
1

UML

• Unified Modeling Language
• Objetivo: Proveer un lenguaje común que puede ser

usado para el desarrollo de software
• Lenguaje que permite:

 Visualizar: La comunicación es a través de gráficos
 Especificar: construyendo modelos para el análisis, diseño,

implementación
 Construir: Permite la generación de código a partir de un modelo

UML, y la construcción de un modelo a partir del código
(ingeniería reversa)

 Documentar: Permite la documentación completa de todo el
sistema

• Aprobado como estándar por la OMG en 1997
• Actualmente se encuentra en la versión 2.1.2 (nov 2007)

2

Diagramas en UML

3

Diagramas en UML

4

Tipos de Diagramas

• Modelo Estático
 Construye y documenta los aspectos estáticos de un sistema.
 Refleja la estructura básica y estable de un sistema software.
 Crea una representación de los principales elementos del dominio

del problema

• Modelo Dinámico
 Crea los diagramas que muestran el comportamiento de un

sistema

• Para requisitos se utilizan los siguientes diagramas:
• Diagrama de Casos de Uso

• Diagrama de Clases (Modelo Conceptual)

• Diagrama de Actividad

• Diagramas de Máquinas de Estado

5

Diagrama de Casos de Uso

• Permite visualizar en una forma compacta los casos de
uso del sistema y que actores participan en cada caso
de uso

• Presenta las relaciones que existen entre los casos de
uso

• Muestra los límites del sistema
• Visión estática de los Casos de Uso de un sistema
• Consta de los siguientes elementos:

 Actor
 Caso de Uso
 Relaciones

• Include
• Extend
• Generalización

6

Diagrama de Casos de Uso - Ejemplo

Validar con PIN

Validar con Scaner de Retina

Validar Cliente

Retirar Monedas

Retirar

<<include>>

<<extend>>

Depositar

<<include>>Cliente

Transferir

<<include>>

7

Diagrama de Clases

• Muestra las clases e interfaces que componen el
sistema y las relaciones que existen entre ellas

• Muestra aspectos estáticos
• Clase: conjunto de objetos que comparten:

 Atributos
 Operaciones
 Relaciones
 Semántica

• Modelo de Dominio (Conceptual): ayudan a entender los
conceptos del dominio del problema y el vocabulario del mismo. Se
excluyen detalles referentes a la implementación o al lenguaje de
programación.

• Diagramas de clases de implementación: muestran todos los
métodos y atributos necesarios para implementar cada clase. Es un
diagrama dependiente de la implementación y del lenguaje.

Nombre Clase

Atributos

Operaciones

8

Modelo del Dominio (Conceptual)

• Permite describir las entidades que conforman el
dominio, sus relaciones y atributos

• Se representan los conceptos del dominio
• Muestra aspectos estáticos

Retiro. Depósito.
Transferencia.

Cliente.

nombre

Tarjeta

Número
PIN

0..n

0..1

0..n

0..1

Cuenta

saldo
0..1 0..n0..1 0..n

Banco

Nombre

1

n

1

n

1

n

1

n

Cajero.

saldo
n1

Transacción

monto
1 n1 n

1

n

1 n

n

1
usa

expide

tiene

realiza

9

Diagrama de Actividad

• Se construye para modelar el flujo del control (workflow)
• Elementos:

• Permite modelar el flujo del trabajo
 En un sistema
 En una organización

Estado de Actividad (o de Acción)

Estado Inicial
Estado Final

Transiciones

Actividades concurrentes

Bifurcaciones
Condiciones de la bifurcación [guarda]
Andariveles

10

Diagrama de Actividad - Ejemplo

Se abren Flujos
Paralelos

Sincronización

Guarda de
decisión

11

Diagrama de Máquinas de Estados

• Muestra el comportamiento de un objeto representando
los estados en que se puede encontrar y los eventos que
le hace pasar de uno a otro.

• Se utiliza para:
 Modelar el estado interno de una entidad durante su ciclo de vida
 Modelar el estado de un caso de uso

• Da una vista dinámica del sistema
• Permite:

 Anidamiento: un estado con subestados
 Estados paralelos: reduce el nro. de estados necesarios en el

modelo
 Condiciones de bifurcación

12

Diagrama de Estados

• Transición.
 la etiqueta tiene tres partes optativas: Evento {Guardia} / Acción

• Los estados:
 pueden tener actividades asociadas. Etiqueta con la sintaxis hace /

Actividad.
 estado inicial o de creación
 estado final – aquél que no tiene transiciones de salida

• Las acciones:
 se asocian con las transiciones
 se consideran como procesos que suceden con rapidez y no se

pueden interrumpir.

• Las actividades:
 se asocian con los estados
 pueden tardar más.
 Una actividad puede ser interrumpida por algún evento.

13

Diagrama de Estados

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0801.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0801.gif

14

Diagrama de Estados

• Una transición sin evento en su etiqueta se da tan pronto
como se completa cualquier actividad asociada con el
estado dado.

• Guardias:
 Un guardia es una condición lógica que devuelve "verdadero" o "falso."

Una transición de guardia ocurre sólo si el guardia es "verdadera".
 Transición no guardada: la transición ocurrirá siempre que tenga lugar el

evento.
 Sólo se puede tomar una transición de un estado dado, por lo que los

guardias deben mutuamente excluyentes para cualquier evento.
 No es necesario que formen un conjunto completo.

15

Diagrama de Estados

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif

16

Diagrama de Estados - Superestados

• Los subestados
heredan todas las
transiciones sobre
el superestado.

• A menos que haya
un estado inicial.

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0802.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0803.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0803.gif

17

Diagrama de Estados – Ejemplo 1

Esperar
Tarjeta

Pedir PINingreso tarjeta

Seleccionar
cuenta y monto

Devolver
Tarjeta

Dar Dinero

Contar DispensarContar

retiro de tarjeta

ingresar PIN[PIN correcto]

ingreso PIN [PIN incorrecto]

Verificar
fondosingreso cuenta y monto

Dispensardinero suficiente

efectivo retirado

contesta[fondos suficientes]

fondos insuficientes

18

Diagrama de Estados
• Si un estado responde a un evento con una acción que

no produzca una transición, se coloca
nombreEvento/nombreAcción en el cuadro de estado.

• Existen también dos eventos especiales, entrada y
salida.
 Cualquier acción que esté vinculada al evento entrada se ejecuta

siempre que se entre al estado. Sintaxis entry/nombreAcción
 La acción asociada con el evento salida se ejecuta siempre que se sale

del estado. Sintaxis exit/nombreAcción

El poder indicar acciones al entrar o salir de un estado
es útil porque evita documentar la misma acción para
cada transición de entrada o salida del estado.

• En una autotransición se ejecuta:
 la acción de salida
 la acción de transición
 la acción de entrada.
 actividad asociada al estado

19

Diagrama de Estados

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif

20

Diagrama de Estados – Estados
concurrentes

• Los diagramas de estados
concurrentes son útiles cuando
un objeto dado tiene conjuntos
de comportamientos
independientes.

• Recomendación:

Si se tienen varios diagramas
de estados concurrentes
complicados para un solo
objeto, considerar la división
del objeto en varios.

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0805.gif
http://jms32.eresmas.net/tacticos/UML/UML08/Fig0805.gif

21

Diagrama de Estados

• Son buenos para describir el comportamiento
de un objeto a través de varios casos de uso.

• No son tan buenos para describir un
comportamiento que involucra cierto número
de objetos que colaboran entre ellos.

http://jms32.eresmas.net/tacticos/UML/UML08/Fig0804.gif

22

Elección de una Técnica para
Modelar Requisitos

• No existe un único enfoque aplicable a todos los
sistemas, depende de cada proyecto

• Puede ser necesario combinar varios enfoques

Especificación de Requisitos

24

Proceso de Requisitos

Artefactos

AnálisisAnálisis EspecificaciónEspecificación VerificaciónVerificación

Actividades

Especificación
de Requisitos

Documento
de

Requisitos

Modelo del
Sistema

PlanificaciónPlanificación ObtenciónObtención ValidaciónValidación

Documento
de

Visión

25

Lenguajes de Notación

• Lenguaje Natural
 Comprensible para el Cliente/Usuario
 Ambiguo (glosario)
 Poca legibilidad (plantilla, formateo del texto)
 Difícil de tratar (Verificar correctitud, consistencia,

completitud)

• Notaciones Especiales (más formales)
 Poca o ninguna ambigüedad
 Facilita tratamiento
 Necesidad de entrenamiento en la notación
 Dificultades de comprensión por Cliente/Usuario

26

Notaciones Especiales

• Gráficas vs. Basadas en texto

• Estáticas vs. Dinámicas

• Descripciones Estáticas
 Se especifican entidades y sus atributos, los requisitos se pueden ver

como las relaciones entre las entidades.
 No describe como cambian las relaciones con el tiempo.

• Descripciones Dinámicas
 Especifican estados y las transiciones entre estados en el tiempo.

27

Documentación de requisitos

• Qué documentar:
 lo que hace el sistema actual
 lo que el cliente pide
 lo que el sistema va a hacer

 criterios de aceptación
 criterios de verificación

• Recomendaciones:
 agrupar por temas
 formular los reqs como reqs positivos y no negativos
 expresarlos en voz activa y no pasiva
 indicar si se está documentando solo lo que va en el alcance o todo lo que se pidió.
 representar reqs. con múltiples vistas (ejemplo de los ciegos y el elefante).

28

Documentos de Requisitos

• Definición de Requisitos: lista completa de lo que el
cliente espera que el sistema haga, escrita de forma que
el cliente la pueda entender. Ejemplo:
1. “Se debe proveer un medio para acceder a archivos externos

creados por otras herramientas.”

• Especificación de Requisitos (SRS): reformula la
definición en términos técnicos para que los diseñadores
puedan comenzar el diseño. Ejemplo:
“1.1 Se proveerá al usuario los recursos para definir el tipo de

archivo externo.”
“1.2 Cada tipo de archivo tendrá una herramienta asociada y un

ícono que lo identifica.”
“1.3 Cuando el usuario seleccione el ícono que representa un

archivo externo, el efecto es aplicar la herramienta asociada con
ese tipo de archivo al archivo seleccionado.”

29

Documentos de Requisitos (2)

• Usar un mismo documento: Entendimiento común entre
Cliente, usuario, analistas, desarrolladores.

• Usar dos documentos:

Se debe aplicar Gestión de la Configuración:
 Es necesaria para asegurar la correspondencia entre ambos (si existen

por separado).
 Permite seguir la pista y correspondencia entre:

• Definición de Requisitos
• Especificación de Requisitos
• Módulos de Diseño
• Código que implementa los módulos

• Pruebas para verificar la funcionalidad
• Documentos que describen el sistema

30

Documento Definición de Requisitos

• Registrar los requisitos en los términos del
cliente:
 1. Delinear el propósito general del sistema: Incluir

referencias a otros sistemas, glosario y abreviaciones.
 2. Describir el contexto y objetivos del desarrollo del

sistema.
 3. Delinear visión global del sistema: Incluir

restricciones generales.
 4. Definir en detalle las características del sistema

propuesto, definir la frontera del sistema e interfaces.
 5. Discutir el ambiente en el que el sistema va a operar

(hardware, comunicaciones, personal).

31

Características de una Buena
Especificación SRS (IEEE 830)

• Correcta / Válida: Todos los req. son requeridos en el sistema.
 No existe herramienta que asegure esto.
 Validado por el cliente (que efectivamente refleje sus necesidades).
 Revisar que sea consistente contra otros documentos existentes (pe.

especificación de reqs. del sistema).

• No Ambigua: Todo req tiene una única interpretación.
 Incluir glosario.
 No ambigua para quienes lo crearon y para quienes lo usan.

• Completa: Incluye:
 Todos los requisitos asociados con funcionalidad, desempeño, restricciones de

diseño, atributos o interfaces externas.
 Definición de respuestas del sw a todo posible datos de entrada (válidos o

inválidos) en toda clase de situaciones realizables.
 No hay referencias sin definir en la especificación.
 La frase “a determinar” indica SRS no completa. Ocasionalmente necesaria;

describir:
• condiciones que causan que no se sepa aún.
• qué se debe hacer para determinar lo que falta, quién y cuándo.

32

Características de una Buena
Especificación SRS (IEEE 830)

• Consistente internamente: Los requisitos no son
contradictorios entre sí. Probables conflictos:
 entre características de entidades. Pe. color de las luces, formatos distintos
 conflicto lógico o temporal entre dos acciones. Pe. multiplicar o sumar; en

forma simultánea o consecutiva.
 diferentes términos para describir el mismo objeto.

• Ordenados por grado de importancia y/o estabilidad –
identificador.
 Importancia: esencial / deseado
 Estabilidad: cantidad de cambios esperados
 Necesidad: esencial / condicional / opcional

• Esencial (condiciona aceptación del sw)
• Condicional (valor agregado)
• Opcional (puede o no valer la pena; se aceptan propuestas alternativas).

33

Características de una Buena
Especificación SRS (IEEE 830)
• Verificable: Un requerimiento es verificable si existe un

proceso finito de costo accesible para determinar que el
sistema lo cumple.
 Usar términos concretos y cantidades mesurables.
 Preparar pruebas para demostrar que se cumplen. Si no se puede, eliminar o

revisar el requisto.

• Modificables: Su estructura y estilo son tales que cualquier
cambio en los requisitos puede ser hecho fácilmente en
forma completa y consistente.
 Organización coherente y fácil de usar (tablas, índices, refs. cruzadas
 No redundante.

• Ventajas de redundancia: lo hace más legible.
• Desventajas: difícil de mantener
• Si la uso: referencias cruzadas

 Expresar cada req. separadamente.

34

Características de una Buena
Especificación SRS (IEEE 830)

• Trazables: El origen de cada requerimiento es
claro, y es posible seguirle la pista en futuros
desarrollos o mejora de la documentación.
 Trazabilidad hacia atrás: en versiones previas
 Trazabilidad hacia adelante: documentos posteriores:

• requiere IDENTIFICADOR ÚNICO.

• Realistas / Factibles
• Ej.: tiempo de respuesta local=remoto
• Ej.: El cliente quiere adelantarse a la tecnología

• Entendibles: Tanto por los usuarios como por
los desarrolladores

Validación de Requisitos

36

Proceso de Requisitos

Artefactos

AnálisisAnálisis EspecificaciónEspecificación VerificaciónVerificación

Actividades

Especificación
de Requisitos

Documento
de

Requisitos

Modelo del
Sistema

PlanificaciónPlanificación ObtenciónObtención ValidaciónValidación

Documento
de

Visión

37

Validación de Requisitos

• Proceso por el cual se determina si los requisitos
relevados son consistentes con las necesidades del
cliente.

• Objetivo:
 Asegurar que se esté construyendo el sistema correcto.

• Requisitos sirven como:
 contrato con el cliente
 guías para los diseñadores.

• Proceso:
 Planificar quién (qué stakeholder) va a validar qué

(artefacto) cómo (técnica).
 Ejecutar
 Registrar – Reporte de validación / Firma

38

Validación de Requisitos
• Se chequea en el documento de requisitos:

 Validez: que el usuario valide qué es lo que quiere.
 Consistencia: que no haya contradicciones
 Completitud: que no falte nada. Chequear por:

• Omisiones. Hacer árboles de decisión para ver que estén todas las opciones detalladas.
• Límites. Más claro con tabla, ahí se ve que no falta ninguno.

 Necesidad
 Ambigüedades
 Realismo o Factibilidad: que se puedan implementar con la tecnología,

presupuesto y calendario existentes.
 Verificabilidad: que se pueda diseñar conjunto de pruebas para demostrar

que el sistema cumple esos requisitos. Cuidado con adjetivos y adverbios.
 Comprensibilidad: que los usuarios finales lo entiendan
 Adaptabilidad: que el requisito se pueda cambiar sin afectar a otros.
 Trazabilidad: que esté establecido el origen.

39

Validación de Requisitos NO Funcionales

• Son difíciles de validar.
• Se deben expresar de manera cuantitativa utilizando métricas

que se puedan probar de forma objetiva (esto es IDEAL).

• Para los usuarios es difícil especificarlos en forma
cuantitativa.

Propiedad Medida

Rapidez Transacciones por seg

Tamaño KB

Fiabilidad Tiempo promedio entre fallas

Portabilidad Número de sistemas, especificar

Facilidad de uso Tiempo de capacitación

40

Técnicas de Validación
• Manuales

 Lectura por parte del cliente.
 Recorridas. Útiles con muchos stakeholders que no lo leerían de otra manera.
 Entrevistas.
 Chequeo manual de referencias cruzadas.
 Instancias de validación formal:

• Revisiones - Stakeholders revisan por separado y se reúnen para discutir
problemas.

• Inspecciones formales – roles y reglas.
 Listas de comprobación.
 Escenarios.
 Generación de Casos de Prueba.

• Automatizadas
 Chequeo automático de referencias cruzadas: Si los requisitos se expresan formalmente, las herramientas CASE verifican su consistencia.
 Ejecución de Modelos para verificar funciones y relaciones.
 Construcción de Prototipos.
 Simulaciones.

41

Revisión de Requisitos
• Proceso manual. Se revisa el documento de requisitos buscando

anomalías y omisiones:
 Revisiones informales: discusión informal.
 Revisiones formales: se hace una “recorrida” del doc de req con el cliente, explicando implicancias de cada requisito.

• Participan representantes:
 del cliente: operadores, quienes realicen entradas, utilicen salidas, y sus gerentes.
 del equipo de desarrollo: analistas de requisitos, diseñadores, encargados de pruebas y gestión de configuración.

• Incluye:
 revisar objetivos del sistema.
 evaluar alineamiento de requisitos con los objetivos (necesidad).
 revisar el ambiente de operación y las interfaces con otros sistemas.
 funciones completas, restricciones realistas.
 evaluar riesgos.
 considerar cómo se harán:

• pruebas del sistema.
• cambios en los requisitos en el proyecto, su verificación y validación.

¿Cómo asegurar que la reunión
es efectiva? Moderador,
secretario y responsables por
acciones

Verificación de Requisitos

43

Proceso de Requisitos

Artefactos

AnálisisAnálisis EspecificaciónEspecificación VerificaciónVerificación

Actividades

Especificación
de Requisitos

Documento
de

Requisitos

Modelo del
Sistema

PlanificaciónPlanificación ObtenciónObtención ValidaciónValidación

Documento
de

Visión

44

Verificación de requisitos

• Objetivo:
 Asegurar que se esté construyendo el sistema

correctamente.
 Se verifica que un artefacto (salida) sea conforme a

otro (entrada).

• Usualmente es solo chequeo de trazabilidad de
la especificación al documento de reqs.

• Para sistemas críticos: demostrar que la
especifición realiza los requisitos:
 usamos SRS + asunciones sobre el comportamiento

del ambiente (¡documentarlas!)

45

Verificación de requisitos

• Chequeos:
 chequeo de referencias cruzadas
 chequeos de consistencia
 chequeos de completitud
 chequeos por estados o transiciones inalcanzables.

• Técnicas:
 revisiones formales (en grupo)
 revisiones por pares
 listas de comprobación
 modelos
 Pruebas Matemáticas: Si se usó un lenguaje formal,

pe. Z.

46

SCM

Ingeniería de Requisitos

Ingeniería de Requisitos

Proceso de los Requisitos

ObtenciónObtención AnálisisAnálisis VerificaciónVerificación

Administración de los Requisitos
Línea B ase de
R
equ isitos

Línea base actual

Línea base corregida

PlanificaciónPlanificación
Administración

del Cambio
Administración

del Cambio

Cambios en
requisitos

Cambios
en el proyecto

PlanificaciónPlanificación ValidaciónValidación

TrazabilidadTrazabilidad

Especificación Especificación

Medición y
Evaluación
Medición y
Evaluación

47

Administración de los Requisitos

• Los requisitos cambian, debido a:
 Muchos usuarios
 Quienes pagan por el sistema y los usuarios no son las mismas

personas
 Cambios en el negocio
 Cambios en la tecnología

• Proceso de comprender y controlar los cambios en los
requisitos del sistema.

• Se hace en paralelo con el Proceso de Requisitos.
• Tres etapas:

 Planificación: Se realiza al comenzar el análisis de requisitos
 Administración del cambio: Comienza una vez que se tiene una

primera versión del documento de requisitos
 Trazabilidad: Se mantiene a lo largo del proceso de requisitos

48

Planificación

• Muchas actividades son tomadas de las técnicas de SCM.
• Se debe decidir sobre:

 Identificación de Requisitos: Cada requisito debe identificarse en
forma única, para poder ser referenciado por otros.

• Ejemplo:
– <Tipo> < nro> donde Tipo: F – Funcional, D- Datos, etc.
– Ejemplo: F12

 Procedimiento de Administración del Cambio: Actividades que
evalúan el impacto y costo del cambio.

 Políticas de Trazabilidad: Definen qué relaciones entre reqs. y
con el diseño se deben registrar y cómo se van a mantener.

 Herramientas CASE: De soporte para:
• Almacenar los requisitos
• Administrar el cambio
• Administrar de la trazabilidad

49

Trazabilidad

• Información de rastreo que se debe mantener
 La fuente: Quién propuso el requerimiento y porqué.
 Requisitos dependientes: Vincula los requisitos

dependientes entre sí; se usa para el análisis del
cambio.

 Trazabilidad entre artefactos distintos, qué versión
se corresponde con cuál. Pe.:

• Rastreo reqs - CU
• Rastreo al diseño: Vincula el req con los módulos de diseño

que lo implementan

• Uso de matrices de trazabilidad

50

Administración del Cambio

• El cambio va a ocurrir.
• Objetivos del control de cambios:

 Manejar el cambio y asegurar que el proyecto
incorpora los cambios correctos por las razones
correctas.

 Anticipar y acomodar los cambios para producir la
mínima disrupción y costo.

• Si los reqs cambian mucho dp de LB 
 relevamiento incompleto/inefectivo
 o acuerdo prematuro

51

Administración del Cambio
• Cuando se propone un cambio, debe evaluarse el

impacto.
• Etapas:

1. Especificación del cambio.
2. Evaluar impacto - Análisis del cambio y costo:

 Se usa la información del rastreo
 Se calcula el costo en términos de modificaciones a:

– Docs de requisitos
– Diseño e implementación

1. Discutir costo con cliente.
2. Implementar el cambio: se modifican los artefactos necesarios.

• Siguiendo estos pasos se logra
 Todos los cambios se tratan en forma consistente.
 Los cambios a los docs de requisitos se hacen en forma

controlada.

52

Procedimiento de control de cambios

• Establecer procedimiento de control de
cambios:
 quién - Comité de Control de Cambios (CCC)
 documentar:

• integración del CCC
• alcance de autoridad
• procedimientos operativos (pe. evaluar impacto)
• proceso de toma de decisiones

53

• Tiene que haber un responsable
• Control de versiones: Definir:

 Ítems de configuración
 Procedimientos

• Línea Base. Definición:
 Conjunto de especificaciones y /o productos que han

sido revisados formalmente y acordados, que sirven
de base para desarrollo futuro, y que solo pueden ser
cambiados a través de procedimientos formales de
control de cambios.

Gestión de la Configuración de los Requisitos

54

Línea Base de Requisitos

• LB de reqs, arranca cuando se decide que son
suficientemente buenos como para arrancar
diseño y construcción.

• Sobre LB planifico cronograma y costo.
• Asociada a la liberación de un producto. Debo

poder recomponer la liberación.
• Definir:

 qué artefactos van en Línea Base
 cuándo entran

55

Medir y Evaluar Requisitos

• Medir características de los requisitos para
obtener detalles
 Proceso de los Requisitos
 Calidad de los Requisitos

• Las mediciones van a estar relacionadas con:
 Producto (de los requisitos)

• tamaño, calidad, atributos técnicos,

 Proceso
• actividades,...

 Recursos
• personas, equipos, tiempo, dinero,...

56

Medir y Evaluar Requisitos

• Medir
 # Requisitos

• Entrada para estimación del producto

 # Cambios introducidos
• Requisitos Agregados, Modificados, Desechados en el tiempo

• Estabilidad

 # Requisitos por tipo de requisitos
• Permite luego ver en qué parte se encuentra el cambio

 # Requisitos validados

• Tamaño del producto y del proyecto (ej.:PF, LoC)
• planificar

Metodologías de Desarrollo

58

Metodologías de Desarrollo

• Los métodos ágiles fueron desarrollados en
respuesta a la necesidad de tener una
alternativa a los procesos de desarrollo de
software pesados, “guiados por documentos”
(AgileAlliance 2002).

• Cada metodología trata distinto los requisitos.
• Ejemplo de metodología ágil: eXtreme

Programming (XP)
• Ejemplo de metodología pesada: Rational

Unified Process

59

eXtreme Programming
• Cliente en el lugar

 Un cliente real debe sentarse en el lugar, disponible para escribir
historias, contestar preguntas, resolver disputas y prioridades de
pequeña escala.

• Historias de usuario
 Su propósito es análogo al de los casos de uso.
 Son escritas por el cliente, son las cosas que el sistema debe hacer.
 No son casos de uso, pero describen escenarios.
 Su formato son tres sentencias de texto escritas por el cliente, en su

terminología sin sintaxis técnica.
 Cuando llega el momento de implementarla, los dasarrolladores van con

el cliente y reciben una descripción detallada de los requisitos, cara a
cara.

 Se usan para planificar el proyecto: se estiman y el cliente las prioriza
definiendo el alcance.

60

Rational Unified Process –
Disciplina de Requisitos

61

RUP – Detalle de Actividades

62

Especificación Formal
• Ventajas:

 Permite detectar omisiones e inconsistencias en los
requisitos.

 Detección temprana de defectos.
 Necesario para demostrar que un programa es

correcto.

• Desventajas:
 Exige entrenamiento.
 En general no es comprensible para el cliente.
 Funcionan bien en escalas reducidas, pero se

complican a medida que crece la escala del producto.

• Su aplicación suele estar restringida a sistemas
críticos.

63

Sistema crítico, un ejemplo

• Bomba personal de insulina que intenta emular
el comportamiento del páncreas (alternativa
frente a inyecciones de insulina).

• Un sensor mide el nivel de azúcar en la sangre.
• Requisitos relativos a la criticidad:

 Disponibilidad – el sistema debe funcionar cuando el
paciente necesite insulina.

 Confiabilidad – debe proveer insulina en momento y
cantidad adecuada.

 Seguridad (safety) – una dosis excesiva podría poner
en riesgo la vida del paciente.

64

Bomba de Insulina - Componentes

Fuente de Energía

Controlador

aguj
a

bomba

Sensor Alarma

Pantalla

reloj

Depósito
Conectado a la
bomba, inyecta
insulina en el
cuerpo

Bombea insulina del
depósito a la aguja

Mide nivel de
azúcar en la
sangre

Suena en caso de
problemas

Muestra la ultima
lectura de azúcar y
mensajes de estado

Controla todo el
sistema

65

Concepto de Operación

• A partir de la lectura del sensor, el sistema evalúa el
nivel de glucosa en sangre del paciente.

• El sistema compara lecturas consecutivas para detectar
una posible tendencia al crecimiento del nivel. En este
caso inyecta insulina para actuar en contra de esa
tendencia.

• La situación ideal es que el nivel de azúcar se encuentre
sistemáticamente en la banda de seguridad.

• Niveles de azúcar en sangre:
 Inseguro – menos de 3 unidades (posible coma)
 Seguro- entre 3 y 7 unidades
 No deseable (más de 7 unidades)

Nota: los valores mencionados sólo son a título ilustrativo.

66

Inyección de Insulina
• Según nivel de azúcar, tendencia e inyecciones anteriores
• Escenarios relativos al nivel de azúcar en sangre:

 en la banda insegura
• No inyectar
• Alarma para el paciente

 en las otras dos bandas
• cayendo

– En banda segura – no inyectar
– En banda no deseable – si cae tasa de descenso, inyectar

• estable
– En banda segura – no inyectar
– En banda no deseable – inyectar de acuerdo a lo indeseado del nivel

• creciendo
– En la banda segura – inyectar si tasa de crecimiento constante o creciente
– En banda no deseable –inyectar de acuerdo a la tasa de crecimiento

67

Lenguaje de Especificación Z

• Se han desarrollado diversos lenguajes y herramientas
para la especificación (y verificación) de software.

• Z (Hayes 87, Spivey 92) está basado en la teoría de
conjuntos tipados
 modela un sistema en base a conjuntos y sus relaciones
 introduce elementos que facilitan la especificación de pre y post

condiciones asociadas a estados
 los modelos se construyen a partir de “esquemas”

• Esquema: Introducen variables de estado y definen
restricciones y operaciones sobre los estados.

• Una especificación es representada como un conjunto
de esquemas.

• Los esquemas pueden ser combinados y usados en
otros esquemas.

68

Lenguaje de Especificación Z

• Schema signature:
 Declara nombres y tipos de las entidades.

• Schema predicate:
 Define relaciones entre las entidades de la signature

mediante expresiones lógicas que deben ser
verdaderas (invariantes).

contents <= capacity

Container
contents:
capacity:

Schema
name

Schema
signature Schema

predicate

69

Lenguaje de Especificación Z

• Nombres seguidos por ? son entradas y por ! ,
salidas.

• Nombre seguido por ‘ significa el valor después
de la operación.

∀ Ξ precediendo a un nombre significa que los
valores no son cambiados por la operación.

∀ ∆ precediendo a un nombre significa que los
valores son cambiados por la operación.

• Incluir el esquema A en el esquema B significa
que B hereda los nombres y predicados de A.

70

Z para la bomba de insulina

• Conjunto de variables de estado:
 reading? : Lectura del sensor de glucosa en la sangre.
 dose, cumulative_dose: dosis a suministrar y dosis acumulada

en un período.
 r0, r1, r2: 3 últimas lecturas, se usa para calcular la razón del

cambio de glucosa en la sangre.
 Capacity: capacidad del depósito.
 alarm!: alarma.
 pump!: señal de control enviada a la bomba.
 display1!, display2! : msg de estado y dosis a administrar.

• Para la bomba de insulina:
 dosis<=contenido del depósito.
 dosis<=5 unidades y suma de dosis en período <=50.
 display1! muestra el estado del depósito.

71

Esquema para la bomba de insulina

Insulin_pump
reading? :
dose, cumulative_dose:
r0, r1, r2: //
capacity:
alarm!: {off, on}
pump!:
display1!, display2!: STRING

dose capacity ∧ dose 5 ∧ cumulative_dose 50
capacity 40 ⇒ display1! = " "
capacity 39 ∧ capacity 10 ⇒ display1! = "Insulina baja”
capacity 9 ⇒ alarm! = on ∧ display1! = "Insulina muy baja”
r2 = reading?

para registrar las 3 últimas lecturas tomadas

<= <= <=
>=
<= >=
<=

72

Cálculo de la dosis

 = r2

 (r0-r1)))
) ∨
dose =(r2 -r1) * 4 ∧
 (

((r1 r0) ∧ (r2 > r1)) ∨
((r1 > r0) ∧ ((r2 - r1) (r1 - r0)))

)
)
capacity ' = capacity - dose
cumulative_dose' = cumulative_dose + dose
r0' = r1 ∧ r1'

DOSAGE
∆Insulin_Pump

(
dose = 0 ∧
 (

((r1 r0) ∧ (r2 = r1)) ∨
((r1 > r0) ∧ (r2 r1)) ∨
((r1 < r0) ∧ ((r1-r2) > (r0-r1)))

) ∨
 dose = 4 ∧
 (
 ((r1 r0) ∧ (r2=r1)) ∨
 ((r1 < r0) ∧ ((r1-r2)

>=
<=

<=

<=

<=

>=

El programa:
•Compara el valor actual del
nivel de azúcar con los dos
anteriores
•si está subiendo, la bomba
inyecta insulina
•mantiene total de insulina
inyectada para controlar el
máximo seguro

Delta indica que
cambia el estado

‘ aplicado a una variable
refiere al valor luego
de cambiar el estado

73

Esquemas de Salida
• Modelan lo que despliega el sistema:

• La pantalla muestra la dosis calculada y un mensaje de advertencia

• La alarma suena si el azúcar en la sangre es muy baja -debe ingerir
azúcar

ALARM
∆Insulin_Pump

(reading? < 3 ∨ reading? > 30) ⇒ alarm!' = on ∨
 (reading? 3 ∧ reading? 30) ⇒ alarm!' = off>= <=

DISPLAY
∆Insulin_Pump

display2!' = Nat_to_string (dose) ∧
(reading? < 3 ⇒ display1! ' = "Azúcar baja” ∨
reading? > 30 ⇒ display1! ' = " ∨
reading? 3 and reading? 30 ⇒ display1!' = "OK")>= <=

Azúcar muy baja”

	Diapositiba 1
	Diapositiba 2
	Diapositiba 3
	Diapositiba 4
	Diapositiba 5
	Diapositiba 6
	Diapositiba 7
	Diapositiba 8
	Diapositiba 9
	Diapositiba 10
	Diapositiba 11
	Diapositiba 12
	Diapositiba 13
	Diapositiba 14
	Diapositiba 15
	Diapositiba 16
	Diapositiba 17
	Diapositiba 18
	Diapositiba 19
	Diapositiba 20
	Diapositiba 21
	Diapositiba 22
	Diapositiba 23
	Diapositiba 24
	Diapositiba 25
	Diapositiba 26
	Diapositiba 27
	Diapositiba 28
	Diapositiba 29
	Diapositiba 30
	Diapositiba 31
	Diapositiba 32
	Diapositiba 33
	Diapositiba 34
	Diapositiba 35
	Diapositiba 36
	Diapositiba 37
	Diapositiba 38
	Diapositiba 39
	Diapositiba 40
	Diapositiba 41
	Diapositiba 42
	Diapositiba 43
	Diapositiba 44
	Diapositiba 45
	Diapositiba 46
	Diapositiba 47
	Diapositiba 48
	Diapositiba 49
	Diapositiba 50
	Diapositiba 51
	Diapositiba 52
	Diapositiba 53
	Diapositiba 54
	Diapositiba 55
	Diapositiba 56
	Diapositiba 57
	Diapositiba 58
	Diapositiba 59
	Diapositiba 60
	Diapositiba 61
	Diapositiba 62
	Diapositiba 63
	Diapositiba 64
	Diapositiba 65
	Diapositiba 66
	Diapositiba 67
	Diapositiba 68
	Diapositiba 69
	Diapositiba 70
	Diapositiba 71
	Diapositiba 72
	Diapositiba 73

