Distr. Nº 11/2013
CLAUSTRO FING
22/05/2013

LICENCIATURA EN INGENIERÍA BIOLÓGICA

ANEXOS AL PLAN DE ESTUDIOS

Contenido

Versión 20: modificado 22/05/13 1/22

Introducción

En este documento se describe una posible implementación de la Licenciatura en Ingeniería Biológica. Se propone un posible conjunto de asignaturas que permita garantizar la formación necesaria a los estudiantes, y al mismo tiempo que utilice los recursos disponibles actualmente en la UDELAR. Con el desarrollo académico del CENUR, incluyendo la instalación de nuevos grupos de investigación dentro del programa Polos de Desarrollo Universitario, aparecerán asignaturas nuevas y recursos humanos para modificar la implementación concreta de la carrera en años subsiguientes, siempre respetando el Plan de Estudios aprobado.

La organización del documento es la siguiente:

- ▲ En el Anexo A.1 se propone una posible implementación de la carrera, especificando los créditos sugeridos por materia. También se da una aproximación de la cantidad de créditos opcionales.
- ▲ En el Anexo A.2 se enumeran las posibles asignaturas, junto con los créditos asignados a las mismas, agrupadas por área de formación.
- ▲ En el Anexo A.3 se describen brevemente los programas de algunas de las asignaturas propuestas.
- ▲ En el Anexo A.4 se propone una posible asignación de semestres para cada una de las asignaturas propuestas.
- ▲ En los Anexos A.5, A.6 y A.7 se describen los perfiles "Señales e imágenes biológicas", "Biomecánica" y "Bioinstrumentación", respectivamente, definiendo las competencias profesionales de los perfiles, y las posibles asignaturas que los conformarían.

Versión 20: modificado 22/05/13 2/22

A.1. Créditos sugeridos por materia

Grupo	Materia	Créditos mínimos
	Matemática	85
	Física	30
Formación básica	Química	15
i dimadidii sadida	Informática	22
	Biología	26
	Total	178
	Señales y sistemas	20
	Procesamiento de Señales	20
	Ingeniería Eléctrica	10
Formación tecnológica fundamental	Ingeniería Biológica	20
- and an one	Control	10
	Ingeniería Mecánica	0
	Total	80
	Ingeniería y sociedad	8
Formación complementaria	Ingeniería industrial	4
	Total	12
	Asignaturas tecnológicas	40
Formación tecnológica	Actividades integradoras (tesina + talleres + pasantía)	50
	Total	90
TOTALES		360

Tabla 1: Ejemplo de distribución de créditos por materia en una posible implementación.

Créditos según tipo	Tipo de créditos	Porcentajes
Obligatorios	270	75
- Cursos	220	60
- Actividades integradoras	50	15
Opcionales	90	25
- De áreas específicas	54	15
- De distribución flexible	36	10
TOTAL	360	100

Tabla 2:Carrera de Licenciado en Ingeniería Biológica.

A.2. Asignaturas y créditos propuestos

Se presenta una matriz de las posibles asignaturas a impartir (obligatorias y electivas) agrupadas según cada una de las materias definidas.

Materia	Asignatura	Créditos
	Cálculo I	16
	Cálculo II	16
	Métodos numéricos	10
Matemática	Geometría y álgebra lineal I	12
	Geometría y álgebra lineal II	12
	Introducción a la probabilidad y la estadística	10
	Matemática discreta I	9
	Ecuaciones diferenciales	10
	Física I	10
Física	Física II	10
	Fisica III	10
	Programación 1	10
Programación	Programación orientada a objetos	10
	Algoritmos y estructuras de datos	10
Química	Química 1	7
Quillica	Química 2	8
	Biología 1	10
Biología	Biología 2	6
	Fisiología	5
Señales y sistemas	Señales, sistemas y circuitos I	10
	Señales, sistemas y circuitos II	10
	Procesamiento analógico de señales I	10

	Procesamiento digital de señales I	10
Ingeniería Eléctrica	Procesamiento analógico de señales II	10
	Laboratorio y Medidas	10
Procesamiento de Señales	Reconocimiento de patrones	6
	Tratamiento estadístico de señales	8
	Procesamiento de señales biológicas	8
	Tratamiento estadístico de señales	8
	Tratamiento de imágenes por computadora.	10
	Biomecánica	8
	Órganos artificiales y prótesis	8
	Física médica	8
Otras electivas	Informática médica y bioestadística	8
	Biomateriales	8
	Biotecnología	8
	Bioinformática	8
	Ingeniería de los sistemas de salud	8
	Instrumentación biomédica	11
	Sistemas de diagnóstico por imágenes	11
	Modelización de sistemas biológicos	8
Ingeniería Biológica	Temas de Ingeniería Biológica	8
geea D.e.eg.ea	Temas avanzados de Ingeniería Biológica	8
	Fisiología Cuantitativa	8
	Seguridad Eléctrica de equipos biomédicos	8
	Ingeniería Biomédica	8
	Seminario de Ingeniería Biomédica	4
Actividades integradoras	Pasantía	10
	Tesina	25
	Proyecto de Ingeniería Biológica 1	4

	Proyecto de Ingeniería Biológica 2	5
	Proyecto de Ingeniería Biológica 3	6
Formación complementaria	Ingeniería Legal	4
	Epistemología y ética	4
	Prevención de riesgo	4

A.3. Programa de los cursos propuestos

A modo de ejemplo de una posible implementación, a continuación se presenta un resumen de los contenidos de alguno de los cursos propuestos, se hará énfasis en los cursos específicos de la carrera, ya que los cursos básicos de ciencias y de ingeniería comparten los programas con cursos existentes en otras carreras.

Cursos de formación tecnológica fundamental

Las materias de fundamentos de ingeniería se rediseñaron con respecto a sus equivalentes de Ingeniería Eléctrica de forma de ser más funcionales a la propuesta académica de esta carrera. Los conocimientos impartidos son equivalentes, pero cambia la organización dentro de las asignaturas.

Las siguientes asignaturas caen en esa categoría:

- ▲ Señales, sistemas y circuitos 1
- ▲ Señales, sistemas y circuitos 2
- A Procesamiento digital de señales 1
- Procesamiento analógico de señales 1
- Procesamiento analógico de señales 2
- ▲ Laboratorio y medidas

Sus equivalentes en Ingeniería Eléctrica son:

- ▲ Diseño Lógico 1
- Introducción a los microprocesadores
- ▲ Sistemas lineales 1 y 2
- Medidas eléctricas
- ▲ Electrónica 1
- Muestreo y procesamiento digital

Posiblemente en una primera edición de la carrera se utilicen directamente alguna de las existentes.

Cursos y actividades integradoras

Proyectos de Ingeniería Biológica

Los proyectos de ingeniería biológica son asignaturas integradoras que acompañan al estudiante durante toda la carrera. A medida que avance en la carrera el estudiante se enfrentará al desarrollo de proyectos orientados a atacar problemas, teóricos o prácticos, de complejidad creciente, que requieran la utilización de conocimientos provenientes de las diversas asignaturas que han visto hasta el momento. Asimismo se hará énfasis en el rigor metodológico necesario para llevar a cabo un proyecto de ingeniería. Estos proyectos conformarán 3 asignaturas distribuidas a lo largo de la carrera y la tesina de licencitatura será la culminación de este proceso.

Proyecto de Ingeniería Biológica 1: "Seminario"

Por tratarse de uno de los primeros cursos, donde el estudiante todavía no maneja tantas herramientas, la modalidad será más bien pasiva. El estudiante recibirá charlas de diferentes profesionales, mostrando aplicaciones integradoras de los diferentes áreas. El estudiante deberá realizar una monografía sobre alguna de las charlas que haya sido de su interés profundizando en el tema a desarrollar.

Proyecto de Ingeniería Biológica 2: "Taller de Proyecto"

En esta asignatura el estudiante se enfrentará a la resolución de un problema planteado por los docentes, el cual tendrá restricciones de tiempo, de requisitos tecnológicos y económicos. Los estudiantes deberán trabajar en equipo para desarrollar la mejor solución que cumpla todos los requisitos planteados.

Proyecto de Ingeniería Biológica 3: "Emprendedurismo"

Esta es una asignatura que busca desarrollar habilidades y competencias no técnicas consideradas claves en la formación integral de un ingeniero. Estas habilidades y competencias son:

- La capacidad de interacción con actores socioeconómicos del país para identificar problemas y buscar soluciones a los mismos.
- ▲ Las habilidades emprendedoras.
- △La capacidad de buscar soluciones creativas y la capacidad de desarrollar proyectos en equipos.

Esta asignatura puede ser entendida como una iniciación al emprendedurismo, con un énfasis especial en la búsqueda de necesidades insatisfechas en sectores socio económicos específicos del país. La metodología de aprendizaje consiste en el desarrollo de un proyecto de emprendimiento, desde la detección de necesidades hasta la elaboración de una idea de negocio que haga viable la solución de los problemas detectados. Los estudiantes trabajan en equipos de seis personas. Como resultado, se espera que cada grupo desarrolle un plan de negocios primario que incluya un análisis del mercado, una descripción de la solución propuesta y la tecnología asociada, un pre-proyecto de ingeniería para la construcción de un prototipo y una estimación de las necesidades financieras para dar inicio al emprendimiento.

De esta forma, se busca contribuir a la formación de profesionales pro-activos con capacidad de generar emprendimientos y buscar soluciones creativas a las necesidades del mercado, convirtiéndose en agentes de innovación y generación de riqueza.

Nota: esta asignatura es una réplica casi exacta de la asignatura "Taller Encararé" del IIE.

Cursos de especialización

Modelización de sistemas biológicos.

Contenido: Diferencias entre modelos en Ingeniería y en Ciencias Biomédicas. Normas para la modelización en las Ciencias Biomédicas. Recomendaciones N.I.H. Conceptos Básicos de Sistemas. Aprendiendo a Modelar Sistemas. Ejemplos que involucren conceptos de Métodos Elementales. Métodos Gráficos. Optimización. Métodos Estocásticos. Ecuaciones Diferenciales. Métodos Analíticos. Métodos Numéricos. Estabilidad. Modelización cualitativa. Introducción a la Simulación. Simulación de procesos discretos. Simulación de procesos continuos. Tecnologías adicionales de simulación. Modelización de un material Biologico. Modelización de la sangre. Comportamientos lineales, no lineales y bifásicos. Influencia del hematocrito. Hemoreología. Modelización en cardiologia y neurologia. Modelización de datos clínicos. Modelización de datos clínicos.

Sistemas de diagnóstico por imágenes

Contenido: Tópicos del procesamiento y análisis digital de imágenes. Arquitectura de un sistema artificial de imagen. Sistemas de imágenes en la Ingeniería Biomédica: ultrasonido, rayos X, medicina nuclear, tomografía computada, angiografía, resonancia magnética (se brindarán bases físicas, aplicaciones clínicas, tecnología moderna). Transmisión y almacenamiento de imágenes médicas.

Biomecánica

Contenido: Introducción a la biomecánica: definición y alcances. Conceptos físicos y de materiales básicos aplicados a la biomecánica. Propiedades de los materiales biológicos. Comportamiento de la sangre y biomecánica arterial. Biomecánica cardiaca. Propiedades mecánicas del hueso y lesiones producidas por su falla; locomoción y marcha. Tejido artificial e ingeniería en tejidos.

Física médica

Contenido: Conceptos básicos de oncología y uso de las radiaciones en medicina. Interacción de la Radiación con la materia viva. Tamaño y crecimiento tumoral; proliferación celular de los tumores, organización celular y proliferación de los tejidos. Células clonogénicas y sobrevida celular. Exposición y dosificación. Equipamientos de radioterapia y dosímetros usados en radioterapia.

Instrumentación biomédica básica

Contenido: Introducción a la instrumentación biomédica y conceptos básicos de circuitos asociados. Electrofisiología: electrodos, electrocardiografía y el electrocardiógrafo. La desfibrilación y el desfibrilador. Estimulación biológica, marcapasos. Cardiovascular y equipamiento asociado: transductores, medición de la presión sanguínea, medición de las dimensiones cardíacas, medición de flujo. Respiratorio y equipamiento asociado: mediciones

en el sistema respiratorio, medición de flujo, medición de volumen. Medición de la concentración de gases, medición automática de la función pulmonar.

Instrumentación biomédica avanzada

Contenido: Electromiografía, Electroencefalografía y Potenciales Evocados . Equipamiento en Neonatología. Organización y funcionamiento de las áreas críticas neonatales. Bombas de infusión. Electrobisturi. Monitorización ambulatoria de electrocardiograma y presión. Respiradores. Anestesia. Espectrofotómetros. Contadores hematológicos, analizadores de gases en sangre. Equipos de diálisis

Ingeniería de los sistemas de salud

Contenido: Sistema Nacional de Salud: definiciones, organización pública y privada. La ingeniería biomédica y la ingeniería clínica. Proyecto de equipamiento electromédico. Selección de tecnología electromédica. Instalaciones termomecánicas y eléctricas en centros de salud. Seguridad eléctrica en instalaciones Hospitalarias. Esterilización. Control de calidad en medicina nuclear. Radioprotección. Neonatología.

<u>Órganos artificiales y prótesis</u>

Contenido: Fisiopatología cardiaca, renal, osteoarticular. Asistencia circulatoria, nuevos desarrollos y aplicación clínica. Avances terapéuticos en fallas cardíacas. Dispositivos de asistencia ventricular. Prótesis óseas, ingeniería en rehabilitación. Electromiografía, electroencefalografía y potenciales Evocados. Riñón artificial - máquinas de diálisis.

Informática médica y bioestadística

Contenido: Introducción a la Informática para profesionales de la salud. Bases de datos en medicina. Redes de computadoras y telemedicina. Gerenciamiento de proyectos informáticos. Ciencias de la decisión en medicina. Tópicos avanzados en Informática Médica (interfaces, inteligencia artificial, etc.). Modelización de datos clínicos. Estadística. Ajuste de los modelos a datos experimentales. Regresión logística. Ensayos clínicos randomizados. Estimación de la función de sobrevida. Riesgo. Odds Ratio. Modelos paramétricos. Modelo de Riesgo proporcional de Cox. Base de Datos Clínicos.

Procesamiento de señales e imágenes biológicas

Contenido: Modelos perceptuales de la visión. Adquisición de imágenes. Mejoramiento. Segmentación. Registrado. Aplicaciones: realidad aumentada para planificación de cirugías, segmentación de imágenes para análisis histológico, reconstrucción tridimensional de órganos, aplicaciones interactivas de rehabilitación.

Versión 20: modificado 22/05/13 10/22

A.4. Plan por semestres

A continuación se describe un plan tentativo para la implementación inicial de la carrera. En pro de aprovechar al máximo los recursos existentes, se propone comenzar la implementación aprovechando la mayor cantidad de asignaturas posibles de la región. Asimismo, para las primeras generaciones de estudiantes, se prevé implementar únicamente un par de perfiles de los 4 propuestos.

Las asignaturas están divididas por semestres, y en cada caso se identifica si se trata de una asignatura existente y de qué dependencia proviene, o si se trata de una nueva. Las siglas de las instituciones son las siguientes:

- ▲ CIO-CT: Ciclo Inicial Optativo Ciencia y Tecnología, con sede en Regional Norte, Salto.
- ♣ FCIEN: Facultad de Ciencias.
- △ CIO-MAT 2º: Segundo año del CIO, opción matemática, con sede en Regional Norte. Salto.
- △ CIO-Bio 2º: Segundo año del CIO, opción biología, , con sede en Regional Norte, Salto.
- Químico Agrícola: carrera del Polo Agroindustrial y Agroalimentario de Paysandú.
- A IIE: Instituto de Ingeniería Eléctrica, Facultad de Ingeniería.

La carrera cuenta con asignaturas optativas de formación básica en las cuales el estudiante puede elegir profundizar diferentes áreas de formación y con asignaturas electivas técnicas que conforman la especialización del profesional a egresar.

Este plan es tentativo, y dependerá de la disponibilidad de asignaturas en cada una de las carreras al momento de la implementación.

Primer semestre

△ Curso introductorio a la Universidad (CIO-CT)

▲ Geometría y álgebra lineal 1: 12 créditos (CIO-CT)
 ▲ Cálculo 1: 16 créditos (CIO-CT)
 ▲ Física 1: 10 créditos (CIO-CT)

Introducción a la biología 1: 10 créditos (CIO-CT, remota FCIEN)

Total: 48 créditos

Segundo semestre

▲ Geometría y álgebra lineal 2: 9 créditos (CIO-CT)
 ▲ Cálculo 2: 16 créditos (CIO-CT)
 ▲ Física 2: 10 créditos (CIO-CT)
 ▲ Introducción a la biología 2: 6 créditos (CIO-CT)
 ▲ Proyecto de Ingeniería biológica 1: 4 créditos (nueva)

Total: 49 créditos

Tercer semestre

♣ Química 1 (CIO-CT): 7 créditos

♣ Probabilidad y estadística: 10 créditos CIO-MAT 2º

▲ Biofísica: 5 créditos (CIO-Bio-2º, remota)

Proyecto de ingeniería biológica 2: 5 créditos (nueva)

♣ Programación 1: 10 créditos (CIO-CT, 2º) (nueva)

♣ Prevención de riesgo: 4 créditos (CIO-CT)

♣ Física 3: 10 créditos (Químico Agrícola)

Total: 51 créditos

Cuarto semestre

▲ Ecuaciones diferenciales:
 Métodos numéricos:
 4 Programación 2:
 10 créditos CIO-MAT 2°
 10 créditos CIO-MAT 2°
 10 créditos (Tecnólogo)

▲ Señales y Sistemas 1: 10 créditos (nueva o Sistemas lineales 1

del IIE)

△ Optativa básica 1: 10 créditos (A elegir entre asignaturas

básicas de Ing. Eléctrica, informática o

ciencias básicas)

A Química 2: 8 créditos (CIO-CT)

Total: 58 créditos

Quinto semestre

Fisiología cuantitativa o

Fisiología y anatomía: 10 créditos (Biología animal, CIO-Bio 2º)

(nueva, Armentano)

▲ Señales y sistemas 2: 10 créditos (nueva o Sistemas lineales 2

del IIE)

▲ Epistemología y ética: 4 créditos (nueva)

▲ Electrónica digital: 10 créditos (Diseño lógico, IIE)

Actividades de formación integral 1: 5 créditos
 ▲ Ingeniería legal y gestión ambiental: 4 créditos

Total: 43 créditos

Sexto semestre

Procesamiento analógico de señales I:
 Procesamiento digital de Señales I:
 10 créditos (Electrónica I, IIE)
 10 créditos (Muestreo, IIE)

A Proyecto de ingeniería biológica 3: 6 créditos (nueva)

△ Control: 10 créditos, (Introducción a la teoría de

control, IIE)

Total: 45 créditos

Séptimo semestre

▲ Electiva 1: 8 créditos
▲ Electiva 2: 8 créditos
▲ Actividades de formación integral 2: 5 créditos

Total: 21 créditos

Octavo semestre

▲ Electiva 3: 8 créditos
 ▲ Electiva 4: 8 créditos
 ▲ Tesina / Proyecto de Ingeniería Biológica 4: 25 créditos

Total: 41 créditos

Versión 20: modificado 22/05/13 13/22

A.5: Perfil en señales e imágenes biológicas.

El objetivo de este perfil es formar profesionales con capacidad de entender y procesar señales biológicas.

Se entiende por señal biológica cualquier magnitud mecánica o eléctrica, medible directa o indirectamente en un organismo vivo. Normalmente las señales con las que se trabaja son aquellas que tienen utilidad para comprender, detectar o diagnosticar algún tipo de patología o mejorar la comprensión del funcionamiento de algún sistema biológico complejo.

Desde el punto de vista matemático una señal es una función f que va de un domino D en un conjunto R. Las señales biológicas se pueden clasificar desde varios puntos de vista:

- 1. <u>La interpretación física del dominio D de la señal</u>: el conjunto de salida puede representar una magnitud unidimensional como el tiempo o una magnitud vectorial como la ubicación espacial.
- 2. <u>El número de dimensiones que tiene el espacio de llegada R</u>: normalmente pueden tener entre 1 y 4 dimensiones, aunque recientemente se está trabajando en aplicaciones con señales de altas dimensiones (por ejemplo en Genómica).
- 3. <u>El método de adquisición por el cual se obtienen</u>: Puede ser un circuito electrónico conectado con electrodos, un equipo de resonancia magnética, un tomógrafo o sensores de presión para medir la respiración.

A modo de ejemplo, un ECG, es una señal eléctrica (voltaje) medido a lo largo del tiempo, mediante un circuito electrónico. Por lo tanto se trata de una magnitud escalar real que varía a lo largo del tiempo. De modo que es una señal unidimensional variable en el tiempo adquirida mediante un circuito electrónico conectado con electrodos al cuerpo.

Las radiografías son ejemplos imágenes, es decir señales de dos dimensiones, adquiridas mediante el uso de rayos X.

Algunos ejemplos de aplicaciones de procesamiento de señales son las siguientes:

- ▲ Comprensión general de un sistema biológico: por ejemplo, realizar un modelo matemático del potencial de activación de una neurona y simular una red de estas para entender su comportamiento.
- Automatización de tareas. Mediante algoritmos "inteligentes" es posible automatizar todas las tareas de conteo y agrupamiento de eventos y entidades biológicas. Por ejemplo un electrocardiograma consta de 1 latido por segundo aproximadamente. En el correr de un día, un equipo de Holter captura 100.000 latidos fácilmente, que luego son analizados por el especialista. Usualmente el 80% de esos latidos son normales. Esta técnica se conoce como screening. Utilizando técnicas de reconocimiento de patrones es posible clasificar los latidos dejando de lado los normales y analizar solo los latidos patológicos concentrando así el trabajo intenso sobre el 20% de las muestras, que son las de interés.
- A Planificación de intervenciones o dosificaciones de medicamentos: mediante la medida de parámetros a partir de las señales biológicas es posible proveer a los profesionales, con

una guía para ser más precisos en su accionar. Ejemplos de esto puede ser la neuronavegación basada en imágenes o la cirugía asistida por algoritmos de imágenes.

- A Procesamiento de imágenes satelitales para aplicaciones agronómicas como prevención de inundaciones, y estimación de rendimiento de cultivos.
- A Caracterización de propiedades de los materiales aplicacada a alimentos mediante el procesamiento de señales de ultrasonido.
- ▲ Diagnóstico precoz de la arterioesclerosis mediante la caracterización de propiedades de la placa de ateroma.

El profesional deberá estar familiarizado con las técnicas usuales de adquisición de las señales más frecuentes y los problemas asociados a dichas técnicas. Aunque no sea directamente responsable de diseñar los sistemas de adquisición deberá poder comprenderlos e interactuar con ellos

Campo de aplicación del egresado.

Las formas de trabajo las podemos dividir esencialmente en tres, según el grado de innovación:

- Investigación
- Investigación y desarrollo
- ▲ Ejercicio profesional aplicado.

Por su naturaleza y lo nuevo de la disciplina, la mayor parte de las aplicaciones de esta área caen dentro de las primeras dos categorías, pero en los últimos años se encuentran cada vez más aplicaciones industriales que caen dentro de la tercera categoría y esto es una tendencia que va al alza a nivel regional y mundial.

El tipo de proyectos en los cuales se puede desempeñar el profesional giran en torno al desarrollo de nuevos productos para la mejora del diagnóstico médico, el soporte a la investigación en biología mediante algoritmos de procesamiento de datos. Estos algoritmos podrán ser desarrollados por el propio profesional o elegidos entre soluciones existentes en paquetes de software.

También incluye la gestión de equipos multidisciplinarios de desarrollo de aplicaciones médicas o biológicas, y el control de calidad de las mismas.

Asignaturas

Los conocimientos sugeridos para un perfil de estas características son: instrumentación, tratamiento estadístico de señales, procesamiento de audio, procesamiento de imágenes, reconocimiento de patrones, programación avanzada y estructuras de datos, optimización, etc.

En la Tabla 3 se describe una posible implementación del perfil utilizando las asignaturas actualmente planificadas.

Versión 20: modificado 22/05/13 15/22

Asignatura	Créditos
Procesamiento avanzado de señales	8
Procesamiento de señales biológicas	8
Procesamiento de imágenes biológicas	8
Modelos y simulación de sistemas biológicos	8
Temas avanzados de Ingeniería Biológica	8
Créditos mínimos	40

Tabla 3: Asignaturas sugeridas para el perfil de señales e imágenes biológicas, a elegir de forma tal de cumplir con los créditos mínimos requeridos.

Versión 20: modificado 22/05/13 16/22

A.6: Perfil en Biomecánica.

El graduado de la Licenciatura en Ingeniería Biológica con la orientación Biomecánica Biotecnología y Biomateriales poseerá todas aquellas competencias básicas y comunes relacionadas con los aspectos conceptuales, procedimentales y actitudinales que le permitan ejercer la profesión con responsabilidad y espíritu crítico, así como participar en la investigación en estas áreas y en la docencia a nivel medio y superior.

Estará capacitado para identificar problemas de orden biológico e ingenieril, evaluarlos y proponer soluciones viables, mediante la utilización del método científico. Asimismo, deberá poseer conciencia crítica sobre la realidad natural y social en los ámbitos local, regional, nacional y global.

Los conocimientos teóricos y prácticos adquiridos en la carrera le permitirán realizar actividades profesionales en la industria, en el ámbito social, en el sector de bienes y servicios, y en la investigación científica, y podrá colaborar con sus conocimientos en la resolución de problemas que requieran un trabajo multidisciplinario.

Las competencias teóricas, técnicas y metodológicas adquiridas le permitirán implementar adecuadamente las estrategias de aproximación al fenómeno u objeto de estudio propio del trabajo profesional e interactuar con profesionales de otras disciplinas para generar conocimientos, básicos y aplicados, que le permitan plantear y promover proyectos en el área de formación multidisciplinar en el campo de los materiales, la biomecánica y la medicina regenerativa. El programa para esta especialización se basa en el estudio de los principales tipos de materiales utilizados en dominios medico-quirúrgicos y en el de prótesis.

Se pretende aportar los conocimientos básicos para estudiar el cuerpo humano como un mecanismo y así comprender su comportamiento mecánico. Asimismo se estudiarán las características y el comportamiento de los distintos materiales que forman parte del cuerpo así como aquellos materiales utilizados para reemplazos protésicos. Se estudiará en esta especialidad en detalle del funcionamiento de cada componente del aparato locomotor y de su conjunto y las distintas aplicaciones de la biomecánica: deportiva, ortesis, prótesis, osteosíntesis, reemplazos protésicos, ergonomía y seguridad vial.

Una de las sub-áreas de mayor aplicación de esta especialidad es la detección precoz de enfermedades (cardiovasculares sobre todo) a través herramientas de ultra resolución que permiten el diagnóstico y seguimiento de tales enfermedades a través de modelos y la simulación de los mismos. Estas sub áreas incluye especialización en exploración funcional por ultrasonido, utilización de setup experimentales que mimifican sistemas biológicos (corazón y

arterias artificiales por ejemplo) y una fuerte formación ad-hoc en simulación numérica a través de técnicas de elementos y volúmenes finitos.

Campo de aplicación del egresado.

- A Problemas clínicos en el sistema cardiovascular como el análisis de válvulas para el corazón, circulación extracorporal y máquinas de diálisis.
- ▲ La aterosclerosis ha sido también estudiada intensamente como un desorden hemodinámico debido a la localización de placas ateroscleróticas, directamente relacionadas con el flujo sanguíneo.
- ▲ El mayor avance desarrollado por la Biomecánica se encuentra asociado sin duda con la ortopedia y traumatología. Podemos citar los diseños de múltiples tipos de prótesis, ortesis y fijaciones, junto a evaluaciones de técnicas quirúrgicas.
- Uno de los campos que está adquiriendo un gran auge es el asociado a la biomecánica de impacto. Ella estudia las consecuencias del diseño del vehículo y de las posiciones de colisión en los accidentes de tráfico. Para ello se suelen utilizar sistemas multicuerpo y modelos de elementos finitos.
- La Biomecánica también proporciona herramientas para la mejora del proceso de rehabilitación de pacientes con anomalías asociadas, por ejemplo, a la marcha humana. Mediante la instrumentación adecuada es posible tipificar las anormalidades y establecer programas terapéuticos personalizados a largo plazo.
- La implantología dental es otro importante campo de investigación, incidiéndose en el estudio de múltiples factores mecánicos del diseño del implante como la geometría, material, superficie, tensiones sobre el hueso, interferencias, etc.
- ▲ El estudio de la relación mecánica que el cuerpo humano sostiene con los elementos con los que interactúa (ergonomía) ha despertado un gran interés en los últimos años, destacando sobre todo el ámbito laboral y entornos para discapacitados. La Biomecánica facilita dicho estudio en aspectos tales como la mejora del funcionamiento

y posicionamiento de las herramientas, de los movimientos y fuerzas desarrolladas en el puesto de trabajo, de las condiciones ambientales, etc

Asignaturas

En la Tabla 4 se describe una posible implementación del perfil utilizando las asignaturas actualmente planificadas.

Asignatura	Créditos
Biomecánica y reología	8
Órganos artificiales y prótesis	8
Ingeniería de tejidos	8
Biomecánica aplicada	8
Temas avanzados de Ingeniería Biológica	8
Créditos mínimos	40

Tabla 4: Asignaturas sugeridas para conformar el perfil de biomecánica, a elegir de forma tal de cumplir con los créditos mínimos requeridos.

A.7. Perfil en Bio-instrumentación.

El graduado de la Licenciatura en Ingeniería Biológica con la orientación Bioinstrumentación poseerá todas aquellas competencias básicas y comunes relacionadas con los aspectos conceptuales, procedimentales y actitudinales que le permitan ejercer la profesión con responsabilidad y espíritu crítico, así como participar en la investigación en estas áreas y en la docencia a nivel medio y superior.

En este perfil se introduce a los alumnos en el funcionamiento del equipamiento utilizado en la asistencia de pacientes así como también en el equipamiento utilizado para diagnóstico. Se analizarán entonces diversos equipos utilizados en áreas críticas y en el laboratorio de análisis clínicos. Por otro lado el conocimiento de las características integrales de un centro de salud, desde su planta física hasta sus instalaciones es de fundamental importancia para los futuros profesionales quienes se desenvolverán en un medio interdisciplinario interactuando con arquitectos, ingenieros especializados en electricidad y termomecánica.

En este perfil se introduce a los alumnos en el funcionamiento integral de un centro de salud conociendo el layout característico de diversas áreas, así como también de las instalaciones y normativas necesarias desde el punto de vista eléctrico, termomecánico y de fluidos medicinales. Las características de las tecnologías involucradas en los centros de salud es de fundamental importancia para la capacitación de un profesional que se desempeñará en ámbitos biomédicos. La correcta selección de dispositivos biomédicos tendrá un impacto directo sobre la calidad de uso en el ámbito hospitalario. El conocimiento de normativas, conceptos relacionados con la calidad y un acabado manejo de los ensayos técnicos que se deben realizar sobre estos dispositivos redundará en un uso seguro de la tecnología.

Este perfil comienza con los conceptos básicos asociados a la medición de diversos parámetros físicos. Se analizan varios tipos de trasductores, filtros y amplificadores. A partir de esta introducción general se estudian los trasductores y acondicionadores de señal asociados a la medición de parámetros en tres sistemas: eléctrico, cardiovascular y respiratorio. Para la medición de los diversos parámetros generados por los sistemas eléctricos, cardiovascular y respiratorio es necesario conocer el principio de funcionamiento de los trasductores empleados para el registro de estas señales. Se estudiará la combinación trasductor y acondicionador de señal que permita la conversión analógica-digital de estas señales con la mayor fidelidad posible.

Objetivos del Perfil

- Que el estudiante adquiera los conocimientos relativos a la teoría y aplicación de los diversos dispositivos utilizados para la detección, amplificación y procesamiento de señales fisiológicas provenientes de los sistemas respiratorio, eléctrico y cardiovascular
- 2) Que el estudiante adquiera los conocimientos acerca de la teoría del funcionamiento del equipamiento electromédico involucrado en los diversos sectores de un centro de salud y su interacción con el paciente, el usuario y el medio.

Temas incluidos

- Introducción a los sistemas de medición, sensores y acondicionadores
- Transductores. Generalidades
- Electrofisiología. Equipamiento asociado
- A Cardiovascular. Equipamiento asociado
- A Respiratorio. Equipamiento asociado
- Neuro. Equipamiento asociado
- Monitorización ambulatoria de electrocardiograma y presión
- A Respiradores
- Anestesia
- Arquitectura hospitalaria
- Instalaciones de fluidos medicinales
- ▲ Esterilización
- La ingeniería biomédica y la ingeniería clínica. Departamento de Ingeniería Clínica
- Legislación y normalización en medicina
- A La gestión de calidad en instituciones de salud
- A Control de calidad en medicina nuclear
- Gestión de tecnología médica
- Imágenes biomédicas

Campo de aplicación del egresado.

Esta área de trabajo tiene por objeto el diseño, implementación, desarrollo, y mejoramiento de equipos y sistemas de medición de variables biológicas para el diagnóstico y tratamiento de enfermedades. Contiene un alto componente de trabajo con tecnologías de hardware. A través de la bioinstrumentación se han desarrollado equipos de electrocardiografía, electroencefalografía, tomografía axial computarizada, tensiómetros digitales, fonocardiógrafos digitales, resonancia magnética nuclear, ecografía, equipos de radioterapia, biosensores de química sanguínea, entre otros.

En la Tabla 5 se describe una posible implementación del perfil utilizando las asignaturas actualmente planificadas.

Asignatura	Créditos
Instrumentación biomédica básica	8
Instrumentación biomédica avanzada	8
Sensores y acondicionadores de señal	8
Introducción a la ingeniería clínica	8
Seguridad eléctrica de equipos biomédicos	8
Ingeniería biomédica	10
Créditos mínimos	40

Tabla 5: Asignaturas sugeridas para conformar el perfil de bioinstrumentación, a elegir de forma tal de cumplir con los créditos mínimos requeridos.
