Carrera de Tecnólogo en Informática Matemática Discreta y Lógica 1 Examen 13/12/10

Instrucciones

- Se leerá la letra y tendra dos horas para realizar el examen a partir de ese momento.
- El examen es una prueba de caracter individual y no se puede consultar material.
- Lea atentamente la letra antas de contestar cada ejercicio.
- El examen suma 100 puntos.
- Para aprobar son necesarios 60 puntos.

Ejercicio 0

1 punto

Numere las hojas que entregue, incluya nombre y número de cédula en cada hoja y registre en la primer hoja el total de hojas entregadas.

Ejercicio 1

8 puntos

Denotamos por N el conjunto de Naturales. Se denota por P(A) el conjunto potencia de A donde $A = \{x \in N/x \ es \ par\}$. Indique dos elementos finitos en P(A) por extensión. Indique un elemento infinito en P(A) por comprensión.

Ejercicio 2

9 puntos

Indique conjuntos A, B y C, tales que se cumplan las siguientes igualdades:

- 1. $A \cap B = \{2, 4\}$
- 2. $A \cap C = \{1, 3\}$
- 3. $A \cup B = \{1, 2, 3, 4, 5, 6\}$
- 4. $C A = \{\}$

Ejercicio 3

14 puntos

Considere el conjunto $A = \{a, b, c, d\}$. Sea R una relación de equivalencia en A tal que $(a, b) \in R$, $(a, c) \in R$, $(b, c) \in R$, $(b, d) \notin R$, $(a, d) \notin R$. Indique cuales de las siguientes afirmaciones son ciertas:

- 1. $(a, a) \in R$
- 2. $(c,b) \in R$
- 3. $(c,d) \notin R$
- 4. $(b,b) \notin R$
- 5. $(c, c) \in R$
- 6. $(c,a) \notin R$
- 7. $(c, a) \in R$

Ejercicio 4

10 puntos

Sea $f:Q\to Q$ definida por la ecuación f(x)=x/2. Defina $g:Q\to Q$ tal que f y g sean inversas. Demuestre f y g son inversas.

Ejercicio 5

14 puntos

Sea $A = \{1,3,5\}$ y $R \subseteq A \times A$, definida por: $R = \{(1,1),(3,3),(5,5),(1,3),(3,5),(1,5)\}$. Demuestre R es un orden parcial. Es R un orden total?. Indique si tiene maximo, minimo, elemento maximal y minimal y cuales son.

Ejercicio 6

6 puntos

Considere $\varphi \in PROP$. Sea $\varphi = (p_0 \to p_1) \lor (p_0 \land p_2)$

- 1. Indique una secuencia de formación de φ .
- 2. Indique dos subfórmulas de φ .
- 3. Indique el resultado de $\varphi[p_3 \vee p_2/p_0]$.

Ejercicio 7

4 puntos

Considere la fórmula $(p_0 \vee p_1) \wedge p_1$. Encuentre una fórmula equivalente con menos conectivos.

Ejercicio 8

10 puntos

Demuestre las siguientes consecuencias lógicas utilizando la definición de valuación:

- $\bullet \ \neg(\varphi \wedge \psi) \models \neg\psi \vee \neg\varphi$
- $\neg \varphi \lor \psi \models \varphi \to \psi$

Ejercicio 9

15 puntos

- 1. Defina las reglas de introducción y eliminación del conectivo " \wedge ".
- 2. Demuestre el siguiente teorema:

$$(\varphi \wedge \psi) \leftrightarrow (\psi \wedge \varphi)$$

Ejercicio 10

9 puntos

- 1. Defina utilizando inducción el conjunto P3 de los naturales potencia de 3 que son mayores o iguales que 3.
- 2. Plantee el principio de inducción primitiva para dicho conjunto.
- 3. Demuestre utilizando el principio anterior que si $n \in P3$ entonces n es múltiplo de 3.