 1980‘s with the C++ programming 
language [Stroustrup, 1994] and even more widely used thanks to Sun‘s Java in the mid 1990‘s 
[Gosling, 2005] and from the beginning of 2000 with Microsoft‘s .NET Framework and the C# 
programming language [Microsoft, 2008]. 

OOP is a technique for programming, a paradigm, while an OOP language is a programming 
language that provides mechanisms that support the object-oriented style of programming 
[Stroustrup, 1991]. OOP also involves such concepts as encapsulation, modularity, data-hiding, 
message-passing, inheritance and polymorphism. The main idea behind this paradigm is to design 
certain object structure along with its behavior that allows objects to interact (by means of messages) 
to achieve some goal. The concept of object itself comprises internal data and operations that 
manipulate that data in an indivisible entity.  

This is represented in Figure A.8: 

 

Figure A.8: Objects (data + functions) communicating via messages in OOP. 
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One of the most powerful features of OOP is that it serves as a metaphor32,33 not only for 
implementing (coding) programs but also to design them (including design patterns [Gamma et al, 
1994]) and to model reality in terms of objects and interactions (OO-analysis, including analysis 
patterns [Fowler, 1996]). All of this provides powerful abstractions that help bridging the gap between 
the (real-world) problem and the (software) solution, passing through OO-analysis and OO-design 
stages.  

An example of such an abstraction that shows the power of this metaphor is the concept of object 
itself, which can represent anything in real life that has certain state and certain behavior. Each person 
has a name, age, hair color, etc. and each one of us can buy, sell, pay, etc. The state of each person will 
be represented by the attributes of the Person class and the behavior by the methods of the Person 
class. Another example is the possibility to define categories of concepts by using the OOP feature of 
inheritance. 

5.2 Software development methodologies and tools 

This thesis assumes that software development methodology is the same as software development process (or 
software process for short). This means to follow certain process in order to obtain a software product as 
the result of it34. [Pfleeger and Atlee, 2006] define a process in the context of software development as: 

―A process is a series of steps involving activities, constraints, and resources that produce an 
intended output of some kind. A process prescribes all of the major process activities; […] uses 
resources subject to constraints; […] produces intermediate and final products; […] may be 
composed of subprocesses; […] each process activity has entry and exit criteria so that we 
know when the activity begins and ends; […] activities are organized in a sequence […]; has a 
set of guiding principles; […] and constraints and controls may apply to an activity, resource, 
or product.‖ 

A tool is an instrument or automated system for accomplishing something in a better way and a 
paradigm represents a particular approach or philosophy for building software [Pfleeger and Atlee, 
2006]. 

According to [Booch, 1995] a software development process has four roles:  

1) To provide guidance as to the order of a team‘s activities;  

2) To specify which artifacts should be developed and when should be developed;  

3) To direct the tasks of individual developers and the team as a whole; and  

4) To offer criteria for monitoring and measuring the project‘s products and activities.  

This thesis will focus on the first two of these objectives since it will focus on the specific activities 
and products that should be done rather than on the team involved or the process measures needed. 

What lays in the core of all current software development methodologies is the iterative and 
incremental development of software. Traditionally software was developed using the so-called 
waterfall process [Royce, 1970], consisting of sequential phases of design, implementation and testing. 
In this sequential process, one phase must be ended before starting the next one (breaking the whole 
project based on these phases). In contrast, iterative and incremental processes iterate several times 
through a set of phases obtaining in each cycle a (partial) version of the product, each time bigger, 
until the final product is achieved by the succession of several iterations (breaking the whole project 
by subsets of functionality that are tackled on each iteration) [Pfleeger and Atlee, 2006; Fowler, 2003]. 

Figure A.9 shows a representation of an iterative and incremental process: 

                                                 
32 ―An easily overlooked benefit to the use of object-oriented techniques is the power of metaphor.‖ [Budd, 2001] 
33 ―OOP is an interesting example of a programming methodology explicitly organized around a powerful 
metaphor.‖ [Travers, 1996] 
34 ―A software process is a set of activities and associated results that produce a software product.‖ [Sommerville, 
2006] 
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Figure A.9: Iterative & Incremental Process 

According to Grady Booch35 in [Kruchten, 2003] there are at least six software best practices that 
should be taken into account by the software process in order to successfully develop software. These 
are:  

1) To develop software iteratively;  

2) To manage requirements;  

3) To use component-based architectures;  

4) To visually model software;  

5) To continuously verify software quality; and  

6) To control changes to software. 

These best practices are adopted in current mainstream software processes that are special cases of 
the iterative and incremental approach. These are Rational Unified Process (also known as RUP) 
[Kruchten, 2003] and eXtreme Programming (also known as XP, one of the most well-known agile 
processes36) [Beck, 1999]. Others include Microsoft Solution Framework (also known as MSF) [Turner, 
2006] and Dynamic Systems Development Method (also known as DSDM) [Coleman and Verbruggen, 
1998]. 

Each of these vary on the product deliverables (how many deliverables and when) as well as on 
administrative tasks (documentation, metrics, team work, etc.) but they all coincide in the use of 
iterations, mainly through the phases of analysis, design and implementation. 

In relation to the fourth best-practice suggested by Booch (visually model software) the Unified 
Modeling Language (UML from now on) [Rumbaugh et al, 1998] is by far the most used graphical tool 
for modeling software. The UML has become a de-facto standard not only in industry but also in 
academy, created around 1995-96 by three very renowned authors in computer science (Grady Booch, 
James Rumbaugh and Ivar Jacobson) and is under the responsibility of the Object Management Group 
[OMG, 2008].  

UML allows the visualization, specification, documentation and discussion of the artifacts that 
compose a software system. It is itself a specification composed of 13 different types of diagrams (in its 
2.0 version) that provide graphical notation for modeling several aspects of a software system. All of 
these types of diagrams can be classified in structural diagrams and behavioral diagrams. The former 
are used to model structural elements and relationships of several software aspects while the latter are 
used to model dynamic behavior of elements (where time and sequencing are relevant). 

Also, UML helps in the second best practice (manage requirements) by providing especial artifacts 
known as Use Cases along with related diagrams, and for the third best practice (use component-
based architectures) by providing several diagrams for designing, documenting and discussing the 
system‘s architecture, each giving a different and complementary view. 

                                                 
35 Booch proposed one of the earliest iterative processes in [Booch, 1983]. 
36 According to Martin Fowler [Fowler, 2003] one of the authors of the agile manifesto: http://agilemanifesto.org  

http://agilemanifesto.org/
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Even though UML is a very useful conceptual tool, it was not intended for implementation 
(although research is being conducted to allow UML diagrams to actually be executed37). Therefore 
when facing the implementation of a software design, other tools must be used, such as Integrated 
Development Environments (IDE). 

6. Comparison Between Agent-Oriented and Object-Oriented Paradigms 

In 1989 Yoav Shoham coined the term agent-oriented programming [Shoham, 2010] and defined it as a 
new programming paradigm based on a societal view of computation. This societal view implies 
(according to Shoham) ascribing mental qualities to agents such as beliefs, capabilities, choices and 
commitments (in the same way than BDI architectures propose to conceive agents in terms of beliefs, 
desires and intentions).  

The idea behind these mental qualities or properties shared among several artificial intelligence 
and MAS-related authors [Shoham, 2010; McCarthy et al, 1955] include the use of mental constructs to 
design computational systems. This is the main difference between AOP and OOP: while OOP uses 
abstractions based on objects which are generic entities that comprise identity (a property inherent to 
all objects that allows to differentiate them), state (attributes by which the object can be characterized) 
and behavior (operations that the object can be asked to do by means of messages), AOP considers 
abstractions based on human societies and mental properties. 

Even though the approach of using mental and societal abstractions gives powerful metaphors, 
there exists the risk of overusing them: everything can be considered to have mental or societal 
properties.  

It is then straightforward that it is absolutely necessary to consider the AOP approach only ‗when 
useful‘, which generally implies that the ascriptions help in understanding, analyzing, designing or 
implementing the problem at hand (thinking of light switches as agents just makes things more 
complex than adopting a more mechanistic approach). Therefore it will be more useful to ascribe 
mental qualities when applied to entities whose structure or functioning is not as well-known as the 
examples given. 

Another important difference between both approaches is the autonomy that agents have. While in 
OOP objects just reply to messages sent from other objects in a predefined way, in AOP agents are 
supposed to be proactive and initiate actions over themselves or over other agents.  

But AOP is not just OOP + proactivity. AOP can be viewed as a specialization of OOP. Whereas 
OOP proposes viewing a computational system as made up of modules (objects) that are able to 
communicate with one another and that have individual ways of handling incoming messages, AOP 
specializes it by fixing the sate (now called mental state) of the objects (now called agents) to consist of 
precisely defined components called beliefs (including beliefs about the environment, about 
themselves and about others), capabilities, choices and other similar notions. A computation consists 
of these agent‘s informing, requesting, offering, accepting, rejecting, competing and assisting one 
another. Regarding the fundamental concepts of each paradigm, objects in OOP can be compared to 
instance agents in AOP, and correspondingly, classes can be compared to agent types.  

Furthermore, roles in AOP can be compared to interfaces in OOP since they specify the (partial) 
behavior of an agent type in one case and of an object in the other. A single class can present as many 
behaviors as interfaces it implements, the same way a single agent type can present as many behaviors 
as roles it plays.  

It is also noteworthy that in OOP in order to define the entire behavior of a class it is not enough to 
only define its interfaces. First, because classes may have additional behavior that was not specified by 
any interface. Second, because it may be some relationship between the interfaces a class implements 
and the behavior that that class presents.  

Translated this to AOP, if an agent type plays two roles at the same time, it may not be enough just 
defining those roles, since the agent type may behave differently when playing these two roles 
together, and this difference in behavior must not be described in either role since it is not specific to 
them, but of the agent type, so it must be defined within the agent type itself. 

The following table summarizes these differences: 

 

                                                 
37 This is known as Model Driven Architecture (MDA) [Mellor et al, 2002]. 
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 OOP AOP 

Basic unit Object (instance of a Class) Agent instance of an Agent Type 

Constraints defining the 
state of the basic unit 

None Mental properties (beliefs, desires, 
etc.) 

Autonomy Not necessarily present May be present 

Types of messages 
(interaction) 

Unconstrained Speech acts (inform, request, etc.) 

Concept of role Not necessarily present 
(comparable to using interfaces) 

May be present 

Table A.1: Comparison between OOP and AOP paradigms. 

This short list of differences illustrates that even though OOP and AOP have important similarities, 
these arise because AOP can be seen as a specialization of OOP, a new paradigm thought as 
constraining the extremely general-purpose of the OOP paradigm and aligning those constraints to 
mental and societal properties. 

The value (and innovation) of AOP is in providing useful abstractions for understanding and 
developing systems in terms of agents and societies of agents. In words of [Jennings, 2001]:  

―When designing software, the most powerful abstractions are those that minimize the 
semantic gap between the units of analysis that are intuitively used to conceptualize the problem, 
and the constructs present in the solution paradigm.” 
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Appendix B: Comparison between AOSE and 
OOSE Methodologies 

The aim of this section is not to present an exhaustive comparison between the 16 general steps of 
AOSE methodologies and the steps and activities found in mainstream object-oriented methodologies, 
but to summarize the main differences and common points between them. Such a comparison can 
help in understanding the main ideas behind AOSE methodologies by contrasting them with much 
well-known OOSE methodologies. 

The comparison will be based on general steps aiming at showing each methodology‘s 
suggestions about what to do rather than when to do it. In other words, the focus will be in comparing 
which steps are suggested in each methodology, in which order and which is the expected result. 
Concepts more specific to the life-cycle of each methodology (like for example iterations) and that help 
defining when the steps will occur will be left aside, not because they are not important but because 
the AOSE methodologies do not explicitly address them (maybe because they are not yet mature 
enough) and comparing their steps is considered to be of utmost importance. How to develop each 
step (for example what artifacts to deliver or what language to use) will be compared when possible. 

Analogous to the 16 AOSE general steps, Table B.1 presents such general steps but for 
mainstream Iterative & Incremental Methodologies38. For the sake of the comparison between both 
methodologies (AOSE and OOSE) the following table assumes that the system will be developed 
following some kind of component-based architecture. This allows to explicitly include in the table 
those steps especially suited for component development in the OOSE methodology, since they can be 
closely related to the concept of agent class in the AOSE methodology, allowing for a more precise 
(and real) comparison between them. This doesn‘t bias or restricts the OOSE methodology in any way 
since many mainstream of them explicitly call for using such architectures. 

                                                 
38 Steps involved in Business Modeling are left out in order to concentrate on developing software and not on 
understating the business or organization in which the software will perform.  
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 OOSE Step Description 

System 
requirements 
and analysis 

steps 

1. Identify overall 
system requirements 

Involves eliciting both, functional and non-functional 
requirements (quality attributes) as well as identifying actors.  

2. Domain model 
conceptualization 

Traditional conceptual diagrams the same as described for AOSE 
(typically using UML Class Diagrams as notation). 

3. Specify overall 
expected system 
behavior 

Involves functional requirements analysis, typically with 
techniques such as Use Cases. Even though the behavior of the 
entire system should be specified, each component can be 
associated to a subset of these in order to maintain traceability and 
to better organize each component‘s development. 

System 
architecture 

steps 

4. Specify system 
architecture  

Specify the system‘s overall architecture using components 
(component-based) like for example client/server, layered, etc. 

5. Identify component 
interfaces 

Identify (at least in a broad sense) the interfaces that will be 
provided and consumed by each component. If possible, specify 
the behavior of each of these interfaces (operations). 

6. Specify component 
internal architecture 

Specify each component‘s internal architecture, which will be 
encapsulated (and hidden) within that component. 

System 

design steps 

7. Specify component‘s 
object interactions 

Specify, only for those requirements that should be fulfilled by 
each component, how the component‘s elements (classes, 
interfaces, objects, datatypes) will interact. 

8. Specify component‘s 
class structure 

Based upon the previous step, specify the entire class structure for 
each component. This structure should populate the already 
defined component architecture (Step 6). 

Implementation 9. Implement 
components 

Implement (in an OO programming language) the detailed design 
made for each component in Steps 7 and 8.  

Deployment 10. Specify component‘s 
deploy 

Specify how many instances of each component will be deployed 
and over which node (processing and data-storage unit). This 
should be related (or it could be even already defined) to the 
overall system architecture (depending on how exhaustive the 
latter was). 

Table B.1: Most common OOSE steps. 

On the other hand, the 16 general AOSE steps can be found in Table 3 of Chapter 3. 

Not surprisingly, AOSE methodology focuses of identifying agent classes (Step 3), specifying their 
interactions with other agent classes (Steps 5 to 7), their architecture (Step 8) and their interfaces (Step 
10). This great deal of attention to agent classes‘ analysis and design derives from the crucial concept 
of agent autonomy, and even of agent mental attitudes (Step 9).  

On the other hand, OOSE methodology focuses on the system as a whole, and classes (and their 
interactions) are only means to achieve the desired system-level functionality (in words of OOP, object 
collaborate with each other in order to achieve system requirements). Here, classes are designed 
altogether and organized with these system requirements in mind; while in AOSE each agent class has 
its own goals, which may or not mean collaboration, so their design must be much more independent 
from one another than in the OOSE case. 

Actually, under the OOSE methodology, agent classes could be more appropriately compared with 
stand-alone components, since OOSE applies in such architectures the concepts seen in AOSE: 
interactions between components, individual component architecture, individual component internal 
design, component interfaces, communications between components, etc.  

Nevertheless these differences, as Figure 7 of Chapter 3 showed, nearly all AOSE methodologies 
directly or indirectly derive and use the Object-Oriented paradigm, therefore huge differences should 
not be expected. 
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Appendix C: Case Study Glossary  
This appendix presents basic definitions for several of the agronomical concepts used in Chapter 6 of 
this thesis. 

Activity  
(or Production Activity) 

Is any activity or management practice that a farmer/producer can 
perform, exploiting in some way its farm in order to obtain some benefit. 
Some production activities present in North Uruguay are cattle, soybean, 
or forestry.  

Basalt A volcanic rock. Basalt-soils are named because underneath the soil, 
basalt rock is present, sometimes having only few centimeters of soil 
above the basalt rock. 

Born Calf A newly born calf that has to spend some time lactating with its mother. 

Breeder  
(or Cattle Breeder) 

A farmer whose main production activity is livestock and specializes in  

Calf The young of domestic cattle. 

Cattle See Livestock. 

Cohort A group of people (in this case animals) who share a characteristic, 
usually age.  

Condition Score (CS) Also known as Body Condition Score: is a system for evaluating an 
animal level of body condition (amount of stored fat) and assessing a 
numeric score to facilitate comparison. In the context of this thesis, a cow 
with a CS of 2 would be dead or near death, while a CS of 3 would be 
minimal, and anything above will be considered better. 

Ear Tag A plastic or metal object used for identification of domestic livestock and 
other animals.  

Empty Cow A cow that is not pregnant. 

Fertility Rate In the context of this thesis, it represents the probability of a cow to 
effectively deliver after being mated. A percentage scale was used. 

Flock A herd of sheep. 

Graze (or Grazing) To put an animal to feed from natural grass. In the context of this thesis, 
this implies renting to other farmers their plots. 

Heifer A young cow before she has her first calf.  

Herd A group of animals. 

Livestock Also known as Cattle: domesticated animals raised in an agricultural 
setting to produce commodities such as food or leather. 

Mating The pairing of opposite-sex animals for copulation.  

Plot In the context of this thesis: the land plot that each farmer owns or rents 
for grazing. 

Proactive Producer In the context of this thesis: a producer more concerned with keeping 
reasonable condition scores in animals. This producer looks mainly at the 
grass availability, therefore anticipating the future animal‘s condition 
score. 



Agent-Based Methodology for Developing Agroecosystems‟ Simulations Jorge Corral 

Page 96 of 112 

 

 

Reactive Producer 

 

In the context of this thesis: a producer more concerned with keeping 
animals. This producer looks mainly at the animals and makes more 
radical decisions when they start to die. 

Steer A young bull. 

Stocking Rate A number that represents how many animal units a producer has. The 
bigger the stocking rate, the more animals the producer has. Each kind of 
animal (sheep and cattle) has different animal units: an adult cow 
represents 1.0 units in the stocking rate while one sheep 0.2 units. Each 
producer adjusts his stocking rate at different levels and at different 
seasons (e.g.: proactive producers adjust to 0.7 at winter while reactive to 
1.2 in that same season). 

Supplement A nutrient supplement given to cattle, generally made from grain, grass 
and fiber. Since it has certain cost associated, producers only invest on 
supplement when they feel it is absolutely necessary. 

Wean Take the newly born calf away from his mother. It can be done naturally 
(after approximately 9 months) or artificially by the producer. In the 
latter, the producer must give supplement to the born calf in order to 
substitute his mother. 
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Abstract: The agent-based modeling (ABM) approach allows modeling complex systems, involving different kinds of 

interacting autonomous agents with heterogeneous behavior. Agro-ecosystems (ecological systems subject 

to human interaction) are a kind of complex system whose simulation is of interest to several disciplines 

(e.g. agronomy, ecology or sociology). In this context, the ABM approach appears as a suitable tool for 

modeling agro-ecosystems, along with a corresponding agent-oriented software engineering (AOSE) 

methodology for the construction of the simulation. Nevertheless, existing AOSE methodologies are 

general-purpose, have not yet accomplished widespread use, and clear examples of applications to agro-

ecosystems are hard to find. This article sets the ground for a new software development methodology for 

developing agro-ecosystem simulations based on the ABM approach as well as on these already existing 

AOSE methodologies, but tailored to tackle specific agro-ecosystem features. 

1 INTRODUCTION 

Many of the current challenges and opportunities 

(e.g. globalization, sustainability, terrorism, 

epidemics or climate change) can be seen as 

complex systems (Miller and Page, 2007). 

Understanding the components, behavior and 

interactions in these systems is the first step to 

whatever analysis is needed about them. Models, as 

simplifications of certain reality or problem, are a 

fundamental tool to this aim. Moreover, the 

possibility of direct experimentation over these 

systems is rare if not impossible, so the need for 

simulation becomes imperative. Even though not at 

global scale, agro-ecosystems are complex systems, 

were modeling and simulation allow for 

understanding system dynamics as well as to explore 

future scenarios.  

Several approaches or methodologies can be 

used for modeling an agro-ecosystem. In particular, 

the agent-based modeling (ABM) approach appears 

as a suitable tool for its aim (Miller and Page, 2007). 

In the other hand, simulating generally means 

developing a software system, representing the 

agent-based model. This requires the use of some 

agent-oriented software engineering (AOSE) 

methodology.  

Several AOSE methodologies are currently 

available for guiding a programmer in order to 

develop software following the ABM approach 

(Henderson-Sellers and Giorgini, 2005). However, 

they are general-purpose methodologies, so the 

programmer is faced with a trade-off between using 

an already existing one and not leveraging the 

specificities of agro-ecosystems, or to follow an ad-

hoc methodology that pays detail to those features. 

Up to our knowledge there are no specific AOSE 

methodologies for this purpose. Nevertheless, there 

are some related work (Le Page and Bommel, 2005) 

that address the simulation of agro-ecosystems using 

an ABM approach without a methodological 

framework. 

In this work we propose an AOSE 

methodological framework for modeling and 

simulating agro-ecosystems that is based upon other 

general-purpose AOSE methodologies, relies on a 

standard graphical modeling language (UML), 

covers the most common agro-ecosystem features, 

and is intended for easy uptake from programmers 

only knowing object-oriented programming. The 

methodological framework is not a methodology 
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itself. It focuses on identifying relatively general 

steps and artifacts (produced by the steps) that could 

be ensemble for developing such a simulation, whilst 

other methodological aspects, as defining a strict 

order among steps and identifying roles for that 

steps, are not yet considered. 

The rest of the paper is structured as follows. 

Section 2 briefly presents the background of our 

work. Section 3 resumes existing AOSE 

methodologies, while Section 4 describes how these 

methodologies are considered in a methodological 

framework for the development of agro-ecosystem 

simulations. Section 5 describes how agro-

ecosystem features are supported in the proposed 

methodological framework, and Section 6 presents a 

case study which stands as a proof of concepts. 

Finally, the conclusions and an outline for further 

work are described in Section 7. 

2 Background 
This section first introduces complex systems and 

presents agro-ecosystems as a special case of these. 

The ABM approach is then described and applied to 

represent an agro-ecosystem.  

2.1 Complex Systems 

Complex systems are composed of a large number of 

interacting elements, and two properties set a 

complex system apart from one that is merely 

complicated: emergence and self-organization. 

Emergence is the appearance of behavior that could 

not be anticipated from the knowledge of the parts of 

the system alone. Self-organization means that there 

is no external controller or planner engineering the 

appearance of the emergent features; they appear 

spontaneously (CSIRO, 2008).  

A key feature of real systems that has proved to 

be essential in the appearance of rich emergent 

features is local interaction. In other words, elements 

of a system only interact with their neighbors 

(CSIRO, 2008). Well-known and simple rules in the 

micro-level can make the emergence of system-level 

phenomena. 

Emergent properties and complexity usually 

arise when the relations among the elements of the 

system are not linear. This means that the behavior 

of a single element is not the result of a linear 

combination of the individual behaviors of related 

elements, leading to a non-linearity. Another source 

of complexity appears when there are time and scale 

differences between cause and effect. That is, if an 

action in certain level of organization or hierarchy at 

a certain time ends up having its effect over a long 

period of time and over different levels of 

organization or hierarchies (different scales), then 

the understanding of the causeeffect relationship 

vanishes. 

Complex Adaptive Systems are defined as 

systems that are capable to adapt and self-organize 

in response to perturbations or distortions in the 

environment or by the result of certain interrelations 

between the elements. System adaptation is 

ultimately concerned with the adaptation of each 

individual element of the system, since there is no 

centralized control and therefore no single element 

that represents the entire system. This also relates to 

the concept of co-evolution of the different elements 

or parts of the system, which by means of their 

interrelations evolve their behavior over time, 

adapting themselves to new situations (Rammel, 

Stagl and Wilfing, 2007). 

2.2 Agro-Ecosystems as a Case of 
Complex Systems 

An agro-ecosystem is the human manipulation and 

alteration of ecosystems for the purpose of 

establishing agricultural production (Gliessman, 

1997). Agro-ecosystems results from the interplay 

between endogenous biological and environmental 

features of the agricultural fields and exogenous 

social and economic factors, and is delimited by 

arbitrarily chosen boundaries.  

Agricultural strategies respond not only to 

environmental, biotic, and cultivar constraints, but 

also reflect human subsistence strategies and 

economic conditions (Ellen, 1982). This stresses the 

importance of social factors like labor availability, 

access and conditions of credit, subsidies, perceived 

risk, price information, association obligations, 

family size, and access to other forms of livelihood 

are often critical to understanding the logic of a 

farming system (Hecht, 1987). 

Any system uses its processes and resources to 

convert inputs into outputs. Concerning the 

resources commonly found in agro-ecosystems, 

Norman (1979) suggests the following classification: 

1) Natural resources: the given elements of land, 

water, climate and natural vegetation that are 

exploited by the farmer; 2) Human resources: the 

people who live and work within the farm and use its 

resources for agricultural production; 3) Capital 

resources: the goods and services created, 

purchased, or borrowed by the people associated 

with the farm to facilitate their exploitation of 

natural resources for agricultural production; and 4) 

Production resources: the agricultural output of the 

farm such as crops and livestock. 

Any ecosystem by itself can already be 

considered as a case of complex adaptive system, 

considering its various components, organization 

levels, micro and macro interactions and their 

feedbacks, and even more if including a social 

subsystem (with heterogeneous behaviors) as in the 

case of agro-ecosystems. The interactions between 
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the social and natural subsystems inside an agro-

ecosystem, such as farmers‘ practices affecting 

natural resources, are examples of local interactions 

at a small scale which may produce negative or 

positive feedbacks affecting in turn the decision-

making of social actors. Repeating these interactions 

on a daily basis can produce emergent properties and 

new organizations across the agro-ecosystem in the 

long-term. 

According to Dawn, Hessl and Davis (2008) the 

sources of complexity in coupled human-natural 

systems (as is the case of agro-ecosystems) arises 

mainly from temporal, spatial and scale mismatches 

between actions and their impacts which occur 

because of the indirect and imperfect nature of these 

interactions between human actions and their impact 

on the environment. The sources of adaptation come 

from the capacity of humans to adapt their behavior 

by learning from their experience, and from the 

capacity of this environment to adapt to new 

conditions and constraints. According to Perez and 

Batten (2006) these kinds of coupled systems, 

involving people, other living entities, an 

environment, information exchange and the co-

evolution of all of these things over time, are 

inherently complex and adaptive due to the ability of 

human beings to switch from rational to deductive 

reasoning. 

2.3 Agent-Based Modeling 

There is no consensus on the definition of agents. A 

well-known definition that supports the computer 

science focus presented in this article is proposed by 

Wooldridge (2008): ―An agent is a computer system 

that is capable of independent action on behalf of its 

user or owner, figuring out what needs to be done to 

satisfy design objectives, rather than constantly 

being told [what to do]‖. In this definition, the word 

‗independent‘ refers to agent autonomy, capable of 

acting independently and exhibiting control over its 

internal state. Thus an agent is a computer system 

capable of autonomous action in some environment 

in order to meet its design objectives (Wooldrige, 

2002 and 2008).  

In order to let agents react (or take the initiative) 

according to changes in the environment, agents 

must perceive their environment and have some way 

to act upon it, after reasoning what to do. This leads 

agent to a Perceive/Reason/Act cycle, shown in 

Figure 1. 

 

Figure 1: General representation of an agent with its 

environment. 

The agency theory can be extended to let agents 

interact within a so-called multi-agent system 

(MAS). According to Wooldridge (2002) ―A Multi-

Agent System consists of a number of agents which 

interact with one-another. […] To successfully 

interact, they will require the ability to cooperate, 

coordinate, and negotiate with each other.‖ In MAS 

there is no central control and all information and 

control is distributed among the various agents. 

Figure 2 presents an illustration of a MAS based on 

(Wooldridge, 2002) and (Ferber, 1999). 

 

Figure 2: A Multi-Agent System. 

As previously discussed, agents are able to 

perceive part (or all) of the environment and are also 

able to act upon part (or all) of it depending on the 

type of environment. This can be represented by 

spheres of influence that determine the portion of the 

environment that one agent is able to interact with. 

Interactions between agents allow agents to 

cooperate, coordinate and negotiate as needed. 

Finally, interacting agents can also be organized to 

form higher-level organizational units. 

A concept that enables further elaboration on 

the agency theory in a multi-agent environment is 

the one of a role. A role is the functional or social 

part which an agent, embedded in a multi-agent 

environment, plays in a process like problem 

solving, planning or learning (Lind, 2008). 

Roles are a useful abstraction considering the 

widely accepted meaning of the term in real world 

that can be used to help describe and understand the 

system by describing the consistency of an agent‘s 

behavior within that system (as well as within the 

organization to which the agent belongs).  
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In summary, the ABM approach enables the 

simulation of heterogeneous populations of 

interacting agents, which can also contain non-agent 

passive objects (commonly referred to as resources). 

The agents can exhibit a set of different behaviors, 

and the mechanism of selection can range from 

simple procedural logic to highly sophisticated 

reasoning. The repertoire of behaviors can be fixed 

or extendible, and the latter implies that the agents 

should be able of learning. The intelligence of the 

agent depends on its abilities to reason and to learn. 

The adaptive behavioral patterns enable self-

organization of the population and can result in 

emergent phenomena. Consequently, the ABM 

approach is suitable to address complex adaptive 

systems. 

2.4 Agent-Based Modelling of Agro-
Ecosystems 

Since the ABM approach can be used to model 

complex adaptive systems, and since agro-

ecosystems are a special case of these, it naturally 

follows that the ABM approach is suitable for 

modeling agro-ecosystems. There are also numerous 

arguments that support this, like those presented in 

(Miller and Page, 2007), but nevertheless it is worth 

analyzing how the ABM approach specifically 

addresses the following issues, which characterize 

an agro-ecosystem: 1) Emergence: ABMs allow to 

define the low-level behavior of each individual 

agent in order to let them interact to see whether 

some emergent property arises or not, and if it does, 

under which circumstances; 2) Self-Organization: 

ABMs do not have any kind of central intelligence 

that governs all agents. On the contrary, the sole 

interaction among agents along with their feedbacks 

is what ultimately ‗controls‘ the system; 3) Human-

Natural Systems: ABMs allow to consider together 

both, social organizations with their human decision-

making and social communications and biophysical 

processes and natural resources. This conjunction of 

subsystems enables ABMs to explore the 

interrelations between them, allowing to analyze the 

consequences of one over the other; and 4) Spatially 

Explicit: the feature of ABMs of being able to 

spatially represent an agent or a resource is of 

particular interest when communications and 

interactions among neighbors is a key issue. This 

feature is of special interest in the case of agro-

ecosystems. 

Resources are not generally defined as a separate 

aspect of an ABM. However, there are particularly 

useful in the context of agro-ecosystems, where they 

are generally thought of as passive objects that are, 

for example, produced by the environment and 

consumed by agents within certain process (like crop 

production), in contrast to agents which are 

(pro)active objects with decision-making capacities 

that allows them to affect those resources 

The actual implementation of an agent-based model 

is ultimately about developing a computational 

model, that is, software. Therefore, in order to 

analyze, design, implement and every other step 

involved in developing such systems, certain 

software development methodology must be used. 

Since these coupled human-natural systems cannot 

be manipulated and tested as other systems, due to 

scale and resource difficulties, the possibility of 

simulating them is crucial. The objective of 

simulating this kind of systems is to prospect 

scenarios were the interest is not in the ‗fortune-

teller‘ features of the simulation but on discovering 

possible outcomes under certain conditions, 

exploring the consequences of manipulating certain 

system. Another objective can be to deepen the 

understanding (and also possibly learning/teaching) 

of a coupled human-natural system, since the more 

micro/macro level study of each part as well as their 

interactions require an in-depth understanding of 

them in order to obtain a simulation that is close to 

reality. 

In the next sections we address the problem of 

developing an agent-based methodology for the 

simulation of agro-ecosystems. 

3 Existing AOSE 
Methodologies 

Even though there are several methodologies for 

developing agent-oriented software systems, this 

article is based on those ten presented in Henderson-

Sellers and Giorgini (2005) since they are arguably 

the most referenced and cited elsewhere. These are: 

GAIA, Tropos, MAS-Common CADS, Prometheus, 

Passi, Adelfe, Mase, Rap, Message, and Ingenias. 

From these ten AOSE methodologies, Tran and Low 

(2008) summarize 16 general steps, which are shown 

in Table 1. 

At this point, it is reasonable to think that any 

new AOSE methodology will be strongly related 

with these 16 general AOSE steps. Nevertheless, 

notice that these steps are not tailored for simulating 

an agent-based model, neither for developing agro-

ecosystem simulations. Up to our knowledge there 

are no methodologies for these purposes. These will 

be indeed the drivers of the methodological 

framework which is proposed in the next section. 
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Table 1: General AOSE steps taken from ten AOSE methodologies. 

 AOSE Step Description 

P
ro

b
le

m
 d

o
m

ai
n

 a
n

al
y

si
s 

st
ep

s 

17. Identify system 

functionality 

Determine what the system should do in terms of functionalities (the same as 

traditional requirements engineering techniques). 

18. Identify roles Identify the roles that should later be played by the different agents. This step may 

include analyzing the organizational context in which the MAS will be deployed since 

roles commonly (and naturally) appear in real organizational contexts. 

19. Identify agent classes Identify which types of agents are needed. This can be related to roles in the sense that 

a certain agent class can be created to cope with certain role.  

20. Model domain 

conceptualization 

Identify the domain‘s main concepts and relationships. 

A
g

en
t 

in
te

ra
ct

io
n
 

d
es

ig
n

 s
te

p
s 

21. Specify acquaintances 

between agent classes 

Determine basic relationships between agent classes (such as who knows who, possible 

hierarchies, etc.) 

22. Define interaction 

protocols 

Define how agents can interact by defining communication protocols between them. 

23. Define content of 

exchanged messages 

Define what the messages between agents will contain. These 3 steps (which comprise 

the ―Agent Interaction Design‖) are strongly related and can be considered altogether.  

A
g

en
t 

in
te

rn
al

 d
es

ig
n
 

st
ep

s 

24. Specify agent 

architecture 

Determine the specific (internal) architecture for each agent class. The specific 

architecture to choose will depend on the characteristics that the different agent classes 

should present (e.g. if they must conceptualize beliefs, goals and plans, or if they will 

be just reactive). 

25. Define agent mental 

attitudes 

If the agent is to present mental attitudes like goals, beliefs, plans or commitments, 

define these for each agent class. This step includes trying to identify how these 

attitudes will be design internally for the agents‘ classes that need them.  

26. Define agent 

behavioural interface 

Determine the capabilities, services, contracts and any other interface that the agent 

must provide. This will depend on the agent architecture.  

O
v

er
al

l 
sy

st
em

 d
es

ig
n
 s

te
p

s 

27. Specify system 

architecture 

Overview of all components and their connections (in a higher level than Agent 

Architecture). This step also includes resources and environment (if they are of interest) 

and their relation to the agent classes. 

28. Specify organizational 

structure/inter-agent 

social relationships 

If the system can be analyzed in terms of organizational concepts, then specify the 

organizational structure and the inter-agent social relationships. This step can be related 

to Step 2 (Identify Roles) since roles are generally crucial in any organizational 

structure, as well as hierarchies between them. 

29. Model MAS 

environment 

If the environment is relevant, then identify its resources, facilities and characteristics. 

Although part of this step can be done in Step 12 (mainly those structural 

environmental aspects) others (mainly those functional aspects) may not.  

30. Specify agent-

environment 

interaction mechanism 

Closely related to the previous two step, involves detailing how the different agent 

classes are to be related to their environment (analogous to interaction protocols but 

instead of agent-agent interactions agent-environment interactions). 

31. Instantiate agents  Determines how many agent instances will be needed for each agent class.  

32. Specify agent 

instances deployment 

Determine where the agent instances are to be (physically) deployed. This includes 

specifying agent platforms, nodes (with processing power), connections, etc. 
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4 Methodological 
Framework 

The purpose of our work is to propose an AOSE 

methodological framework for modelling and 

simulating agro-ecosystems. We want this 

methodological framework to be based on the 

general AOSE steps introduced in the previous 

section in order to strengthen the proposal.  

We also want to rely on a standard graphical 

modelling language in order to support the 

development process by facilitating the interchange 

between domain experts and simulation developers. 

In this article we use plain UML 2.0 (OMG, 2005). 

However, the methodology will be best supported by 

a more specific language for representing software 

systems based on software agent concepts, e.g. AML 

(Cervenka and Trencansky, 2007) and those 

diagrams promoted by the Foundation for Intelligent 

Physical Agents [FIPA, 2010]. Since these 

languages are not tailored for agro-ecosystems 

simulations, it must also be adapted to our 

methodological framework (in future work). 

Finally, we will assume that the simulation will be 

finally developed within an existing simulation 

framework software package, e.g. CORMAS 

(CORMAS, 2010). However, we will not make any 

assumption about what simulation paradigm it uses, 

i.e. continuous, time-step or discrete-events. This 

will be indeed later matter of discussion. 

We present next the methodological framework, by 

identifying relatively general steps and artifacts 

(produced by the steps) that could be ensemble for 

modelling and simulating agro-ecosystems. 

4.1 Requirements 

In order to model and simulate and agro-ecosystem 

using an ABM approach, the following elements 

should be taken into account: 1) Agents: they will 

naturally be at the core of any attempt to develop a 

simulation using an ABM approach. This includes 

interactions between agents; 2) Environment: is 

what surrounds the agent, where the agent is located, 

and a means by which the agent receives input; 3) 

Resources: represent what the agents produce 

and/or consume; and 4) Simulation Capabilities: 

since the objective is to simulate agents, 

environment and resources, the methodological 

framework must allow this to happen. This includes 

(but is not limited to): the notion of time (or time 

steps), the possibility to configure different initial 

situations from which to start the simulation, 

configuration parameters that go along with the 

simulation run, and output visualization. 

4.2 Selecting Steps 

Each one of the 16 general AOSE steps was 

analyzed in order to determine its convenience for 

the methodological framework, and even though a 

thorough study has been conducted for each step. 

Table 2 summarizes the results obtained. Most of the 

selected steps were renamed in order to better 

understand its purpose in the context of MAS 

simulations. 

4.3 New Steps 

The steps analyzed before do not specifically cover 

simulation capabilities. To this end, three more steps 

are added. 

The 7. Simulation Configuration step aims at 

defining those fundamental elements that will enable 

the simulation to be run, namely: 1) Initial 

Configuration: determine the state of the simulation 

at time zero (e.g. initial number of instances for each 

agent type and their distribution over the 

environment, initial volume of resources and their 

location, etc.); 2) Time Definition: determine how 

time passes, i.e. continuous, fixed steps or event-

based (e.g. agent instances are called upon their 

behavior twice a year if the time step is defined to be 

six months); 3) Task Scheduling: determine what to 

do while time passes: the order in which the 

behaviors of agents is called upon, resources evolve 

and environment changes (e.g. at each time step, 

first let agents execute and then let the resources 

evolve); 4) Input Parameters: determine which 

data is needed as input to the simulation (e.g. the 

price of oil and its evolution); 5) Output: determine 

the calculations and variables the simulation is to 

generate (e.g. producers‘ income) and how often this 

output is generated; and 6) Visualization: determine 

which output parameters are to be visualized by the 

user and how (e.g. producers‘ income as a numerical 

value and land cover as colored cells in a grid). 

The 8. Implementation step involves coding the 

agent-based simulation using an already existing 

simulation framework software package. The 

developer should have enough elements (as well as 

enough understanding of the problem) to start 

coding. In this sense, the developer should be based 

on the information provided by the artifacts 

developed in the previous steps. 

The 9. Simulation Run & Sensitivity Analysis 

step involves gathering all the necessary real-world 



 

Page 104 of 112 

 

data (including possible historical data) for allowing 

the simulation to be run and to perform explorations 

about how the output of the simulation is affected 

when certain elements are changed. 

Table 2: Summary of the steps selected from the 16 general AOSE steps with their corresponding artifacts. 

 General AOSE Step Selected Step Analysis 

P
ro

b
le

m
 d

o
m

ai
n

 a
n

al
y

si
s 

st
ep

s 

1. Identify system 

functionality 

1. Identify System 

Purpose 

Since we are concerned with simulations, identifying the system 

functionality is transformed into identifying the system purpose (what 

should the system simulate and why), including those questions that 

the system should answer (the objective of the simulation). 

2. Identify roles 2. Identify Roles  

and Agent Types 

The system will probably represent several different roles people play 

in an agro-ecosystem (e.g. farmer). Roles help in determine agent 

types (or ‗agent classes‘ as called in the general step). Moreover, 

agent classes can be viewed as specializations of roles, more 

concerned on agents than in social behaviors (as roles do). Since 

these concepts may be crucial for agro-ecosystems, these steps will 

be considered together. 

3. Identify agent 

classes 

4. Model domain 

conceptualization 

3. Model Domain 

Conceptualization 

It is very useful to have a structural overview of the agent types, the 

resources, and the most relevant elements that compose the 

environment, as well as its relations, so this step is selected as is. 

A
g

en
t 

in
t.

 d
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ig
n
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p
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5. Specify 

acquaintances 

between agent 

classes 

This can be either included when identifying agent types and roles (2. Identify Roles and 

Agent Types) or when modelling the domain conceptualization, by means of associations 

between concepts (3. Model Domain Conceptualization), so this step will not be considered 

by itself but as part of previous steps. 

6. Define 

interaction 

protocols 

4. Define Agent 

Interaction 

In the case of developing an agro-ecosystem simulation, agent types 

will be developed altogether, so the autonomy and independence of 

individual agents is much reduced compared to other MAS scenarios. 

This facilitates the task of communication between agents, and 

enables considering these two steps as one. 
7. Define content 

of ex-changed 

messages 

A
g

en
t 

in
te

rn
al

 d
es

ig
n
 s

te
p

s 8. Specify agent 

architecture 

5. Agent Architecture 

and Design 

This step should generate enough information for detailing the agent 

type‘s internal design, describing how the agent will be able to follow 

the Perceive/Reason/Act cycle already presented. 

9. Define agent 

mental attitudes 

If mental attitudes are to be considered for certain agent type then these attitudes will be 

defined in the previous step (5. Agent Architecture and Design). 

10. Define agent 

behavioural 

interface 

The agents of the agro-ecosystem will not provide services to other software entities (as 

agents in other contexts may do) so the ―services‖ they have are actually the messages they 

will exchange between them (considered in 4. Define Agent Interaction) and with the 

environment (considered in 6. Model Environment and Resources). 

O
v

er
al

l 
sy

st
em
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es

ig
n
 s

te
p
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11. Specify system 

architecture 

The overview of components and connections is already given by the context of agro-

ecosystem simulations, and also by the architecture imposed by the simulation framework 

software package chosen for implementing the simulation over it (ej: CORMAS). 

12. Specify org. 

structure/inter-

agent social 

relationships 

Even though agro-ecosystems may involve some kind of organizational structure they are not 

driven by any organizational metaphor as this step assumes. Any ‗inter-agent social 

relationship‘ was already defined in ―2 Identify Roles and Agent Types” and in ―4 Define 

Agent Interaction”. 

13. Model MAS 

environment 

6. Model 

Environment and 

Resources 

The environment is indeed a crucial element to consider. Since 

resources are within the environment, they are considered altogether. 

This step provides a detailed view of both, extending its structure 

(considered in 3. Model Domain Conceptualization), and defining its 

behavior. 

14. Specify agent-

env. interaction 

mechanism 

In an agro-ecosystem simulation, the agent behavior strongly depends on the environment so 

this interaction mechanism could be either considered in ―2. Identify Roles and Agent Types‖ 

and in ―4. Define Agent Interaction‖. 

15. Instantiate agent 

classes 

This step is part of the initial configuration of the simulation as considered later. 
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16. Specify agent 

instances 

deployment 

Since the entire agro-ecosystem simulation will be run in only one computer, there is no need 

to consider physical distribution. 

 

4.4 Steps and Artifacts 

Table 3 summarizes the steps of the proposed 

methodological framework, including its aim and 

artifacts. Since we do not have yet any specific 

modeling language tailored for agro-ecosystems 

simulations, for the sake of a better understanding 

we consider here plain UML 2.0 diagrams. Since 

agro-ecosystems are a kind of complex system 

(Section 2.2) and these can be modeled using the 

ABM approach (Section 2.4), it naturally follows 

that agro-ecosystem can be modeled and simulated 

using an ABM approach, and particularly following 

the methodological framework introduced in this 

section. Nevertheless, there are quite specific agro-

ecosystem features that are worth analyzing how 

could they be represented, modeled and simulated 

by this methodological framework. This is analyzed 

in the next section. 

 

Table 3: Summary of steps that compose the proposed methodology. 

Proposed Step Aim of the Step Artifacts 

1. Identify System  

 Purpose 

Define the purpose of the 

simulation, including its 

objective and questions to be 

answered. 

Text Document including the purpose of the simulation, an 

overview of the context in which the simulation will be 

developed, including why the simulation will be developed and 

what will be expected from it. 

2. Identify Roles and  

 Agent Types 

Identify agent types and roles, 

especially agent behavior. 

Text Documents for role‘s identification and description and for 

identifying agent types and their relation to roles; UML 

Activity Diagrams for agent type‘s behavior specification. 

3. Model Domain  

 Conceptualization 

Depict the structure of the 

problem, including entities and 

relationships. 

UML Class Diagram for modeling main concepts, including 

those in steps 2 and 6. 

4. Define Agent  

 Interaction 

Determine when, how and what 

the different agents will 

communicate. 

UML Sequence Diagrams for modeling interactions. 

5. Agent Architecture  

 and Design 

Define internal agent design 

(structure and behavior) in order 

to fulfill its perceive/reason/act 

cycle, within a simulation 

framework software package. 

UML Class Diagram for designing the internal structure of each 

agent type, as well as any other UML Structure Diagram (like 

Package and Component Diagram); and UML Communication 

Diagrams for designing the internal behavior of each agent 

type, as well as other UML Behavioral Diagrams (like Activity 

and State-Transition Diagrams). 

6. Model 

Environment    

 and Resources 

Determine behavioral aspects 

(evolution) of resources and 

environment, and completing 

structural aspects. 

Text Document for complementing other diagrams; UML 

Structure Diagrams for further modeling structural aspects of 

the environment and resources; and UML Behavioral Diagrams 

for modeling functional (behavioral) aspects of the environment 

and resources. 

7. Simulation  

 Configuration 

Define those fundamental 

elements that will enable a 

simulation to be run. 

Text Documents for documenting the configuration; UML 

Object Diagram for the initial configuration; and UML 

Sequence Diagram for tasks scheduling. 

8. Implementation Codify the simulation. Code. 

9. Simulation Run &  

 Sensitivity Anal. 

Answer the simulation‘s 

objectives and questions. 

Text Documents with the conclusions. 
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5 MAPPING AGRO-ECOSYSTEM 

features 

This section presents those features that characterize 

an agro-ecosystem and shows how they are covered 

by the methodological framework proposed in the 

previous section. The objective is to show that this 

methodological framework can successfully 

represent them with the available steps and artifacts, 

leaving no relevant agro-ecosystem feature 

uncovered. The features considered here are 

schematically presented in Figure 3. 

Three of the features are outside the limits of 

the agro-ecosystem: climate, government and market 

prices. Nevertheless they are relevant because they 

affect it in some way that is of interest, but since 

they do not belong to the agro-ecosystem they will 

not be explicitly modeled (i.e. there will not be 

artifacts representing them) but considered mainly as 

inputs to the agro-ecosystem.  

 

Table 4: Summary of agro-ecosystem‘s features and their representations within the proposed methodology. 

 Feature Representation 

N
at

u
ra

l 
R

es
o

u
rc

es
 

Land Plots Plots can be thought of as land components, giving more flexibility by decomposing the land in 

several elements. About each plot, it can model its location (e.g. by coordinates), its vicinity (e.g. by 

associations with neighboring plots) as well as the relation between agents and plots (e.g. representing 

ownership) and between plots and resources (e.g. representing which resources are hosted in which 

plots). Plots allow for an easy geographical representation of land, where each plot is represented by a 

cell in a grid that can be shown to the user (visualization). 

Water As a special kind of land plot or as a resource within a land plot. 

Climate As an input in the 7. Simulation Configuration step. 

Vegetation As an attribute of the land plot or a resource within a land plot. 

H
u

m
an

 
R

es
o

u
rc

es
 Farmers‘ 

Types 

As agent types. Since the behavior of a farmer can dynamically evolve over time, different agent roles 

can be defined. 

Organizatio

n of Farmers 

As a new agent type that is related to its members (which are other agent types). If belonging to an 

organization implies certain behavior in its members, then new roles can be defined for them and 

agents should be able to change its behavior when playing this new role. 

C
ap

it
al

 R
es

o
u

rc
es

 

Goods & 

Services 

These are generally of two kinds: those which are used as inputs for production (like fertilizers and 

machinery) and those which are used as family consumption (like the electricity bill, health care or a 

new car). The former has to do with resources (and in some cases represented as an attribute of a 

farmer) while the latter with farmers‘ livelihood, needs and expectations (considered within the 

behavior of farmers). 

Money, 

Savings & 

Loans 

Similarly to the last feature, the concepts here involved may be divided in two: the activities that led to 

an increase/decrease (e.g. buying or selling) and the quantities (e.g. current amount of money the 

farmer has or how much debt he/she owes). The former can be modeled in the behavior of the farmer, 

and the latter as an attribute of it. 

P
ro

d
. 

R
es

. Crops & 

Livestock 

As resources which can either be associated to a certain land plot (as in the case of crops) or not 

(livestock). If a resource presents certain dynamics, these may be expressed, much like the behavior of 

agents, but applied to resources (which are passive in contrast to agents). 

O
th

er
 F

ea
tu

re
s 

Natural 

Processes 

Since natural processes are not resources themselves, but are closely related to them, it is useful to 

conceive both at the same time within the environment. As the Crops & Livestock feature, resources 

may present certain dynamics to be run during the simulation, so it should be clearly defined whether 

these dynamics actually represent natural processes or if they are only concerned with the resource 

itself. This implies that natural processes may be explicitly modeled as another feature of the agro-

ecosystem, or implicitly considered when modeling resources. 

Landscape As an aggregation of all land plots. The initial landscape can be determined by the modeler in the 

initial configuration, e.g. by determining how many plots are used for agriculture. 

Market 

Prices and 

Evolution 

Since it is generally the case that the price over which production resources are sold is not controlled 

nor determined by the system under study (e.g. a farm), prices are considered as an external input to 

the simulation, and therefore it is considered as an input parameter.  
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Government 

Policies 

This feature is not directly modeled into the simulation since the government is outside the boundaries 

of the system. The interest is to compare the evolution of the simulation with and without the 

introduction of certain government policy. This requires modifying the simulation in order to take 

them into account. The modifications can range between changing input parameter values (e.g. 

because of an increase in taxes) and changing the behavior of agents (e.g. by introducing new ways of 

associations of farmers). This changes lead to the exploration of different scenarios. 

 
Finally, one feature partially appears as part of 

the agro-ecosystem, the landscape, since it is 

collectively constructed with other elements outside 

the boundaries of the agro-ecosystem. 

In Table 4 we summarize how each of these 

agro-ecosystem features can be represented by the 

proposed methodological framework. The features 

were organized around the four categories of 

resources (in the sense of an agro-ecosystem, not in 

the sense of ABM) introduced in Section 2.2 plus a 

fifth category including other features commonly in 

this context: natural processes, landscape, market 

prices and evolution, and government policies. 

 

Climate

Org. of 
Farmers

Natural 
Processes

Farmers

Market 
Prices

Money, 
Savings, 

Loans

Land Plots

Water

Vegetation

Crops Livestock

Goods & 
Services

Landscape

Agro-ecosystem

Government

 

Figure 3: Schematic representation of 13 relevant agro-

ecosystem features. 

6 CASE STUDY 

This section exemplifies the proposed 

methodological framework. The case study shows 

the dynamics between cattle and crop production in 

a certain basin and it is based in a real world 

situation (further details are omitted to keep it 

anonymous). For each step of the proposed 

methodological framework, an exemplifying artifact 

will be presented.  

It is worth noting that even though the steps can 

be executed in an iterative and incremental way (as 

mainstream software development methodologies 

suggest), in order to simplify the exposition, the 

following steps are presented in a sequential order. 

Finally, all but the last two steps (8. Implementation 

and 9. Simulation Run & Sensitivity Analysis) are 

exemplified with the Case Study since they do not 

reveal any singularity from the proposed 

methodological framework point of view. 

Step 1: Identify System Purpose 

The purpose of this simulation is to understand the 

long-term consequences on land use of producer‘s 

strategies, regarding cattle and soybean production 

in the basin.  

The general context is that traditional producers 

of the basin historically had a production strategy 

based on looking for a balance between cattle and 

agricultural production, alternating pasture and 

crops. Recently (approx. in the year 2000) a new 

kind of producer entered the system: investment 

fund managers. These are multinational companies 

whose strategy is continuous soybean production 

over rented land. This puts pressure on land prices 

(since both kinds of producers compete for the same 

land) and forces traditional producers to either 

intensify their production or to give up for rent their 

plots to the investment fund managers.  

The questions that are to be answered by the 

simulation include the following: What are the 

effects in the long-term over land use (system-level) 

of the strategies of both kinds of producers (agent-

level)? How does land property evolves over time? 

Under what conditions do small traditional 

producers (those that start the simulation with fewer 

plots) exit the system? Which is the effect of 

international soybean prices in land use, either with 

or without the presence of investment fund 

managers? 

Step 2: Identify Roles & Agent Types 

Two (very) different agent types are identified: 

traditional producers and investment fund managers 

(which are also producers). Under the first category, 

three subtypes are further identified: small, medium 

and big traditional producers which are 

differentiated only by the initial amount of plots 

assigned (at time zero of the simulation), but all of 

them sharing the same traditional producer‘s 
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behaviour (rationale). Both agent types are 

represented by a hierarchy of concepts in the UML 

Class Diagram of Figure 4. 

Regarding roles, each of the two agent types 

have distinct behaviours, which are represented by 

UML Activity Diagrams. For space reasons only the 

behavior of traditional producers (one year step) is 

shown in Figure 5. There is no role exchange (agent 

instances do not change their behavior over time) 

neither role multiplicity (each agent instance only 

plays one role at a time), so there is a simple one-to-

one relationship between agent types and roles.      

 
Step 3: Model Domain Conceptualization 

The domain conceptualization is shown in the UML 

Class Diagram of Figure 4. It also includes the 

structural aspects of the environment and resources, 

which will be completed by adding the dynamics on 

step 6. This figure shows at the left-hand side the 

two agent types (InvestmentFundManager and 

Traditional) which inherit from the (abstract) 

concept Producer.  

accumulatedProfit

consumption

productivity

Producer

consumption = USD 0

productivity = 1.3

InvestmentFundManager

consumption = USD 12000

productivity = 1.0

type = {small, medium, big}

Traditional

1
 rents_to

landValue = USD 10000

size = 100 ha

Plot

*

manages

*

owns

cost

price

productivity

LandUse

1

has

cost = 109USD/ha

price = 900USD/ha

productivity = 0.31T/ha

Cattle

cost = 424USD/ha

price = 106USD/ha

productivity = 4.6T/ha

SoyBean

cost = 0USD/ha

price = 0USD/ha

productivity = 0T/ha

Empty

 

Figure 4: Domain Model Conceptualization for the Case Study.

 

At the middle, the concept Plot represents the 

environment which is always associated with one 

LandUse, which in turn can be Cattle, SoyBean or 

(temporarily) Empty. These three specialized 

concepts where identified as resources. Finally, the 

relation of land ownership (owns ►) as well as a 

relation for knowing who rents to who (◄ rents_to) 

and which plots are managed by which producers 

(manages ►) are represented in the figure. The 

figure also includes some exemplifying attributes 

with initial values for each concept. 

Step 4: Define Agent Interaction 

Figure 6 shows the agent-agent interaction that 

occurs when an instance of 

InvestmentFundManager is willing to rent plots to 

an instance of Traditional producer. 
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Figure 5: Traditional producer‘s behavior (at each time step). 

:Traditional
:InvestmentFund

Manager

ok := askForRent(numberOfPlots : Integer) : Boolean

colPlots := rent(numberOfPlots : Integer) : Set(Plot)

opt [ok=true]

 

Figure 6: Example of agent-agent interaction. 

Step 5: Agent Architecture & Design 

This step deals with specifying the internal agent 

design that enables agents to fulfill their design 

goals. In this case, a simple reactive architecture was 

followed, and its design exactly corresponds to those 

concepts shown in the Domain Model 

Conceptualization of Figure 4. Therefore any other 

diagram showing the agent‘s design is omitted. 

Step 6: Model Environment & Resources 

Resources are not necessarily static objects that do 

not suffer any change or evolution over time. For 

example, considering cattle as a resource, and 

assuming reproduction as an important issue of the 

model, then a UML State-Transition Diagram as the 

one in Figure 7 could be used to represent the vital 

cycle of each animal. The diagram shows that cows 

are assumed to be born as a calf, that after one year 

and a half are considered as cows, that one year later 

are pregnant for 9 months and finally after 8 more 

years they exit the system (e.g. because they are 

sold). On the other hand, the plots (which are the 

environment) need no extra artifacts in this case. 

Step 7: Simulation Configuration 

Since this step involves the specification of several 

elements, all of them are briefly explained: 

1) Initial Configuration: based on on-field 

information in the basin, 40 Traditional agent 

instances of type ‗small‘, 20 of type ‗medium‘ and 

10 of type ‗big‘, all of them geographically 

randomly assigned and with equal chance of 

producing cattle or soybean; and 5 instances of 

InvestmentFundManager.  

calc. this year's profit and

update accum. profit

giv e up for rent up to

25% of owned plots

produce up to 25%

of managed plots

giv e up for

rent one plot

bankruptcy

recov er a

rented plot

consume

buy one

plot

sell one

plot

{accumulated_profit > 

       2 * (production_costs +

             family_consumption)}

AND

have at least one rented plot

AND

rent is not the best alternative

{accumulated_profit > 

       2 * (production_costs +

             family_consumption)

       + land_value}

AND

there are plots for sell

family's 

consumption

for this year

NOTE:

NOTE:

NOTE:

 [accum. profit is not enough for next year]

 [sti l l own plots]

 [accumulated 

  profit is  enough only

  for next year]  [else]

 [can buy one plot]

 [can recover

a rented plot]

 [can g ive up for

  rent one plot]

 [else]

 [else]

 [else]

 [rent is the

  best alternative]  [else]

 [else]

 [else]
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Calf Cow
1.5 years

8 years

1 year

9 months

Pregnant

  

Figure 7: Cattle life cycle. 

2) Time Definition: it will be a time-step 

simulation developed in CORMAS. Each time step 

represents one year, so every action taken in the 

simulation must be done on an early basis. 

3) Task Scheduling: Figure 8 shows a 

possible task scheduling, where at each time step the 

scheduler (a component of the simulation framework 

software package) first lets resources evolve (e.g. 

calling the cattle life cycle) and then calls the agent‘s 

behaviour. 

4) Input Parameters: international soybean 

prices are a good example of input parameters, since 

they are not determined nor affected by the system. 

5) Output: producer‘s income, total number 

of traditional producers, total number of plots used 

for cattle and for soybean (land use). 

6) Visualization: view land use with different 

colours over each cell that represents a plot (e.g. red 

for a cattle production and green for a soybean 

production). 

:Producer:LandUse:Scheduler

evolve()

step()

loop [foreach plot]

[foreach producer]loop

 

Figure 8: Task scheduling. 

7 CONCLUSIONS 

This article introduced a new methodological 

framework for developing agro-ecosystem 

simulations, based on the ABM approach and 

already existing general purpose AOSE 

methodologies as well as a widely used graphical 

modelling language as UML 2.0. Even though it is 

not (yet) a complete and fully comprehensive 

software development methodology, it has already 

been successfully used by our team in some research 

projects (not given yet for anonymity). 

Although the steps were presented in a 

sequential order, an iterative & incremental 

approach may well be adopted, benefiting from 

user‘s feedback, in the same way current mainstream 

software development methodologies do. This 

would also imply that a single step would be visited 

more than once during the development process. 

Also some of the steps may change if other type of 

simulation is used, like event-based simulation. 

Further work is ongoing in different topics with 

the overall aim of achieving a methodology that is of 

easy uptake for programmers. From our experience 

we believe this is a very important issue since 

human resources for the programming tasks are 

usually (very) scarce, and the more specific 

knowledge we require the programmers to have, the 

more scarce the resources becomes. This is why it is 

important to keep the methodology simple, using 

tools and techniques already familiar to 

programmers (like object-oriented programming, 

UML and iterative and incremental development).  

This further work includes: a) The completeness 

of the methodology, including aspects such as which 

roles (in the development process) do what, when 

and how; b) Evaluate the use of specific graphical 

modelling languages such as AML and particularly 

analyze the benefits of including it against the 

requirement for the programmers to know it; c) 

Develop the necessary software tools to assist in the 

development process (like plug-ins to certain 

integrated development environment); d) Propose a 

semi-automatic construction process from models to 

simulation code, supported by the model-driven 

approach of the methodology; e) Continue to use 

and refine the methodology and get programmer‘s 

feedback about its chances to get real uptake. 
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