Práctico 3 - Relaciones y Funciones

Ejercicio 1

Sea $A = \{a, b, c\}$, R una relación en $A \times A$. Llenar la matriz de la relación R de forma que sea de equivalencia, con exactamente dos clases de equivalencia.

$$M(R) = \begin{array}{c|ccc} (a) & (b) & (c) \\ (a) & & & & \\ (b) & & & & \\ (c) & & & & \\ \end{array}$$

Ejercicio 2

Dadas las siguientes proposiciones:

1.
$$\forall n \in Z^+, \sum_{i=1}^n i - 1 = \frac{n \cdot (n-1)}{2}$$

2. 2 3. 3

Entonces:

- a) Sólo la 2) y la 3) son verdaderas
- b) Sólo la 1) y la 3) son verdaderas
- c) Las tres proposiciones son falsas
- d) Sólo la 2) es verdadera
- e) Ninguna de las anteriores afirmaciones es verdadera

Ejercicio 3

Sea la relación R de orden parcial en $A = \{a, b, c, d, e, f, g, h\}$.

		(a)	(<i>b</i>)	(<i>c</i>)	(<i>d</i>)	(<i>e</i>)	<i>(f)</i>	(<i>g</i>)	(<i>h</i>)
M(R) =	(a)	1	0	0	1	1	1	1	1
	(b)	0	1	0	0	0	1	0	1
	(c)	0	0	1	0	0	1	0	1
	(<i>d</i>)	0	0	0	1	0	1	1	1
	(<i>e</i>)	0	0	0	0	1	0	1	1
	<i>(f)</i>	0	0	0	0	0	1	0	1
	(<i>g</i>)	0	0	0	0	0	0	1	1
	(<i>h</i>)	0	0	0	0	0	0	0	1

Determinar si es un orden total, hallar un elemento maximal, un elemento minimal, determinar si tiene máximo y/o mínimo, y determinar si es un retículo.

Ejercicio 4

Sean $f: Z \to Z/f(x) = x$ y $g: Z \to Q/g(x) = x$.

- a) ¿Es f biyectiva?
- b) ¿Es g biyectiva?
- a) Es f = g?

Ejercicio 5

Sean $f,g,h,k:Z^+\times Z^+\to Z^+$ las operaciones binarias cerradas definidas por:

$$f(a,b) = a+b$$

$$g(a,b) = ab$$

$$h(a,b) = \min\{a,b\}$$

$$k(a,b) = \max\{a,b\}$$

- ¿Son estas funciones sobreyectivas?
- ¿Son invertibles? b)

Ejercicio 6

Sean \oplus y \otimes operaciones binarias en $\{0,1\}$ definidas por:

Determinar si las operaciones tienen neutro.

Ejercicio 7

Sean
$$f:Z\to Z/f(x)=3x+5$$
 y $g:Z\to Z/g(x)=x^2$. Hallar $f\circ g$ y $g\circ f$ ¿Son invertibles las funciones f y g ?