Práctico 2 - Relaciones - parte 1

- 1) Para cada una de las siguientes relaciones binarias en A = { 1,2,34}, indique si son reflexivas, irreflexivas, simétricas, asimétricas, antisimétricas y transitivas:
 - a) $R = \{ (1,1), (1,2), (2,1), (2,2), (3,3), (4,3), (3,4), (4,4) \}$
 - b) $R = \{ (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) \}$
 - c) $R = \{ (1,3), (1,1), (3,1), (1,2), (3,3), (4,4) \}$
 - d) $R = A \times A$
- 2) Sea A={a,b,c,d}, dar ejemplos de relaciones sobre A que sean:
 - a) reflexiva y simétrica, pero no transitiva.
 - b) reflexiva y transitiva, pero no simétrica.
 - c) simétrica y transitiva, pero no reflexiva.
- 3) Para cada una de las siguientes relaciones, determine si es reflexiva, simétrica, antisimétrica o transitiva.
 - a) $R\subseteq N^*x$ N^* , definida como aRb, si a/b (a divide a b o a es divisor de b).
 - b) R es la relación sobre Z tal que xRy si x+y es un número par (impar).
 - c) R es la relación sobre Z tal que xRy si x- y es un número par (impar).
 - d) R es la relación sobre el conjunto N, definida por aRb si $a \le b$.
 - e) R es la relación sobre el conjunto Z, definida por aRb si $ab \ge 0$.
 - f) R es la relación "nació el mismo año que" sobre el conjunto A, de todos los seres humanos.
 - g) R es la relación "las palabras tienen alguna letra en común" sobre el conjunto P de todas la palabras del idioma español.
 - h) R es la relación sobre el conjunto R, definida por aRb si $a^2=b^2$.
 - j) R es la relación sobre el conjunto Z^+ , definida por aRb si MCD (a,b)=1.
 - k) R es la relación sobre el conjunto Z, definida por aRb si $a-b=\dot{4}$
- 4) ¿Cuáles de las relaciones del ejercicio anterior son de orden y cuáles son de equivalencia?

Año 2016

RESUMEN DE PROPIEDADES

R una relación binaria en A, diremos que:

- R es **reflexiva** $\Leftrightarrow \forall x \in A$ entonces $(x, x) \in R$
- R es irreflexiva $\Leftrightarrow \forall x \in A$ entonces $(x, x) \notin R$
- R es simétrica $\Leftrightarrow \forall x \in A, y \in A$, si $(x, y) \in R$ entonces $(y, x) \in R$
- R es asimétrica $\Leftrightarrow \forall x \in A, y \in A$, si $(x, y) \in R$ entonces $(y, x) \notin R$
- R es antisimétrica $\Leftrightarrow \forall x \in A, y \in A, \text{ si } (x,y) \in R \land (y,x) \in R \text{ entonces } x = y$
- R es transitiva $\Leftrightarrow \forall (x, y), (y, z) \in R$ entonces $(x, z) \in R$

- R^{-1} es la **relación inversa** de R si $R^{-1} = \{(a,b)/(b,a) \in R\}$
- R' es es la relación complementaria de R si R'={(a,b)/(a,b) ∉R}

Bibliografía:

- -Rosen, Kenneth Matemática Discreta y sus aplicaciones. Ed. Mc Graw Hill
- -Grimaldi, Ralph Matemáticas Discreta y Combinatoria. Ed. Addison-Wesley Iberoamericana
- -Ross, Kenneth Matemáticas Discretas. Ed. Prentice Hall
- -Jiménez Murillo, José Matemáticas para la Computación. Ed Alfaomega

-Sitio Web: www.fing.edu.uy/tecnoinf

Prof. Rosana Alvarez Año 2016