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Probabilistic wind power forecasting
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Provide stochastic forecast analogue to p(t) ⇒ scenarios of wind
power forecasting with confidence bands.

Stochastic optimization problems: management of electricity costs.



NWP and historical wind power production

Numerical predictions are provided by three different predictions in
Uruguay during the following periods.

Company N From To

1 324 04/04/2016 09/03/2017
2 417 08/01/2016 09/03/2017
3 248 01/01/2016 28/12/2017

Table: Available daily predictions



The data sets represent the value of aggregate wind power (in MW),
normalized with the nominal capacity.
Normalized historical power dji and numerical forecast pkji
i = 1, ...,T , T = 1, . . . , 72 the time horizon, j = 1, ...,N, N the number of
days available, and three different NWFs k = 1, 2, 3.
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Modelling

Let, X (t), denote the stochastic forecast analogue to p(t).
Assume it is the solution of the parametrized SDE

{

dX (t) = b(X (t);θ)dt + σ(X (t);θ)dW (t), t > 0 ,

X (0) = x0

X (t) ∈ [0, 1] and θ denotes a vector of parameters.

Form of the drift: X (t) is ’close’ to p(t). In expectation, X (t) tends
to p(t)

b(X (t), t;θ) = −θ(t)
(

X (t)− p(t)
)

θ(t): the rate by which the variable reverts to p(t) in time.

Form of the diffusion: the diffusion vanishes at the boundaries

σ(X (t);θ) =

√

2α(t)θ(t)p(t)(1− p(t))X (t)
(

1− X (t)
)

α(t): controls the path variability.



Modelling

Some observations:

emphasis in not only band but also reasonable paths (for instance
time correlation) that represents the wind power ensemble

ensemble not centered around the prediction value

flexibility provided by time dependence of α and θ.



Deterministic case:



Stochastic case:

Drawback: Ensemble may have centering issues wrt to prediction.



Modelling

Improved form of the drift:
Goal: better centering of the ensemble around the prediction value
Approach: X (t) is ’close’ to p(t) AND also tracks its derivative.
We require that

b(p(t), t;θ) =
dp

dt

b(X (t), t;θ) =
dp

dt
− θ(t)

(

X (t)− p(t)
)

θ(t): the rate by which the variable reverts to p(t) in time.



Stochastic case, tracking prediction derivative:

Figure: Ensemble exhibits better centering wrt to prediction.



Modelling

More observations:

Upper U(t) and Lower L(t) bounds (smooth bands), satisfying for all
times L(t) < p(t) < U(t), may be imposed provided that

the diffusion σ vanishes at X (t) = U(t) and X (t) = L(t).
For instance we may take

σ2
t (x) ∝ (U(t)− x)(x − L(t))

the drift b satisfies

bt =
dp

dt
, at X (t) = p(t)

bt < dU/dt, at X (t) = U(t)

dL/dt < bt , at X (t) = L(t)



Modelling

Example [Symmetric, relative band]
Here

L(t) = p(t)(1− R(t)),

U(t) = p(t)(1 + R(t)),

and we may take, for θ(t) > 0,

bt =
dp

dt
− θ(t) tan

(

π

2R(t)

(

x

p(t)
− 1

))



Statistical Inference for SDE’s (Ongoing Work)

D = {Xti}
N
i=0

Maximum Likelihood Estimation
– Exact:

L(θ;D) = Qθ(Xt0 , . . . ,Xtn) =

n
∏

i=1

ρ(ti ,Xti |ti−1,Xti−1 ;θ)ρ(Xt0)

ρ(t, x |s, y ;θ) is the solution of the Fokker-Planck equation

∂

∂t
ρ(t, x |s, y ;θ) = −

∂

∂x
(b(x ;θ)ρ(t, x |s, y ;θ)) +

1

2

∂2

∂x2
(

σ2(x ;θ)ρ(t, x |s, y ;θ)
)

– Approximate: L(θ;D)

the process {Xt} by a ’simpler’ process, e.g. by a Gaussian process,
the process {Xt} by a discrete scheme, e.g. Euler-Maruyama,
Milstein, Ozaki,
the transition probability, e.g. simulated likelihood, Hermite
polynomial expansion
S. Iacus, Simulation and Inference for Stochastic Differential Equations, Springer 2008



Observation equation:
D(j) = G(j) + ǫ(j) ,

G(j) = (G (j)(t1), . . . ,G
(j)(tN))

dJN =
{

d(j) = {dji}
N
i=1

}J

j=1

G (j)(t) Gaussian approximation of X (j)(t) ( solution of the SDE with

p(t) = p(j)(t)), defined by:

µ(j)(t) = E[X (j)(t)],

v (j)(t) = E[
(

X (j)(t)− µ(j)(t)
)2
]

v (j)(t, s) = E[
(

X (j)(t)− µ(j)(t)
)(

X (j)(s)− µ(j)(s)
)

]

ǫ(j) ∼ N (0,Σǫ,(j)), denotes the measurement error



Approximate likelihood

The approximate likelihood function is

L(θ;dJN) =
J
∏

j=1

(2π)−
N
2 |Σ(j)(θ)|−

1
2 e−

1
2
(d(j)−µ(j)(θ))T [Σ(j)(θ)]−1(d(j)−µ(j)(θ))

µ(j)(θ) = (µ(j)(t1), . . . , µ
(j)(tN)),

Σ
(j)(θ) = V(j)(θ) +Σ

ǫ,(j)(θ),

V(j)(θ) is the covariance matrix,
[V(j)(θ)]kl = v (j)(tk , tl), k , l = 1, . . .N,
Σ

ǫ,(j)(θ) = φ2
I

|Σ| denotes the determinant of the matrix Σ.

θ = (θ(·), α, φ) the vector of parameters

Optimization problem

θ∗ = argmin{− log(L(θ;dJN))}



Fitting of time independent parameters
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Figure: Comparison between the estimated constant mean reversion rate (θ) for
the three companies



Optimal combination of forecasts

Linear combination of the Companies 2 and 3 point forecasts

pλ(t) = λp(2)(t) + (1− λ)p(3)(t), λ ∈ [0, 1]

Find the optimal (θ, α, φ, λ) for which Xλ(t), best approximates the
historical data D.

dXλ(t) = −θ(Xλ(t)− pλ(t))dt + σ(Xλ(t); θ, α, λ)dW (t)



Optimal combination of forecasts

Linear combination of the Companies 2 and 3 point forecasts

pλ(t) = λp(2)(t) + (1− λ)p(3)(t), λ ∈ [0, 1]

Find the optimal (θ, α, φ, λ) for which Xλ(t), best approximates the
historical data D.

dXλ(t) = −θ(Xλ(t)− pλ(t))dt + σ(Xλ(t); θ, α, λ)dW (t)

MLE estimates for the constant rate SDE model

Horizon T (θ, α, λ) log likelihood

24 (0.167, 0.352, 0.910) 1.37e+04

36 (0.158, 0.396, 0.900) 1.01e+04

48 (0.140, 0.409, 0.914 ) 1.35e+04

Optimal λ is approximately 0.9, which indicates that company 2 provides a
better quality.



Fitting of time varying rate for Company 2

Recall the model SDE
dX (t) = −θ(t) (X (t)− p(t)) dt + σ(X (t); θ(t), α)dW (t)

Expected properties of the rate function

Decay with increasing time -
the predictability of NWP p(t) decays with time
Positive

Proposed models with parameterizations of the rate θ(t)

SDE Rate function Number of parameters

Constant θ0(t) = θ0 3

Linear θ1(t) = −θ0t + θ1 4

Exponential θ2(t) = θ0 exp
−θ1t 4

Rational θ3(t) =
θ0

(θ1+t) 4

Power θ4(t) = θ0t
−θ1 4



Time varying rate models for company 2

Time-horizon T = 24 hours.
Initial values for (θ0, θ1) are chosen by fitting the chosen function to d the
constant rate MLE for different time horizons and (α0, φ0) = (0.2, 0.1).

SDE Initial values (θ00, θ
0
1) MLE estimates (θ0, θ1, α, φ) CPU time(seconds)

Constant (0.400,−−) (0.191,−−, 0.277, 0.007) 2850

Linear (0.003, 0.250) (0.003, 0.226, 0.283, 0.007) 3148

Exponential (0.303, 0.020) (0.210, 0.010, 0.284, 0.007) 3840

Rational (7.377, 14.35) (21.06, 125.4, 0.418, 0.004) 5864

Power (2.001, 0.733) (5.607, 0.797, 0.192, 0.096) 6754

Remarks

Constant, Linear and Exponential rate models give ’the same’ α and
φ values

Best in computational cost is the constant rate model



Model selection

Model selection using Information Criteria

Akaike Information Criterion - AIC (the lower AIC the better)

Bayesian Information Criterion - BIC (the lower BIC the better)
and the

log-likelihood log(L) (the larger log(L) the better)

SDE log(L) AIC BIC

Constant 24128 −48250 −48238

Linear 24139 −48270 −48254

Exponential 24135 −48262 −48246

Rational 24044 −48080 −48064

Power 18469 −36930 −36914

The Linear rate model, θ1(t) = −θ0t + θ1, is the preferred model.
The Exponential rate model, θ2(t) = θ0e

−θ1t is close.



Model Validation

We fit the model with a training set to get:

θ0, θ1, α, φ

Linear (0.002, 0.190, 0.302, 8.5e − 3)

Exponential (0.174, 0.007, 0.303, 8.5e − 3)

We solve one-dimensional Fokker-Planck equation for a randomly chosen
path within the testing set
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Figure: Validation of the numerical results with the linear model



Validation on the total testing set

We measure the number of exceedances of the 95% Confidence Interval.
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Figure: Validation of the numerical results with the exponential model



Case study: p(t) = µ = constant, Invariant distribution
{

dX (t) = −θ(X (t)− µ)dt +
√

2θαµ(1− µ)X (t)(1− X (t))dW (t), t > 0

X (0) = x0

Mean reverting dE[X (t)] = −θ(E[X (t)]− µ)dt

Autocorrelation function of the process cor(X (t),X (t + τ)) = e−θτ

Invariant probability density m(x) exists1 in x ∈ (0, 1), and

is a Beta distribution B( 1
α(1−µ) ,

1
αµ

). (Independent of θ)

with mean µ and variance is 1
α

((1−µ)µ)2

1+αµ(1−µ)
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Invariant distribution. Case study: p(t) = µ = constant
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Probabilistic forecast of Solar power production

Predict the solar power production given the influence of clouds,
aerosols, and other atmospheric constituents.
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We will consider models based on Stochastic Differential
Equations (SDEs).

We consider models based on physical features of interest:
1 Model 1 Clear Sky model.
2 Model 2: A model involving cloudiness predictions.



Description of the data

We have available three data sources:

(1) The hourly solar power production of three photovoltaic farms on the
366 days of the year 2016, located in three departments of Uruguay.
These data are normalized by the installed power (MW) of each farm.

Farm Department Installed capacity Operativity
Alto Cielo Artigas 20 From 1st March, 2016
La Jacinta Salto 50 All 2016
Raditon Paysandú 8 All 2016

(2) The hourly cloudiness during the year 2016, provided by Instituto
Uruguayo de Meteoroloǵıa (INUMET). These data are available for
seven meteorological stations enclosing the three farms.

(3) Daily sunset and sunrise times during 2016.

The aggregated production is calculated as the sum of the three
productions in MW and divided by the total installed capacity (78
MW, after March 1st).



Model 1: Clear sky

Then, for the SDE

dY (t) = β
εt
dt

dt − θ(Yt − βεt)dt + σ(Yt ,θ)dWt ,

The function εt is an upper envelope of the observed process, fitted
from the observed data.

εt represents the “Clear sky” production of the plant, i.e. the solar
production with absence of cloudiness.

σ(y ;θ) =
√

2θαy(εt − y).



The upper envelope described
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Figure: Upper envelope (blue), observed data (orange).



Maximum likelihood estimation and validation

From generated samples we also compute the 0.025 and the 0.975

quantiles for each t = t
(j)
0 , . . . , t

(j)
f . No derivative tracking though . . .
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Model 2: Cloudiness states

Then, for the SDE

dY (t) = β(t)
εt
dt

dt − θ(Yt − β(t)εt)dt + σ(Yt ,θ)dWt ,

Markovian switching model

We count with hourly state sky data for three locations, each one
near to each Photovoltaic plant.

With this data we will fit a jump process Rt with state space
S = {0, 1, 2, 3, 4} given by

S Cloudiness

0 Clear sky

1 Half cloudy

2 Cloudy

3 Completely cloudy

4 Obstructed from view

We shall fit the jump process Rt transition probabilities from the
historical cloudiness data.

Our aim is to find the optimal values β(t) ∈ {β0, . . . , β1}



Summary: modeling renewable sources with SDEs

Wind power (ongoing work)

Aggregate wind power forecasting quantifying uncertainty of NWP

Founded on Statistical first principles (max. Lik., Bayesian)

Produces power production path scenarios

Flexible approach can

accommodate day/night effects
introduce bands for variability a.s.

Indirect inference using approximate Likelihood to accelerate
computations

If local forecasts and historical values are available, then we can
distinguish among different farms (systems of SDEs) taking into
account their correlation.



Summary: modeling renewable sources with SDEs

Solar power (ongoing work)

Without NWP involved the approach is limited, better to use couples
of predictions and historical values! Can anyone provide these data?

Based on clear sky model, which we fit form historical observations

Effect of cloudiness, that is highly volatile but can be mitigated by
using meteorological forecasts.



Thank you!
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