Práctico 3 PROP

Ejercicio 1

Demuestre que:

a)
$$((((p_0 \land p_1) \rightarrow p_2) \land p_0) \rightarrow (p_1 \rightarrow p_2)) \in PROP$$

$$\text{b)} \quad (((p_0 \vee p_1) \wedge (p_0 \to \perp)) \leftrightarrow (p_0 \wedge (\neg p_1))) \in PROP$$

c)
$$p_0 \rightarrow)) \notin PROP$$

Ejercicio 2

- a) Defina una función por recursión primitiva que cuente los paréntesis de apertura, $pa: PROP \rightarrow N$ y otra que cuente los paréntesis de cierre, $pc: PROP \rightarrow N$.
- b) Demuestre que para todo $\alpha \in PROP$, se cumple $pa(\alpha) = pc(\alpha)$

Ejercicio 3

De dos secuencias de formación diferentes para la frase de PROP , $(p_0
ightarrow p_1)$

Ejercicio 4

Demuestre que valen las siguientes consecuencias lógicas (a partir de aquí ya estamos usando los abusos usuales de notación):

a)
$$\alpha, \beta \models \alpha \land \beta$$

b)
$$\alpha \models \alpha \lor \beta$$

c)
$$\beta \models \alpha \lor \beta$$

d)
$$\alpha \land \beta \models \alpha$$

e)
$$\alpha \land \beta \models \beta$$

f)
$$\alpha \rightarrow \beta, \alpha \models \beta$$

Ejercicio 5

Demuestre que valen las siguientes consecuencias lógicas (tautologías):

a)
$$\models \alpha \rightarrow \alpha \lor \beta$$

b)
$$\models \beta \rightarrow \alpha \lor \beta$$

c)
$$\models (\neg \alpha \land \neg \beta) \leftrightarrow \neg (\alpha \lor \beta)$$

d)
$$\models \neg \neg \alpha \leftrightarrow \alpha$$

e)
$$\models \neg \alpha \leftrightarrow (\alpha \rightarrow \bot)$$

Ejercicio 6

Defina una función $con: PROP \rightarrow N$ que calcule la cantidad de conectivos en una frase de PROP (considere que \perp es un conectivo).