* Unified Modeling Language

* QObjetivo: Proveer un lenguaje comun que puede ser
usado para el desarrollo de software

* Lenguaje que permite:
" Visualizar: La comunicacion es a través de graficos

" Especificar: construyendo modelos para el analisis, disefio,
implementacion

" Construir: Permite la generacion de codigo a partir de un modelo
UML, y la construccion de un modelo a partir del codigo
(ingenieria reversa)

" Documentar: Permite la documentacion completa de todo el
sistema

Aprobado como estandar por la OMG en 1997
Actualmente se encuentra en la version 2.1.2 (nov 2007)

1

_
—
-
-
O
7
©
=
©
- S
o
i
-

Diagramas en UML

UML 2.0
| = |
Diagrama de Diagrama de
estructura funcion
L -
| | | |
Paquetes Clases Objetos cals;;i de Actividad
Composicién Componentes Despliegue Estados
Diagrama de
interaccion
N
| | |
. S Interaccion : e
Secuencia Comunicacion Global Ciclo de Tiempe

Tipos de Diagramas

* Modelo Estatico
= Construye y documenta los aspectos estaticos de un sistema.
" Refleja la estructura basica y estable de un sistema software.

= Crea una representacion de los principales elementos del dominio
del problema

* Modelo Dinamico

= Crea los diagramas que muestran el comportamiento de un
sistema

* Para requisitos se utilizan los siguientes diagramas:
* Diagrama de Casos de Uso
* Diagrama de Clases (Modelo Conceptual)
* Diagrama de Actividad
* Diagramas de Maquinas de Estado

Diagrama de Casos de Uso

* Permite visualizar en una forma compacta los casos de
uso del sistema y que actores participan en cada caso
de uso

* Presenta las relaciones que existen entre los casos de
uso

* Muestra los limites del sistema

* Vision estatica de los Casos de Uso de un sistema

* Consta de los siguientes elementos:
" Actor
" Caso de Uso

= Relaciones

* |nclude
* Extend
* Generalizacion

Diagrama de Casos de Uso - Ejemplo

%/

Cliente

<<extend>>©

©4 Retirar Monedas
- <<include>>

Retirar

Depositar
<<include>>

Transferir

(D

A/Validar con PIN

/ Validar Cliente y >~

Validar con Scaner de Retin

a

Nombre Clase

Diagrama de Clases —

* Muestra las clases € interfaces que componen el
sistema y las relaciones que existen entre ellas

* Muestra aspectos estaticos

* Clase: conjunto de objetos que comparten:
= Atributos
" QOperaciones
" Relaciones
= Semantica
* Modelo de Dominio (Conceptual): ayudan a entender los
conceptos del dominio del problema y el vocabulario del mismo. Se
excluyen detalles referentes a la implementacion o al lenguaje de
programacion.

* Diagramas de clases de implementacion: muestran todos los
metodos y atributos necesarios para implementar cada clase. Es un
diagrama dependiente de la implementacion y del lenguaje.

7

Modelo del Dominio (Conceptual)

* Permite describir las entidades que conforman el
dominio, sus relaciones y atributos

* Se representan los conceptos del dominio
* Muestra aspectos estaticos

Cliente. Banco Cajero.
&nombre &Nombre 1 Esaldo
n
0.1 expide 1 1
usg realiza
. 0..n - n o
: ;a’rjeta . Cuenta | , |, Transaccion
P:J'\rln ero 01 tleng " Eisaldo E5monto

AN

Transferencia.

8

Retiro. Deposito.

Diagrama de Actividad

* Se construye para modelar el flujo del control (workflow)

* Elementos:
Estado de Actividad (o de Accion) []

Estado Inicial o
B

Transiciones _—
Actividades concurrentes

Bifurcaciones Q
‘C!ondiciones de la bifurcacion [guarda]

» Permite modelar el flujo del trabajo
= En un sistema
= En una organizacion

Diagrama de Actividad - Ejemplo

- ————

Ingresar Tarjeta

Ingresar PIM

[PIM incorrecto and intentos = 4]

[FIM incorrecto and intentos = 4]

MF'IN corrects] 00 e e e e e m

1

@eleccinnar@uenteD : Se abren FIUJOS :
J

.-~ Paralelos !

2o T T

———————————————

Diagrama de Maquinas de Estados

* Muestra el comportamiento de un objeto representando
los estados en que se puede encontrar y los eventos que
le hace pasar de uno a otro.

* Se utiliza para:
" Modelar el estado interno de una entidad durante su ciclo de vida
" Modelar el estado de un caso de uso

* Da una vista dinamica del sistema

* Permite:
= Anidamiento: un estado con subestados

" Estados paralelos: reduce el nro. de estados necesarios en el
modelo

= (Condiciones de bifurcacion

11

Diagrama de Estados

Transicion.
= la etiqueta tiene tres partes optativas: Evento {Guardia} / Accion

Los estados:

= pueden tener actividades asociadas. Etiqueta con la sintaxis hace /
Actividad.

= estado inicial o de creacion
= estado final — aquél que no tiene transiciones de salida @

Las acciones:

= Se asocian con las transiciones

= se consideran como procesos que suceden con rapidez y no se
pueden interrumpir.

Las actividades:

= se asocian con los estados

= pueden tardar mas.

= Una actividad puede ser interrumpida por algun evento.

12

Diagrama de Estados

[1/ vl J—

{ obtiene primer articulo
[No se revisan todos los artfculos] [Todos fos articuled comprobados 4c& todos

/ obtiene siguiente articulo los articulos disponibles]
Comprobacién :E-:(Despachando

hace [reviza | hace /iflicia
artfculo entrega

[Todos los articulos comprobados && o
algunos articulos no en inventario] ﬁ&
) Entregado
Articulo recibido activided
[algunos articulos no en existencia) v_
Entregado
autotransicion Estado

Figura 8-1: Diagrama de estados

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0801.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0801.gif

Diagrama de Estados

Una transicion sin evento en su etiqueta se da tan pronto

como se completa cualquier actividad asociada con el
estado dado.

* Guardias:

Un guardia es una condicion logica que devuelve "verdadero” o "falso.”
Una transicion de guardia ocurre solo si el guardia es "verdadera”.

Transicion no guardada: la transicion ocurrira siempre que tenga lugar el
evento.

Sdlo se puede tomar una transicion de un estado dado, por lo que los
guardias deben mutuamente excluyentes para cualquier evento.

No es necesario que formen un conjunto completo.

14

Diagrama de Estados

[No se révisan todos los articulos] [Todos los artfeulos comprobados &é todos
{ obtiene siguiente articulo los artfculos disponibles]
Comprobacidn / Despachando

hace/inicia

entrega

[Todos los artfculos comprobados &&
algunos articulos no en inventario)
Articulo recibido
[algunos artfculos no en existencia]

Entregado

Figura 8-2: Diagrama de estados sin superestados

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif

Diagrama de Estados - Superestados

, ybredeisuparesmdo
-] ~ Los subestados
heredan todas las
(No se revisan todos los articulos] [Todos los articules comprobados &é& todos o
/ abtiene siguiente articulo los articvios dispanibles] transiciones sobre

Comprobacién Despachando

7| ace/mics | el superestado.

* A menos que haya
un estado inicial.

[Todos los articulos comprobados &é&
algunos artfculos no en inventario]
Articulo recibido

f[algunos articulos no en existencial

Figura 8-3: Diagrama de estados con superestados 16

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0803.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0803.gif

Diagrama de Estados — Ejemplo 1

ingreso PIN [PIN incorrecto]

Tarjeta

ingresar PIN[PIN correcto]

[Seleccionar /" Verificar \fondosinsuﬁcientes/ Devolver \ retiro de tarjeta{D

cuenta y monto j ingreso cuenta y mo fondos m

contesta[fondos sufici

efectivo retirado

Dar Dinero

.[Contar } dinero SUﬁCientt Dispensar] :

17

Diagrama de Estados

* Si un estado responde a un evento con una accion que

no produzca una transicion, se coloca
nombreEvento/nombreAccion en el cuadro de estado.

Existen también dos eventos especiales, entrada y
salida.

® Cualquier accion que esté vinculada al evento entrada se ejecuta
siempre que se entre al estado. Sintaxis entry/nombreAccion

" La accion asociada con el evento salida se ejecuta siempre que se sale
del estado. Sintaxis exit/nombreAccion
El poder indicar acciones al entrar o salir de un estado
es util porque evita documentar la misma accion para
cada transicion de entrada o salida del estado.

* En una autotransicion se ejecuta:

" |a accion de salida
= |a accion de transicion
= Ja accion de entrada.

= actividad asociada al estado
18

Diagrama de Estados

(Autorlzacién [pago o eats bien]

hace/comprueba
pago)/

[pago estd bien)
\ /

l Auatorizado \ Rechazado
L

Entregado

Figura 8-4: Autorizacion de pagos

19

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif

Diagrama de Estados — Estados

concurrentes

Eapeﬂndo

T fn

Figura 8-5: Diagrama de estados concurrentes

Los diagramas de estados
concurrentes son utiles cuando
un objeto dado tiene conjuntos
de comportamientos
independientes.

Recomendacion:

Si se tienen varios diagramas
de estados concurrentes
complicados para un solo
objeto, considerar la division
del objeto en varios.

20

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0805.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0805.gif

Diagrama de Estados

*Son buenos para describir el comportamiento
de un objeto a traves de varios casos de uso.

* No son tan buenos para describir un
comportamiento que involucra cierto numero
de objetos que colaboran entre ellos.

21

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif

Eleccion de una Técnica para

Modelar Requisitos

* No existe un unico enfoque aplicable a todos los
sistemas, depende de cada proyecto

* Puede ser necesario combinar varios enfoques

22

Especificacion de Requisitos

Proceso de Requisitos

Actividades
! Planificacion Il » Obtencion «—{ Analisis » Validacion [*—|Verificacion
i T T Artefactos
\"4 \"4 \"4 v
~ ~ A A
Documento Documento)
de de Modelo del Especificacion
Visidn Requisitos Sistema de Requisitos

24

Lenguajes de Notacion

* Lenguaje Natural
" Comprensible para el Cliente/Usuario
" Ambiguo (glosario)
" Poca legibilidad (plantilla, formateo del texto)

= Dificil de tratar (Verificar correctitud, consistencia,
completitud)

* Notaciones Especiales (mas formales)
" Poca o ninguna ambiguedad
" Facilita tratamiento
" Necesidad de entrenamiento en la notacion
= Dificultades de comprension por Cliente/Usuario

25

Notaciones Especiales

Graficas vs. Basadas en texto

Estaticas vs. Dinamicas

Descripciones Estaticas

= Se especifican entidades y sus atributos, los requisitos se pueden ver
como las relaciones entre las entidades.

" No describe como cambian las relaciones con el tiempo.

Descripciones Dinamicas
" Especifican estados y las transiciones entre estados en el tiempo.

26

Documentacion de requisitos

* Qué documentar:

i
" e
" i
" &
)

- Recomendaciones:

i

27

Documentos de Requisitos

* Definicion de Requisitos: lista completa de lo que el
cliente espera que el sistema haga, escrita de forma que
el cliente la pueda entender. Ejemplo:

1. “Se debe proveer un medio para acceder a archivos externos
creados por otras herramientas.”

- Especificacion de Requisitos (SRS): reformula la
definicidn en términos técnicos para que los disenadores
puedan comenzar el diseno. Ejemplo:

“1.1 Se proveera al usuario los recursos para definir el tipo de
archivo externo.”

“1.2 Cada tipo de archivo tendra una herramienta asociada y un
icono que lo identifica.”

“1.3 Cuando el usuario seleccione el icono que representa un
archivo externo, el efecto es aplicar la herramienta asociada con
ese tipo de archivo al archivo seleccionado.”

28

Documentos de Requisitos (2)

Usar un mismo documento: Entendimiento comun entre
Cliente, usuario, analistas, desarrolladores.

Usar dos documentos:
Se debe aplicar Gestion de la Configuracion:

" Es necesaria para asegurar la correspondencia entre ambos (si existen

por separado).

" Permite seguir la pista y correspondencia entre:

Definicion de Requisitos
Especificacion de Requisitos

Modulos de Disefio

Caodigo que implementa los modulos
Pruebas para verificar la funcionalidad
Documentos que describen el sistema

29

Documento Definicion de Requisitos

* Registrar los requisitos en los terminos del
cliente:

" 1. Delinear el proposito general del sistema: Incluir
referencias a otros sistemas, glosario y abreviaciones.

= 2. Describir el contexto y objetivos del desarrollo del
sistema.

3. Delinear vision global del sistema: Incluir
restricciones generales.

4. Definir en detalle las caracteristicas del sistema
propuesto, definir la frontera del sistema e interfaces.

5. Discutir el ambiente en el que el sistema va a operar
(hardware, comunicaciones, personal).

30

Caracteristicas de una Buena
Especificacion SRS (IEEE 830

- Correcta / Valida: Todos los req. son requeridos en €l sistema.
= No existe herramienta que asegure esto.
= Validado por el cliente (que efectivamente refleje sus necesidades).
= Revisar que sea consistente contra otros documentos existentes (pe.

especificacion de regs. del sistema).

- No Ambigua: Todo req tiene una unica interpretacion.
= |ncluir glosario.

= No ambigua para quienes lo crearon y para quienes lo usan.
- Completa: Incluye:

Todos los requisitos asociados con funcionalidad, desemperio, restricciones de
disefno, atributos o interfaces externas.

Definicion de respuestas del sw a todo posible datos de entrada (validos o
invalidos) en toda clase de situaciones realizables.

No hay referencias sin definir en la especificacion.

La frase “a determinar” indica SRS no completa. Ocasionalmente necesaria;
describir:

« condiciones que causan que no se sepa aun.
« qué se debe hacer para determinar lo que falta, quién y cuando.

31

Caracteristicas de una Buena
Especificacion SRS (IEEE 830

* Consistente internamente: Los requisitos no son
contradictorios entre si. Probables conflictos:
= entre caracteristicas de entidades. Pe. color de las luces, formatos distintos

= conflicto logico o temporal entre dos acciones. Pe. multiplicar o sumar; en
forma simultanea o consecutiva.

" diferentes términos para describir €l mismo objeto.

* Ordenados por grado de importancia y/o estabilidad —
identificador.
" |mportancia: esencial / deseado
" Estabilidad: cantidad de cambios esperados

" Necesidad: esencial / condicional / opcional
* Esencial (condiciona aceptacion del sw)
* Condicional (valor agregado)
* Opcional (puede o no valer la pena; se aceptan propuestas alternativas).

32

Caracteristicas de una Buena

Especificacion SRS (IEEE 830

* Verificable: Un requerimiento es verificable si existe un
proceso finito de costo accesible para determinar que el
sistema lo cumple.

" Usar términos concretos y cantidades mesurables.
" Preparar pruebas para demostrar que se cumplen. Si no se puede, eliminar o
revisar el requisto.

* Modificables: Su estructura y estilo son tales que cualquier
cambio en los requisitos puede ser hecho facilmente en
forma completa y consistente.

" Organizacion coherente y facil de usar (tablas, indices, refs. cruzadas

" No redundante.
* Ventajas de redundancia: lo hace mas legible.
* Desventajas: dificil de mantener
* Sila uso: referencias cruzadas

" Expresar cada reg. separadamente.

33

Caracteristicas de una Buena

Especificacion SRS (IEEE 830

* Trazables: El origen de cada requerimiento es
claro, y es posible seqguirle la pista en futuros
desarrollos o mejora de la documentacion.

" Trazabilidad hacia atras: en versiones previas

" Trazabilidad hacia adelante: documentos posteriores:
* requiere IDENTIFICADOR UNICO.

* Realistas / Factibles

* EJ.. tiempo de respuesta local=remoto
* Ej.. El cliente quiere adelantarse a la tecnologia

* Entendibles: Tanto por los usuarios como por
los desarrolladores

34

Validacion de Requisitos

Proceso de Requisitos

Actividades
! Planificacién Il » Obtencion le—{ Analisis L« Especificacion |« Verificacion
i T T Artefactos
\"4 \"4 \"4 v
~ ~ A A
Documento Documento)
de de Modelo del Especificacion
Visidn Requisitos Sistema de Requisitos

36

Validacion de Requisitos

* Proceso por el cual se determina si los requisitos
relevados son consistentes con las necesidades del
cliente.

* QObjetivo:

" Asegurar que se este construyendo el sistema correcto.

* Requisitos sirven como:

" contrato con el cliente
" guias para los disenadores.

* Proceso:

" Planificar quién (qué stakeholder) va a validar qué
(artefacto) como (técnica).

" Ejecutar
" Registrar — Reporte de validacion / Firma

37

Validacion de Requisitos

* Se chequea en el documento de requisitos:

Validez: que el usuario valide qué es lo que quiere.
Consistencia: que no haya contradicciones
Completitud: que no falte nada. Chequear por:

* ki

* iliniy
Necesidad
Ambiguedades

Realismo o Factibilidad: que se puedan implementar con la tecnologia,
presupuesto y calendario existentes.

Verificabilidad: que se pueda disefar conjunto de pruebas para demostrar
que el sistema cumple esos requisitos. Cuidado con adjetivos y adverbios.

Comprensibilidad: que los usuarios finales lo entiendan
Adaptabilidad: que el requisito se pueda cambiar sin afectar a otros.
Trazabilidad: que esté establecido el origen.

38

Validacion de Requisitos NO Funcionales

« Son dificiles de validar.

« Se deben expresar de manera cuantitativa utilizando métricas
que se puedan probar de forma objetiva (esto es IDEAL).

Propiedad Medida
Rapidez Transacciones por seg
Tamano KB
Fiabilidad Tiempo promedio entre fallas
Portabilidad Numero de sistemas, especificar

Facilidad de uso Tiempo de capacitacion

» Para los usuarios es dificil especificarlos en forma
cuantitativa.

39

Técnicas de Validacion

* Manuales

* Revisiones - Stakeholders revisan por separado y se reunen para discutir
problemas.

* Inspecciones formales — roles y reglas.

U F

* Automatizadas

g

40

Revision de Requisitos

* Proceso manual. Se revisa el documento de requisitos buscando
anomalias y omisiones:

" "
* Participan representantes:

. . ¢CoOmo asegurar que la reunidn
pruebas del sistema. - es efectlva? oderador,
* cambios en los requisitos en el proyecto, su Ver'f'cs%%l%ia}/r%av({/l cﬂisabl es por

acciones

41

Verificacion de Requisitos

Proceso de Requisitos

Actividades
Planificacion |— Obtencion e Andlisis [« Especificacion e—=—{ Validacion
i i \[\[Artefactos
~ ~ A A
Documento Documento)
de de Modelo del Especificacion
Visidn Requisitos Sistema de Requisitos

43

Verificacion de requisitos

* Objetivo:
" Asegurar que se esté construyendo el sistema
correctamente.
= Se verifica que un artefacto (salida) sea conforme a
otro (entrada).
* Usualmente es solo chequeo de trazabilidad de
la especificacion al documento de regs.

* Para sistemas criticos: demostrar que la
especificion realiza los requisitos:

" usamos SRS + asunciones sobre el comportamiento
del ambiente (jdocumentarlas!)

44

Verificacion de requisitos

* Chequeos:

" chequeo de referencias cruzadas

" chequeos de consistencia

" chequeos de completitud

" chequeos por estados o transiciones inalcanzables.
* Técnicas:

" revisiones formales (en grupo)

" revisiones por pares

" listas de comprobacion

" modelos

" Pruebas Matematicas: Si se uso un lenguaje formal,
pe. Z.

45

Ingenieria de Requisitos

A
0 S
Qa o
c o
(7)]

;_UJ

Verificacion >

e

A
A\ 4

ol
ap

Planificacion >‘ Obtencion Analisis pecificacion| le=»{ Validacién

Lined base corregida
. Medicion . L,
»| Trazabilidad Eval Y » Administracion
Planificacion p| Cvaluacon ‘ del Cambio
v Linea base actual
T o

ambios eﬂ ambios
requisitos 6 en el proyecto

Administracion de los Requisitos

Los requisitos cambian, debido a:

" Muchos usuarios

" Quienes pagan por el sistema y los usuarios no son las mismas
personas

= Cambios en el negocio
= Cambios en la tecnologia

Proceso de comprender y controlar los cambios en los
requisitos del sistema.

Se hace en paralelo con el Proceso de Requisitos.

Tres etapas:
" Planificacion: Se realiza al comenzar el analisis de requisitos

" Administracion del cambio: Comienza una vez que se tiene una
primera version del documento de requisitos

" Trazabilidad: Se mantiene a lo largo del proceso de requisitos

47

Planificacion

* Muchas actividades son tomadas de las técnicas de SCM.

* Se debe decidir sobre:

" ldentificacidn de Requisitos: Cada requisito debe identificarse en
forma Unica, para poder ser referenciado por otros.

-
— iR
—
" Procedimiento de Administracion del Cambio: Actividades que
evaluan el impacto y costo del cambio.
" Politicas de Trazabilidad: Definen qué relaciones entre regs. y
con el diseno se deben registrar y cOmo se van a mantener.

" Herramientas CASE: De soporte para:

48

Trazabilidad

* Informacion de rastreo que se debe mantener

" La fuente: Quién propuso el requerimiento y porqué.

" Requisitos dependientes: Vincula los requisitos
dependientes entre si; se usa para el analisis del
cambio.

" Trazabilidad entre artefactos distintos, qué version
se corresponde con cual. Pe.:

* Rastreo reqgs - CU
* Rastreo al diseino: Vincula el req con los modulos de disefio
que lo implementan

* Uso de matrices de trazabilidad

49

Administracion del Cambio

El cambio va a ocurrir.

Obijetivos del control de cambios:

" Manejar el cambio y asegurar que el proyecto
Incorpora los cambios correctos por las razones
correctas.

" Anticipar y acomodar los cambios para producir la
minima disrupcion y costo.

Si los regs cambian mucho dp de LB -

" relevamiento incompleto/inefectivo
" o0 acuerdo prematuro

50

Administracion del Cambio

* Cuando se propone un cambio, debe evaluarse el
Impacto.

- Etapas:
1. Especificacion del cambio.

2. Evaluar impacto - Analisis del cambio y costo:
= Se usa la informacion del rastreo
= Se calcula el costo en términos de modificaciones a:
— Docs de requisitos
— Diseno e implementacion
1. Discutir costo con cliente.
2. Implementar el cambio: se modifican los artefactos necesarios.

* Siguiendo estos pasos se logra
= Todos los cambios se tratan en forma consistente.

= Los cambios a los docs de requisitos se hacen en forma
controlada.
51

Procedimiento de control de cambios

 Establecer procedimiento de control de
cambios:
" quién - Comité de Control de Cambios (CCC)

" documentar:
* integracion del CCC
* alcance de autoridad
* procedimientos operativos (pe. evaluar impacto)
* proceso de toma de decisiones

52

Gestion de la Configuracion de los Requisitos

* Tiene que haber un responsable

* Control de versiones: Definir:
= jtems de configuracion
" Procedimientos

* Linea Base. Definicion:

" Conjunto de especificaciones y /o productos que han
sido revisados formalmente y acordados, que sirven
de base para desarrollo futuro, y que solo pueden ser
cambiados a través de procedimientos formales de
control de cambios.

53

Linea Base de Requisitos

* LB de regs, arranca cuando se decide que son
suficientemente buenos como para arrancar
diseno y construccion.

* Sobre LB planifico cronograma y costo.

* Asociada a la liberacion de un producto. Debo
poder recomponer la liberacion.

* Definir:
" qué artefactos van en Linea Base
" cuando entran

54

Medir y Evaluar Requisitos

* Medir caracteristicas de los requisitos para
obtener detalles
" Proceso de los Requisitos
" Calidad de los Requisitos

* Las mediciones van a estar relacionadas con:
" Producto (de los requisitos)
* tamano, calidad, atributos técnicos,

" Proceso
* actividades,...

" Recursos
* personas, equipos, tiempo, dinero,...

55

Medir y Evaluar Requisitos

* Medir
" # Requisitos
* Entrada para estimacion del producto

= # Cambios introducidos

* Requisitos Agregados, Modificados, Desechados en el tiempo
* Estabilidad

" # Requisitos por tipo de requisitos
* Permite luego ver en qué parte se encuentra el cambio
" # Requisitos validados
* Tamano del producto y del proyecto (ej.:PF, LoC)

* planificar

56

Metodologias de Desarrollo

Metodologias de Desarrollo

* Los metodos agiles fueron desarrollados en
respuesta a la necesidad de tener una
alternativa a los procesos de desarrollo de
software pesados, “guiados por documentos”
(AgileAlliance 2002).

* Cada metodologia trata distinto los requisitos.

* Ejemplo de metodologia agil: eXtreme
Programming (XP)

* Ejemplo de metodologia pesada: Rational
Unified Process

58

eXtreme Programming

» Cliente en el lugar

Un cliente real debe sentarse en el lugar, disponible para escribir
historias, contestar preguntas, resolver disputas y prioridades de
pequefa escala.

* Historias de usuario

Su proposito es analogo al de los casos de uso.
Son escritas por el cliente, son las cosas que el sistema debe hacer.
No son casos de uso, pero describen escenarios.

Su formato son tres sentencias de texto escritas por el cliente, en su
terminologia sin sintaxis técnica.

Cuando llega el momento de implementarla, los dasarrolladores van con
el cliente y reciben una descripcion detallada de los requisitos, cara a
cara.

Se usan para planificar el proyecto: se estiman y el cliente las prioriza
definiendo el alcance.

59

Rational Unified Process —

Disciplina de Requisitos

[News System) [Exigting System]
v
= _-—
?A.nalyze the Understand
Problem Sakeholder Nesds
brrsrsrn s I r it

problem] -

[Addressing
carrect problem]

e

O ine the Managethe Scope
System of the System in scope]

[Can't do all
the wark]

Refine the
System Definition

\!‘)

[Mewy Input]

L

Manage Changing
Requirements

60

RUP — Detalle de Actividades

. Requirements

I'u'larl ement

il uﬁf =N
Custamer ? . }.-“

Develop
. Capture a Requirements He uirements

Caomman Management ributes
. Vocabulary Plan /'
System }
EndUser "‘-i\\‘_*
A 1
nalys g Develop .

Find &Actors Vision

and Use Cases
f / Wision
Stlkehn:-ll:ler
i

@ h
-
.' Elu5|r'|esE

Elu5|r1955 Business == Case Model Stalc:ehalder Rules
Use-Case Modd Object Model (actors only) Requests

61

Especificacion Formal

* Ventajas:

" Permite detectar omisiones e inconsistencias en los
requisitos.

= Deteccion temprana de defectos.

" Necesario para demostrar que un programa es
correcto.

* Desventajas:
" Exige entrenamiento.
" En general no es comprensible para el cliente.

" Funcionan bien en escalas reducidas, pero se
complican a medida que crece la escala del producto.

* Su aplicacion suele estar restringida a sistemas
criticos.

62

Sistema critico, un ejemplo

* Bomba personal de insulina que intenta emular
el comportamiento del pancreas (alternativa
frente a inyecciones de insulina).

* Un sensor mide el nivel de azucar en la sangre.

* Requisitos relativos a la criticidad:

" Disponibilidad — el sistema debe funcionar cuando el
paciente necesite insulina.

" Confiabilidad — debe proveer insulina en momento y
cantidad adecuada.

" Seguridad (safety) — una dosis excesiva podria poner
en riesgo la vida del paciente.

63

Bomba de Insulina - Componentes

Conectado a la
bomba, inyecta Depc')sito ﬁombea insulina del

insulina en el depdsito a la aguja
cuerpo

aguj 1< bomba reloj

a Yy

Sensor ontrolador—®| Alarma J\

_ _ Suena en caso de
Mlgle nivel de problemas
azucar en la
sangre

Pantalla ™

Muestra la ultima
[C:)ntrola todo el

_ - lectura de azUcar y
sistema Fuente de Energia mensajes de estado

64

Concepto de Operacion

* A partir de la lectura del sensor, el sistema evalua el
nivel de glucosa en sangre del paciente.

* El sistema compara lecturas consecutivas para detectar
una posible tendencia al crecimiento del nivel. En este
caso inyecta insulina para actuar en contra de esa
tendencia.

* La situacion ideal es que el nivel de azucar se encuentre
sistematicamente en la banda de seguridad.

* Niveles de azucar en sangre:

" |Inseguro — menos de 3 unidades (posible coma)
= Seguro- entre 3 y 7 unidades
" No deseable (mas de 7 unidades)

Nota: los valores mencionados solo son a titulo ilustrativo.

65

Inyeccion de Insulina

* Segun nivel de azucar, tendencia e inyecciones anteriores
* Escenarios relativos al nivel de azucar en sangre:

" en la banda insegura
* No inyectar
* Alarma para el paciente

" en las otras dos bandas
* cayendo
— I
— [l
* estable
— I
— [l
* creciendo
— [
— [l

66

Lenguaje de Especificacion Z

* Se han desarrollado diversos lenguajes y herramientas
para la especificacion (y verificacion) de software.

« Z (Hayes 87, Spivey 92) esta basado en la teoria de
conjuntos tipados
" modela un sistema en base a conjuntos y sus relaciones

" introduce elementos que facilitan la especificacion de pre y post
condiciones asociadas a estados

" los modelos se construyen a partir de “esquemas”

* Esquema: Introducen variables de estado y definen
restricciones y operaciones sobre los estados.

* Una especificacion es representada como un conjunto
de esquemas.

* Los esquemas pueden ser combinados y usados en
otros esquemas. 67

Lenguaje de Especificacion Z

Schema Schema

name signature Schema
predicate
— Container
contents: N /
capacity: M
/

contents <= capacity

* Schema signature:
" Declara nombres y tipos de las entidades.

* Schema predicate:

" Define relaciones entre las entidades de la signature
mediante expresiones logicas que deben ser
verdaderas (invariantes).

68

Lenguaje de Especificacion Z

* Nombres seguidos por ? son entradas y por!,
salidas.

* Nombre seguido por * significa el valor después
de la operacion.

| = precediendo a un nombre significa que los
valores no son cambiados por la operacion.

| A precediendo a un nombre significa que los
valores son cambiados por la operacion.

* Incluir el esquema A en el esquema B significa
gue B hereda los nombres y predicados de A.

69

Z para la bomba de insulina

* Conjunto de variables de estado:

reading? : Lectura del sensor de glucosa en la sangre.

dose, cumulative_dose: dosis a suministrar y dosis acumulada
en un periodo.

r0, r1, r2: 3 ultimas lecturas, se usa para calcular la razon del
cambio de glucosa en la sangre.

Capacity: capacidad del depdsito.

alarm!: alarma.

pump!: senal de control enviada a la bomba.

display1!, display2! : msg de estado y dosis a administrar.

* Para la bomba de insulina:

dosis<=contenido del depdsito.
dosis<=5 unidades y suma de dosis en periodo <=50.
display1! muestra el estado del depdsito.

70

Esquema para la bomba de insulina

—|nsulin_pump
reading? : N
dose, cumulative _dose:
ro, r1, r2: /] para registrar las 3 ultimas lecturas tomadas
capacity: N
alarm!: {off, on}
pump!: N
display1!, display2!: STRING

dose<=capacity [l dose<=5 [l cumulative dose<=50
capacity>=40 I display1!=""

capacity<=39 U capacity>=10 [J display1! = "Insulina baja”
capacity<=9 1 alarm! =on UOdisplay1! = "Insulina muy baja”
r2 =reading?

71

Calculo de la dosis

B z?,fu'?iﬁEpump “Delta indica que
- _camhiaelestada
Sjose =00 El programa:
(eCompara el valor actual del
ﬁ rq>>=';%)) S ((%:_m Dl:l nivel de azlicar con los dos
P anteriores
r1<r0)0 ((r1-r2) > (r0-r S :
) O \)0 (A1) > (0-r)) esi esta subiendo, la bomba
dose =4 [0 inyecta insulina
B emantiene total de insulina
& :11<<_ :%))S %‘_Q;LE(N_” M) inyectada para controlar el
maximo seguro

) O
dose=(r2 -r1)* 4 1

———————————————-\

M<=0) 0 (r2 >r1)) 0 SRIRT : y

& A > 10) 0 ﬁ(rz -)>4r1 - 10))) | apll_cado a una variable !
) - 4 refiere al valor luego !

) eSS TS . de cambiar el estado

capacity ' =capacity - dose S == -

cumulative_dose' = cumulative dose + dose

N'=rM0M"'=r2

Esquemas de Salida

* Modelan lo que despliega el sistema:
- La pantalla muestra la dosis calculada y un mensaje de advertencia

- La alarma suena si el azucar en la sangre es muy baja -debe ingerir
azucar

— DISPLAY
Alnsulin_ Pump

display2!' = Nat_to_strin%; (dose) U

(reading? <3 0O display T!'= "Azucar baja” [
reading? >30 O display1!'= "Azticar muy baja” U
reading? >=3 and reading?<=30 [0 display1!"= "OK")

— ALARM
Alnsulin_ Pump

(reading? < 3 Ureading? > 30) O alarm!"=on [
(reading?>=3 [reading?<=30) J alarm!' =%‘f

	Diapositiba 1
	Diapositiba 2
	Diapositiba 3
	Diapositiba 4
	Diapositiba 5
	Diapositiba 6
	Diapositiba 7
	Diapositiba 8
	Diapositiba 9
	Diapositiba 10
	Diapositiba 11
	Diapositiba 12
	Diapositiba 13
	Diapositiba 14
	Diapositiba 15
	Diapositiba 16
	Diapositiba 17
	Diapositiba 18
	Diapositiba 19
	Diapositiba 20
	Diapositiba 21
	Diapositiba 22
	Diapositiba 23
	Diapositiba 24
	Diapositiba 25
	Diapositiba 26
	Diapositiba 27
	Diapositiba 28
	Diapositiba 29
	Diapositiba 30
	Diapositiba 31
	Diapositiba 32
	Diapositiba 33
	Diapositiba 34
	Diapositiba 35
	Diapositiba 36
	Diapositiba 37
	Diapositiba 38
	Diapositiba 39
	Diapositiba 40
	Diapositiba 41
	Diapositiba 42
	Diapositiba 43
	Diapositiba 44
	Diapositiba 45
	Diapositiba 46
	Diapositiba 47
	Diapositiba 48
	Diapositiba 49
	Diapositiba 50
	Diapositiba 51
	Diapositiba 52
	Diapositiba 53
	Diapositiba 54
	Diapositiba 55
	Diapositiba 56
	Diapositiba 57
	Diapositiba 58
	Diapositiba 59
	Diapositiba 60
	Diapositiba 61
	Diapositiba 62
	Diapositiba 63
	Diapositiba 64
	Diapositiba 65
	Diapositiba 66
	Diapositiba 67
	Diapositiba 68
	Diapositiba 69
	Diapositiba 70
	Diapositiba 71
	Diapositiba 72
	Diapositiba 73

