Práctico 2 – Relaciones – parte 2

1) Considera las matrices asociadas a las relaciones R_1 , R_2 y R_3 sobre el conjunto A={ 1, 2, 3, 4} que siguen:

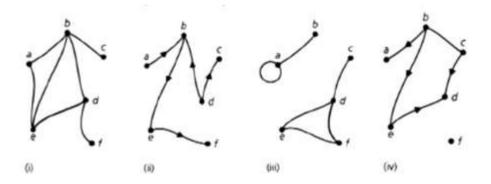
$$M_{R_1} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \qquad M_{R_2} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad M_{R_3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$M_{R_2} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$M_{R_3} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

- a) Expresa por extensión cada una de las relaciones.
- b) Investiga si las relaciones son reflexivas, simétricas, antisimétricas o transitivas.
- c) Traza los dígrafos asociados a cada relación.
- 2) Cada grafo de la figura adjunta representa una relación R sobre $A = \{a, b, c, d, e, f\}$.

Determina la relación R, en cada caso, así como su matriz de relación asociada.



3) Sean R_1 y R_2 dos relaciones sobre el conjunto A= $\{a, b, c\}$ representadas por las matrices:

$$M_{R_1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$\mathbf{y} \qquad M_{R_2} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- a) Investiga si son relaciones de equivalencia.
- b) Escribe la Matriz asociada a cada una de las siguientes relaciones:

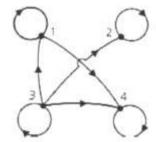
$$R_1 \cup R_2$$
, $R_1 \cap R_2$ y $R_1 - R_2$

- 4) Sean $A = \{1, 2, 3, 4\}$ y $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)\}$
 - a) Comprueba que R es una relación de equivalencia.
 - b) Representa el grafo dirigido de R y halla las clases de equivalencia.
 - c) ¿Cuál es la partición que induce R sobre A?
- 5) Sean A = $\{1, 2, 3, 4, 5, 6\}$ y R 1 = $\{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)\}$.
 - a) Verifica que R es una relación de equivalencia.
 - b) Determina las clases [1], [2] y [3].
 - c) ¿Qué partición de A induce R?

Año 2016

Considera la relación *R* sobre el conjunto de todas las cadenas de bits tal que *aRb* si y sólo si, las cadenas *a* y *b* contienen el mismo número de unos.

- a) Demuestra que R es una relación de equivalencia.
- b) Describe la clase de equivalencia de la cadena de bits 011.
- 6) Considera sobre el subconjunto $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ de números enteros, la relación de equivalencia R definida como aRb si y sólo si, $a b = \dot{4}$. Halla la matriz asociada a la relación, las clases de equivalencia y el conjunto cociente D/R.
- 7) Sea la relación R sobre el conjunto A ={1, 3, 9, 27} definida como aRb si y sólo si,b|a.
 - a) Determina la relación R y comprueba que se trata de una relación de orden parcial.
 - b) Traza el diagrama de Hasse para el conjunto parcialmente ordenado (A, R).
- a) Igual que en ejercicio 8, pero considerando el conjunto A = {2, 3, 5, 7}.
 - b) Igual que antes, pero considerando el conjunto A = {2, 3, 5, 6, 7, 11, 12, 35, 385}.
- 10) El que se adjunta, es el grafo dirigido de una relación R sobre el conjunto $A = \{1, 2, 3, 4\}$.
 - a) Verifica que (A, R) es un conjunto parcialmente ordenado y dibuja su diagrama de Hasse.
 - b) ¿Cuántas aristas dirigidas más se necesitan en la figura para extender (A, R) a un orden total?



Bibliografía:

- -Rosen, Kenneth Matemática Discreta y sus aplicaciones. Ed. Mc Graw Hill
- -Grimaldi, Ralph Matemáticas Discreta y Combinatoria. Ed. Addison-Wesley Iberoamericana
- -Ross, Kenneth Matemáticas Discretas. Ed. Prentice Hall
- -Jiménez Murillo, José Matemáticas para la Computación. Ed Alfaomega

-Sitio Web: www.fing.edu.uy/tecnoinf

Prof. Rosana Alvarez Año 2016