Proyecto UTU - ANII - UDELAR

Tecnologo

Informatico
de Paysandu

Experiencia de capacitacion
docente en modalidad b-learning

oy
2]
> L]
=]

E INGENIERIA CETP - UTU AN"

Consejo de Educacion Técnico Profesional

Prof. Wilson Netto Marturet

Director General

Prof. Javier Landoni Seijas

Consejero

Mtro. Téc. César Gonzalez Saldivia

Consejero

ANII

Dr. Rodolfo Silveira

Presidente

Ing. Luciana Balseiro

Ejecutiva

Facultad de Ingenieria
Dr. Ing. Héctor Cancela

Decano

Agradecimientos
Prof. Gabriela Castro del Pino

Presentacion

Prof. Wilson Netto Marturet
Dr. Ing. Héctor Cancela

Ing. Tecnol. Luis Marco

3. Programacién Avanzada
Ing. Daniel Calegari

4. Base de Datos
A/S. Gabriella Savoia

6. Arquitectura del Computador y Sistemas Operativos
Ing. Pablo Gestido

8. Taller de Formacién para sistemas
de informacién geograficos
Ing. Bruno Rienzi, Ing, Flavia Serra, Ing. Raquel Sosa

9. Taller de Formacion. NET
Ing. Gustavo Guimerans, A/C. Nicolas Sampietro, A/C. Emiliano Martinez

13. Integracion de equipos multidisciplinarios: Agrotecnologias
Ing. Agr. Pedro Arbeleche, Ing. Jorge Corral, Dra. Ing. Agr. Elly Ana Navajas

14. Ingenieria de Software
Ing. Alejandro Adorjan

INICIO

Indice

12

42

920

198

250

262

276

INDICE

Agradecimientos

Esta publicacién recoge el material de cada uno de los cursos, jornadas de capacitacion
y formacién técnico - docente que se dictaron en modalidad b_learning a través del Cam-
pus Virtual del CETP- UTU. Nuestro deseo es que este material sirva de base y gufa para
docentes y estudiantes de la carrera del Tecndlogo Informatico; una pequefia contribucion
desde el convencimiento que la informacién debe estar accesible a todos y no depender de
las circunstancias geograficas en que se encuentre el estudiante. Su existencia no setfa posible
sin la generosa participacion de todas las personas que han compartido sus conocimientos y
competencias.

Concretar un esfuerzo de esta naturaleza no habria sido posible sin la ayuda y colabora-
cién de todos los docentes, companeros de ruta virtuales y no virtuales, técnicos, integrantes
de comision de carrera del tecnélogo de Paysandd y de Montevideo que participaron del
proyecto. A ellos se suma el apoyo desinteresado de la profesora Ana Iruleguy coordinadora
del Tecnodlogo de Paysandu, quien nos hizo sentir como en casa en cada instancia presencial,
y de la Ingeniera Luciana Balseiro de ANII.

Un especial reconocimiento a la Fundacion Ricaldoni quien administré nuestro proyecto.

Deseo expresar mi profundo agradecimiento al Ingeniero Luis Marco por alentarme y
confiar la coordinacién de este proyecto interinstitucional y a las autoridades de la Univer-
sidad del Trabajo del Uruguay que apoyaron esta iniciativa, en especial al profesor Wilson
Netto y su vision integradora.

Nuestra gratitud al pro rector de ensefianza de la Universidad de la Republica, Dr. Luis
Calegari, quien nos asistié en varias oportunidades y al Ingeniero Héctor Cancela quien, al
inicio del proyecto, desde su cargo como director del InCo, y luego como decano de la Facul-
tad de Ingenierfa, tuvo un rol preponderante en todo el desarrollo del mismo.

A nuestras familias por su enorme paciencia.

Extiendo a todos ustedes mi profundo aprecio.

Prof. Gabriela Castro del Pino
Coordinadora del Campus Virtual

Presentacion

Cuando una sociedad define modificar su lugar en el concierto mundial respecto a la
distribucién internacional del trabajo, un requerimiento imprescindible es el desarrollo de su
bl
poblacién, donde el conocimiento ocupa un lugar relevante.

La actividad desarrollada, como su publicacién, son una muestra mas del camino que ha
tomado la educacion para abordar éstos desafios.

La Universidad de la Republica y la Universidad del Trabajo del Uruguay no sélo desarro-
llan carreras conjuntas, sino que contribuyen a generar una nueva cultura interinstitucional
modificando esa concepcidn y organizacion balcanizada de nuestra sociedad.

La modalidad en que se desarroll6 la actividad también muestra como las TICs permiten
generar nuevas oportunidades de socializacion del conocimiento, construyendo ambitos de
intercambio entre personas y profesionales radicados en distintos puntos del pais, la region,
o el mundo.

Es de destacar la muestra de pasiéon y compromiso, componente sustantivo de la profe-
sion docente, de todos quienes han participado en esta actividad.

Por su aporte personal y el de sus equipos expreso un agradecimiento muy especial al Ing;
Héctor Cancela y a la Prof. Gabriela Castro.

Profesor Wilson Netto Marturet

INDICE

Es una tarea muy grata el escribir unas breves palabras para presentar esta publicacion
que recoge el material generado en el transcurso del proyecto de capacitacion docente en
modalidad b-learning, orientado a promover el desarrollo de la sede Paysandu del Tecndlogo
en Informatica, carrera mixta UTU/UDELAR.

Este proyecto, que fue posible gracias a la iniciativa y visién de la UTU y el apoyo y finan-
ciacion de la ANII, conté desde su puesta en marcha con el apoyo entusiasta del Instituto
de Computacion y la Facultad de Ingenierfa, y el soporte de la Fundacién Julio Ricaldoni,
convirtiéndose en un verdadero caso de éxito de cooperacion interinstitucional.

Las caracteristicas del proyecto lo hacfan sumamente atractivo por varios motivos. Desde
un punto de vista practico, la sede Paysandu del Tecnélogo en Informatica apenas comenza-
ba su actividad cuando el proyecto fue formulado y puesto en marcha. Mediante su ejecucion
fue posible apoyar la formacion de un conjunto importante de docentes de diversas disci-
plinas, que estaban participando o se incorporaron posteriormente en el equipo a cargo del
dictado de esa carrera. Del punto de vista conceptual, un proyecto cuyo objetivo es formar
a formadores, y particularmente utiliza la informatica (en este caso concreto, un espacio
virtual de aprendizaje) como herramienta para transmitir conocimientos en distintas areas
tematicas de la informatica, tiene una formulacién recursiva y un aspecto demostrativo del
poder de las tecnologias de la informacién que podemos catalogar de irresistible.

Adicionalmente, el proyecto ha permitido generar un material que sera seguramente de
interés para docentes actuales y futuros de las diversas sedes de la carrera de Tecnélogo en
Informatica, por lo que nos congratulamos de que esta publicacion permita su difusion entre
todos aquellos que puedan aplicarlo.

Para cerrar, agradecemos al Prof. Wilson Netto, Ditector de UTU/CETP durante la rea-
lizacién del proyecto, que con su calidez, empuje y disposicién a colaborar permitié gene-
rar este espacio de accioén conjunta; a la Prof. Gabriela Castro, que coordinara las distintas
acciones del proyecto, con gran eficiencia, y calidad humana; y a todos los docentes que
participaron, sea preparando y orientando estos cursos, sea responsabilizandose de su propia
formacion mediante una participacion activa en estas instancias de formacién muy intensas.

Dr. Ing. Héctor Cancela

Decano de la Facultad de Ingenieria

El anhelar un Pais Productivo implica contar con una masa critica de recursos humanos
formados, en regiones donde hoy no se encuentran facilmente.

Para alcanzar esa meta debemos optimizar una interaccién entre las instituciones que nos
posibilite trabajar como un verdadero Sistema.

El libro que hoy llega a sus manos recoge el trabajo de muchos compafieros, quienes han
demostrado que innovando en estrategias educativas se puede fortalecer la desconcentra-
cién de la ensefianza terciaria. A todos ellos muchas gracias por su enorme aporte el cual,
seguramente, despertara nuevas iniciativas.

Ing. Tecnol. Luis Marco

INDICE

Diseno

Diseno de la estructura de
una colaboracion

3. Programacion avanzada

Ing. Daniel Calegari

RN

Programaciéon Avanzada

S

Diseino
Disefio de la Estructura de
una Colaboracién

[Introducci()n]

La asignacion de responsabilidades ha
sido completada.

La parte dinamica de la colaboracién que
se esta disefiando ha sido determinada.
Habiendo finalizado la construccion de los
diagramas de comunicacion es posible
especificar la parte estructural de la
colaboracion.

[Diagrama de Clases de Disefio]

Un Diagrama de Clases de Disefio especifica
la estructura de una colaboracioén.

Los elementos que contiene son
representaciones graficas de algunos

elementos de disefio contenidos en el modelo.

Los elementos a incluir son solamente
aquellos que sean necesarios para solucionar
el(los)caso(s)de uso realizado/s por la
colaboracion.

[Contenido]

= Introduccién
= Diagrama de Clases de Disefio

[Introducci()n (2)]

» Esta especificacion se realizara mediante
los diagramas de clases de UML .

» Estos diagramas:
o llustran la estructura de la solucion
o Estan anotados con informacion de disefio,
como,por ejemplo,operaciones y
navegabilidades.
= Al artefacto resultante lo llamamos
Diagrama de Clases de Disefio (DCD) y
sera incluido en el Modelo de Disefio.

[Diagrama de Clases de Disefio (2)]

= Elementos de disefio a incluir:
o Clases, asociaciones y atributos.
o Navegabilidades de asociaciones.

o Operaciones de clases y existencia de
métodos.

o Interfaces con sus operaciones .

o Informacion acerca del tipo de los atributos y
de los valores devueltos por las operaciones
(incluyendo datatypes).

o Generalizaciones entre clases o interfaces.
o Dependencias entre elementos.

epezueAy uoloewelbouid

Programacién Avanzada

[Construcci()n de un DCD

]

= Para la construcciéon de un DCD:

1.

Identificar todas las clases que participan de la
solucion de los casos de uso. Hacer esto
analizando los diagramas de comunicacioén.

. Incluirlas en un el diagrama de clases .

. Replicar los atributos de los conceptos
correspondientes en el Modelo de Dominio,
agregando aquellos nuevos que sean necesarios.

4. Agregar las operaciones correspondientes a cada

clase analizando los diagramas de comunicacion .

[Construcci()n de un DCD (2)]

» Para la construccion de un DCD (cont.):

5. Agregar la informacién de tipos a los atributos y
operaciones.

6. Agregar las asociaciones necesarias para
permitir las visibilidades por atributo requeridas
en los diagramas de comunicacion.

7. Agregar navegabilidades para indicar la direccién
de cada visibilidad por atributo.

8. Agregar dependencias para reflejar los demas
tipos de visibilidades existentes.

9. Agregar interfaces, fabricas y datatypes.

Construccion de un DCD
Informacion Previa (Dominio)

Cuenta < realizada sobre Transaccion
nulr(rjlerolQ: Inlteger . fecha : Date
Sald0 . hed hora : Time
Cliente realiza » —— =+ limporte : Integer
* terminada : Boolean
codigo : String 1
“ tiene *
opera con v registra 4«
1 . Retiro Deposito
1 & 1.% 1
Banco tiene » ATM

nombre : String

numero : Integer

Construccion de un DCD

INDICE

Informaciéon Previa (Interacciones)

—>
identificacion(pin, tarj)

2: ¢ := find(tarj)
—>

3: asignarCliente(c)

—>

: Cliente

seleccionarCuenta(cta) 1: asignarCuenta(cta,r)
. ATM : Banco
ingresarMonto(mnt) 1: ingresarMonto(mnt)
—> —>
. ATM

salir()
—>

. ATM

1.1: ¢ :=find(cta)
—>

1.2: asignarCuenta(c)

Identificar las Clases e llustrarlas

Pasos 1,2y 3

Banco

nombre

Cuenta

numero
saldo

1: finalizar()

2: add(r)

_’ ‘

—>
r : Retiro

1.1: debitar(mnt)

ATM

numero

Cliente

codigo

—>

Transaccion

fecha
hora
importe
terminada

Retiro

epezueAy uoldewelbold

Programacién Avanzada

Construccion de un DCD

Informaciéon Previa (Interacciones)

identificacion(pin, tarj)
—>

seleccionarCuenta(cta)
—>

ingresarMonto(mnt)
—>

Agregar Operaciones y Métodos

—>

3: asignarCliente(c)

: Cliente

: Banco
L —

salir()

1.1: ¢ :=find(cta)
—>

. ATM

_’ ‘
= o |

1: finalizar()

2: add(r)

1.2: asignarCuenta(c)
—>

Paso 4

Banco

nombre

asignarCuenta()

Cuenta

numero
saldo

debitar()

. ATM
2: ¢ := find(tarj)
—>
1: asignarCuenta(cta,r)
—

- ATM

1: ingresarMonto(mnt)
—>
- ATM

ATM

numero

identificacion()
seleccionarCuenta()
ingresarMonto()
salir()

Cliente

codigo

1.1: debitar(mnt)

—>

r : Retiro

Transaccion

fecha
hora
importe
terminada

Retiro

asignarCliente()
asignarCuenta()
ingresarMonto()
finalizar()

Agregar Informacion de Tipos

Paso 5

Banco

ATM

numero : Integer

nombre : String

asignarCuenta(Integer,Retiro)

Cuenta

numero : Integer
saldo : Real

debitar(Integer)

identificacion(Integer, String)
seleccionarCuenta(Integer)
ingresarMonto(Integer)
salir()

Cliente

codigo : String

INDICE

Transaccion

fecha : Date

hora : Time

importe : Integer
terminada : Boolean

Retiro

asignarCliente(Cliente)
asignarCuenta(Cuenta)
ingresarMonto(Integer)
finalizar()

Agregar Asociaciones y Navegabilidad

Pasos 6y 7

Banco

ATM

numero : Integer

nombre : String

asignarCuenta(Integer,Retiro)

Cuenta

numero : Integer
saldo : Real

debitar(Integer)

identificacion(Integer, String)
seleccionarCuenta(Integer)
ingresarMonto(Integer)
salir()

Transaccion

fecha : Date
hora : Time

finalizadas |importe : Integer

1

terminada : Boolean

Retiro

1.* 1
Cliente 1
codigo : String

actual

*

asignarCliente(Cliente)
asignarCuenta(Cuenta)

ingresarMonto(Integer)
finalizar()

epezueAy uoldewelbold

Programacién Avanzada

Agregar Dependencias

Paso 8

Banco

ATM

numero : Integer

nombre : String

identificacion(Integer,String)

Transaccion

asignarCuenta(Integer,Retiro)

1

1.

Cuenta

numero : Integer
saldo : Real

debitar(Integer)

seleccionarCuenta(Integer)
ingresarMonto(Integer)
salir()

finalizadas

fecha : Date

hora : Time

importe : Integer
terminada : Boolean

Retiro

Cliente 1

actual

[Inclusi(')n de Operaciones]

= Operacion create:

o La operacion create es utilizada para la
creacion de instancias.

o Esta forma es propia de UML e independiente
de todo lenguaje de programacion.

o Este mensaje se corresponde con los
constructores de clases.

o Los constructores estan siempre presentes en
las clases,por lo que es comun omitirlos en los
diagramas de clases de disefio.

[Inclusi(')n de Operaciones (3)]

= Operaciones de acceso (cont.)
o Ejemplo: la implementacion de la clase

asignarCliente(Cliente)
asignarCuenta(Cuenta)

codigo : String

ingresarMonto(Integer)

Empleado contendra las operaciones:
= calcularAportes()

finalizar()

N

Agregar interfaces, fabricas y datatypes

Paso 9

______________ IATM

ATMFactory

+getlATM() - IATM

«interface»

7y
|

ATM

numero : Integer

ingresarMonto(Integer)
salir()

identificacion(Integer,String)
seleccionarCuenta(Integer)

= asignarcliente()
= getNombre()
= setNombre()
= getSueldo()

Empleado

nombre : String

sueldo : Real {readOnly}
calcularAportes() : Real
asignarCliente(Cliente)

INDICE

[Inclusi(')n de Operaciones (2)]

m Operaciones de acceso:

o Son utilizados para obtener el valor de un
atributo (get) o para modificarlo (set),

o Lo usual es declarar los atributos como
privados y necesitar este tipo de operaciones.

o Sin embargo,se las excluye de los diagramas.

o Por defecto,se asume que un atributo tiene su
gety set asociado.

o Es posible indicar que para un atributo no se
brindara la operacion set correspondiente
aplicandole la restriccion {readOnly},

[Inclusi()n de Colecciones]

m Las colecciones (tratadas como fuera
indicado) usualmente disponen todas de
las mismas operaciones.

m Por tal razén,no aportarian mayor
informacién al diagrama y es comun
omitirlas.

= La necesidad de una coleccion se deriva
de las multiplicidades.

Inclusion de Colecciones (2)

= Ejemplo

ATM L L Transaccion
numero : Integer — fecha : Date
identificacion(Integer,String) 1 " hora : Tlme
seleccionarCuenta(Integer) imporie; Integer
ingresarMonto(Integer) — terminada : Boolean
salir() finalizadas

Una sola transacciéon actual.

Un ATM tendra asociado:

Una coleccion de transacciones finalizadas.

epezueAy uoldewelbold

Programacién Avanzada

INDICE

Disefio de la Estructura] DISCHO
Errores Comunes Guias para el abordaje del disefio
No incluir las dependencias existentes.

Omitir la definicion de los datatypes. Py - Sy [Contenido

No incluir interfaces, controladores ni / N

fabricas. = Introduccion

Sobrecargar el diagrama con m Caso de Estudio

operaciones omitibles (create, set, etc.). \\ // = Gulas para el Abordaje del Disefio
Incluir colecciones como clases e
innecesariamente. Disefio
Guias para el Abordaje del
Disefio
[Introduccién] [Caso de Estudio]
= Se desea abordar la etapa de disefio con = Gestion de cuentas en bancos a través
un enfoque sistematico. de ATMs (cajeros automaticos):
= Se presentaran pautas para organizar de o Através de una red de ATMs, los clientes
mejor forma la tarea. acceden a sus cuentas sobre las cuales
; - : . : realizan transacciones (depositos y
= Se ejemplificaran las mismas por medio retiros)

de un caso de estudio. ,
o Las cuentas pueden ser compartidas por

mas de un cliente,

Caso de Estudio
Modelo de Dominio

Cuenta-Cliente
< realizada sobre

g * Cuenta
numero : int
saldo : float 2
1 *
Transaccion
Banco 1.* e ATM registra > fecha : Date
. otbpi . L hora : int
nombre : string trabaja con > numero : int 4 « |importe : float
. A terminada : bool
s N
(8]
o
* 0]
o
o
g > Cliente Retiro Deposito

codigo : string

epezueAy uoldewelbold

Programacién Avanzada

Caso de Estudio Caso de Estudio
[Caso de Uso [

Nombre

Retiro de Cuenta ’Actores ‘Cliente

Sinopsis

El caso de uso comienza cuando el cliente
inserta su tarjeta en el cajero e ingresa su
clave de usuario. Tras validar al cliente, el
sistema recibe el nombre del banco y el

Descripcidn de Operaciones

= autenticarCliente (codCliente:String) :bool
o Valida la existencia del cliente .
= ingresarCuenta (nroCuenta:int,
nomBanco: String)
o Obtiene la cuenta nroCuenta del banco nomBanco
sobre la cual se realizara la transaccion.

numero de cuenta para iniciar la transaccion = ingresarMonto (monto:float)

de retiro correspondiente. El cliente ingresa el
monto que desea retirar de la cuenta y el

retira su tarjeta.

CIi?nte
|

Caso de Estudio
DSS con Memoria

E

autenticarCliente(codCliente:String) : bool

ingresarCuenta(nroCuenta:int, nomBanco:String)

ingresarMonto(monto:float)

finalizar()

PR 7 \ /A ZE N /A

o Realiza la transaccion de débito por el monto
indicado sobre la cuenta del cliente .
sistema realiza el débito. Finalmente, el cliente = finalizar ()

o Finaliza la operativa del sistema.

El sistema recuerda
al Cliente (en el primer
mensaje) y la cuenta

(en el segundo mensaje).

INDICE

Caso de Estudio] Caso de Estudio]
[Descripcién de Operaciones (2) [Caso de Uso (2)

autenticarCliente (codCliente:String):bool |Nombre |Consulta de Depositos |Actores |Cliente

o Misma operacion que en el DSS anterior . Sinopsis | El caso de uso comienza cuando el cliente
depositos (nroCuenta:int, inserta su tarjeta en el cajero e ingresa su clave
nomBanco:String) : float de usuario. Tras ingresar los datos de validacion
o Devuelve la suma de los montos de todos los (igual que en el caso de uso Retiro de Cuenta),
depdsitos realizados en la cuenta nroCuenta del el cliente indica el nombre del banco y el
banco nomBanco . numero de cuenta sobre la cual desea consultar
finalizar () el total de depositos (histéricos).
o Misma operacion que en el DSS anterior . Posteriormente, el sistema calcula el total de
depositos histérico y lo devuelve. Finalmente, el
cliente retira su tarjeta.

Caso de Estudio

DSS con Memoria (2)

Sistema
CIi?nte e
|

autenticarCliente(codCliente:String) : bool .
El sistema recuerda

al Cliente (en el primer
mensaje)

depositos(nroCuenta:int, nomBanco:String) : float

finalizar()

e N N

epezueAy uoldewelbold

Programacién Avanzada

[Guias para el Abordaje del Diseﬁo]

= El abordaje de la etapa de disefio puede
realizarse sistematicamente.

= Por ejemplo, considerando estos pasos:

Organizar Operaciones.

Definir Ubicacién de Instancias .

Definir Colaboraciones.

Disefiar Colaboraciones.

D=

Guias para el Abordaje del Disefio]
Organizar Operaciones (2)

= Al definir Controladores, considerar:
o Operaciones repetidas en casos de uso.
o Memoria del Sistema.
= Siun Controlador realiza una Interfaz
del Sistema, asigna un método a todas
las operaciones presentes en ella.

Guias para el Abordaje del Disefio]
[Definir Ubicacién de Instancias

= Diferenciar:

o Las colecciones que pueden ser alojadas
en un controlador (ej: ATM, Banco).

o Las que seran accedidas unicamente a
través de otra clase (ej: Cuenta accesible a
través de Banco).

o En caso de ser necesario, alojar

separadamente una coleccion que sea
compartida entre varios controladores.

Guias para el Abordaje del Disefio]
Organizar Operaciones

Definir los Controladores a utilizar.
Definir las Interfaces del Sistema que
contendran las operaciones del sistema.
Organizar operaciones segun:

o Afinidad tematica (segun dominio) ,

o Afinidad funcional (segun objetivos).

o Casos de Uso.
= Definir la Fabrica de controladores.

Guias para el Abordaje del Disefio]
[Ejemplo (Organizar Operaciones)

= ¢ Algun concepto del dominio podria ser
un Controlador?, ;ATM?, ;Banco?

«interface»

+autenticarCliente()|
i tle? J*+ingresarCuenta()

! +ingresarMonto()

Una posible opcion: ATNFactory 125;’7,-’:;‘;’;“
+getlATM() : IATM| A:
=
L 1]
Guias para el Abordaje del Disefio]
[Definir Colaboraciones

= Una colaboracion realiza uno o mas casos
de uso.

= Agrupar casos de uso con cierta afinidad;

o Comunmente afinidad tematica,pero no
hay una regla estricta.

= Definir una colaboracién por cada grupo de
casos de uso asignandole un nombre.

= Priorizar las colaboraciones segun el
impacto esperado sobre el disefio.

INDICE

Guias para el Abordaje del Disefo
Ejemplo (Definir Colaboraciones)

m Definir una sola colaboracién para
ambos casos de uso es beneficioso ya
que estan relacionados:

Consulta de
Depésitos

Retiro de
Cuenta

/

{ Transacciones |

\

Disefiar Colaboraciones

[Guias para el Abordaje del Disefio]

= Disefar cada colaboracion en orden de
prioridad:
o Realizar diagramas de comunicacion para
las operaciones del sistema involucradas.
o Considerar:(a) criterios de asignacion de
responsabilidades, (b) decisiones
tomadas en iteraciones anteriores
(consistencia) y (c) nuevos problemas de
disefio.
o Realizar el diagrama de clases de disefio.

Guias para el Abordaje del Disefio]
[Ejemplo (Disefiar Colaboraciones)

m ;Cbmo se asignan responsabilidades?
o ¢Quién crea las transacciones?
= ;ATM?, ;Banco?, ;Cuenta?
o ¢Quién es el experto en calcular el total
de depositos realizados?
= ¢Banco?, ;Cuenta?, ;Cliente?

o ¢Qué visibilidades se necesitan?

= ¢(ATM > Transaccién?, ;Banco > Cuenta?,
¢Cliente > Transaccion?, ;ATM > Cuenta?

epezueAy uoldewelbold

INDICE

Guias para el Abordaje del Disefio Guias para el Abordaje del Disefio
Ejemplo (Disefiar Colaboraciones) (2) Ejemplo (Disefiar Colaboraciones) (4)

m 6QUé Sucede COﬂ IOS tIpOS aSOCIatIVOSf) ingresaﬂ:nto(mnt) 1:ingresﬂ/l:>nto(mnt) 1.1:0Tt>e(mnt)
ZATM c: Cuenta r: Retiro
o Si poseen informacién relevante puede
convenir mantenerlas: 1Bl
finalizar() — = Retiro
Cuenta-Cliente _ CATM | ——— — Borra la informacién ﬁ
temporal
Cliente 1.% ™ Cuenta
a) Cliente ™ 1% Cuenta = OtraS OpCloneS:
o Asociar la transaccion con el cliente.
Cliente 1 1> i 1. 1 Cuenta .
b) Cuenta-Cliente o Delegar las transacciones al banco.
Guias para el Abordaje del Disefo Guias para el Abordaje del Disefio

Ejemplo (Disefiar Colaboraciones) (3) Ejemplo (Disefiar Colaboraciones) (5)

N U na pOSible SOI ucién . r= depositosm_r(lCuenta,nomBanco) 2:r:= depiit:)s(nroCuenta) 2.1: ¢ := find(nroCuenta)
. ATM b : Banco -I

ok := autenticarCliente(codCliente) 1: ok := member(codCLiente) 1: b := find(nomBanco) 2.2: r := depositos() c
Banco > c: Cuenta
L ATM : Cliente -]
- 2.2.1*[for each]: t := next() /

2.2.2%:r1 := depdsito()
//

ingresarCuenta(nroCuenta,nomBanco) 2: ¢ := cuenta(nroCuenta) 2.1: ¢ := find(nroCuent

Programacién Avanzada

a
- ATM : Banco : Cuenta I EnEacEion
=

/’// r:=sumade los r1 B‘
ATM recuerda
la cuenta "¢" 1: b := find(nomBanco) depgsito() depdalto
—>
Banco —_— - Dinii —> i
- ~Refilo 1 ——— pevuelve 0 1—5"%&“0' — — | Devuelve
el monto

epezueAy uoldewelbold

Programacién Avanzada

[Introducci(’)n]

m Propésito: realizar la implementacion de una
parte del disefio (una colaboracion).

» El resultado es coédigo fuente en la forma de
Elementos de Implementacion.

= Una tarea de implementacion se enfoca en
obtener cierta funcionalidad (al implementar
la realizacién de un caso de uso) que implica
la implementacion de diferentes elementos
de disefio que contribuyan a dicha
funcionalidad.

[Modelo de Implementacion (2)]

= Contenido:

o Introduccién: Breve descripcién que sirve
como introduccién al modelo.

o Subsistemas de implementacion: Conjuntos
de Elementos de Implementacion, definen una
jerarquia.

o Elementos de implementacion: Todos los
archivos que conforman la implementacion del
sistema, contenidos en los subsistemas.

[Implementaci()n de una Colab.]

= Para implementar una colaboracion (que realice
caso(s)de uso):
o Implementar la estructura de la colaboracion:
= Implementar interfaces .
= Implementar clases:
o Implementar atributos «
O Implementar operaciones «
= Implementar relaciones:
o Implementar generalizaciones «
o Implementar realizaciones «
O Implementar asociaciones«
o Implementar las interacciones de la colaboracién:
= Implementar métodos .

Implementacion

Generacion de codigo

[Modelo de Implementaciéon]

El Modelo de Implementacién representa la
composicion fisica de la implementacion.

Esta expresado principalmente en términos de
Elementos de Implementacién.

Estos son tipicamente elementos-fisicos como
archivos, pero también directorios:

o Archivos de codigo (fuentes, binarios, ejecutables).
o Archivos de datos y configuracion .

Dichos elementos pueden organizarse en
Subsistemas de Implementacion.

[Modelo de Implementacion (3)]

= Contenido (cont.):

[

o Relaciones: Las relaciones del modelo entre
elementos de implementacion, contenidas en
los subsistemas.

o Diagramas: Representacion de los elementos
del modelo (p.e. dependencias estaticas entre
fuentes, dependencias de tiempo de ejecucion
entre ejecutables).

Implementar la Estructura]
Implementar Interfaces

= Las interfaces se implementan directamente

a partir del DCD.,

= Las operaciones se obtienen de la propia

especificacion de la interfaz,

= Advertencia: algunos lenguajes de

programacién no proveen una construccion

para implementar directamente interfaces:

o En esos casos,se suele implementar una
clase abstracta, sin atributos,y con todas sus
operaciones abstractas.

Implementar la Estructura]
[Implementar Clases

= La implementacion de las clases se hace

en forma directa a partir del DCD.

Los lenguajes de programacion
orientados a objetos incluyen una
construccion para este fin (la clase).
Los atributos y operaciones se obtienen
de la propia especificacion de la clase:
o Se incluyen los constructores y destructor,

o También las operaciones de acceso o
modificacion de los atributos.

Implementar la Estructura]
[Implementar Relaciones

= Las relaciones entre elementos de

disefio empleadas son:
o Generalizaciones.

o Realizaciones.

o Asociaciones.

o Dependencias.

Implementar la Estructura]
[Relaciones — Realizaciones

Las realizaciones también se obtienen

directamente del DCD.

Los lenguajes de programacion que no proveen

interfaces tampoco proveen realizaciones:

o En la declaracién de la clase se especifica la(s)
interfaz(ces) que realiza.

o En C++ se utiliza una generalizacion,

Ejemplos:

o Java: class ATM implements IRetiro

o C#: class ATM : IRetiro
o C++: class ATM : IRetiro

Implementar la Estructura]
[Relaciones — Asociaciones (2)

= Se define un pseudoatributo en A solamente si la

asociacion es navegable hacia B.

El tipo de un pseudoatributo para A depende de la
clase B, pero también de la multiplicidad en el
extremo de la asociacion del lado de B.

Se distinguen dos casos dependiendo del maximo
de dicha multiplicidad:

o Siel maximo es 1: el pseudoatributo es de tipo B .

o Siel méximo es mayor que 1 (tipicamente *): el
pseudoatributo es de tipo Coleccion(B) .

INDICE

Implementar la Estructura
[Implementar Clases (2)

= Ejemplo en C++

]

class Empleado {

private:
String nombre; //atributo

public:
Empleado(); //constructor por defecto
Empleado(String); //constructor comun
~EmpTleado(); //destructor
String getNombre(Q); //op. de acceso

void setNombre(String nom) //op. de mod

if.

virtual float getPago() = 0; //op. abstracta

Implementar la Estructura
[Relaciones — Generalizaciones

]

= Las generalizaciones se obtienen directamente

del DCD.
= Los lenguajes de programacion orientados a
objetos proveen una construccién para esto:
o En la declaracién de la clase se especifica su
ancestro (muchos lenguajes permiten sélo uno) .
= Ejemplos:
o Java: class Jornalero extends Empleado
o C++:class Jornaleo : public Empleado
o C#: class Jornalero : Empleado

Implementar la Estructura
[Relaciones — Asociaciones

]

= Los lenguajes de programacion generalmente no

proveen una construccion especifica para la
implementacién de asociaciones.

= Para que una clase A pueda estar asociada a
clase B se suele incluir un atributo en A:

una

o Este atributo no pertenece al conjunto de atributos

definidos en el disefio,por lo que se lo denomina
“pseudoatributo”.

= A través del pseudoatributo una instancia de A
puede mantener una referencia a otra de B y asi

implementar el link.

Implementar la Estructura
[Implementar Interfaces (2)

= Ejemplo en Java:

public interface IRetiro {
public void identificacion(int,String);
public void seleccionarcuenta(int);

}

= Ejemplo en C++:

]

class IRetiro {
public:
virtual void identificacion(int,String)
virtual void seleccionarCuenta(int) = 0;

= 0;

epezueAy uoldewelbold

Programacién Avanzada

Implementar la Estructura
Relaciones — Asociaciones (3)

= Caso 1:
Empresa 0.1 <« trabaja en " Persona
RUC : Long nombre : String
empleados

o Ejemplo en C++

class Persona {
private:
String nombre;
Empresa * empresa; // pseudoatributo
public:

};

Implementar la Estructura
Relaciones — Asociaciones (5)

= Caso 2:
Empresa 0.1 < trabaja en * Persona
RUC : Long : String|
empleados

o Ejemplo en Java

class Empresa {
private Tong RUC;
private Ccollection empleados; // pseudoatributo

B

Implementar la Estructura
Relaciones — Asociaciones (7)

= Caso 2 (cont.):

o La eleccién de la estructura de datos que implemente
la coleccién se realiza en funcién de simplicidad,
disponibilidad, requerimientos de eficiencia, etc.

o En casos en que el extremo de asociacion tenga
aplicada la restriccion {ordered} es necesario utilizar
una coleccion lineal con operaciones de acceso a los
elementos por posicion.

o Muchos ambientes de programaciéon cuentan con
bibliotecas de clases con diferentes tipos de
colecciones predefinidas.

Implementar las Interacciones

= Laimplementacion de la estructura conduce a la
definicién de los elementos de disefio junto con
sus relaciones.

= Las clases incluyen sus operaciones pero no los
métodos asociados.
o Esto significa que no existen invocaciones

implementadas,por lo que aun no hay comportamiento

= A partir de los diagramas de interaccion se extrae

informacion para implementar los métodos.

Implementar la Estructura
Relaciones — Asociaciones (4)

= Caso 1 (cont.):

o Una persona puede tener una referencia a una
empresa :

211035721004

Implementar la Estructura
Relaciones — Asociaciones (6)

= Caso 2 (cont.):

o Una empresa tiene una coleccion de
referencias a personas :

Implementar la Estructura
Relaciones — Dependencias

= Las dependencias se declaran en la definicion de
un elemento para tener visibilidad sobre otros

= Esto se hace cuando en el DCD existe una
dependencia desde un elemento A hacia otro B.

o Una asociacién navegable, una generalizacion y una
realizacion son también formas de dependencia.

= En C++ se utiliza #include.
= En Java se utiliza import,
= En C# se utiliza using.

Implementar las Interacciones
Implementar Métodos

= Un diagrama de comunicacién no tiene como
objetivo servir de pseudocdédigo.
= Sin embargo,generalmente ilustra la logica
general de las operaciones.
= Al implementar el método asociado a la
operacion op () en una clase A:
o Se busca el diag. de comunicacién que incluya un
mensaje op () llegando a una instancia de A.
o Lainteraccién anidada en ese mensaje deberia
resultar de ayuda para implementar el método .

Implementar las Interacciones
Implementar Métodos (2)

= Ejemplo: @

t := totalVenta() 1* [foreach]: | := next()

—> —> l
: Venta : LineaDeVenta
l 2* s := subtotal() <

2.1* p := getPrecio()

—>
|: LineaDeVenta : EspProducto

Para implementar el método asociado a totalventa() observamos la interacciéon
anidada en el mensaje (en el primer nivel) en el diagrama de comunicacion.

INDICE

Implementar las Interacciones
Implementar Métodos (3)

= Ejemplo (cont.):

class venta {
public float totalventa() {
float total = 0;
LineaDeventa 1dv;
IteratorLineaDeventa it = lineas.getIterator();

while (it.hascurrent()) {
Tdv = it.currentQ;
total = total + ldv.subtotal(Q);
it.nextQ;

return total;

Sugerencias

= Antes de implementar una clase desde
cero es recomendable considerar si el cédigo
existente puede ser reutilizado o adaptado.
= Comprender en qué lugar de la
arquitectura encaja la implementacion
ayuda a:

o ldentificar oportunidades de reuso.

o Asegurar que el codigo nuevo sea
coherente con el del resto del sistema.

[Sugerencias (3)]
r———;;;——'§P1 ____EF__4E’ ﬁ‘,k%;&;‘

* [numero - integer 1 ffecha : Date

”"‘nombre.smn K tring) lhora : Time.
s e rCy finalizadas [imPorte : Integer
[lterminada : Boolean|

jsalir()
| oJ;
1

Retiro

;
actuar
5 + [asignarCliente(Criente)
Cliants, ! lasignarCuenta(Cuenta)
[codigo - String
finalizar()

[debitar(integer)

Sugerencias (2)

= Orden de implementacion de las clases:

o Las clases deben ser implementadas
comenzando por las menos acopladas y
finalizando por las mas acopladas.

o De esta forma,las clases van disponiendo de
todos los elementos necesarios para su
implementacion.

o Esto permite que,al terminar de implementar
una clase,se pueda testear inmediatamente.

epezueAy uoldewelbold

Programacién Avanzada

[Introducci(’)n]

= Los objetos son manipulados a través de
referencias.

= Dependiendo de codmo los lenguajes de
programacion las implementen aplican ciertas
consideraciones tanto a la manipulacién como
a la destruccion de objetos.

= La identidad requiere que los objetos sean
compartidos.

= Esto hace que las copias necesiten ser
examinadas en detalle.

Referencias (2)]
Ejemplo:

[0]
1]

E9)[E <)

23A8 23A9 23AA 23AB 23AC 23AD 23AE 23AF

Heap

Stack

Referencias (4)]

= Otros lenguajes manejan referencias en forma
implicita:

o EnJavay C# no es posible definir objetos en el

stack sino Unicamente referencias:

Empleado e;
// ‘e’ es una referencia a un objeto
// de clase Empleado y no un objeto.

Implementacion
Manejo de objetos

[Referencias]

= En tiempo de ejecucion los objetos no son

alojados en el stack sino en el heap.

La forma de acceder a un objeto es

mediante referencias.

Una referencia es una variable (tipada) que

es alojada en el stack (o en el heap si esta

dentro de un objeto) tal que:

o No identifica a ningiin objeto (void) .

o lIdentifica a un objeto particular de una
determinada clase (attached).

[Referencias (3)]

= En algunos lenguajes de programacion las

referencias se implementan explicitamente:

o En C++ las referencias se implementan
mediante punteros :

Empleado * el;
// ‘el’ es una referencia a un objeto
// de clase Empleado y no un objeto.

Empleado e2;
// ‘€2’ si es un objeto (en el stack).

[Referencias (5)]

= Hacer que una referencia sea void :

o EnC++:e = NULL
o EnJavayC# e = null

= Hacer que una referencia sea attached (en

cualquiera de los tres lenguajes):

o Crear un objeto y adjuntar la referencia a él
e = new Jornalero(Q);
o Adjuntar la referencia a un objeto obtenido a través de
otra referencia;
el = e2;
\ Esto es asignacion de referencias y no de objetos. ‘

La copia es 100%
igual al original.

[Objetos Compartidos]

= En sistemas orientados a objetos es usual que

un objeto sea “conocido” por otros varios
objetos.

= La identidad requiere que dichos objetos

referencien al mismo objeto y no a copias de
él.

= Eso implica que el objeto sera “compartido”

por otros.

= Esto se logra teniendo en cada objeto una

referencia al objeto compartido.

[Copia de Objetos]

= Laidentidad y la necesidad de compartir

objetos hace que,en general,no sea
correcto copiar objetos.

= Recordar que una copia de un objeto es

otro objeto que luego de la copia tiene

propiedades iguales a las del original.
= A partir de la copia ambos elementos

evolucionan independientemente.

[Copia de Objetos (3)]

= Copia plana:
o Su resultado es un objeto exactamente
igual al original, incluyendo sus referencias .
o Ejemplo:

INDICE

[Objetos Compartidos (2)]
(=
= Ejemplo:
Cl
: Cliente
>
_— —d
: Vendedor : Cliente
I =]
O miomo vendedor a>
: Cliente
[Copia de Objetos (2)]

= En determinadas situaciones es aceptable la
copia de objetos.

= Distinguiremos tres casos:
o Objetos que implementan data values.
o Objetos que son instancias de clases del disefio,
o Objetos que representan colecciones,

= A su vez,distinguimos dos enfoques de
realizar copias de objetos:
o Copia plana.
o Copia en profundidad .

[Copia de Objetos (4)]

= Copia en profundidad:

o El objeto resultante es exactamente igual al
original, salvo las referencias .

o Ejemplo:

1234 |
O]

[Copia de Objetos (5)]

= Copia de Data Values:

o Algunos Data Types deben ser implementados
mediante clases,por lo cual sus instancias
seran formalmente objetos.

o Estos objetos se pueden copiar dado que
= No tienen identidad (ya que son data values).
= Se desea disponer de un ejemplar diferente en

cada lugar donde se lo requiere .

o La copia de data values se realiza en

profundidad.

Los objetos referenciados Original

son copiados en profundidad.,

[Copia de Objetos (6)

= Copia de Objetos:

o Los objetos si tienen identidad.

o En caso de requerir a uno desde mas de un
lugar se debe compartirlo (no es aceptable
copiarlo).

o Como regla general NO se debe copiar objetos.

o Existen casos controlados donde es posible
realizar copias de objetos.

epezueAy uoldewelbold

Programacién Avanzada

[Copia de Objetos (7)]

= Copia de Colecciones:

o El caso de las colecciones es particular porque
pueden involucrar:
= Una estructura de datos (sin identidad).
= Objetos (con identidad).

o Las colecciones de data values se tratan como
el caso de los data values (en profundidad),

o En casos en que sea necesario otra coleccion
igual a la original se debe copiar solamente la
estructura de datos (plana).

[Destruccién de Objetos]

= Los objetos alojados en el heap permanecen
alli hasta que el programa termina (a
diferencia de aquellos alojados en el stack).

= Cuando un objeto ya no es de utilidad se lo
suele retirar del heap para liberar la memoria.

» Existen dos enfoques para ello:

o Automatico, mediante el llamado Garbage
Collector (Java, C#).

o Manual (C++),

[Destruccién de Objetos (3)]

» Destruccion Manual:
o Este enfoque es mas complejo y delicado

o Requiere que el programador
explicitamente libere la memoria ocupada
por un objeto

o Problemas frecuentes:
= Memoria inaccesible.
= Referencias colgantes.

[Destruccién de Objetos (5)]

= Destruccion Manual (cont.)

o Referencias colgantes: esto ocurre cuando
un objeto es compartido y se destruye a
través de una de las referencias.

o Ejemplo: |{

Empleado * el, *e2;
el = new Jornalero();
e2 = el;
delete e2;

}

Moraleja: no destruir objetos compartidos.

[Copia de Objetos (8)]

» Copia de Colecciones (cont.)

o La copia de colecciones de objetos se
realiza en forma plana.

o Ejemplo: original m

EJESES

[Destruccién de Objetos (2)]

= Garbage Collector:
o Forma parte del ambiente de ejecucion del
lenguaje de programacion.
o Corre en paralelo con el programa:
= Busca objetos en el heap tales que no exista
ninguna referencia adjunta a ellos.
= Cuando encuentra un objeto tal lo elimina y libera
la memoria que éste ocupa.
o Permite al programador solicitar memoria sin
tener que preocuparse por “devolverla”.

[Destruccién de Objetos (4)]

m Destruccion Manual (cont.)

o Memoria inaccesible: esto ocurre cuando
un objeto no tiene ninguna referencia adjunta
aél.

o Ejemplo: |{

Empleado * e;
e = new Jornalero(Q);

La Unica referencia adjunta al jornalero recién creado se perdié cuando se
llega a la llave de cierre. En consecuencia, el jornalero queda inaccesible.

[Destruccién de Objetos (6)]

= Enfoques para la destruccion manual de

objetos:

o No destruir objetos: aplicable en sistemas donde
no se cree una gran cantidad de objetos.

o Utilizar contadores de referencias: cada objeto
contiene un contador de referencias adjuntas a él.

o Desarrollar una estrategia particular: en funcién de
las particularidades del problema el programador
“sabe” cuando y como eliminar un objeto en forma
segura.

Colecciones Genéricas]
[Genericidad de la Coleccion (2)

= Ejemplo:
o Laclase Persona debe realizar la interfaz de

marca ICollectibTle para poder agregar
personas a una coleccién genérica.

«interface»
ICollectible Recordar que una interfaz de

A marca no posee ninguna
[operacion, por lo que no obliga a
| las clases que la implementan a

presentar ningln servicio.
Persona

[Introducci(’)n (2)]

= Se distinguen dos tipos de colecciones,dependiendo
de si los elementos contenidos poseen una clave que
los identifique o no.

= La definicion de las colecciones a utilizar en la
implementacién se estudiara incrementalmente.

= Se comenzara definiendo una coleccién genérica
de elementos sin clave,la cual sera aumentada para:
o Permitir iteraciones sobre sus elementos.
o Soportar el uso de claves.
o Soportar diferentes tipos de busquedas.

= Dichas definiciones seran luego utilizadas para
implementar colecciones concretas.

[Colecciones de Objetos (2)]

= Las colecciones deben permitir:
o Realizar iteraciones sobre sus elementos.

o Realizar busquedas de elementos por clave
(en caso de que los elementos tengan una).

o Realizar busquedas diversas.

= Las colecciones concretas difieren en el
tipo de elementos que contendran pero
coinciden en el tipo de servicios que
brindan.

INDICE

Implementacion
Colecciones
[Introducci(’)n]

= Laimplementacion de asociaciones
usualmente requiere del uso de colecciones
para permitir links con muchos objetos.

= Eltipo de los elementos de las colecciones
depende de la clase correspondiente al
extremo de asociacion navegable.

= Por tratarlas de manera uniforme éstas
comparten una misma estructura que puede
ser reutilizada para generarlas.

[Colecciones de Objetos]

m Las colecciones de objetos son una
herramienta fundamental para la
implementacién de muchas de las
asociaciones presentes en un disefio.

Empresa 0.1 < trabaja en & Persona
RUC : Long : String
empleados

El pseudoatributo empT1eados de la clase Empresa
introduce la necesidad de una coleccion de personas.|

[Colecciones de Objetos (3)]

= Desarrollar cada coleccién en forma integra cada
vez que se necesita resulta poco practico.

= Es posible definir una unica vez una
infraestructura comun que sirva de base para
todas las colecciones especificas:
o Colecciones paramétricas (templates): el tipo del
elemento a almacenar es declarado como parametro
que sera instanciado al generar la coleccion particular.

o Colecciones genéricas: pueden almacenar
directamente cualquier tipo de elemento,

epezueAy uoldewelbold

Programacién Avanzada

[Colecciones Genéricas]

= Una coleccién genérica esta definida de

forma tal que pueda contener a

cualquier tipo de elemento.

= Aspectos a considerar:

o ¢,Cémo lograr que un elemento de una
clase cualquiera pueda ser almacenado
en la coleccion genérica?

o ¢Como se define la coleccion genérica?

Colecciones Genéricas]
[Encapsulamiento

= ¢ Como se define una coleccion genérica?

= La nocioén de coleccion es independiente
de su implementacion.

= Se separa la especificacion de la
implementacion:
o Se define una interfaz ICollection.

o Una cierta coleccién genérica sera una
implementacién que realice esta interfaz.

[Colecciones Concretas]

= ¢ Cbémo se define una coleccién concreta a partir de
una coleccién genérica?

= Una coleccion concreta es aquella que:
o Presta los mismos servicios que la genérica.
o Puede definir nuevos servicios.
o Fija el tipo de los objetos a coleccionar,

= El pseudoatributo empleados de la clase Empresa
puede ser de tipo ColPersona

= Una instancia de clase ColPersona:

o Encapsula a una coleccion genérica (que es quien
contendré efectivamente a las personas).

Puede definir operaciones que actlen sobre las personas,

o
o Asegura que a dicha coleccion genérica le sea agregado
elementos de clase Persona Unicamente .

-]
=
Esto es lo que la hace
concreta a la col. con.
! ColPersona cnterface»
3 1 ICollection
- Jaddq - ~ladd(iCollectible) 1
remove(Persona: remove(ICollectible,)
: ollectible,)
isEmpty() : Boolear| isEmpty() : Boolean

cinterface» | | | |
ICollectible | | | |
[amay | [ust | [st | [BinTree |

»>| Persona Esto es lo que la hace
genéricaa la col. gen.

Colecciones Genéricas]
Genericidad de la Coleccion

= ;Como lograr que un elemento de una clase
cualquiera pueda ser almacenado en la coleccion
genérica?

= Se define la interfaz de marca ICollectible.

Cuando se desea que los elementos de una cierta
clase puedan ser almacenados en una coleccion
genérica se solicita que dicha clase realice la
interfaz ICollectible.

= De esta forma,la colecciéon genérica contendra
elementos “coleccionables” (es decir, que
implementaran la interfaz ICollectible),

Colecciones Genéricas]
[Realizaciones

» Podran existir diferentes realizaciones
(cada una con su estructura de datos
particular) de la coleccién genérica:

«interface»

ICollection
ladd(ICollectible)
Iremove(ICollectible)
imember(ICollectible)
lisEmpty() : Boolean

[Colecciones Concretas (2)]

= Una coleccién concreta se define como un
“wrapper” de una coleccién genérica.
= Ejemplo:
P

«interface»
ColPersona :
ICollection

Cada instancia de ColPersona utiliza una realizacion concreta de
IColTection para almacenar (Unicamente) instancias de Persona.

[Enfoque Completo (2)]

= Interacciones de una coleccidén concreta:
o Por ejemplo, lo disefiado de esta manera:

1:add (p)

L —

o Podria en la practica, hacerse de esta otra:

1: add(p) 1.1: add(p)

= | e]
: ICollection

[Enfoque Completo (3)]

= Interacciones de una coleccién concreta:
o Visto de otra manera:

ColPersona

“envuelve” al
contenedor
de objetos

ColPersona

Una empresa que tenga una instancia de ColPersona nunca utilizara
el contenedor de elementos (en este caso List) directamente.

[Realizaci()n de una Col. Genérica]

m Lainterfaz ICollection declara qué
servicios debe proveer una coleccion.

m Es posible realizar dicha interfaz de
diferentes maneras mediante diferentes
estructuras de datos.

= Realizaciones posibles:

o Array o Vector,

o Lista comun o doblemente enlazada.
o Arbol binario.

o Ete.

[Realizacién de una Colecciéon Genérica]

Lista Comun (2)

= Las operaciones no se resuelven en forma
completa en la clase List:

1: add(0) 1.1: create(ofirst)

=] e]

1.1: e := getElem()
—
1.2a* [e <> o] e:=getNext()
—>

1: remove(o) 1.2b: [e = o] remove(o)

= am | e |

[Iteradores (2)]

= Un iterador (sugerido en el patron de
disefio Iterator) es un objeto que permite
recorrer uno a uno los elementos de una
coleccion.

= Un iterador es un observador externo de la
coleccion (no en el sentido del patron
Observer).

= Una coleccion puede tener diferentes
iteradores realizando diferentes iteraciones
simultaneamente.

|
|
|
\

INDICE

[Enfoque Completo (4)]

= Estructura de una colecciéon
concreta: -~~~ """~ e N

. Persona :Persona :Persona

Visto como un elemento
que realiza ICoTlection.

Vistos como elementos que
realizan ICollectible,

Realizacion de una Coleccion Genérica]
[Lista Comun

= El disefio de una lista comun utilizando
clases no difiere significativamente del
disefio usual:

next 0.1
0.1

first

|
|
|
|
! elem
|
|
I

7] ICollectible

[Iteradores]

= Es muy comun necesitar realizar iteraciones
sobre los elementos de una coleccion.

= Lainterfaz ICo11ection es aumentada con
la siguiente operacion:

’ getIterator():IIterator ‘

= A su vez la coleccion concreta ColPersona
es aumentada con la operacion:

‘ getIterator():Personalterator ‘

Iteradores]
[Estructura
= Un iterador concreto,como

PersonaIterator, encapsula a una
realizacién de IIterator:

Personalterator «interface»
1 literator
next() next()
lcurrent() : Persona current() : ICollectible
hasCurrent() : Boolean "BSCU’"'«‘K : Boolean
_________ laar s on e o oo o vn o o
r =
| ! - |
| I
A | | L | [oLL | |B|nT |

epezueAy uoldewelbold

Programacién Avanzada

Iteradores
Interacciones

1: pi := getlterator() 1.1:li := getlterator()
—>

: ColPersona -
: ICollection

1.2: pi := create(li)

(]

p necesita ser casteado
aclase Persona

1: p := current() 1.1: p := current() : ICollectible
I'P—I : literator EI
Iteradores

Realizaciéon de lteradores

= Como ejemplo de realizacion de iteradores
se presenta el disefio de un iterador sobre
listas comunes.

» Laclase ListIterator:
o Realiza la interfaz ITterator,

o Es encapsulado por un iterador concreto
(como Personalterator).

lteradores]
Realizacion de Iteradores (3)

= Interacciones: ol sila lista
es vacia

7
[¢]
1: i := getlterator() : llterator 1.1: i := create(first)

: List :Li

1: next() 1.1: n := getNext()
— : Li = current : Node
Iteradores

Realizacion de Iteradores (5)

= Ejemplo:

: Node :Node Node

ColPersona +List

: Persona

: Persona : Persona

 Personalterator (; Listlterator

Visto como un elemento
que realiza ITterator

Iteradores
Uso de lteradores

class venta {
private:
ColLineasDeventa lineas;
public:
float totalventa();
};

float venta::totalventa() {
float total = 0;
LineaDeventaIterator it = lineas.getIterator();

while (it.hascurrent()) {
total = total + it.current()->subtotal();
it.nextQ);

return total;

Iteradores
Realizacion de Iteradores (2)

= Estructura:

0.1 current elem

0
1

|

|

|

i

|

1 P | «interface»
: Iiv—‘ ICollectible
|

|

|

|

|

|

i

lteradores
Realizacion de Iteradores (4)

= Interacciones (cont.):

1: 0 := current() : ICollectible 1.1: 0 := getElem()

—> —>
< L current : Node

_ — ——-“O1:b:=hasCurrent()
b := (current <> null) —> L

Diccionarios

= Un diccionario es un tipo particular de
coleccion en el cual se almacenan objetos que
pueden ser identificados por una clave.
= Se define la interfaz IDictionary y se utiliza
en forma analoga a la interfaz ICollection:
o Existiran diferentes realizaciones de IDictionary.
o Las mismas contendran elementos que realicen la
interfaz ICollectible.
o Un diccionario concreto como DictPersona
encapsulara una realizacion de IDictionary.

Diccionarios
Uso de Claves

= Se esta tratando la nocion de diccionario
genérico,por lo que la clave que identifica a los
elementos debe ser también genérica.

= Se define la interfaz IKey:

o Debe ser realizada por una clase que representa la
clave de los elementos a incluir en el diccionario.

o Contiene unicamente la operacion
equals(IKey) :boolean utilizada para comparar
claves concretas.

Diccionarios
Diccionarios Concretos

DictPersona «interface»
1 IDictionary
ladd(PersonaKey,Persona) add(lKe}f;ICullectible)
remove(PersonaKey) remove(IKey)

member(PersonaKey) : Boolean member(IKey) : Boolean
find(PersonaKey) : Persona find(IKey) : ICollectible
isEmpty() : Boolean isEmpty() : Boolean

La clase DictPersona encapsula a una realizacién de IDictionary en forma
analoga a como lo hace la clase Co1Persona con la interfaz ICo1lection.

Diccionarios
Iteraciones en Diccionarios

= Un diccionario es una coleccion,por lo
que tiene sentido necesitar iterar sobre
sus elementos.

m Seincorpora a la interfaz IDictionary:
o getElemIterator():IIterator que
devuelve un iterador sobre los elementos
contenidos en el diccionario.
o getKeyIterator():IIterator que
devuelve un iterador sobre las claves de los
elementos contenidos en el diccionario.

Busquedas

= Las busquedas por clave no son el Unico
tipo de busqueda que se suele requerir.
= Existe otro tipo de busquedas que no
involucran necesariamente una clave:
o Buscar todos los empleados menores de una
cierta edad.
o Buscar todos los empleados contratados
antes de una fecha dada
= Este tipo de funcionalidad es analogo al que
proporciona la operacion select() de OCL.

INDICE

Diccionarios

Uso de Claves (2)

«interface»
IKey
equals(IKey) : Boolean

Esta operacion siempre
castea el parametro a

clase PersonaKey .

£ N PersonaKey Esta clase no tiene
N nombre : String «<—— por qué ser la tnica
Olequals(IKey) : Boolean clave de Persona.

‘ Los atributos de la clave concreta son una combinacion de atributos de la clase.|

Diccionarios
Diccionarios Concretos (2)

= Ejemplo:
()
Node
: DictPersona o List

List realiza IDictionary Persona Persona Persona
yyanoICollection

La relacién entre una persona y su clave es particular a cada diccionario
concreto. La clave que le corresponde a una persona es la referenciada por
el nodo que referencia a la persona (determinada al momento del add()).

" Diccionarios
Iteraciones en Diccionarios (2)

= En diccionarios concretos (p.e. en el caso
de DictPersona) las operaciones para
realizar iteraciones son:

o getPersonaIterator():Personalterator
que devuelve un iterador sobre las personas
del diccionario.

o getKeyIterator():PersonakKeyIterator
que devuelve un iterador sobre las claves
(PersonakKey) de las personas contenidas
en el diccionario.

Busquedas (2)

= Dado que este tipo de busquedas
dependen de cada coleccion se
implementan en las colecciones concretas ,

m De esta forma,se define una operacion por
cada busqueda necesaria:
o Por ejemplo para buscar los empleados
contratados antes de una fecha dada se
incluye en ColPersona:

selectContratadosAntes(Fecha) :ColPersona |

epezueAy uoldewelbold

Programacién Avanzada

Busquedas (3)

Colpersona * ColpPersona::selectContratadosAntes(Fecha f) {
result = new ColPersona(new List());
Personalterator it = getIterator();

Colpersona *

while(it.hascurrent()) {

if(it.current()->getFechaContratacionQ<f)

result->add(it.current());

it.nextQ;

return result;

}

Notar que todas las variantes de select() de ColPersona seran
exactamente iguales entre si a menos de esta porcion del codigo.

Busquedas (5)

» Seria posible incorporar a las interfaces
ICollectione IDictionary,
respectivamente,las operaciones:

o select(ICondition)
o select(ICondition)

ICollection
IDictionary

= Lainterfaz ICond1ition se define como:

«interface»
ICondition

holds(ICollectible):Boolean

en cada realizacion ho1ds () indicaré si un cierto objeto
debe formar parte del resultado del select().

Busquedas (7)

= Una posible implementaciéon de select()
en una realizacion de I1Collection seria:

ICollection *

IIterator *

it->nextQ;
}

return result;

List::select(ICondition *
ICollection * result = new List(Q);
it = getIterator();

while(it->hascurrent()) {
if(cond->holds(it->current()))
result->add(it->current());

cond) {

Busquedas (9)

= Ejemplo de
condicién
concreta:

class Persona : ICollectible {
private:

String nombre;

int edad;
public:

Persona();

String getNombre();

int getEdad();

1/l CondEdad.h
class CondEdad : ICondition {
private:
int valorEdad;
public:
CondEdad(int i);
bool holds(ICollectible *ic);

}

/I CondEdad.cpp

CondEdad::CondEdad(int i) {
valorEdad = i;

}

bool CondEdad::holds(ICollectible *ic) {
Persona * p = (Persona *)ic;
return (p->getEdad() == valorEdad);

INDICE

Busquedas (4)

Las operaciones de busqueda de una

coleccién concreta son muy similares entre si.

Incluso no solamente las correspondientes a

una misma coleccidon concreta: las busquedas

en todas las colecciones son similares salvo:

o La condicién que determina la inclusiéon de un
elemento en el resultado.

o Los parametros.

o Eltipo del iterador y la coleccion resultado.

Busquedas (6)

¢, Como manejar las diferencias mencionadas

entre las diferentes implementaciones?

o Eltipo del iterador seria ITterator.

o Eltipo del resultado seria ICollection o
IDictionary respectivamente.

o A suvez,la condicién encapsula:

= El o los parametros de la busqueda (en sus
atributos),

= El algoritmo que determina si un elemento de la
coleccion debe pertenecer,ademas,al resultado
(en el método asociado a holds(Q)).

Busquedas (8)

De esta forma las clases que implementan
ICond1ition son estrategias concretas
que el seTect () utiliza para construir la
coleccion resultado.

En esta aplicacion de Strategy se dan las
siguientes correspondencias:

List - Context

ICondition - Estrategia

select() - solicitud()

holds () - algoritmo()

o O

[¢]

4. Base de datos

A/S. Gabriella Savoia

INDICE

Ejemplo 1
CREATE TABLE Empleados(
IdEmp INT NOT NULL,
Apellido VARCHAR(30) NOT NULL,
Nombre = VARCHAR(30) NOT NULL,
Direccion VARCHAR(100) NOT NULL,
FecNac DATETIME NOT NULL,
Salario MONEY NOT NULL CONSTRAINT check_salario CHECK (Salario >

0)

Ejemplo 2
ALTER TABLE Empleados
ADD CONSTRAINT pk_empleado PRIMARY KEY (IdEmp)

Ejemplo 3
ALTER TABLE Empleados
DROP CONSTRAINT pk_empleado

Ejemplo 4

Dependiendo del DBMS, se pueden habilitar o deshabilitar (sin eliminarlas):
-- deshabilitar la restriccién check_salario en la tabla.

ALTER TABLE Empleados

NOCHECK CONSTRAINT check_salario
-- habilitar la restriccién check_salario en la tabla.

ALTER TABLE Empleados

CHECK CONSTRAINT check_salario

Ejemplo 5
“Todo libro se identifica por un ISBN. Todo libro es escrito por al menos UN autor.”
CREATE TABLE Libros (
ISBN INT NOT NULL PRIMARY KEY,
idAutor ~ INT NOT NULL,
Nombre =~ VARCHAR(100) NOT NULL,
Precio MONEY NOT NULL);

CREATE TABLE Autores (
idAutor INT NOT NULL PRIMARY KEY,
Nombre ~ VARCHAR(100) NOT NULL);

ALTER TABLE Libros

ADD CONSTRAINT fk_autor FOREIGN KEY (idAutor)
REFERENCES Autores (idAutor)

ON DELETE CASCADE;

sojep ap aseg

Base de datos

CREATE TABLE

Crea una nueva tabla.

Dependiendo del DBMS,; exigira crearla bajo un Esquema determinado.

Sintaxis:
CREATE TABLE table_name

({ < column_definition >

| < table_constraint > } [,..n]

)
< column_definition > := column_name data_type
[DEFAULT constant_expression |
[< column_constraint > | [..n |

Definiciéon de restricciones por COLUMNA

< column_constraint >:= [CONSTRAINT constraint_name]
{ [NULL | NOT NULL]
| [{PRIMARY KEY | UNIQUE }]
| [[FOREIGN KEY |
REFERENCES ref_table [(ref_column) |
[ON DELETE { CASCADE | NO ACTION } |
[ON UPDATE { CASCADE | NO ACTION }]

]
| CHECK (logical_expression) }

Definicion de restricciones a nivel de TABLA

< table_constraint > ::= [CONSTRAINT constraint_name |
{ [{ PRIMARY KEY | UNIQUE }
{ (column [ASC | DESC] [,.n]) }]
| FOREIGN KEY [(column [,.n])]
REFERENCES ref_table [(ref_column [,.n])]
[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE | NO ACTION }] }

Ejemplo:

PostgreSQL.:
CREATE TABLE “Empleados” (
“CI” character(8) PRIMARY KEY ,
“Nombre” character varying(100),
“Direccion” character varying(200),
“Fec_Nacimiento” date)
WITH (OIDS=FALSE);
MS-SQLServer:
CREATE TABLE Empleados (
CI character(8) PRIMARY KEY |
Nombre varchar(100),
Direccion varchar(200),
Fec_Nacimiento smalldatetime);

MySQL:
CREATE TABLE Empleados (
CI character(8) PRIMARY KEY ,
Nombre varchar(100),
Direccion varchar(200),
Fec_Nacimiento date);

Ejemplos con constraints:

CREATE TABLE PuestosDeTrabajo(
Id_puesto smallint PRIMARY KEY,
Descripcion varchar(50) NOT NULL
DEFAULT ‘Nueva posicion’,
Nivel_Min tinyint
NOT NULL
CHECK (min_lvl >= 10),
Nivel_Max tinyint
NOT NULL
CHECK (max_lvl <= 250)

)
Estas restricciones son a nivel de COLUMNA

CREATE TABLE Empleados (
Id_emp int PRIMARY KEY,
Id_puesto smallint NOT NULL,
id_seccion smallint NOT NULL

FOREIGN KEY (Id_puesto) REFERENCES
PuestosDeTrabajo(Id_Puesto)

CHECK (id_seccion IN (1389, 0736, 0877, ‘1622, “1756")

OR id_seccion LIKE 99[0-9][0-9]")
)

Contiene restricciones a nivel de COLUMNA y TABLA.

INDICE

sojep ap aseg

Base de datos

ALTER TABLE
Modifica la definicién de una tabla. Permite:
* Alterar, agregar o eliminar: columnas o restricciones.
* Habilitar o deshabilitar constraints y triggers.
No puede aplicarse a tablas del sistema.

Sintaxis:
ALTER TABLE table
{ [ALTER COLUMN column_name

{ new_data_type [(precision [, scale |)] [NULL | NOT NULL] }]

| ADD {[< column_definition >]
| column_name AS computed_column_expression ej: cost AS price * qty} [,...n]
| [WITH CHECK | WITH NOCHECK |
{ < table_constraint > } [,..n |

WITH CHECK :
Indica si la nueva constraint sera chequeda o no sobre los datos ya existentes en la tabla

(al momento de crear el constraint).

ALTER TABLE
| DROP
{ | CONSTRAINT | constraint_name
| COLUMN column } [,..n]

| { [WITH CHECK | WITH NOCHECK | CHECK | NOCHECK }
CONSTRAINT
| { ENABLE | DISABLE } TRIGGER
b
Ejemplos

* Agregar una nueva columna:
CREATE TABLE doc_exa (column_a INT);
ALTER TABLE doc_exa ADD column_b VARCHAR(20) NULL ;

¢ Eliminar una columna:
CREATE TABLE doc_exb (colA INT, colB VARCHAR(20) NULL) ;

ALTER TABLE doc_exb DROP COLUMN colB;

* Agregar columna con restriccion de integridad UNIQUE:
CREATE TABLE doc_exc (column_a INT);
ALTER TABLE doc_exc ADD column_b VARCHAR(20) NULL
CONSTRAINT exb_unique UNIQUE;

INDICE

Usos de ALTER
1 - Crear claves foraneas.
“La ciudad se identifica por un codigo, pero un codigo de ciudad puede repetirse en
diferentes departamentos (entidad débil Ciudad).”
CREATE TABLE DEPARTAMENTOS (
IdDep int primary key,
NomDep varchar(100) not null);
CREATE TABLE CIUDADES (
IdDep int,
1dCiud int,
NomCiud varchar(100) not null
CONSTRAINT PK_CIUDADES PRIMARY KEY (IdDep,IdCiud));
ALTER TABLE CIUDADES ADD CONSTRAINT FK_DEPTOS
FOREIGN KEY (IdDep)
REFERENCES DEPARTAMENTOS (IdDep);

2 - Agregar una columna con valores por defecto.

WITH VALUES provee valores para las filas ya existentes en la tabla (sino cada fila que-

daria con el valor NULL).
ALTER TABLE MyTable
ADD AddDate smalldatetime NULL
CONSTRAINT AddDateDAlt
DEFAULT getdate() WITH VALUES ;

3 - Agregar constraints en tablas que ya lo violan.

Se agrega una constraint para una columna existente.

Si la columna actualmente posee un valor que viola la constraint, se puede usar WITH
NOCHECK para evitar el chequeo contra las filas existentes y permitir agregar la restric-
ci6n de todos modos.

CREATE TABLE T1 (column_a INT) ;

INSERT INTO T1 VALUES (-1);

ALTER TABLE T1 WITH NOCHECK

ADD CONSTRAINT exd_check CHECK (column_a > 1);

DROP TABLE
e Elimina:
La definicién de la tabla:
Todos sus datos.
Objetos asociados: indices, triggers, constraints, especificaciones de permisos.
* No siempre pueden eliminarse: solo cuando no existen constraints de otras tablas
hacia ella.
¢ Cualquier vista o stored procedure referenciado deben ser explicitamente eliminados
antes con DROP VIEW o DROP PROCEDURE.
* No pueden eliminarse tablas del sistema.
Sintaxis:
DROP TABLE table_name

sojep ap aseg

Base de datos

Comparativo: Restricciones estaticas vs. dinamicas

Componentes Funcionalidad Costo de Antes o Despues
Performance | de la Transaccion
Constraints Media Baja Antes
Triggers /Stored | Alta Alta Despues
Procedures

Consejos:

* Usar Constraints porque son ANSI-Compliant.

* CON CUIDADO: usar integridad referencial en cascada en lugar de Triggers (siempre
que se pueda).

* Siempre generar SCRIPTS con los objetos de cada base, al mayor detalle posible (in-
cluir indices, restricciones, etc.).

DML - SELECT
SELECT

* Sentencia unica de consulta en bases de datos relacionales.

* Implementacién de operaciones vistas en Algebra Relacional (seleccion, proyeccion,
join, etc.).

* Permite obtener datos de varias tablas simultaneamente.

* Los resultados siempre seran conjuntos de tuplas: No necesariamente se devuelven en
orden.

* La ejecucion de esta sentencia NO MODIFICA dato alguno ni genera cambios en las
base.

Puede afectar el rendimiento general del DBMS si se hace descuidadamente.

Formato de la sentencia:
SELECT [ALL| DISTINCT] columnas deseadas
FROM tablas
[WHERE condicion]
[GROUP BY lista-nombre-columna o lista-posicion]
[HAVING condicién de grupo]
[ORDER BY nombre-columna o posicion]

Seleccionando todas las columnas

Ejemplo:
SELECT * FROM SECCIONES
IdSec NomSec IdSecSup
1 Directorio 1
2 Tecnologia 1
5 Marketing 4
4 Ventas 1
3 Finanzas 1

INDICE

Seleccionando columnas especificas (proyeccion)

Ejemplo:

SELECT NomEmp, Direccion FROM EMPLEADOS
NomEmp Direccion
Juan Perez Sarando 619 apto. 101

Roberto Martinez | Tiburcio Gomez 1420

Sandra Perez Of. 17 m. S/N

Mariana de Leon | Ruta 8 Km. 28 Paraje El Grillo

Andres Gomez Cno. Del Andaluz Km. 8 %4

Seleccionando valores tinicos:

Ejemplo:

SELECT cuenta SELECT DISTINCT cuenta
FROM Movimientos FROM Movimientos
CUENTA CUENTA
10002 10002
10002 10004
10004 10003
10002
10003
10004

La clausula WHERE:

Especifica un criterio de seleccion de registros a ver (seleccion).
SELECT lista_de_columnas
FROM nombre_de_tablas
WHERE condicién

SELECT cliente, cuenta, producto
FROM cuentas
WHERE producto =1

CLIENTE CUENTA PRODUCTO

10002 100 1
10002 125 1
10004 789 1

Delimitadores

SELECT cliente, cuenta, producto
FROM cuentas
WHERE producto <> 1

CLIENTE CUENTA PRODUCTO

10015 110 6
10003 351 5
10004 454 2

* En Strings o Fechas, suelen ser comillas dobles o apdstrofes.
* Se usan para delimitar los literales usados en el SELECT y evitar la confusion entre el

nombre de una
Ejemplo:

columna y su contenido:

FecNacimiento =’01/01/2001’
apellido = ‘PEREZ’
CI >= “1000000-0”

sojep ap aseg

49

Base de datos

SELECT cliente, nombre
FROM clientes
WHERE apellido = ‘PEREZ’

CLIENTE APELLIDO
10007 PEREZ
10008 PEREZ
10001 PEREZ

Operadores Relacionales

Significado Simbolo Ejemplo
Igual = Cuenta = 12003
No igual <, = Cuenta <> 12003
Mayor que > FecNac > ’01/01/2001’
Menor que < FecNac < ’01/01/2001°
Mayor o igual >= Saldo >= 12000
Menor o igual <= Saldo <= 12000
Pertenece a una lista IN Apellido IN (‘PEREZ’,”MARTINEZ’)
En un rango de valores BETWEEN | Sueldo BETWEEN 12000 and 24000
Contiene un string LIKE Nombre LIKE ‘%JUAN%’

DML - Uso del NULL

SELECT persona, direccion SELECT persona, direccion
FROM personas FROM personas

WHERE direccion IS NULL WHERE direccion IS NOT NULL
PERSONA DIRECCION PERSONA DIRECCION

10045 10015 18 DE JULIO 2323
10063 10034 18 DE JULIO 2325
10036 10030 18 DE JULIO 2324

Dependiendo del
programa de consulta
puede mostrar NADA o la
palabra NULL .

DML — Operadores Légicos

Operador Significado
AND Devuelve TRUE (verdadero) cuando ambas condiciones son verdaderas.
OR Devuelve TRUE (verdadero) cuando al menos UNA de las 2 condiciones es
verdadera.
NOT Devuelve la negacion de la condicion.
IMPORTANTE:

Los operadores poseen prioridad de asociacion.
* E1 AND posee la mas alta prioridad.
* Si necesitamos condiciones complejas con AND y OR debemos utilizar PARENTESIS.

INDICE

1) Listar las personas que viven en “La Paloma” (en el departamento de Rocha).
SELECT persona, nombre

FROM personas

WHERE ciudad = “La Paloma”

AND departamento = “Rocha”

2) Listar las personas que viven en Rocha o Durazno.
SELECT persona, nombre

FROM personas

WHERE departamento = “Rocha”

OR departamento = “Durazno”

3) Ejemplo combinado de AND y OR.
¢Cuales son los titulos de las peliculas del estudio “MGM” que fueron filmadas luego de

1970 o cuya duracién es menor a 90 minutos?

Incorrecto :

SELECT NomPelicula

FROM Peliculas

WHERE anio > 1970 OR duracion < 90 AND NomEstudio = ‘MGM’

Error: el AND tiene mayor precedencia, el compilador entiende
anio > 1970 OR (duracion < 90 AND NomEstudio = ‘MGM’)

Correcto:

SELECT NomPelicula

FROM Peliculas

WHERE (anio > 1970 OR duracion < 90) AND NomEstudio = ‘MGM’

sojep ap aseg

Base de datos

DML — Mas basquedas

Buscando en un rango de valores (BETWEEN).

Dos ejemplos equivalentes:

SELECT fecha,cuenta,importe

FROM movimientos

WHERE sucursal =1 AND
(importe >= 10000 AND
importe <= 20000)

SELECT fecha,cuenta,importe
FROM movimientos

WHERE sucursal =1 AND
importe BETWEEN 10000 AND 20000

Buscando en un conjunto de valores (IN).
Dos ejemplos equivalentes:

SELECT cliente,nombtre

FROM clientes

WHERE cliente = 10052
OR cliente = 10035
OR cliente = 10028
OR cliente = 10068

SELECT cliente,nombre
FROM clientes

WHERE cliente IN (10052,10035,10028,10068)

Uso del operador LIKE.

Busquedas en Strings (char, varchar, char varying, etc.)

Nombres que terminan en Pere y el altimo caracter es cualquiera:

Otros ejemplos:

SELECT cliente,nombre
FROM clientes
WHERE nombre LIKE “%Pere_”

CLIENTE NOMERE

10002 Juan Perez
@IS Pedro Perez
10016 Alberto Perez
10012 Francisco Perez
10022 Luiz Peres

SELECT cliente,nombre

FROM clientes
WHERE Nombre
LIKE “[a-zA-Z]%Pere_"

CLIENTE NOMBRE

FROM clientes
WHERE Nombre
LIKE “[A-J]%Pere_"

CLIENTE NOMBRE

Mascara

Significado

%

Equivale a cero o mas caracteres cualesquiera.

Busquedas por caracteres —
_ (guion inferior)

Representa a UN caracter cualquiera.

o patrones.
[v1-v2]

Intervalo de valores posibles, una ocurrencia.

["v1-v2]

Excluye el intervalo de valores, una ocurrencia

Busquedas en Strings
(chat, varchar, char varying, etc.)
Ejemplo: Nombres que finalizan en Pérez.

SELECT cliente, nombre
FROM clientes

WHERE

nombre LIKE “%Perez”

CLIENTE NOMBRE

10002 Juan Perez
10013 Pedro Perez
10016 Alberto Perez

10012 Francisco Perez

10002 Juan Perez. 10013 Pedro Perez
10013 Pedro Perez 10022 Luiz Peres
10016 Alberto Perez
10012 Francisco Perez
10044 Frank Peret
10022 Luiz Peres

La clausula ORDER BY

SELECT no devuelve los registros en algiin orden preestablecido.
J ORDER BY indica en qué orden quiero que muestre el resultado.

INDICE

e Pueden ser varias columnas, en ese caso se respeta el orden de izquierda a derecha.

e ASC o DESC indican Ascendente o Descendente, ASC es el default.

Sintaxis:
SELECT campos
FROM tablas

[WHERE condicién]

ORDER BY nombre-columnas o posiciones [ASC | DESC]

Ej.: SELECT
FROM
WHERE
ORDER BY

CLIENTE
10016
10034
10012
10002
10022
10013

cliente, nombre
clientes

nombre LIKE “%Perez”
nombre ASC

NOMBRE

Alberto Perez
Francisco Perez
Francisco Perez
Juan Perez

Luiz Peres
Pedro Perez

sojep ap aseg

Base de datos

INDICE

Operadores Aritméticos Joins

Permiten formar expresiones complejas. * Permite recuperar informacion de varias tablas vinculadas l6gicamente entre si.
Utilidad: * Implementa la operacién Join del Algebra Relacional.

* Devolver valores calculados (no incluidos en campos).

* Expresar condiciones (en WHERE o HAVING). Ej: “Quiero saber todos los datos de los Clientes mas sus N° de cuenta.”

* Nuevos campos en Vistas. Tengo las tablas:
Operadores: CLIENTES (nro_cliente, nom_cliente, direccion).

* + suma. CUENTAS (nro_cliente,nro_cuenta, cod_moneda).

* - resta.

« * multiplicacion. Consulta con Join : Clientes n de Cutnta

e / division. . .

%médulo (resto) SELECT Clientes.”, Cuentas.nro‘_cuem;a/
0 ’ FROM Clientes , Cuentas

. WHERE Clientes.nro_cliente = Cuentas.nro_cliente

Ejemplo 1 \‘

“Necesitaria ver la cotizacion de las monedas y cuanto serfa si subieran todas un 5%.”

Incluimos 2 tablas en el FROM ‘

Obligatorio : condicion de Join ‘

SELECT moneda, cotizacion, cotizacion * 1.05

W&“&E °°t'za§'°nes L Joins: ¢:Qué son?
moneda <> moneda_va
ORDER BY cotizacion DESC * Es la implementacion del Producto Cartesiano (T'1 x T2) + Seleccion.
A s P el * Si no se especifica una condicion, el conjunto resultante no posee sentido practico.
il 'S5 ’ 70 16.485 Clientes Nro_cliente | Nom_cliente | Direccién Cuentas
4 2,70 2.835 1000 Ana Dir1 Nro_cliente | Nro_cuenta | Cod_moneda
: 220 2ol 1100 Ped Dir2 - — =
5 0,89 0.9345 eare g 1000 3521 1
1200 Maria Dir3 1200 3687 0
1300 Roberto Dir4
Eiemplo 2 Nro_cliente | Nom_cliente | Direccion | Nro_cliente | Nro_cuenta | Cod_moneda
: : : : 1000 A Dir1 1000 3521 1
“Quiero todos los articulos cuyo precio de compra sea menor al 80% del precio de venta” Select * = =
1000 Ana Dir1 1200 3687 0
Select * From Clientes, Cuentas 1100 Pedro Dirz | 1000 3521 1
From ARTICUILOS 1100 Pedro Dir2 1200 3687 0
. . 1200 Maria Dir3 1000 3521 1
* , :
Where precio_compra < (precio_venta * (.8). Solo tienen sentido los aue |~ [7700 — T2 pyve 5
coinciden en nro_cliente
1300 Roberto Dir4 1000 3521 1
1300 Roberto Dir4 1200 3687 0
Etiquetas Aplicando la condicion de Join:

Los campos calculados devueltos en SELECT no poseen nombre: se les puede inventar Select™

un nombre “on-the-fly”. From Clientes, Cuentas

select moneda, cotizacién, ‘hueva_cotizacion” = cotizacion * 1.05 Where Clientes.nro_cliente = Cuentas.nro_cliente .

from cotizaciones - : — :
Nro_cliente | Nom_cliente | Direccién | Nro_cliente | Nro_cuenta | Cod_moneda
where moneda <> moneda_val 1000 Ana Dirt 1000 3521 1
ORDER BY nueva_cotizacion DESC 1200 Maria Dir3 1200 3687 0
También pueden utilizarse para presentar otro nombre para el campo: El campo Nro_cliente aparece dos veces: uno por cada tabla donde aparece.
select “Codigo Articulo” = IdArt, “Nombre Articulo” = NomArt Solucién:
from ARTICULOS 1. Exponer en el SELECT solo los campos que queremos ver.

where 2. Utlizar ALIAS.

sojep ap aseg

Base de datos

Joins: Alias

* Son un modo de “renombrar” las tablas para mayor comodidad.
* Permite hacer mas legible joins de varias tablas.
Ejemplo: “Listado de todos los Clientes con su N° de cuenta y moneda.”
SELECT CLI.nom_cliente, CU.nro_cuenta, M.nom_moneda
FROM Clientes CLI, Cuentas CU, Monedas M
WHERE
CLILnro_cliente = CU.nro_cliente
AND CU.cod_moneda = M.cod_moneda

Sintaxis ANSI del Join

SELECT CUX*, CLILnro_cliente, CLL.nom_cliente
FROM Cuentas

AS CU JOIN Clientes AS CLI

ON CU.nro_cliente = CU.nro_cliente

WHERE CLI.nom_cliente like “%PEREZ%’ ;

Equivalente mas compacto:
SELECT CUX*, CLILnro_cliente, CLL.nom_cliente
FROM Clientes CLI , Cuentas CU
WHERE CU.nro_cliente = CU.nro_cliente
and CLIL.nom_cliente like “%0PEREZ%’;

Creando un JOIN:

Usualmente se desea recuperar informacién de mas de una tabla. Por ejemplo:

CLIENTES CUENTAS

Cliente 10001 Cliente 10001

Cliente 10002\0@% 10001

Cliente 10001

Cliente 10050 Cliente 10002

¢ Creacion de JOINGs.

1. Creacién del Producto Cartesiano.

2. Refinamiento aplicando restricciones y eliminando filas sin significado relevante
incluyendo una clausula WHERE valida.

* Tipos:

3. Equi-Join, Natural-Join and Join Multi-Tabla.

4. Outer-Joins.

* Informacién adicional en las clausulas de la sentencia Select:

SELECT Indicar qué columnas se quiere seleccionar de cada una de las tablas.

FROM Especificar las tablas de las que se esta seleccionando informacion en la SELECT.

WHERE Indicar las columnas de las tablas seleccionadas que se igualaran para esta-
blecer el join.

INDICE

* Consideraciones:

Clave Primaria (Primary Key)

Se define como el conjunto de uno o mas campos de un registro que conforman su
clave, determinando la unicidad de cada fila en la tabla.

Clave Externa (Foreign Key)

Asocia los campos de una tabla con un conjunto idéntico de campos, definidos como
Clave Primaria en otra tabla. Esta asociacion permite el chequeo de integridad referencial y
actualizaciones automaticas.

* Algunas particularidades:

Primary Key — Foreign Key

Es muy comun realizar joins entre tablas que se encuentran en una Relacién de uno a
muchos.

Las columnas que se igualaran para establecer el join no tienen porque tener el mismo
nombre.

NOTA: Recordemos que el valor null significa sin valor o desconocido. A traves de ¢l

no se puede hacer un join.

El orden en el que se escriben las condiciones del join no afecta el significado del mis-

mo.
Equi-Join: R(A.B) S(C.D)
Theta-Join basado en A B C D
..,) 3 4 2 7
condicién de igualdad: 3 7 3 3
R S
RxS RB:gD
Resultado
RA RB S.C SD [RA | RB | sC | S.D |
[s [7 [2 | 7 |

w|n|w|w
(I SIFNFS
oo
oo[<a|o0|wa

Equi-Join: Join en el cual la condicién de seleccion esta basada en la igualdad de valo-
res entre columnas, las que pueden aparecer como informacién redundante en el resulta-
do.

Obs: los nombres de las columnas en las diferentes tablas no necesariamente debe ser el
mismo.

SELECT * FROM Clientes, Cuentas

WHERE Clientes.cliente = Cuentas.cliente

¢Recupera?
cliente nombre cliente cuenta moneda saldo
Resultado con 10007 CUENTA 10007 10007 100071 1 51112.31
duplicado de 10007 CUENTA 10007 10007 100072 1 -31484.56
) p B 10009 CUENTA 10009 10009 100092 1 -5468.72
informacion: 10010 CUENTA 10010 100010 100101 1 -425920.75
10010 CUENTA 10010 100010 100102 1 0.00
10011 CUENTA 10011 100011 100112 1 0.00

sojep ap aseg

Base de datos

SELECT clientes.cliente, clientes.nombre,
cuenta, moneda, saldo

FROM clientes, cuentas

WHERE clientes.cliente = cuentas.cliente;

¢Problema?

Si el cliente No tiene cuenta, no figura en el resultado.

cliente nombre cuenta moneda saldo
10007 CUENTA 10007 100071 1 51112.31000000
10007 CUENTA 10007 100072 1 -31484.56000000
10009 CUENTA 10009 100092 1 -5468.72000000
10010 CUENTA 10010 100101 1 -425920.75000000
10010 CUENTA 10010 100102 al, 0.00000000
10011 CUENTA 10011 100112 1 0.00000000

Un error comun:

SELECT cliente, clientes.nombre, cuenta,
moneda, saldo

FROM clientes, cuentas

WHERE clientes.cliente = cuentas.cliente;

Columna ambigua, existe en ambas tablas.

324: Ambiguous column (cliente).

Natural Join

Emp (name, dept) Contact (name, addr)

Name Dept Name Addr
Jack Physics Jack Irvine
Tom ICS Tom LA

Mary Riverside

Emp [« Contact: Todos los nombre, departamentos y direcciones

Emp.name Emp.Dept | Contact.name | Contact.addr
Jack Physics Jack Irvine
Jack Physics Tom LA
Jack Physics Mary Riverside
Emp x Contact Tom ICS Jack Irvine
Tom ICS Tom LA
Tom ICS Mary Riverside
Resultado Name Dept Addr
Jack Physics Irvine
Tom ICS LA

Natural Join es un Equi-Join en el cual una de las columnas duplicadas es eliminada de la

tabla resultante, usualmente utilizadas en la condicién de Join.
SELECT monedas.*, fecha, cotizacion
FROM monedas, cotizaciones
WHERE monedas.moneda = cotizaciones.moneda;

INDICE

Resultado:
se evita la .
i . moneda nombre moneda_val fecha cotizac
1nformac10n 1 PESO URUGUAYO 1 01/03/2002 1.00
2 DOLAR AMERICANO il 01/03/2002 15.60
redundante. 3 PESO ARGENTINO 1 01/03/2002 8.00
4 REAL 1 01/03/2002 6.70
5 EURO 1 01/03/2002 14.00
1 PESO URUGUAYO 1 04/03/2002 1.00
2 DOLAR AMERICANO 1 04/03/2002 15.75
3 PESO ARGENTINO il 04/03/2002 8.00
4 REAL 1 04/03/2002 6.70
5 EURO 1 04/03/2002 14.00
Join con muchas tablas:
SELECT clientes.nombre,
productos.nombre,
monedas.nombtre
FROM clientes, cuentas, productos, monedas
WHERE cuentas.cliente = clientes.cliente AND
cuentas.producto = productos.producto AND
cuentas.moneda = monedas.moneda
Resultado:
nombre nombre nombre
CLIENTE 10010 CAJA DE AHORRO PESO URUGUAYO
CLIENTE 10101 CAJA DE AHORRO PESO URUGUAYO
CLIENTE 10397 CAJA DE AHORRO PESO URUGUAYO
CLIENTE 10080 CAJA DE AHORRO PESO URUGUAYO
CLIENTE 10131 CAJA DE AHORRO PESO URUGUAYO
CLIENTE 10404 CAJA DE AHORRO DOLAR AMERICANO
CLIENTE 10453 CAJA DE AHORRO PESO URUGUAYO
Los ALIAS:

SELECT CE.nombrte cliente,
P.nombre producto,
M.nombre moneda
FROM clientes CE, cuentas CU,
productos P, monedas M
WHERE CU.cliente = CE.cliente
AND CU.producto = P.producto
AND CU.moneda = M.moneda

Resultado: cliente producto
CLIENTE 10010 CAJA DE AHORRO
CLIENTE 10101 CAJA DE AHORRO
CLIENTE 10397 CAJA DE AHORRO
CLIENTE 10080 CAJA DE AHORRO
CLIENTE 10131 CAJA DE AHORRO
CLIENTE 10404 CAJA DE AHORRO
CLIENTE 10453 CAJA DE AHORRO

moneda

PESO URUGUAYO
PESO URUGUAYO
PESO URUGUAYO
PESO URUGUAYO
PESO URUGUAYO

DOLAR AMERICANO

PESO URUGUAYO

sojep ap aseg

Base de datos

INDICE

Sintaxis AINSI del Join: Left Outer Join
SELECT M.*, fecha, cotizacion Name Dept Name Addr
. . - Jack Irvine
FROM monedas AS M JOIN cotizaciones AS C R _JIaCk Pl%sécs Mike LA S
om : 2
ON M.moneda = C.moneda Mary Riverside
WHERE fecha < “01/05/2002” ; RxS
R.name R.Dept S.name S.addr
moneda nombre moneda_val fecha cotizacion > . Jack Physics Jack Irvine
1 PESO URUGUAYO 1 01/03/2002 1.00000000 Left outer join Jack Physics Mike LA
2 DOLAR AMERICANO 1 01/03/2002 15.60000000 RIS Jack Physics Mary Riverside
3 PESO ARGENTINO 1 01/03/2002 8.00000000 Tom ICS Jack Irvine
4 REAL 1 01/03/2002 6.70000000 Tom ICS Mike LA
5 EURO 1 01/03/2002 14.00000000 Tom ICS Mary Riverside
1 PESO URUGUAYO 1 04/03/2002 1.00000000
2 DOLAR AMERICANO 1 04/03/2002 15.75000000
3 PESO ARGENTINO 1 04/03/2002 8.00000000
4 REAL 1 04/03/2002 6.70000000 Name Dept Addr
5 EURO 1 04/03/2002 14..00000000 Jack Physics Irvine
Tom ICS NULL
Rellena con nulos para tuplas sin correspondiente a la derecha
El OUTER Join: - Fjemplo de Left OUTER Join:
La tabla de CLIENTES . . .
o s m Simple Join SELECT C.cliente, C.nombre,U.cuenta
cTAartes 6k COENTAS: * * I FROM clientes C LEFTOUTERJOIN
+ I cuentas U ON (c.cliente = u.cliente)
Clientes sin CUENTAS: ;_ Resultado Outer Join Simple:
*_ cliente nombre cuenta
CLIENTES CUENTAS . 10005 CLIENTE 10005
= Outer Join 10006 CLIENTE 10006

* by | 10007 CLIENTE 10007 100071
10007 CLIENTE 10007 100072
10008 CLIENTE 10008

SgEmETTE 10009 CLIENTE 10009 100092
by | 10010 CLIENTE 10010 100101
* ** 10010 CLIENTE 10010 100102
10011 CLIENTE 10011 100112
10011 CLIENTE 10011 100111
El Join comin (INNER Join) trae solamente los registros de ambas tablas que cumplan 10012 CLIENTE 10012 100121
s : : 10012 CLIENTE 10012 100122
con las condiciones del JOIN. Por ejemplo, cuando recuperamos los clientes con sus cuen- S Bl e s

tas NO trae los clientes sin cuentas. 10014 CLIENTE 10014

Es por ello que existe el OUTER Join que trae todos los registros de la tabla principal.

Si no existen registros de la otra que cumplan la condicioén de Join pone sus campos en Right Outer Join
NULO (Null) y en caso contrario los trae.
. . . , . . Name Addr
Existen tres tipos: left, right, o full, segun cual se considere la tabla “dominante”. Name Dept Tack Irvine
R Jack Physics Mike LA S
Tom 1CS Mary Riverside
RxS
. L. R.name R.Dept S.name S.addr
nght outer join Jack Physics Jack Irvine
° Jack Physics Mike LA
RD><S Jack Physics Mary Riverside
Tom 1CS Jack Irvine
Tom ICS Mike LA
Tom ICS Mary Riverside
Name Dept Addr
Jack Physics Irvine
Mike NULL LA
Mary NULL Riverside

Rellena con nulos para tuplas sin correspondiente a la izquierda

sojep ap aseg

Base de datos

INDICE

Full Outer Join Resultado: Este SELECT encuentra pares de 6rdenes cuyo peso difiere en, por lo me-
- > i T nos, un factor de 5 y cuyas fechas de envio no son nulas.
R Jack Physics Mike LA S
Jom L5 Mary Riverside cod_orden peso fecha_envio cod_otrden peso fecha_envio
RS 1004 95.8 05/03/1991 1011 104 07/03/1991
Rname RDept S.name Saddr 1004 95.8 05/03/1991 1020 14.0 07/16/1991
Full outer join |~ ——"phics |_ack__|_inie 1007 1259 06/03/1991 1015 206 07/30/1991
RS ok | physics | My | Rivenid 1007 1259 06/03/1991 1020 140 07/16/1991
Tom ICS Mike LA 1007 125.9 06/03/1991 1022 15.0 07/16/1991
Tom ICS Mary Riverside
ke e Funciones de Agregacion
Tom (o) NULL . .,
Mike NULL — Toman valores que dependen de las columnas y retornan informacion respecto a las co-
Mary NULL Riverside .
Rellena con blancos para las tuplas sin correspondiente tanto a la derecha como a la izquierda lumnas (1’10 las columnas P ropmmente) :
* COUNT (%
* COUNT (DISTINCT nombre_columna)
Nested Simple Join: * SUM (columna/expresion)
SELECT C.cliente, C.nombre, U.cuenta, Pnombre * AVG (columna/expresion)
FROM clientes C LEFT OUTER JOIN * MAX (columna/expresién)
(cuentas U JOIN productos P ON U.producto = P.producto) * MIN (columna/expresion)
ON (C.cliente = U.cliente
() COUNT
1. Realiza un join simple entre las tablas cuentas y productos. Devuelve la cantidad de tuplas que cumplen la condicion de WHERE o HAVING.
2. Luego realiza un outer join para combinar la informacién con la tabla clientes. Ejemplo 1: ;:Cuantos movimientos se han hecho en el banco?
Resultado Nested Simple Join: SELECT COUNT (*¥) FROM Movimientos;

Ejemplo 2: ;Cuantos alumnos hay Inscriptos a una materia?
SELECT COUNT (DISTINCT cod_alumno)
cliente nombre cuenta nombre FROM Inscripciones;

10001 CLIENTE 10001 SUM
10002 CLIENTE 10002 S | idos d .
10003 CLIENTE 10003 uma los contenidos de un Campo numerico.

10004 CLIENTE 10004 Ej: ¢Cuanto diner ha ita n la cuenta 1001017
b Ry o j: ¢Cuanto dinero se ha depositado en la cue 00101-
10006 CLIENTE 10006

10007 10007 100071 .
10007 gti::ii 10007 100072 gﬁé:nD\Ecg:g?:gTE SELECT SUM(importe) (sum)
10008 CLTENTE 10008 FROM Movimientos
10009 CLIENTE 10009 100092 CUENTA CORRIENTE . 887786.31000000
WHERE importe>0 AND cuenta=100101;
Se les puede aplicar Etitquetas:
Self . SELECT SUM(importe) AS “Total Depositos’ Total Depositos
elf Join FROM Movimientos 887786.31000000
. » i WHERE importe>0 AND cuenta=100101;
Utilidad: comparacién de valores en una columna con otros valores en la misma colum-
na. AVG
SELECT X.cod_orden, X.peso, X.fecha_envio, Devuelve el promedio de los contenidos de un campo numerico.
Y.cod_orden, Y.peso, Y.fecha_envio AVG =SUM() / COUNT()
FROM Ordenes X, Ordenes Y ¢Cual es el monto promedio depositado en la cuenta 100101?
WHERE X.peso >= 5*Y.peso AND SELECT AVG(importe) as Promedio gromedio
X.fecha_envio IS NOT NULL AND FROM Movimientos i el

Y.fecha_envio IS NOT NULL WHERE importe>0 AND cuenta=100101;

sojep ap aseg

Base de datos

MAX, MIN

Devuelven el mayor o menor valor del conjunto seleccionado.

Ej. 1: ¢Cual fue el dep6sito mas alto en la cuenta 1001017

SELECT MAX(importe)
FROM Movimientos
WHERE cuenta = 100101;

Ej. 2: ¢Cual fue el dep6sito mas pequefo en la cuenta 1001017

SELECT MIN (importe)
FROM Movimientos

WHERE cuenta=100101 AND importe>0;

Las funciones de Agregacion se pueden aplicar simultineamente.
En este caso se aplican al MISMO conjunto de tuplas.

(max)
661306.92000000

SELECT MAX (importe), MIN (importe), AVG(importe)

FROM Movimientos

WHERE cuenta = 100101 and importe > 0;
En este ejemplo devuelve una tupla con tres campos.

Agrupamientos
GROUP BY

* Permite agrupar los registros por un campo (o mas de uno).
* Produce un solo registro por cada grupo de registros.

(min)
226479.39000000

SELECT cuenta

CUENTA

FROM Movimientos

SELECT
FROM

791 CUENTA
803 §

791

106982
106982 \ [803
106972

—12106982

]g?ggg 106972
107052

107052

cuenta

Movimientos
GROUP BY cuenta

Su utilidad es combinarlo con las Funciones Agregadas:
Ejemplo 1: “Quiero saber cantidad de movimientos y el importe por Cuenta.”

CUENTA

791
803
106982
106972
107052

SELECT cuenta, count(*), sum (importe)
FROM Movimientos
GROUP BY cuenta

(count(*)) (sum)

1
1
2
2
2

167505.18
139000.00
0.00
0.00
0.00

INDICE

Ejemplo 2: “Quiero saber cantidad de personas por Departamento y luego por Ciudad.”
SELECT departamento, ciudad, COUNT(¥)

FROM clientes

GROUP BY departamento, ciudad.

departamento ciudad (count(*))
MONTEVIDEO MONTEVIDEO 598
CANELONES CANELONES 22
CANELONES ATLANTIDA 13
MALDONADO MALDONADO 37
MALDONADO P. DEL ESTE 25

Nota: No necesariamente se ordenan por ese critetio.

Ordenando el GROUP BY:

Ejemplo 1: Ordenado por departamento y luego ciudad.
SELECT departamento, ciudad, COUNT(*)
FROM Clientes
GROUP BY departamento, ciudad
ORDER BY departamento, ciudad

Ejemplo 2: Ordenado por Cantidad (descendente) y luego por ciudad y departamento.
SELECT departamento, ciudad, COUNT(*)
FROM Clientes
GROUP BY departamento, ciudad
ORDER BY 3 DESC, 2, 1

IMPORTANTE:

Todas las columnas en la lista del SELECT que no estén en funciones de agregacion,
deben figurar en los campos de GROUP BY.

Esto es porque el GROUP BY solo puede retornar una fila por grupo y para esas filas
se aplica la funcién de agregacion.

SELECT ol1, col2,col3,...., colN,
FROM ...

WHERE ...

GROUP BY fol1, col2,col3,...., colN |

funcA(), funcB()

HAVING

* La clausula HAVING usualmente complementa a GROUP BY aplicando condiciones
a los grupos (especificados por el GROUP BY) luego de que éstos estan formados.

* Ventajas: se pueden incluir funciones de agregaciéon como condicioén de busqueda,
facilidad que no esta permitida en:
WHERE.

sojep ap aseg

Base de datos

Ejemplo:

“Quiero saber el total de dinero (por cuenta) de las cuentas > 10.000, pero solo de los

que tengan un total positivo.”

SELECT cuenta, SUM(importe) AS Total

FROM Movimientos
WHERE cuenta > 10000
GROUP BY cuenta

HAVING SUM(importe) > 0;

HAVING filtragrupos
asi como el WHERE

filtra registros.

Ejemplo de agrupamientos:

SELECT cuenta,
MAX(importe) Maximo,
MIN (importe) Minimo,
AVG (importe) Promedio

FROM Movimientos

WHERE cuenta > 10000

GROUP BY cuenta

HAVING COUNT(*) > 2 AND
SUM(importe) > 0

Funciones Escalares
* Funciones de String,
* Funciones Aritméticas.
* Funciones de Fecha.
* Funciones del Sistema.

Se pueden componer, siempre que se respeten los dominios de Entrada y Salida.

cuenta
100071
100102
100111

total
51112.31000000

100.0000000
226857.2900000

Funciones de String

* LEN

* STR

* SUBSTRING
* LOWER

* UPPER

* LTRIM

* CHARINDEX
* PATINDEX

* SPACE

* CHAR

* REPLICATE
* REVERSE

* STUFF

* DIFFERENCE
* RIGHT

LEN (campo/valor)

Devuelve el largo del string pasado como argumento.
len((HOLA) Resultado : 4

len(”) Resultado : 0

STR (valor_numericol, largo|, pos_decimales]])
SELECT str(-165.8768, 7, 2)
Resultado: -165.88’

SUBSTRING (campo/valot, posicion inicial, largo).

Devuelve un fragmento del String (parametro 1).

Los caracteres comienzan en la posicion 1.

SELECT substring(“ROBERTO MARTINEZ DELGADO”,8,7).
Resultado: * MARTIN.

LOWER (<char_expr>) Devuelve el mismo string pasado a mindsculas.

UPPER (<char_expr>) Devuelve el mismo string pasado a mayusculas.

SELECT upper(‘Bob Smith1234*&"), lower(‘Bob Smith1234*&"’)

BOB SMITH1234*&” bob smith1234*&"

LTRIM (<char_expr>) Remueve espacios en blanco a la izq.

SELECT ltrim(* wvalor)

INDICE

sojep ap aseg

Base de datos

INDICE

CHARINDEX retorna la posicién de comienzo de una determinada cadena en una Funciones del Sistema
expresion, donde expresion usualmente es el nombre de una columna. Permiten obtener informacién del entorno.
Devuelven informacién del sistema, usuario, BD y objetos de la BD.
CHARINDEX (<’char_expr’>, <expression>) Suelen depender del DBMS.
* getdate(), CURRENT_DATE(), CURRENT_TIME))
SELECT charindex (‘de’, ‘Un pequefio texto de muestra’) Devuelven fecha/hora actual.
* host_name()
Resultado: 18 Nombre del equipo desde donde se conecté.
* db_name(), DATABASE()
Funciones Aritméticas Nombre de la base en que estamos posicionados.

* user_name(), CURRENT_USER()

Funcion Parametros Semantica)
Devuelve el nombre del usuario del DBMS actualmente conectado.

* ABS (N) Devuelve el valor absoluto de N
* SIGN IN) Devuelve -1 siN<0,1si N>000 * @Q@VERSION, VE,RSIONO
* CEILING (N) Entero inmediato siguiente a N Deffuelven la version del DBMS
* FLOOR (N) Entero inmediato anterior a N Subqueries
« EXP (N) EXP(N) = eN * Son sentencias SELECT anidadas dentro de otra sentencia SELECT.
* LOG N) LOG(N) = Log (N) * Devuelven informacién a la principal y deben figurar siempre entre paréntesis.
« POWER (xy) POWER(x,y) = x' * Permiten implementar la operacion DIFERENCIA del Algebra Relacional.
* ROUND (N, d) Redondea N a d digitos Ejemplo: “Necesito listar personas que viven en la misma ciudad que
* SQRT (N) Raiz cuadrada de N ‘CLIENTE 10010 SELECT persona, nombre, ciudad, departamento
* Trigonométricas FROM Personas
WHERE ciudad = (SELECT ciudad
Funciones de Fecha FROM Personas

WHERE nombre = ‘CLIENTE 10010°)

DATEPART (<date_part>, d)
’ Las subqueries son evaluadas primero y su(s) valor(es) son sustituido(s) en la consulta

Devuelve un componente de la fecha d: year, month, day, hour, minute, second

select datepart(day, getdate()) =» 14

select datepart(year, 25/07/2009’) =» 2009 Una subquery puede retornar:
* Ningun valor.

principal.

DATENAME (<date part>, d) Consecuencias: Dicha subquery es equivalente a un valor Nulo.
Devuelve el nombre de una parte de la fecha d: La query general no retona ningtin valor.
select datename(month,25/07/2009%) =» “July’ * Un valor.
select datename(weekday,25/07/2009%) =» ‘Saturday’ Consecuencia: La subquery es equivalente a un nimero o valor caracter.
* Un conjunto de valores.
DATEADD (<date part>, <number>, <date>) Consecuencia: La subquery retorna o una fila o una columna.
Suma o resta intervalos a una fecha (dias, meses, afios, etc.): Restricciones:
select dateadd(day, 10, °25/07/2009°) =» “4/8/2009 * Solo si el subquery devuelve UN valor puede preguntarse por =.
select dateadd(month, 2,°25/07/2009’) =» 25/9/2009’ * Si el subquery devuelve UN campo se puede preguntar por IN.
select dateadd(month, -9,°25/07/2009%) =» 25/10/2008’ * En caso contrario se debe preguntar por EXISTS.
Ejemplo 1: Listar las personas que viven en la misma ciudad que ‘ JUAN PEREZ’.
DATEDIFF(<date part>, <datel>, <date2>) SELECT persona, nombre, ciudad, departamento

Calcula diferencia entre 2 fechas (en dias , meses, afios, etc): FROM Personas
select datediff(day, 25/07/2009’, 25/08/2009’) =» 31 WHERE ciudad = (select ciudad

select datediff(month, 25/07/2009, 25/08/2009") =» 1 from personas
where nombre = JUAN PEREZ”)

Podemos usar = porque
sabemos que solo se va a
devolver 1 tupla.

sojep ap aseg

Base de datos

Ejemplo 2: Listar personas que viven en la misma ciudad y departamento que JUAN
PEREZ’.
SELECT persona, nombre, ciudad, departamento
FROM Personas P
WHERE EXISTS (select *
from personas P2
where P2.nombre = JUAN PEREZ’
and P.ciudad = P2.ciudad
and Pdepartamento = P2.departamento)

Usamos EXISTS porque no podemos
preguntar si
<Ciudad,Departamento> IN

Tipo de Subqueries

¢ Correlacionadas
¢ No-Cortrelacionadas

Correlacionadas (o inner SELECT): el valor producido por ella depende de un valor
producido por el SELECT externo. En cualquier otro caso son No-Correlacionadas.

Subqueries Correlacionados
Listar los Empleados cuyo sueldo esta por debajo del promedio de su Seccion:
SELECT nro_emp, nom_emp, seccion, sueldo
FROM Ernpleados F1l «— Deben referirse a la
MISMA seccion
WHERE sueldo < (SELECT AVG (sueldo)
FROM Empleados E2 /
WHERE E2.seccion = El.seccion)
ORDERBY 1, 2,3
La subquery es ejecutada por cada fila considerada por el SELECT externo.

Negacion
Permiten implementar DIFERENCIA de tablas.
Ej: Qué clientes no tienen cuentas.
SELECT *
FROM Clientes
WHERE cod_cliente NOT IN
(SELECT cod_cliente FROM Cuentas)

Sentencia equivalente (correlacionada):

SELECT *

FROM Clientes

WHERE NOT EXISTS
(SELECT *

FROM Cuentas
WHERE Cuentas.cod_cliente = Clientes.cod_cliente)

Se utiliza NOT EXISTS cuando se desea evaluar un NOT IN con mas de una columna.

INDICE

Ej: “Movimientos para los cuales no se ha ingresado una cotizacion aun (estan en tabla

MOVIMIENTOS pero NO en COTIZACIONES).”

SELECT M.id_mov, M.fecha, M.cuenta, C.moneda
FROM movimientos M, cuentas C
WHERE M.cuenta = C.cuenta
AND NOT EXISTS
(SELECT *
FROM Cotizaciones COT
WHERE COT.moneda = C.moneda
AND COT.fecha = M.fecha)
ORDER BY 1,2,3

Uso en HAVING

Se pueden utilizar en la clausula HAVING para mayor expresividad.
“Clientes con un saldo en plazo fijo igual al mas alto de todos los plazos fijos.”
SELECT cliente, sum(saldo)
FROM Cuentas
WHERE producto = 3 and moneda = 1
GROUP BY cliente
HAVING sum (saldo) = (SELECT max (saldo)

FROM cuentas

WHERE producto = 3 AND

moneda = 1)

UNION

¢ Combina multiples consultas en una sola.
* Facilita ordenamiento no posible con una consulta simple.

¢ UNION : Operador que une el resultado de dos o mas Consultas en una Consulta Simple.

Dos tipos:
UNION: Excluye los resultados repetidos de las consultas unidas.
UNION ALL: Incluye TODAS las tuplas de las consultas unidas (aun con repeticion).

Sintaxis: SELECT lista de columnas
FROM tablas
[WHERE condicion]
UNION [ALL]
SELECT lista de columnas
FROM tablas
[WHERE condicion]
[Order By lista de columnas|

Condiciones y Requisitos:

* La cantidad de columnas en cada sentencia SELECT debe ser la misma.

* El tipo de datos de cada columna entre los dos SELECT’s debe coincidir. No se exige
que sea la misma columna, ni siquiera que posea el mismo nombre.

* Si deseo ordenar la salida, debo ubicar la sentencia ORDER BY al final de la consulta.
Referencio las columnas por sus posiciones.

sojep ap aseg

Base de datos

Ejemplo:

Resultado con UNION

SELECT unique cuentas.cuenta, cuentas.producto
FROM movimientos, cuentas
WHERE movimientos.cuenta = cuentas.cuenta

and sucursal = 4
and importe > 3000000

UNION
SELECT unique cuentas.cuenta, cuentas.producto
FROM cuentas, cuentas_intereses

WHERE cuentas.cuenta =cuentas_intereses.cuenta
and cuentas_intereses.interes = 0;

Resultado con UNION ALL

Cuenta

100
102
188
247
256
266
338
570
578
599
610
947
1422
1423
23213
101801
102002
105612
105622

Ejemplos Validos:

1) SELECT
FROM
WHERE
UNION
SELECT
FROM
WHERE

Cuenta Producto
Producto 95

Wwwuwwuwuwww

WWUWWWwWwWwWwWwuwUWwuwuwwwwwwww

WWWWWWwWwwWwWwwwww

105622

cod_cliente, nro_cuenta, cod_moneda, ‘Cliente 102’ as Grupo

Cuentas
cod_cliente = 102

cod_cliente, nro_cuenta, cod_moneda , ‘Euros’ as Grupo

Cuentas
cod_moneda = 3 and cod_cliente <> 102

ORDER BY 3,1,2

2) SELECT
FROM
WHERE
UNION
SELECT
FROM
WHERE

E.id_persona, Pnombre
Personas P, Empleados E
Pid_persona = E.id_persona

C.cod_cliente, Pnombre
Personas P, Clientes C
Pid_persona = C.id_persona

INDICE

Ejemplos Incorrectos:
1) SELECT cod_cliente, fec_apertura

FROM Cuentas

WHERE cod_cliente = 102
UNION

SELECT cod_cliente, nro_cuenta
FROM Cuentas

WHERE cod_moneda = 3 and cod_cliente <> 102
2) SELECT E.id_persona, Pnombre, E.fec_ingreso

FROM Personas P, Empleados E
WHERE Pid_persona = E.id_persona
UNION

SELECT C.cod_cliente, Pnombre, PPpr???
FROM Personas P, Clientes C

WHERE Pid_persona = C.id_persona

Modificaciéon de Datos (INSERT, UPDATE, DELETE)
INSERT

Unica forma de agregar nuevos registros a una tabla.
Se pueden insertar valores NULL explicitamente, siempre que la definiciéon de la colum-

na lo permita.

Dos variantes:

1. INSERT con valores explicitos (una tupla a la vez).

2. INSERT con valores tomados de otra tabla.

En ambos tipos se pueden especificar los campos EXPLICITAMENTE o NO:
INSERT INTO T

INSERT INTO T (campol, campo2,)

Se recomienda poner siempre los campos a insertar EXPLICITAMENTE

INSERT Tipo 1: Valores dados explicitamente.

Sintaxis:

INSERT INTO <tabla> [(columnas) | VALUES (v1, v2,... , vn).

Ej: (2 modos equivalentes de escribirlo):

1. Tabla: EMPLEADOS(nro_emp, nombre, direccion).
INSERT INTO EMPLEADOS VALUES (1, Juan’,Colonia 6499’);

2. INSERT INTO EMPLEADOS(nro_emp, nombre, direccion)
VALUES (1,Juan’,Colonia 6499’);

INSERT Tipo 2: Trayendo datos de otra tabla
Si una sola tupla fallara no se inserta NINGUNA: es una sola sentencia.
Sintaxis :
INSERT INTO <tabla> [(columnas) | SELECT <campos> FROM
Ej: INSERT INTO MovCta545 (fecha, sucursal, importe)
SELECT fecha, sucursal, importe
FROM movimientos
WHERE cuenta = 545;

sojep ap aseg

Base de datos

INDICE

UPDATE DELETE
Actualiza datos de una Tabla. Elimina filas de una Tabla.
Sintaxis: * Aligual que UPDATE se debe especificar con WHERE cuales tuplas se desean borrar.
UPDATE <tabla> * Puede fallar si se violaran restricciones de integridad.
SET <campol> = <valorl>, <campo2> = <valor2>,, Caso tipico: se borran tuplas de tabla referenciada por FOREIGN KEYS desde otras.
<campoN> = <valorN> Si ese fuera el caso no se borra NINGUNA tupla.
[WHERE <condicion> | Sintaxis:
IMPORTANTE: DELETE FROM <tabla> WHERE <condicion>
1. Sino se especifica WHERE el cambio se aplica a TODA LA TABLA. Ejemplos:
2. Siel WHERE no es por un campo clave se corre el riesgo de actualizar tuplas que no 1) DELETE FROM Clientes WHERE cliente = 10001;
se deseaba. _ 2) DELETE FROM Empleados;
3. EIUPDATE puede fallar si: Borra el contenido de TODA la tabla Empleados.
a) Se intentan asignar valores NULL a columnas que no lo permiten. 3) Quiero eliminar las personas del departamento de MALDONADO,
b) Se violan CHECKS. DELETE FROM Personas
¢) Se viola una PRIMARY KEY. WHERE departamento LIKE “M%0”;

Fiemplo 1: Atencién: No se uso la Clave primaria y obtengo:

UPDATE EMPLEADOS 635 row(s) deleted.
SET nombre = ‘Juan Martinez’, direccion = ’Colonia 6401’

WHERE nro_emp = 1; limi 0 los cli “ T ,
Modifica nombre y direccion del empleado con codigo = 1 Hemos eliminado también los clientes de “MONTEVIDEO”.

Ejemplo 2:
UPDATE EMPLEADOS
SET direccion= ‘Mercedes 3423’ Modelos de Datos y DBMS
WHERE nombre like *%Perez%0’ Modelos de Datos:
Atenciéon: modifica TODOS los Perez, pueden modificarse mas de los que deseabamos.
Sugerencia: hacer antes un SELECT COUNT(®*) ¢QUE SON?
Lenguajes usados para especificar BDs.
Ejemplo 3: Un Modelo de Datos permite expresar:
UPDATE EMPLEADOS e Estructuras
SET direccion = Objetos de los problemas:
Deja en blanco TODAS las direcciones de la tabla EMPLEADOS. Por ejemplo: CURSOS(nro_curso, nombre, horas).

* Restricciones
Reglas que deben cumplir los datos.
Por ejemplo: (V¢ e CURSOS) (c.horas < 120)
* Operaciones.
Insertar, borrar y consultar la BD.
Por ejemplo: Insert into CURSOS (303,”BD”,90).

Variante: UPDATE con subquery relacionado.
Ejemplo:
Recalcular el saldo de todas las cuentas.
UPDATE Cuentas
SET saldo = (SELECT SUM (importe)
FROM Movimientos
WHERE Cuentas.cuenta = Movimientos.cuenta
) CLASIFICACION
Segun el nivel de abstraccion:
* Conceptuales
Representan la realidad independientemente de cualquier implementaciéon de BD.
Usado en etapa de Analisis.

sojep ap aseg

Base de datos

* Logicos

Implementados en DBMSs.

Usado en etapas de Disefio e Implementacion.
* Fisicos

Implementacién de estructuras de datos.

Ej.: Arboles B, Hash.

APLICACION

Real World
Situation

Conceptual Modeling

Conceptual Schema
PRODUCT BUY
A‘ d (e.g., Entity-Relationship)

|
| ALIMENT$ CLEANING |CLIENT$

l System Design

CREATE TABLE PRODUCTS (. | .{,lq)glcal Schema

CREATE TABLE CLIENTS (.. ;

.

(e.g., Relational, Object-Oriented

Esquema de una BD:
* Tipos de datos existentes.
Por ejemplo:
CURSOS(nro_curso, nombre, horas).
ESTUDIANTES(CI, nombre, fecha_nacimiento).
TOMA_CURSO(nro_curso, CI).

* Muy estables.

Instancia de una BD
¢ Datos almacenados.
* Muy volatiles.

Arquitectura légica de DBMS

Propiedades importantes de DBMSs:

* Control global tnico de la BD.

* Separacion entre esquema y aplicaciones.
Esquema: vision global de los datos de la realidad.
Aplicaciones: programas sobre la BD.

* Soporte a diferentes visiones de los datos.
Usuatios/aplicaciones ven subconjuntos de la BD.

* Independencia de datos.
Esquema légico independiente de implementacion.

J

INDICE

ARQUITECTURA EN TRES NIVELES

Acceso a la BD
Nivel Externo Vistal | covemmen Vista n
NivelLdgico Esquema Logico (o Conceptual de DBMS)
(Conceptual DBMS) |
Nivel Fisico Esquema Fisico (o interno)

—

Independencia de datos

* Independencia Logica.
- Independencia entre especificaciones de nivel Logico y Externo.
- Cambiar partes de esquema logico sin afectar a los esquemas externos o a las

aplicaciones.

* Independencia Fisica.
- Independencia entre especif. de nivel Logico y Fisico.
- Cambiar implementaciones sin afectar esq. Logico.

Lenguajes e Interfaces en ambientes BD
* Provistos por DBMS:
- Definicién de esquema:
- VDL (o SSDL) - View Definition Language.
- SDL - Storage Definition Language.
- DDL - Data Definition Language.
- Suele englobar estos tres lenguajes.
- Manipulacién de la BD:
- DML - Data Manipulation Language.
- Modificaciones en instancias.
- QL - Query Language.
- Subconjunto del DML, sélo para consultas.

* Tipos de QL:

- Declarativos.
- Se especifica qué propiedad cumplen los datos.
- No se especifica como se recuperan de la BD.
- Suelen recuperar conjuntos de items (registros).
- Es el DBMS que define el plan de ejecucion.

- Procedurales.
- Se especifica un algoritmo que accede a estructuras del esquema logico y

recupera los datos item por item (registro a registro).

sojep ap aseg

Base de datos

* Lenguajes de programacion:
- Lenguajes host (anfitrion):
- Lenguajes de uso general (C, COBOL, etc.) en el cual se embeben sentencias
de DML.
- Se tiene un pre-procesador que traduce el programa con DML embebido en
un programa puro.
- PROBLEMAS: impedance-mismatch.
- Lenguajes 4GL:
- Lenguajes procedurales orientados a acceso a BDs.
- Conexion privilegiada con DMLs, reduce el zupedance-miismateh.

* Interfaces especializadas:
- Interfaces graficas de consulta.
- Se visualizan las estructuras en forma grafica.
- Resultados como graficas (torta, lineas, etc.).
- Interfaces de Lenguaje Natural.
- Se procesan frases y se traducen al QL.
- Interfaces para Administracion.
- Ambientes especializados.

ESTRUCTURA DE DBMS

Programadores.
de aplicaciones

PROGRAMAS
DE APLICACION

Precompilador

Compilador del
tenguaje anfitrién

Usuarios
Personal del oea esporadicos

ENUNCIADOS ORDENES CONSULTA
ENDDL PRIVILEGIADAS INTERACTIVA:

Usuarios
paramétricos

TRANSACCIONES | |
Compilador MPILADAS ||
de consultas (PROGRAMADAS) ||
I

r

ejecucion

———————————

Compilador s
de DDL -

Catélogo
del sistema/

e
de datos

Procesador
de base de datos
on tiempo de sjecucion

ejecucion

ejecucién

o R e S SO Y o

Gestor
de datos
almacenados

[Subsistemas de control de
| concurrendialrespaldalrecuperacion

BASE DE DATOS ALMACENADA

Diferentes tipos de DBMS
* Segtn el Modelo de Datos:
- Relacional.
- Orientado a Objetos.
- Otros: Redes, Jerarquico, Deductivo, ...
* Segun el porte:
- Desktop (esctitorio) / mono-usuatio.
- Servidor / multi-usuario.
* Segun distribucion de la BD:
- Centralizado.
- Distribuido.

INDICE

RESUMEN DE LOS ELEMENTOS DE BASES DE DATOS

Conjunto de Datos
Bases de Datos [« Interrelacionados

Mundo Real

an;
11'0‘1/(?1,

Implementan

A

Modelos de Datos [«— DBMS's

tLenguajes para especificar ’

BD o para modelar la —
realidad en términos de BD Software = Especializado
en Manipulaciéon de BD

MODELOS DE DATOS

Real World
Situation

Conceptual Modeling

= Conceptual Schema
B}F@ (e.g., Entity-Relationship)

[anMENT] cLEANTN] [CLIENTY

l System Design

cal Schema

08I
PSS IR SRODAGTES .- SL (e.g., Relational, Object-Oriented

CREATE TABLE CLIENTS (...};

Calidad de Esquemas Conceptuales
Para asegurar la calidad de los esquemas conceptuales se define un conjunto de propie-
dades que se deben chequear durante y al final de su desarrollo:

* Completitud. } o
. Maximizar
* Correctitud.

+* Minimalidad.

+ Expresividad.
* Explicitud. Balancear

* Completitud

Un esquema es completo cuando representa todas las caracteristicas relevantes del

problema.

Chequeo:
- Controlar que todos los conceptos del problema estén representados en
alguna parte del esquema.

- Controlar que todos los requerimientos sean realizables con el esquema.
- Leer el resultado y compararlo con la descripcion original.

sojep ap aseg

Base de datos

* Correctitud
Hay dos tipos:
- Sintactica: Habla de la forma en que se especifica el esquema con respecto
al lenguaje usado para hacer esa especificacion.
- Semantica: Habla de la forma en que la especificacion representa el
problema.

Correctitud Sintactica:

Un esquema es correcto sintdcticamente cuando las distintas partes de éste estan
construidas correctamente con respecto al lenguaje utilizado.

Ej.: Las agregaciones se construyen sobre una relacion, no sobre dos entidades
cualesquiera u otra cosa.

Chequear:

- Existencia de cardinalidades en cada relacion.

- Existencia de atributos determinantes en cada entidad. Si no existen, entonces verificar
que sea entidad débil con respecto a otra.

- Existencia de una y s6lo una relacion y todas las entidades que intervienen en la misma
dentro de cada agregacion.

Correctitud Semantica:
Un esquema es correcto semdnticamente si cada elemento del problema se representa
utilizando estructuras adecuadas.
- Chequear o Responder para cada concepto del problema (de la realidad):
- ¢Atributo o Entidad o Relacion?
- ¢Una sola categoria de entidades o mas de una?
- ¢Una Relacion es binaria o multiple?
- ¢Cual es el mecanismo de determinacién del conjunto de entidades?
- Las cardinalidades y totalidades, ¢tienen sentido?
- En general: la representacion, stiene sentido con respecto a la realidad?

Minimalidad:
Un esquema es mznimal si cualquier elemento de la realidad aparece sélo una vez en el
esquema.
- Chequear:
- Donde esta representado en el esquema cada elemento de la realidad.
- A qué elemento de la realidad corresponde cada elemento del esquema.
- Controlar atributos calculados.

INDICE

Expresividad:
Un esquema es expresivo si representa la realidad en una forma natural que puede ser
facilmente comprensible usando sélo la semantica del modelo.

Staff Ens. fre Oferta Ens.

‘Profesores ‘ ‘Instructores ‘

‘ Seminarios ’ ‘ Cursos ‘

o} s

Explicitud:
Un esquema es explicito si no utiliza mas formalismos que el diagrama E-R.

Estudiantes Estudiantes

Posgrado n | Posgrado n
n

<Tuigs—o Fator M

Tipo

2
1
Profesores Profesores

Si un mismo estudiante tiene 2 tutores,
entonces el tipo de uno es PHD y el otro
es MSC.

Resumen:
Hay cinco propiedades fundamentales a controlar:
- Completitud
- Correctitud
- Minimalidad
- Expresividad
- Explicitud
Para las tres primeras propiedades se definieron criterios elementales de Chequeo.
Todas las propiedades se deben balancear, buscando un buen disefio:
- Hay que buscar esquemas completos y correctos, minimales, expresivos y
explicitos.

sojep ap aseg

INDICE

¢ Reduccidn de los valores redundantes:
Informacién redundante en las tuplas.

Disefio de Base de Datos Relacional

Pautas informales para el disefio.

Cuatro medidas informales de la calidad: EMP_DEPTO
— Semantica de los atributos. NOMBREE NSS FECHAN DIRECCION | NUMEROD | NOMBRED | NSSGTED
— Reduccién de los valores redundantes en las tuplas. Sitva, Joss B. 123456789 09-ENES5 Frosnos 731, Higueras, MX 5 Invostigacién 333445555
4 Vizcamra, Federico T. 333445555 08-DIC45 Valle 638, Higueras, MX 5 investigacién 333445555
— Reduccién de los valores nulos en las tuplas. Zapata, Alicia J. 999887777 19-JUL-58 Castillo 3321, Sucre, MX 4 Administracién 987654321
‘s . Vaidés, Jazmin S. 967654321 20-JUN-31 Bravo 291, Belén, MX 4 Administracién 987654321
— No generacion de tuplas erroneas. Nieto, Ramon K. 606884444 15.SEP-52 Espiga 957, Heras, MX 5 Investigacion 333445555
Esparza, Josefa A. 453453453 31-JUL62 Rosas 5631, Higueras, MX 5 investigacion 333445565
Jabbar, Ahmed V. 987987987 29-MAR-59 Dalias 980, Higueras, MX 4 Administracion 987654321
P . i 888665555 Higusras, MX 1 Di BBBEES5SS
e Semantica de los atributos: Botello, Jaime E 55! 10-NOV-27 Sorgo 450, Higueras, reccién
Ejemplos:
|EMPLEADO_|V T T - J ‘cIA o. J EMPLEADO DEPARTAMENTO
NOMBREE NSS FECHAN DIRECCION NUMEROD »
= NOMBREE NSS | FECHAN DIRECCION | NumeRoD | [nowereD | NOMEROD | nssaTeD |
Siiva, José B. 123456788 09-ENE-55 Fresnos 731, Higueras, MX 5
o e — e e Vizcama, FedericoT. 333445555 08-DIC45 Valle 638, Higueras, MX 5 s s S e
[~ | moveroo | : Zapata, Alica J. 099887777 19-JUL58 Castilo 3321, Sucre, MX 4 Birscolcn ! 88gesssss
= Valdés, Jazmin . 987654321 20-JUN-31 Bravo 291, B:'I:n. M:q(x 4
Nisto, Ramén K. 666684444 15-8EP-52 Espiga 857, Heras, 5
LUGARES DEETOS Esparza, Josefa A. 453453453 31-JUL-62 Rosas 5631, Higueras, MX 5
o.e. Jabbar, Ahmed V. 987087987 20-MAR-59 Dalias 980, Higueras, MX 4
[nowemoo [weamo | Botelo, Jaime E. 888665555 10-NOV:27 Sorgo 450, Higueras, MX 1
Bek . Anomalias de actualizacion:
PROYE! cl.e.
NOMBREPR | NUMEROP waearr | NomD | — Anomalias de insercion.
cl. p. , . . .,
— Anomalias de eliminacién.
TRABAJA_EN . .,
de clls: — Anomalias de modificacion.
[nss [nomeror HORAS Pauta 2
—— auta
Disefie los esquemas de las relaciones de modo que no haya anomalias de insercion,
@ EMP_DEPTO eliminaciéon o modificacion en las relaciones. Si hay anomalias sefidlelas con claridad
[noweree| wss | Fecuw [oimeccion | NOMERoD [owsrep | Nssare | a fin de que los programas que actualicen la BD operen correctamente.
Semanticamente

* Valores nulos en las tuplas
Posibles problemas:
— Desperdicio de espacio.
— Dificultad para entender el significado.
— Aplicacién de funciones agregadas (count,sum).
— Multiples interpretaciones.

confusas ~

(b) EMP_PROY

| NSS | NUMEROP |HORAS |NOMBHEE|NOMBREPRF LUGARP

Pauta 1:
Disefie un esquema de relacién de modo que sea facil explicar su significado. No combi-

ne atributos de varios tipos de entidades y tipos de vinculos en una sola relacion. Pauta 3

Hasta donde sea posible, evite incluir en una relacién atributos cuyos valores pueden ser
nulos. Si no es posible, asegurese de que se apliquen solo en casos excepcionales y no a
la mayoria de las tuplas de una relacion.

Base de datos

sojep ap aseg

Base de datos

¢ Tuplas erréneas
Ejemplo 1: Se aplica proyeccion a EMP-PROY.

Dependencias Funcionales
Definicion:

Ejemplo 1 — Deducir atributos y dfs.

Una df X—Y, entre 2 conjuntos de atributos X e Y que son
subconjuntos de R especifica una restriccion sobre las posibles
tuplas que formarian una instancia r de R. La restriccién dice que,
para 2 tuplas cualesquiera t, y t, de r tales que t1[X]=t2[X],

debemos tener también t,[Y]=t,[Y].

Observar:

» Si X es una clave candidata de R, entonces X—Y para cualquier

subconjunto de atributos Y de R.
» Si X=Y en R, esto no nos dice si Y=X en R o no.

Las dfs son propiedades de la semantica de los atributos.
En el ejemplo de EMP_PROY, se cumplen:

» NSS - NOMBREE, NUMEROP — {NOMBREPR,LUGARP},

{NSS,NUMEROP} - HORAS

Una empresa de alquiler de vehiculos desea implementar
una base de datos con la informacién de su negocio. Se

EMP_PROY
NSS |NUMEROP| HORAS NOMBREE NOMBREPR LUGARP
123456789 1 325 Siiva, José B, ProductoX Balén
123456789 2 7.5 Silva, José B. ProductoY Sacramento
666884444 3 400 Nieto, Ramén K. ProductoZ Higueras
453453453 1 20.0 Esparza, Josefa A, ProductoX Belén
453453453 2 20.0 Esparza, Josefa A. ProductoY Sacramento
333445555 2 - 10.0 Vizcarra, Federico . ProductoY Sacramerito
333445555 3 10.0 Vizcarra, Federico 7. ProductoZ Higueras
333445565 10 10.0 Vizcarra, Federico T. Automatizacion Santiago
933445555 20 100 Vizcama,FodericoT. Roorganizacién Higueras
LUGARES_EMP EMP_PROY1
NOMBREE LUGARP l [NSS | NUMEROP ‘ HORAS l NOMBREPR LUGARP
Silva, José B. Belén 123456789 1 325 ProtuctoX Belén
Silva, José B, Sacramento 123456789 2 75 ProductoY Bacramento
Nieto, Ramén K. Higueras 866884444 3 40.0 Producto2 Higueras
Esparza, Josefa A. Balén 453453453 1 20.0 ProductoX Belén
Esparza, Josefa A. Sacramento 453453453 2 200 ProductoY Sacramenio
Vizearra, Federico T, Sacramento 333445555 2 100 FroductoY Sacramento
Vizearra, Fedarico T. Higueras 333445555 3 10.0 Producte Higueras
Vizcarra, Federico T, Santiago 333445555 10 10.0 Automatizacion Santiago
I e s 333445555 20 _____100 __ Reorganizacién _______Higueras _____
Ejemplo 2: Se aplica join natural a EMP-PROY1 y LUGARES-EMP.
| nss | nOMEROP | HORAs | NomBREPR | LuGARP NOMBREE |
123456789 1 32.6 ProductoX Belén Silva, José B.
+« 123456789 1 325 ProductoX Belén Esparza, Josefa A.
123456789 2 7.5 ProductoY Sacramento Silva, José B.
« 123458789 2 7.5 ProductoY Sacramento Esparza, Josefa A.
+ 123456789 2 7.5 ProductoY Sacramento Vizcarra, Federico T.
668884444 3 40.0 ProductoZ Higueras Nieto, Ramon K.
+ 666884444 3 40.0 ProductoZ Higueras Vizcarra, Faderico T,
~ 453453453 1 20.0 ProductoX Belén Silva, José B.
453453453 1 20.0 ProductoX Belén Esparza, Josefa A,
-
*
333445555 10 10.0 Automatizacién Santiago Vizcarra, Federico T.
» 333445555 20 10.0 Reorganizacién Higueras Nieto, Ramén K.
333445555 20 10.0 Reorganizacién Higueras Vizcarra, Federico T,
Pauta 4

Disefie los esquemas de modo que puedan reunirse por condicion de igualdad sobre

atributos claves, para garantizar que no se formen tuplas erréneas.

Resumen

Problemas a evitar:
— Anomalias en insercion, modificacion y eliminacion de tuplas por

redundancia.
— Desperdicio de espacio y dificultad para operaciones por valores nulos.
— Generacién de datos erréneos por joins hechos relacionando mal las

relaciones.

Entonces se presentaran...
— Conceptos y teorfas formales para detectar y evitar estos problemas.

tienen|vehiculos|identificados por sujnumero de matriculal

y de los que se conoce su[marcal[color][modeldly [afid.
También se tienen|clientes|identificados por su niumero de

y de los que se conoce su[nombre]
[direcciénly[teléfond Un[contrato]de alquiler de vehiculo
esta identificado por un[ndmero de confratd y se realiza en
undfechaldada entre un[clientely un[vehiculd
registrandose el[periodo]de alquiler en dias y el[precio]del
servicio| Se considera que en una misma fecha no se
puede alquilar mas de una vez el mismo vehiculo al mismo

cliente.|

* Clausura de F - F+
Definicién:
F - conjunto de dfs que se especifican sobre el esquema relacion R.
F+ - conjunto de todas las dfs que se cumplen en todas las instancias que

satisfacen a F.
Inferencia de dfs
Ejemplo:
F = {NSS — {NOMBREE,FECHAN,DIRECCION,NUMEROD},
NUMEROD — {NOMBRED,NSSGTED} }
Podemos inferir:
NSS — { NOMBRED, NSSGTED}, NUMEROD—NOMBRED

sojep ap aseg

Base de datos

Reglas de inferencias para las dfs:

' Reglas: (siendo X,Y,W,Z conjuntos de atributos)
— (RI1) reflexiva - Si X 2 Y, entonces X—Y
— (RI2) de aumento - {X—Y} |= XZ—YZ
— (RI3) transitiva - {X=Y, Y=2Z} |= X—>Z
— (RI4) descomposicion - {X—YZ} |= XY
— (RI5) union - {X=Y, X—Z} |= X=»YZ
— (RI6) pseudotransitiva - {X—=Y, WY—2Z} |= WX—Z
Reglas de Armstrong: RI1 a RI3

— Minimales: Las demas se pueden derivar a partir de
estas tres.

Clausura de X bajo F - X+

-Definicion:
— X+ es el conjunto de atributos determinados
funcionalmente por X

Algoritmo - Determinar X+ bajo F

X+:=X
repetir
vigjoX+ 1= X+;
para cada df Y—Z en F hacer
si Yc X+ entonces X+ := X+ U Z;
hasta que (viejoX+ = X+);

Ejemplo:
Dado EMP_PROY(NSS, NUMEROP, HORAS, NOMBREE,
NOMBREPR, LUGARP)
F = {NSS - NOMBREE
NUMEROP — NOMBREPR,LUGARP
NSS,NUMEROP — HORAS }
podemos calcular:
{NSS }+ ={
NSS,
NOMBREE

}

{ NUMEROP }+ = {
NUMEROP,
NOMBREPR,
LUGARP

Ejercicio: Clausuras de Atributos

Hallar la clausura de los siguientes

conjuntos de atributos :

—{nro_mat}, {nro_mat, ci_cli}, {nro_contrato},
{marca}, {fecha, ci_cli, nro_mat}

Dar alguna dependencia funcional que
pertenezcaa F+ynoaF.

Equivalencia de conjuntos de dfs

Definicion:

— Dos conjuntos de dfs E y F son equivalentes sii
E+=F+

Podemos decir...

— Todas las dfs en E se pueden inferir de F y
todas las dfs en F se pueden inferir de E.

—EcubreaFyFcubreakE.
&Cdmo determinamos si F cubre a E ?

— Para cada df X—Y € E, calculamos X+(F) y
verificamos que X+ incluya los atributos en Y.

Equivalencia de conjuntos de dfs

Ejemplo:
- F={AB >C, B>D,D>GC,CG~>H}
- F,={D>H,B>C,AD>GH}

»,F, cubre a F?

»(;F cubre a F,?
»(.f es equivalente a F,?

- F,={B>D,D>G,D>C,CG>H}
»(.'Que' pasaentre F, y F?
»(.lQué pasaentre F,y F?

— Observar que F2 es mas “simple” que F. Dado F,

; siempre se puede encontrar un conjunto con estas
caracteristicas?

Conjunto minimal de dfs

F es minimal si:
— Toda df en F tiene un solo atributo a la derecha.

— No podemos reemplazar ninguna df X—>A e F
por una df Y—A, donde Y c X, y seguir
teniendo un conjunto de dfs equivalente a F.

— No podemos quitar ninguna df de F y seguir
teniendo un conjunto de dfs equivalente a F.

INDICE

sojep ap aseg

Base de datos

INDICE

Conjunto minimal de dfs

Definicion:
— Un cubrimiento minimal de F es un conjunto
minimal F;, que es equivalente a F.

Encontrar un cubrimiento minimal
Algoritmo

1. Hacer G :=F;
2. Reemplazar cada df X— A, A,, ..., A, en G por las
ndfs X—= A, X2 A, ..., X—=A,;

3. Paracada df X—»AenG

{ calcular X+ respecto a (G - (X— A));

si X+ contiene a A, eliminar X— Ade G };

4. Para cada df restante X—> A en G

para cada atributo B que sea un elemento de X

{ calcular (X - B)+ respecto a G;
si (X - B)+ contiene a A,
reemplazar X— A por (X-B)>AenG};

Encontrar un cubrimiento minimal

Ejemplo:

- F={AB >C, B>D,D>GC,CG~>H}

— Paso 1: Cada dependencia que tiene varios atributos a
la derecha, es sustituida por las dependencias a los
atributos individuales.

» F,={AB >C, B>D,D>G,D>C,CG>H}

— Paso 2: Estudiamos atributos redundantes.

» B+={B,D,G,C,H} entonces F,={B->C, B>D,D->G,D->C,CG>H}

— Paso 3: Estudiamos dependencias redundantes.

» Con respecto a F,-{B->C}, B+={B,D,G,C,H} entonces
F,={B->D,D->G,D>C,CG~>H} Minimal.

6. Arquitectura del Computador

y Sistemas Operativos

Ing. Pablo Gestido

INDICE

Estructura de los
sistemas de computacion

Agenda

" Componentes de un sistema:
®* Introduccidn.
" CPU (procesador).
" Memoria.
" Dispositivos de Entrada/Salida (IO).

" Proteccidén de hardware:
®" Modo dual.
= Proteccién de E/S.
" Proteccién de Memoria.
" Proteccién de CPU.

" Red:
" Local Area Networks.
®* Wide Area Networks.

= Topologias de red.

Componentes de un sistema

CPU (procesador)

Unidad central de procesamiento (procesador). Permite
ejecutar un conjunto de instrucciones. Su velocidad es
varios ordenes mayor con respecto al acceso a la
memoria.

Memoria

Permite mantener la informacidén disponible. Existe una
jerarquia de memoria: registros, caches, memoria fisica
de tipo RAM (Random Access Memory) , dispositivos
magnéticos y épticos.

Dispositivos de Entrada/Salida (IO)

Permite interactuar con el sistema. Algunos dispositivos
mas comunes: Impresoras, teclados, ratdén, video, disco,
red, etc.

Esquema grafico:

disk disk printer tape drives

TY

disk
CcPU controller

memory controller

printer tape-drive
controller controller

system bus|

soAneladQ sewajlsig A sopeindwod |ap einjoainbay

91

Arquitectura del Computador y Sistemas Operativos

CPU (Procesador)

" La unidad central de procesamiento es la que ejecuta
los programas. En un sistema pueden haber mas de una.

" El1 ciclo basico consiste en tomar la instruccién
apuntada por el PC (program counter) (fetching) ,
decodificarla para determinar su tipo y operandos
(decoding) , ejecutarla (executing) y luego continuar
con la siguiente instruccién.

" Arquitecturas modernas aumentan la performance
ejecutando las operaciones en paralelo (fetching,
decoding, executing). Esta técnica es conocida como
pipeling.

" Existen varias arquitecturas de procesador gque se
clasifican en RISC (Reduced Instruction Set Computer) o
CsIC (Complex Instruction Set Computer) . Algunas
arquitecturas: SPARC, POWER, x86, Itanium.

" La velocidad del procesador es varios oOrdenes de
magnitud mayor que la velocidad de acceso a informacién
que estid en la memoria volatil (RAM).

= Esto implicé la creacién de registros a nivel del
procesador y,finalmente, una cache de memoria (caches de
1% Nivel, 29 Nivel y hasta 3° Nivel).

" Los registros son la memoria mAs rapida que accede un
procesador y estan integrados al chip.

= En los 1ultimos afios han surgido procesadores que en un
mismo chip contienen varios cores de ejecucidén. Esto ha
llevado a una nueva terminologia: single-core, dual-
core, quad-core, etc.

Instrucciones
Operador Operandos. ..

®* Los operandos pueden ser: inmediatos, registros,
relativos o de memoria DS:[SI] segun diferentes técnicas
(vistos en Arquitectura de sistemas).

" LLas familias de instrucciones incluyen: aritméticas,
légicas, transferencia control (Jmp, Call, Loop, etc),
de memoria, de stack, de sincronizacidén (loopz Lock:XChg
ax) y de entrada salida.

INDICE

CPU (Procesador)

" Dentro del mismo chip del procesador se incluyen
registros de rapido acceso:

" Registros punto fijo y punto flotante (decimal o
no) .
" Registros de direccionamiento ES, SS, DS, CS, etc.

" Registro de Estado. Incluye PC y banderas con zero,
carry.

" Caches:
= 1 Nivel (del orden de 20 Kb).
= 2%° Nivel (del orden de 512Kb a 2Mb).
= 3er Nivel (del orden de 8Mb).

Instrucciones Privilegiadas

" Se establecen niveles de ejecucidén y conjunto de
instrucciones para cada nivel.

" Un protocolo seguro para aumentar el nivel de
ejecucidén que se basa en siempre transferir el
control a «cédigo autenticado (trusted) para
aumentar el nivel de ejecucién.

= Familias de E/S, proteccidén de memoria y memoria
virtual.

Interrupciones

" Capacidad de procesar interrupciones.

" El sistema operativo preserva el estado actual (previo
a la interrupcién) del procesador (registros, etc.).

" Se determina que tipo de interrupcidn ocurrid.

" Se ejecuta la rutina de atencidén correspondiente.

CPU user
process
executing

i L

/O interrupt
processing

e idle —

device | |
transferring ‘ .

l{e] transfer /o] transfer
request done request done

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

93

Arquitectura del Computador y Sistemas Operativos

Memoria

" El sistema de memoria es construido en base a una
jerarquia que permite mejorar la utilizacién del
procesador:

1 nsec Registros < 1kb

2 nsec ‘ Cache | 1-8Mb
10 nsec l Memoria principal ‘ 1-64 GB
10 mseg | Discos magnéticos | 1-500 GB
100 sec | Cintas magnéticas | 100-1000 GB

Memoria - Cache

= E1 cache es un ©principio muy importante, es
utilizado a varios niveles en el sistema de
computacidén (hardware, sistema operativo, software).

" E1l concepto es mantener una copia de la memoria que
estd siendo utilizada en un medio temporal de mayor
velocidad de acceso.

" El1 medio de memoria cache es mucho menor en
capacidad pero mas veloz que el dispositivo
principal. Esto genera que el manejo de cache es un
problema de diseno importante.

" El1 tamano del cache y sus politicas de reemplazo
tienen un alto impacto en la mejora real de 1la
performance.

Memoria - Coherencia de cache

" Un problema que introduce la memoria cache en
ambientes de multiprocesadores es la coherencia vy
consistencia de los datos que estan replicados. Caches
en multiprocesadores:

" Mayor rendimiento: no se satura el bus del sistema
(cuello de botella).

" Aun en un mono procesador, hay que contemplar a
los controladores de dispositivos.

" Problemas de coherencia entre caches, ya que una
palabra puede estar replicados en diferentes cache
de los procesadores.

" A su vez, en sistemas multiprocesadores, el
problema de coherencia se torna mucho mas
complicado.

®* Surgen técnicas como write-update y write-

invalidated.

Memoria — Memoria Principal (RAM)

®* Memoria de tipo volatil, con direcciones de palabra o
byte.

" Palabra de 32, 48, 64 bits con paridad.

" Transferencia en un ciclo del bus y acceso en paralelo
(interleaving) a mas de un médulo de memoria.

= Existen instrucciones que toman como argumentos
direcciones de memoria.

= Es 1til también para hacer transferencias con
controladoras de dispositivos. Las controladoras tienen
su propio buffer de memoria, y existen instrucciones de
E/S que permiten la transferencia directa desde el
buffer a memoria principal.

Memoria - Discos magnéticos (hard disk)

®* Dispositivos de velocidad de acceso mucho menor gue
la memoria principal, pero de mayor capacidad.

" Tiene componentes mecanicas a diferencia de la
memoria principal, cache y registros. Consta de platos
de metal (10000 mas zrpm) y un brazo mecanico gque
contiene las cabezas de lectura/escritura para cada
plato:
" Pistas (tracks): La superficie de los platos es
dividida légicamente en pistas circulares.
® Sectores (sectors): Cada pista es dividida en un
conjunto de sectores.
® Cilindros (cylinder): El1 conjunto de pistas (de
todos los platos) gque estan en una posicidén del
brazo mecanico forman un cilindro.

Memoria - Discos magnéticos (hard disk)

Esquema de discos magnéticos:

track t le— spindle
3 <4
I | <— arm assembl
sector s I !
|
: J &
1 I
| |
I I
I I .
cylinder ¢ —»l ! read-write
I
| I
platter

rotation

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

95

Arquitectura del Computador y Sistemas Operativos

Memoria - Discos magnéticos (hard disk)

" La velocidad del disco tiene dos componentes:

" Tasa de transferencia (transfer rate): Es la
tasa con la cual los datos van entre el disco y
la computadora.

" Tiempo de posicionamiento (positioning time): Es
el tiempo que se tarda en ubicar el brazo en el
cilindro adecuado (seek time) mas el tiempo de
rotar el plato al sector adecuado (rotational
latency) .

" La unidad de transferencia es el bloque.
Ocasionalmente, los bloques pueden estar con
interleaving.

* Existen distintos tipos de buses de conexidn:
® IDE (Integrated drive electronics).
® ATA (Advanced Technology Attachment) .
® SCSI (Small Computer-Systems Interface).
" SAS (Serial Attached SCSI).

Dispositivos de Entrada/Salida (IO)

" Los dispositivos, por lo general, se componen de
una controladora y el dispositivo en si.

* La controladora es un chip que controla fisicamente
al dispositivo. Acepta comandos del sistema
operativo y los ejecuta (genera las correspondientes
sefilales sobre el dispositivo para realizar 1la
tarea) .

" La interfaz que le presenta la controladora al
sistema operativo es bastante mas simple que la
provista por el dispositivo.

" En un sistema existen distintas controladoras (de
discos, red, etc.), por eso es necesario distintos
componentes de software para manejar cada uno.

Entrada/Salida - Device Drivers

" Al software que se comunica con la contrcladora se le
denomina device driver.

® Para cada controladora se debe proveer el device driver
adecuado. Estos son incorporados al sistema operativo
dado que son la via de comunicacién con los
dispositivos.

" Los device drivers son cargados de diferentes formas:

* Ensamblados estaticamente al ntcleo del sistema.

" Cuando se carga el sistema se lee un archivo de
configuracidén que menciona cuales device drivers
cargar.

® Cargar dindmicamente a demanda.

Dispositivos de Entrada/Salida (IO)

" Las controladoras contienen un conjunto de registros
que sirven para comunicarse con ella y ejecutar
comandos. Ej.: la controladora de un disco podria tener
registros para especificar la direccidén en disco, la
direccidén en memoria principal, el numeroc de sectores y
el sentido (lectura y escritura).

® Acceso a los registros de la controladora:

» Memory-mapped-I0O: Los registros son "“mapeados” a
direcciones de memoria principal.

» Direct IO 1instructions: A los registros se le
asigna una direccidén de puerto (IO port address).

Entrada/Salida - Memory-mapped-IO

" Para facilitar el acceso a registros de los
dispositivos, se reserva un espacio de la memoria
principal que “mapea” a los registros del dispositivo.

" Leer o escribir en los registros de los dispositivos se
traduce en leer o escribir sobre las direcciones de
memoria. Al operar sobre estas direcciones de memoria se
genera la transferencia a los registros del dispositivo
en forma transparente.

®* Las direcciones de memoria deben ser puestasfuera del
alcance de los procesos del usuario.

* Ej.: La pantalla es “"mapeada” a un lugar de memoria.
Para desplegar un caracter en pantalla solo basta con
escribir sobre el lugar correcto de la memoria
principal.

Entrada/Salida - IO port address

" A cada registro se le asigna una direccidén de puerto.

" El sistema cuenta con instrucciones privilegiadas IN y
OUT que permiten a los device drivers leer o escribir en
los registros de la controladora.

" La instruccién genera senales en el bus del sistema
para seleccionar el dispositivo adecuado.

1/0 address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller

378-37F parallel port

3D0-3DF graphics controller
3F0-3F7 diskette-drive controller

3F8-3FF serial port (primary)

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

97

Arquitectura del Computador y Sistemas Operativos

Entrada/Salida - Comparacién de acceso

" Los sistemas manejan los dos métodos de accesos a los
registros de la controladora.

= E1 acceso memory-mapped IO no necesita de
instrucciones privilegiadas.

= E1 acceso a través de instrucciones tiene la ventaja
de no consumir memoria principal.

E/S - Interaccidén con la controladora

= Métodos para efectuar una operacién de entrada-
salida:

" Espera activa (Polling): El procesador le comunica
un pedido a la controladora del dispositivo y
queda en un ‘busy waiting’ consultande a la
controladora si estd listo el pedido.

®* Interrupciones (Interrupts): El procesador le
comunica el pedido a la controladora y se libera
para realizar otras tareas. Al culminar el pedido
el dispositivo, la controladora genera una
interrupcién al procesador.

" Acceso directo a memoria (DMA - Direct Memory
Access): Se utiliza un chip especial que permite
transferir datos desde alguna controladora a
memoria sin que el procesador tenga que intervenir
en forma continua.

Dispositivos de E/S - Espera activa

" El1 sistema queda en busy waiting consultando un
registro del controlador para saber si esta listo.

® Ej.: Imprimir un buffer en una impresora.
p = copy_ from user (buffer, k buffer, count):
for (i = 0; i < count; i++) {

while (*printer status reg != READY) ;

*printer data.register = p[i];

return_to user();

Dispositivos de E/S - Interrupciones

" El sistema se independiza del controlador, que genera
una interrupcidén cuando finaliza el pedido.

= Es necesario tener un vector de rutinas de atencidén
de interrupciones (interrupt vector), gque es cargado
cuando se inicia el sistema operativo.

" Ej.: Imprimir un buffer en una impresora.

p = copy_ from user(buffer, k buffer, count);
while (*printer_status_reg != READY) ;

i= 0;

*printer_data.register = p[i];

scheduler () ;

= Ej.: Rutina de atencidén de la interrupciédn.

if (i == count)
unblock _user();
else {
144

*printer data.register = p[i];

return from interrupt();

Dispositivos de E/S - DMA

" Se dispone de un dispositivo especializado que
permite realizar transferencias desde ciertos
dispositivos a memoria. La transferencia se hace en
paralelo mientras el procesador realiza otras tareas.

= El1 procesador carga ciertos registros en el
controlador DMA para realizar el pedido. El controlador
DMA se encarga de la tarea de transferencia,
interrumpiendo al procesador cuando finalizé.

" Ej.: Imprimir un buffer en una impresora.

p = copy_from_user(buffer, k_buffer, count) ;
set up DMA controller();

scheduler () ;

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

Arquitectura del Computador y Sistemas Operativos

100

Dispositivos de E/S - DMA

" Ej.: Rutina de atencién de la interrupcién de DMA.

unblock user():
return from interrupt();

Proteccién de Hardware

" Con la introduccién de sistemas multiprogramados y
multiusuarios se empezaron a generar problemas en el
uso de los recursos debido a procesos “"mal programados”
o "mal intencionados”.

" Fue necesario la introduccidén de proteccidén entre los
distintos procesos que se ejecutaban en un sistema.

"= E1 hardware fue suministrando a los sistemas
operativos de mecanismos para la proteccidn:

" Modo Dual: Se provee de al menos, dos modos de
operacién.

= Proteccidén de E/S: Todas las instrucciones de
Entrada/Salida son privilegiadas.

= Proteccidn de Memoria: Evaluacidén de las
direcciones de memoria a través de la MMU.

" Protecciédn de CPU: Introduccién de un timer que
permite limitar el uso de CPU.

Modo Dual

" E1l hardware provee,6al menos,dos modos de ejecucidn:

®* Modo usuario (user mode): en este modo de
ejecucidén se puede ejecutar un conjunto reducido
de instrucciones de hardware. Los procesos a nivel
de usuarios ejecutan en este modo.

" Modo monitor (monitor mode): en este modo todas
las instrucciones de hardware estan disponibles.
El sistema operativo es el uUnico que debe ejecutar
en este modo.

" Un bit, llamado mode bit, es agregado al hardware
para indicar el modo actual.

Modo Dual

" La ejecucidén de instrucciones privilegiadas en el
modo monitor garantiza que los procesos, a nivel de
usuario, no accedan directamente a los dispositivos de
E/S.

" E1l acceso a un dispositivo se realiza a través de los
servicios que brinda el sistema operativeo (syscall).

" TLa solicitud de un servicio al sistema operativo es
tratado como wuna interrupcién a nivel de software
(trap), y en ese momento el sistema pasa de modo
usuario a modo monitor.

" En Intel la instruccidén int $0x80 genera el cambio de
modo.

" Posteriormente, se ejecuta el handler de la excepcidén
0x80 (128 decimal) .

* Esquema grafico del cambio de modo:

user process
user mm_:ie
user process executing H calls system call | ‘ return from system call (mode bit = 1)
\ 7
LY rd
L% 4
K | trap return
EIE mode bit = 0 mode bit = 1
3 kernel mode
execute system call (mode bit = 0)

Proteccién de E/S

" Es necesario restringir que los procesos a nivel de
usuario no accedan directamente a los dispositivos,
sino que deban hacerlo a través del sistema operativo.

" Por eso, se define que todas las instrucciones de E/S
son privilegiadas.

" De esa forma, se asegura que un programa a nivel de
usuario nunca pueda lograr cambiar el modo a monitor.

" Un usuario podria ingresar una nueva interrupcidn,
modificar una ya existente o cambiar el vector de
interrupcidén y luego generar un trap (interrupcidén por
software) para que ejecute.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

101

Arquitectura del Computador y Sistemas Operativos

102

Proteccidén de memoria

» Es necesario proteger la memoria del nucleo (p.ej.: el
vector de interrupciones) y, a su vez, proteger el
acceso de memoria entre los distintos procesos (un
proceso no deberia acceder a la memoria de otro).

= E1 sistema debe lograr saber si cada direccidn
generada por un proceso es valida.

" Una forma es utilizar dos registros:

" Base: Contiene la direccién de memoria fisica mas
baja que puede acceder.

= Limite: Contiene el tamafio del bloque de memoria a
partir del registro base.

= Esquema grafico de la proteccién a través de registro
base y limite:

base base + limit

Y Y

address yes yes
CPU e <

no no

\ A Y

trap to operating system
monitor—addressing error memory

= Cada direccién fisica generada por 1la CPU es
controlada para comprobar si es una direccién valida.

= En caso de un acceso invalido se genera un trap al
sistema operativo.

= La unidad que convierte direcciones légicas a fisicas
es la MMU (Memory Management Unit), y es la que
controla el acceso a memoria. Esta es un dispositivo de
hardware.

= La unidad MMU tunicamente debe ser administrada en
modo monitor. Por ejemplo,cargar los registros base y
limite.

Proteccidén de CPU

" Una vez que a un proceso se le asigna un recurso
procesador puede entrar en una iteracién infinita
(infinite loop) y no retornar nunca mas el control al
sistema.

" Deben existir mecanismos de proteccién de uso del
procesador.

" Una alternativa es la utilizacidén de un timer que
interrumpa el procesador cada cierto tiempo (watch dog
timer) .

" E1l sistema operativo al asignar la CPU carga un
contador. Cada vez que la interrupcidén de timer se
genera se ejecuta la rutina de atencidén
correspondiente.

" En la rutina de atencidén de 1la interrupcidén el
contador es disminuido. Si alcanza al valor 0 se le
quita el recurso procesador al proceso y se invoca al
planificador para que seleccione otro.

" La instruccidén que permite cargar el contador debe
ser privilegiada.

Red

" Las redes se pueden clasificar, basicamente, en dos
tipos:
= Red LAN (Local Area Network) :

®" Las redes LAN son pequefias y su alcance esta
limitado,por lo general a no mas de un edificio.

= Velocidades de 10, 100, 1000 Mbits/s, o més.
" Red WAN (Wide Area Network) :

" Las redes WAN son redes distribuidas sobre una
regidén grande.
= 1,5 a 100 Mbits/s.

" La diferencia principal es como estan geograficamente
distribuidas.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

103

Arquitectura del Computador y Sistemas Operativos

104

Topologias de red

Esquema grafico de algunas

topologias mas comunes:

fully connected network

tree-structured network

ring network

V.

partially connected network

star network

INDICE

Estructura de los
sistemas operativos

Agenda
" Componentes de un sistema operativo.
®* Servicios del sistema operativo (system
services) .

" Llamados a sistema (system calls).

® Estructura del sistema.

Componentes del sistema operativo

= Por su complejidad un sistema operativo debe ser,

en su disefio, modularizado en varios componentes:

" Administracién de procesos.

" Administracidén de memoria.

" Subsistema de Entrada/Salida.

" Administracidén de almacenamiento secundario.
= Subsistema de archivos.

" Subsistema de red.

" Sistema de proteccién.
Administracién de procesos
Proceso:

Un programa en la memoria + CPU + acceso
dispositivos + recursos,constituyen un proceso.

Un programa es una entidad pasiva, mientras que
proceso es una entidad activa.

un

Cada proceso cuenta con un contador de programa (PC
program counter) que determina la prdéxima instrucciédn

de cédigo a ejecutar.

El proceso necesita de ciertos recursos (CPU, memoria,

archivos y dispositivos de E/S) para realizar
tarea.

su

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

105

Arquitectura del Computador y Sistemas Operativos

106

Administracién de procesos

" E1 sistema albergara muchos procesos compitiendo
por los recursos y serd el responsable de proveer de
medios o servicios para que realicen su tarea:

® Crear y destruir procesos.

®= Suspensidén y reanudacién de procesos.

" Proveer mecanismos para la cooperacién
(sincronizacidn) v comunicacién entre los
procesos.

" Proveer mecanismos para prever la generacidén de
dead-locks o lograr salir de ellos.

Administracién de la memoria

" La memoria principal es un arreglo de palabras
bytes.

" Es un repositorio de datos de rapido acceso compartido

por los CPUs y los dispositivos.

" La memoria es un Aarea de almacenamiento comun a los

procesadores y dispositivos del sistema donde
almacenan programas, para su ejecucidén, y datos.

" El vincular programas a direcciones absolutas
fuertemente dependiente del hardware, igual que
posibilidad de reubicacién.

" El sistema deberid administrar el lugar libre
ocupado, decidir qué proceso podra comenzar cuando
cargado en memoria.

Administracién de memoria

" Para lograr la multiprogramacién es necesario
mantener varios programas en memoria al mismo
tiempo.

" Existen varios esquemas para la administracién de
la memoria y requieren distinto soporte del
hardware.

"= El sistema operative es responsable de las
siguientes tareas:

" Mantener qué partes de la memoria estédn siendo
utilizadas y por quién.

®" Decidir cudles procesos seran cargados a
memoria cuando exista espacio de memoria
disponible.

" Asignar y gquitar espacio de memoria segin sea
necesario.

se

es
la

Y
es

Subsistema de Entrada/Salida

= E1l sistema operativo debera encapsular y ocultar las
caracteristicas especificas de los diferentes
dispositivos de almacenamiento y ofrecer servicios
comunes para todos los medios de almacenamiento.

" Para ello proveera de:

" Un conjunto de servicios que provean la interfase
con el subsistema e implementen técnicas de
cache, buffering y spooling.

" Una interfase cliente con el sistema operativo
para los manejadores de dispositivos o device
drivers que ©permitira interactuar (mediante

cargas dinamicas) con cualquier modelo de
dispositivo.

" Device drivers especificos.

= Montaje v desmonta‘je (Mount/Dismount) de
dispositivo.

Administracién de almacenamiento
secundario

" La memoria principal es volatil y demasiado pequeifia
para guardar todos 1los datos y programas gque son
necesarios para el funcionamiento del sistema.

" La mayoria de los sistemas actuales utilizan discos
como principal medio para guardar toda la informacién.

= E1 sistema operativo es responsable de las
siguientes actividades en administracién de
almacenamiento secundario:

®* Administrar el espacio libre.
" Asignacién del lugar de la informaciédn.
= Algoritmos de planificacién de disco.

Subsistema de archivos

" Proporciona una vista uniforme de todas las formas
de almacenamientce en los diferentes dispositivos,
implementando el concepto de archivo como una
coleccidén arbitraria de bytes u otras clases u
organizaciones mds sofisticadas, aunque habitualmente
obsoletas.

* Implementara los métodos de:

— Abrir, Cerrar, Extender.

- Leer, Escribir.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

107

Arquitectura del Computador y Sistemas Operativos

108

Red Comunicacién entre procesos

: : sa = Los procesos deberan poder comunicarse.
= En un sistema distribuido (no se comparten P p

fisicamente memoria ni dispositivos) los conjuntos de

. . , " Se deberid proveer mecanismos de comunicacién entre
procesos interactilan a través de un canal de p

) . ellos, ya sea que estén en el mismo computador (a
comunicacion en el contexto de una red de través de memoria compartida) o en diferentes
comunicacién. computadores (a través de transferencias de paquetes
de red entre los sistemas operativos involucrados).

= Comunmente se generaliza el concepto de dispositivo

virtual implementandc un manejador (driver) que Deteccidn de errores
encapsula el acceso a dispositivos remotos.

= E1 sistema deberia tomar decisiones adecuadas ante
Sistema de Proteccién eventuales errores que ocurran:

— Fallo en un dispositivo de memoria.

" En un sistema multiusuario donde se ejecutan Fallo en la fuente de energia.

procescos en forma concurrente se deben tomar medidas - Fallo en un programa.
que garanticen la ausencia de interferencia entre — Etc.

ellos.

= Por proteccidén nos referimos a los mecanismos por Servicios del SO
los que se controla al acceso de los procesos a los

recursos.

= Otros servicios de propésito general que debera

. . o brindar el sistema operativo son:
" El mecanismo debe incorporar 1la posibilidad de

definir reglas de acceso y asegurar su verificacién

oz = Asignacién de recursos.
en toda ocasidén que corresponda.

= Contabilizacién.
= Proteccién.

Servicios del SO "= Una vez que estan definidos 1los servicios que

brindard el sistema operativo se puede empezar a

)] . . o desarrollar la estructura del sistema.
" E1l sistema brindara un entorno de ejecucidn de

programas donde se dispondra de un conjunto de
servicios que serédn accesible mediante una interfase
bien definida.

" Servicios basicos que debe brindar un sistema
operativo:

" Ejecucién de programas.

= QOperaciones de Entrada/Salida.

®* Manipulacién de sistemas de archivos.
®* Comunicacién entre procesos.

®* Manipulacién de errores (excepciones).

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

109

Arquitectura del Computador y Sistemas Operativos

110

Llamados al sistema

" Los llamados al sistema (system calls) son una
intefaz, provista por el nucleo, para que los
procesos de usuarios accedan a los diferentes
servicios que brinda el sistema operativo.

= Al principio los system calls estaban desarrollados
en lenguaje de la arquitectura de la maAquina.

" En los sistemas modernos estan programados en
lenguajes de programacién de alto nivel como C o
C++. De esta forma, los programas de usuario tienen
un acceso mas directo a los servicios.

" Los servicios son invocados por los procesos en
modo usuario, cuando ejecutan lo hacen en modo
monitor y,al retornar,vuelven al modo usuario.

" Tipicamente, a los system call se les asocia un
numero que los identifica.

La llamada a system call incluye las siguientes

tareas:

= Cargar los parametros en el lugar adecuado

(Stack) .

®= Cargar el numero de system call en algun

registro especifico (Ej: eax en Intel).

= Invocar a la interrupcidén por software (trap)
adecuada (system call handler).

* La interrupcién cambia el bit de modo a
monitor, controla que el numero de system call
pasado en el registro sea menor que el mayor
del sistema y, finalmente, invoca al system

call correspondiente.

= El valor retornado por el system call es puesto

en un registro especifico (Ej.: eax en Intel).

" Existentres formasdepasar los parametros al sistema

operativo:
= A través de los registros: Se wutilizan un
conjunto de registros para pasar los

parametros. Tiene el problema de la cantidad de

parametros fija y que restringe el tamafiodel
valor.

En Intel se utilizan cinco registros: ebx, ecx, edx,

esi, y edi.

= Un bloque de memoria apuntado a través de un

registro.
= En el stack del proceso que realiza el llamado.

El proceso guarda los parametros con
operaciones push sobre el stack vy el sistema

operativo los saca con la operacién pop.

Llamados al sistema

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
d Implementation
i » ofopen()
. system call
return

" Los system calls se clasifican en distintos tipos:
= Control de procesos

" Cargar, ejecutar, finalizar, abortar, conseguir
atributos, cargar atributos, esperar por tiempo,
esperar por un evento o sefial, conseguir o
liberar memoria, etc.

" Gestidén de archivos

" Crear, borrar, abrir, cerrar, leer, escribir,
conseguir o cargar atributos, etc.

®" Gestidén de dispositivos
" Requerir o 1liberar un dispositivo, leer o
escribir, conseguir o cargar atributos de un
dispositivo, etc.
®* Gestidn de informacién

" Conseguir o cargar la hora del sistema, datos
del sistema, de procesos, etc.

= Comunicaciones

" Crear o destruir conexiones, enviar o recibir
mensajes, etc.

Estructura del sistema

" La estructura interna de los sistemas operativos
pueden ser muy diferentes.

" Se deben tener en cuenta:

" Metas de los usuarijios: ser amigable, intuitivo,
confiable, seguro, rapido, etec.

" Metas del sistema: facil de disenar,
implementar y mantener, también flexible,
confiable y eficiente.

" Disenio del sistema:
" Sistema Monolitico.

" Sistema en capas.
" Sistema con micronucleo (microkernel).

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

111

Arquitectura del Computador y Sistemas Operativos

112

Sistema Monolitico

" No se tiene una estructura definida.

= E1 sistema es escrito como una coleccidén de
procedimientos que pueden ser invocados por
cualquier otro.

" No existe “ocultacién de informacién”, ya que
cualquier procedimiento puede invocar a otro.

" Si bien todo procedimiento es publico y accesible a

cualquiera, es ©posible tener buenos disefios Yy
lograr, de esa forma, buena eficiencia en el
sistema.

* Ej.: MS-DOS.

- Los componentes pueden invocar procedimientos de
cualquiera.

" Ej.: Linux

— Linux es un nucleo monolitico que a logrado un
buen disefio orientado a cobjetos (sistema
modular) .

Sistema en capas

" Se organiza el diseflo en wuna jerarquia de capas
construidas una encima de la otra.

" Los servicios que brinda cada capa son expuestos en
una interfase piublica y son consumidos solamente por
los de la capa de arriba.

" La capa (0 es el hardware y la N es la de procesos de

usuario. " layerN T
- user interface e

layer O ‘\
hardware |

Sistema en capas

" Ventajas:

" Modularidad.
®* Depuracién y verificacién de cada capa por
separado.

= Desventajas:

" Alto costo de definicidén de cada capa en la
etapa de diseno.

" Menos eficiente frente al sistema monoliticec, ya
que sufre de overhead al pasar por cada capa.

= Ej.: en capas — 0S/2.

application application application

‘ application - programming interface AP extension |

’ subsystem | subsystem ‘ subsystem

system

kernel « memory management
« task dispatching
* device management

device driver device driver device driver device driver
—_ m— m— P\
(i 1] I] E] f]

Sistema con micronucleo (microkernel)

" Se constituye de un nucleo gque brinde un manejo
minimo de procesos, memoria y, ademds, provea de una
capa de comunicacidn entre procesos.

" La capa de comunicacién es la funcionalidad
principal del sistema.

" Los restantes servicios del sistema son construidos
como procesos separados al micronicleo que ejecutan
en modo usuario.

" El acceso los servicios del sistema se realiza a
través de pasaje de mensajes.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

113

Arquitectura del Computador y Sistemas Operativos

114

Sistema con micronucleo
Ventajas:

* Aumenta la portabilidad y escalabilidad ya que
encapsula las caracteristicas fisicas del
sistema.

" Para incorporar un nuevo servicio no es
necesario modificar el nicleo.

= Es mas seguro ya que los servicios corren en
modo usuario.

= El disefio simple y funcional tipicamente
resulta en un sistema mas confiable.

Ej.: Windows.

INDICE

Introduccion a procesos

Agenda

" Proceso.

= Definicién de proceso.

" Contador de programa.

" Memoria de los procesos.
= Estados de los procesos.

®* Transiciones entre los estados.
" Bloque descriptor de proceso (PCB).
" Creacidén de procesos.
" Listas y colas de procesos.

Definicidén de Proceso

" E1l principal concepto en cualquier sistema operativo
es el de proceso.

" Un proceso es un programa en ejecucidn, incluyendo el
valor del program counter, los registros y las
variables.

" Conceptualmente, cada proceso tiene un hilo (thread)
de ejecucidn que es visto como un CPU virtual.

"= El recurso procesador es alternado entre 1los
diferentes procesos que existan en el sistema, dando la
idea de que ejecutan en paralelo (multiprogramacidn).

Contador de programa

Cada proceso tiene su program counter y avanza cuando
el proceso tiene asignado el recurso procesador. A su
vez, a cada proceso se le asigna un numero que lo
identifica entre los demas: identificador de proceso
(process id) . |)

Proceso Proceso Proceso
1 2 n
pc -
>
pc - e
pc —»

(esperando (Asignado (esperando
por al por
recurso) procesador) recurso)

Procesador

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

115

Arquitectura del Computador y Sistemas Operativos

116

INDICE

Memoria de los procesos Transiciones entre estados

Un proceso en memoria se constituye de .
® Nuevo —> Listo

varias secciones: max
stack — Al crearse un proceso pasa inmediatamente al
= Céddigo (text): Instrucciones del estado listo.
proceso. 1
* Datos (data): Variables globales " Listo -> Ejecutando
del proceso. :
P T — En el estado de listo el proceso solo espera
. . s . .
i?m?r%a dinémica (Hefp) = emenLE A para que se le asigne un procesador para
ilnamica e enera e roceso. . . . -
5 b kg i B %ap ejecutar (tener en cuenta que puede existir mas
= Pj : ili : !
. Ekaek) VELLAEACD RS de un procesador en el sistema). Al liberarse
preservar el estado en la data i i
. . G . un procesador el planificador (scheduler)
invocaciodn anidada de] . . J
procedimientos y funciones. text selecciona el préxime proceso, segun algun
0 criterio definido, a ejecutar.
El estado de un proceso es definido por la actividad » Ejecutando -> Liste

SOEIisnts SN Gue 26 SHeusEIA. - Ante una interrupcién que se genere, el proceso

puede perder el recurso procesador y pasar al

Los estados de un proceso son: estado de 1listo. El1 planificador sera el
encargado de seleccionar el prdéximo proceso a
" Nuevo (new): Cuando el proceso es creado. ejecutar.
" EFjecutando (running): El1 proceso tiene asignado
un procesador ¥ esta ejecutando sus - ;
. . -2
gt e e Ejecutando Bloqueado
* Blogqueado (waiting): El proceso esta esperando ~ A medida que el proceso ejecuta instrucciones
por un evento (que se complete un pedido de E/S realiza pedidos en distintos componentes (ej.:
© una senal). genera un pedido de E/S). Teniendo en cuenta
" Listo (ready): El1 proceso estd listo para que el pedido puede demorar y, ademas, si esta
ejecutar, solo necesita del recurso procesador. en un sistema multiprogramado, el proceso es
" Finalizado (terminated): El proceso finalizdé su puesto en una cola de espera hasta que se
ejecucién. complete su pedido. De esta forma, se logra

utilizar en forma mas eficiente el procesador.

®* Diagrama de estados y transiciones de los procesos.
= Bloqueado -> Listo

— Una vez que ocurre el evento que el proceso

estaba esperando en la cola de espera, el
proceso es puesto nuevamente en la cola de
procesos listos.

admitted

interrupt exit terminated

" Ejecutando -> Terminado

— Cuando el proceso ejecuta su ultima
instruccién pasa al estado terminado. El
sistema libera las estructuras que representan
al proceso.

scheduler dispatch

I/0 or event completion I/O or event wait

waiting

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

117

Arquitectura del Computador y Sistemas Operativos

118

INDICE

Bloque descriptor de proceso Creacién de procesos

= E1 proceso es representado, a nivel del sistema int main() {
operativo, a través del blogque descriptor de proceso pid_t pid;
(Process Control Block) .

* *
process state /* fork another process */

pid = fork();
process number if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed") ;
program counter exit(-1) ;
}
registers if (pid == 0) /*.child process */
execlp ("/bin/1ls"™, "1ls", NULL);
else { /* parent */
memory limits wait (NULL) ;

printf ("Child Complete") ;

list of open files exit(0) ;

" Los procesos de un sistema son creados a partir de
otro proceso.

" Al creador se le denomina padre y al nuevo proceso
hijo. Esto genera una jerarquia de procesos en el
sistema.

" En el disefio del sistema operativo se debe decidir,
en el momento de creacidén de un nuevo proceso, cuales
recursos compartiran el proceso padre e hijo. Las
opciones son que compartan todo, algo o nada.

Nelsmacs
pid = 8105

pid = 7785

" Una vez creado el nuevo proceso tendran un hilo (pc)
de ejecucidén propio. El sistema genera un nuevo PCB
para el proceso creado.

Listas y colas de procesos

= Ej.: UNIX R .
J Los procesos, en los distintos estados que tienen,

- UNIX provee el system call fork para la son agrupados en listas o colas:
creacién de un nuevo proceso. * Lista de procescs del sistema (job gqueue): En
- La invocacién a esta funcién 1le retorna al esta lista estdn todos los procesos del
padre el numero de process id del hijo recién sistema. Al crearse un nuevo procesc se agrega

el PCB a esta lista. Cuando el proceso termina

creado y al hijo el valor 0. El1 hijo comienza
su ejecucidén es borrado.

su ejecucidn en el retorno del fork.

. " Cola de procesos listos (ready queue): Esta
— Ademas, se provee del system call exec que . ,

. . cola se compondra de los procesos que estén en
reemplaza el espacio de memoria del proceso por estado listo. La estructura de esta cola
uno. RUeVe: dependera de la estrategia de planificacién

utilizada.

parent

/;vait

resumes

® Cola de espera de dispeositivos (device queue):
Los procesos que esperan por un dispositiveo de
E/S particular son agrupados en una lista
especifica al dispositivo. Cada dispositivo de

exit() E/S tendra su cola de espera.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

119

Arquitectura del Computador y Sistemas Operativos

120

Listas y colas de procesos

queue header PCB, PCB,
ready head T3
queue tail ~ registers registers
. .
mag
tape -
unit 0 “ =
:nag head —=
ape r PCB PCB PCB
unit 1 tal = - = .
- —_— -
disk head
unit 0 tail
PCBsg
terminal head > —=
unit 0 tail E
.

®* Diagrama de transicién de un proceso entre las
colas del sistema.

: ready queue I > CPU!
/O queue H 1/0 request |<—

time slice
expired
child fork a
executes child
interrupt wait for an
Q:curs interrupt

Cooperacidén entre procesos

" Procesos concurrentes pueden ejecutar en un entorno
aislado (se debe asegurar la ausencia de
interferencias) o, eventualmente, podran interactuar
cooperando en pos de un objetivo comin compartiendo
objetos comunes.

" Es necesario que el sistema operativo brinde unas
herramientas especificas para la comunicacidn v
sincronizacién entre los procesos (Inter Process
Communication — IPC).

" IPC es una herramienta que permite a los procesos
comunicarse y sincronizarse sin compartir el espacio
de direccionamiento en memoria.

Agenda

" Cambio de contexto (context switch) .

" Hilos (Threads).
®* Threads a nivel de usuario.
» Threads a nivel de niicleo del sistema.
®* Modelos de threads.

Definicidén de Proceso

*= El principal concepto en cualquier sistema operativo
es el de proceso.

" Un proceso es un programa en ejecucién, incluyendo el
valor del program counter, los registros vy las
variables.

" Conceptualmente, cada proceso tiene un hilo (thread)
de ejecucién que es visto como un CPU virtual.

= E1 recurso procesador es alternado entre los
diferentes procesos que existan en el sistema, dando la
idea de que ejecutan en paralelo (multiprogramacidn) .

Contador de programa

Cada proceso tiene su program counter, y avanza cuando
el proceso tiene asignado el recurso procesador. A su
vez, a cada proceso se le asigna un numero que lo
identifica entre los demads: identificador de proceso
(process id) .

Proceso Proceso Proceso
1 2 n
pc -
P
pc = .
pc—»
(esperando (Asignado (esperando
por al por
recurso) procesador) recurso)

Procesador

INDICE

Procesos

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

121

Arquitectura del Computador y Sistemas Operativos

122

Cooperacién entre procesos

" Hay aplicaciones donde es necesario utilizar vy
compartir recursos en forma concurrente.

" TPC brindan una alternativa a nivel de sistema
operativo.

" Los sistemas operativos modernos estadn proporcionando
servicios para crear mas de un hilo (thread) de
ejecucidn (control) en un proceso.

" Con las nuevas tecnologias multi-core esto se hace
algo necesario para poder sacar mayor provecho al
recurso de procesamiento.

" De esta forma, se tiene mas de un hilo de ejecuciédn
en el mismo espacio de direccionamiento.

" Cada thread contendria su propio program counter, un
conjunto de registros, un espacio para el stack y su
prioridad.

" Todos los recursos, seccidén de cdébdigo y datos son
compartidos por los distintos threads de un mismo
proceso.

[code || data || files | ‘ code || data || files I
| stack | ‘regislersl |registers| |registers|
‘ stack | | stack | | stack I
thread ——> ; <«+—— thread
single-threaded process multithreaded process

Ventajas del uso de threads

®= Repuesta: Desarrollar wuna aplicacién con varios
hilos de control (threads) permite tener un mejor
tiempo de respuesta.

" Compartir recursos: Los threads de un proceso
comparten la memoria y los recursos que utilizan. A
diferencia de IPC, no es necesario acceder al kernel
para comunicar o sincronizar los hilos de ejecuciédn.

®* Economia: Es mas facil un cambio de contexto entre
threads ya que no es necesario cambiar el espacio de
direccionamiento. A su vez, es mas "“liviano” para el
sistema operative crear un thread que crear un proceso
nuevo.

" Utilizacién de arquitecturas con multiprocesadores:
Disponer de una arquitectura con mas de un procesador
permite que los threads de un mismo proceso ejecuten
en forma paralela.

Threads

" Los threads pueden ser implementados tanto a nivel
de usuario como a nivel de sistemas operativo:

" Hilos a nivel de wusuario (user threads): Son
implementados en alguna libreria de usuario. La
libreria deberid proveer soporte para crear,
planificar y administrar los threads sin soporte
del sistema operativo. El sistema operativo solo
reconoce un hilo de ejecucidén en el proceso.

" Hilos a nivel del nucleo (kernel threads): El
sistema es quien provee la creaciédn,
planificacién y administracién de los threads. E1
sistema reconoce tantos hilos de ejecucidén como
threads se hayan creado.

Ventajas de user threads sobre kernel threads:

®* Desarrollo de aplicaciones en sistemas sin
soporte a hilo: Se pueden aprovechar todos los
beneficios de programar orientado wutilizando
threads. Ademas se puede portar la aplicacién a
un sistema operativo que carezca de la nocidén de
varios hilos de ejecucién.

" Cambio de contexto: El cambio de contexto entre
threads de usuario es mas simple ya que no
consume el overhead que tendria en el sistema
operativo (guardar registros).

® Planificacién independiente: Se puede crear una
nueva estrategia de planificacién diferente a la
que tenga el sistema operativo.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

123

Arquitectura del Computador y Sistemas Operativos

124

Threads

Ventajas de kernel threads sobre user threads:

= Mejor aprovechamiento de un sistema
multiprocesador: el sistema operativo puede
asignar threads del mismo proceso en distintos
procesadores. De esta forma, un proceso puede
estar consumiendo mas de un recurso procesador a

la vez.

= Ejecucidédn independiente: Al ser independientes
los hilos de ejecucidén, si un thread se bloquea
(debido a p.ej. una operacién de E/S) los demas

threads pueden seguir ejecutando.

" La mayoria de los sistemas proveen threads tanto a

nivel de usuario como de sistema operativo.

" De esta forma surgen varios modelos:

" Mxl (Many-To-One): Varios threads de a nivel de

usuario a un Unico thread a nivel de sistema.

= 1x]1 (one-to-0One): Cada threads de usuario se
corresponde con un thread a nivel del nucleo

(kernel thread).

® MxN (Many-To-Many): Varios threads a nivel de
usuario se corresponde con varios threads a nivel

del nucleo.

Mx1l (Many-To-One)

" Este caso se corresponde al de tener 1los threads
implementados a nivel de usuario.

= El sistema solo reconoce un thread de control para
el proceso.

" Los threads de wusuario ejecutaran cuando estén
asignados al kernel thread del proceso (tarea llevada
a cabo por el planificador a nivel de wusuario) vy,
ademas, a este le asigne la CPU el planificador del

sistema operativo. % ;
; ;-— user thread

k) <— kemel thread

INDICE

1x1 (One-To-One)

" Cada thread que es creado a nivel de usuario se
genera un nuevo thread a nivel de sistema que estara
asociado mientras exista.

" El sistema reconoce todos los threads a nivel de
usuario y son planificados independientemente. En
este caso, no hay planificador a nivel de usuario.

<«—— user thread

é (g é é «——Kkernel thread

MxN (Many-To-Many)

" Cada proceso tiene asignado un conjunto de kernel
threads independiente de los threads a nivel de
usuario que el proceso haya creado.

"= E1l planificador a nivel de wusuario asigna los
threads en los kernel threads.

®= E1l planificador de sistema solo reconoce los kernel

threads. g 3

34— user thread

<+—kernel thread

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

125

Arquitectura del Computador y Sistemas Operativos

126

Planificacion

Agenda

" Introduccién.
" Clases de procesos.
" Esquemas de planificacidn.
" Despachador.
" Criterios de planificacién.
" Algoritmos de planificacién.
" FCFS.
= SJF.
®" Prioridad.
®* Round-Robin.
" Multilevel-Queue.
" Multilevel-Feedback-Queue.
" Sistemas multiprocesadores.

Introduccidén

" La planificacién (scheduling) es la base para
lograr la multiprogramacién.

" Un sistema multiprogramado tendrid varios procesos
que requeriran el recurso procesador a la vez.

" Esto sucede cuando los procesos estan en estado
ready (pronto).

" Si existe un procesador disponible y existen
procesos en estado ready, se debe elegir el que sera
asignado al recurso para ejecutar.

" El1 componente del sistema operativo que realiza la
eleccidn del proceso es llamada planificador
(scheduler) .

Clases de procesos

* Existen distintas politicas de planificacidén que seran
exitosas segin la clase de procesos que ejecuten.

" En general, los procesos tienden a ser o mas
intensivos en el uso de procesador o© mas intensos en el
uso de operaciones de E/S.

" Los procesos tenderdn a tener ciclos de rafagas de
ejecucidn (CPU-burst) y ciclos de rafagas de espera de
operaciones de E/S (I/OC burst):
" Procesos CPU-bound: Los procesos gque contienen un
alto uso de procesador son llamados CPU-bound o
compute-bound.

®* Procesos I/0O-bound: Los procesos que realizan
muchos accesos a operaciones de E/S son llamados
I/0-bound.

" La prioridad que tenga un proceso frente a los demas
para acceder al recurso sera inversamente proporcional
al uso que haga del recurso.

Esquemas de planificacién

" Los momentos en que el planificador es invocado son:
= Cuando un proceso se bloquea en una operacién
de E/S o un semaforo, etc.

. Cuando un proceso cambia del estado ejecutando
al estado pronto. Por ejemplo,al ocurrir una
interrupcién o0 se crea un nuevo pProceso.

. Cuando ocurre una interrupcién de E/S y un
proceso pasa del estado bloqueado a pronto.

N Cuando un proceso finaliza su ejecuciédn.

® Cuando ocurre 1 o 4, el planificador es invocado
debido a que el proceso en ejecucidn libera el
procesador.

= Si el planificador es invocado cuando ocurre 2 o 3,
se dice que este es expropiativo (preemptive), ya
que puede quitar el procesador al proceso que
estaba en ejecucién.

= Sistemas operativos con planificadores no
expropiadores (non-preemptive) son los que asignan
el recurso procesador a un proceso y hasta que este
no lo libere, ya sea porque finaliza su ejecucién o
se bloquea, no se vuelve a ejecutar el planificador.

" Sistemas operativos con planificadores
expropiativos (preemptive) son que los gque pueden
expropiar el recurso procesador a un proceso cuando
otro proceso entra en estado pronto (ya sea porgque
es nuevo o porque se desbloqued) o porque se le
impone una limitante de tiempo para ejecutar.

= Los esquemas de planificacién son utiles segun el
ambiente donde sean aplicados:
® Sistemas por lotes: Como no existe interaccidn
con usuarios, los planificadores no
expropiadores son ideales.

® Sistemas interactivos: Debido a que existen
procesos de usuarios ejecutando a la vez, los
planificadores expropiadores son ideales para
mantener un buen tiempo de respuesta para los

usuarios.
= Sistemas de tiempo real: No es necesario
planificadores expropiadores, vya que los

procesos puede gque no ejecuten por un buen
tiempo, pero cuando lo hacen es por un periodo
muy corto.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

127

Arquitectura del Computador y Sistemas Operativos

128

Criterios de planificacién

" Los algoritmos de planificacién tendran distintas
propiedades y favoreceran cierta clase de procesos.

" Es necesario definir criterios para poder evaluar
los algoritmos de planificacién:

= Utilizacién de CPU (CPU utilization): Es el
porcentaje de uso (en cuanto a ejecucidn de
tareas de wusuario o del sistema que son
consideradas utiles) que tiene un procesador.

= Rendimiento (Throughput): Es el numero de
procesos que ejecutaron completamente por unidad
de tiempo (una hora p.ej.).

= Tiempo de retorno (Turnaround time): Es el
intervalo de tiempo desde gque un procesoc es
cargado hasta que este finaliza su ejecucidn.

"Tiempo de espera (Waiting time): Es la suma de

los intervalos de tiempo que un proceso estuvo
en la cola de procesos listos (ready queue) .

" Tiempo de respuesta (Response time): Es el
intervalo de tiempo desde gque un proceso es
cargado hasta que brinda su primer respuesta. Es
Util en sistemas interactivos.

First Come First Served (FCFS)

" Los procesos son ejecutados en el orden que llegan a
la cola de procesos listos.

" La implementacién es facil a través de una cola FIFO.
" Es adecuado para sistemas por lotes (batch).

" Es un algoritmo no expropiador: una vez gque el
procesador le es asignado a un proceso este la mantiene
hasta que termina o genera un pedido de E/S.

" El tiempo de espera promedio por lo general es alto.

INDICE

First Come First Served

Proceso Burst
Time
Pl 24
P2 3
P3 3 P1 P2 P3
0 24 27 30
" Tiempo de espera: P1 = 0; P2 = 24; P3 = 27.

* Tiempo de espera promedio: (0 + 24 + 27)/3 = 17.

" E1l algoritmo asocia a los procesos el largo de su
prdéximo CPU-burst.

® Cuando el procesador queda disponible se le asigna
al proceso que tenga el menor CPU-burst.

= Si dos ©procesos tienen el mismo CPU-burst se
desempata de alguna forma.

" Su funcionamiento depende de conocer los tiempos de
ejecucidén, que en la mayoria de los casos no se
conoce.

" Es adecuado para sistemas por lotes (batch).

" Dos esquemas:

" No expropiador: wuna vez gque se le asigna el
procesador a un proceso no se le podra quitar.

" Expropiador: 8i un nuevo proceso aparece en la
lista de procesos listos con menor CPU-burst, se
le quita la CPU para asignarla al nuevo proceso.

" Este algoritmo es éptimo para el tiempo de espera,
pero requiere gque todos los procesos participantes
estén al comienzo (ademas de saber el tiempo del
préximo CPU-burst) .

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

129

Arquitectura del Computador y Sistemas Operativos

130

Shortest Job First (SJF) — No expropiativo

Proceso | Tiempo de Burst
arribo Time
Pl 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

Tiempo de espera promedio: (0 + 6 + 3 + 7)/4 = 4.

P, P, P, P,
| | | | | | | | | | | |
N B R B N T 1 T
0 3 7 8 12 16
Procesc | Tiempo de Burst
arribo Time
Pl 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

Tiempo de espera promedio: (9 + 1 + 0 +2)/4 = 3.

P, | P, [Py | P, P, P,

| | I I
I ! | 11 T 1T

Basados en Prioridad

" A cada proceso se le asigna un numero entero que
representa su prioridad.

" E1l planificador asigna el procesador al proceso con
la mas alta prioridad.

" Se utiliza en general un esquema expropiador ya que,
si un proceso con mayor prioridad que el gque esta
ejecutando arriba a la lista de procesos listos (ready
qgueue) , sera asignado al procesador.

" SJF se puede ver como un algoritmo de prioridad
donde la prioridad esta dada por el préximo CPU-burst.

* Es adecuado para sistemas interactivos.

Basados en Prioridad

" Sufre de posposicién-indefinida ya que un proceso de
baja prioridad quizas no pueda ejecutar nunca.

" LLa solucidén es utilizar prioridades dinamicas de
envejecimiento: incrementar la prioridad segun pasa el
tiempo sin ejecutar.

" La prioridad de un proceso para el uso del recurso
procesador debera ser inversamente proporcional al uso
que el proceso haga del mismo.

" Por lo tanto,un proceso tipo I/O-bound deberi tener,
en general, mayor prioridad que uno tipo CPU-bound.

" A cada proceso se le brinda un intervalo de tiempo
para el uso del procesador (time gquantum) .

= Al finalizar el tiempo, el procesador le es
expropiado y vuelve al estado pronto (ready) al final
de la cola.

" Es facil de implementar vya que solamente es
necesario una cola de procesos listos. Cuando un
proceso consume su quantum es puesto al final de 1la
cola.

" El guantum debe ser bastante mayor a lo que lleva
realizar un cambio de contexto, sino se tendra mucho
overhead. A su vez, el tiempo de gquantum incide en los
tiempos de retorno.

" Es ideal para sistemas de tiempo compartido.

Proceso Burst
Time
Pl 53 quantum = 20
P2 17
P3 68
P3 24

P, | Py | Py | Py | Py | Py | Py| Py | Py Py

0 20 37 57 77 97 17 121 134 154 162

= Por lo general, tiene un mayor tiempo de retorno
que el SJF, pero mejora el tiempo de respuesta.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

131

Arquitectura del Computador y Sistemas Operativos

132

Round Robin (RR)

" Es necesario asignar un ajustado tiempo de quantum:

" Si es muy chico generara muchos cambios de
contexto.

" Si es muy grande, el sistema tendera a un FCFS.

pracess time = 10 quantum context

12 0

o_
=]

c,_
B

= El promedio del tiempo de retorno varia segun el

quantum.
process time
12.5
/ P, 6
12.0 Py 3
\ I 1
15 \ Py 7

1.0 \V4

10.5

average turnaround time

9.5

9.0

i 2 3 4 5 68 7
time quantum

Multilevel Queue

" Si los procesos se pueden clasificar segun sus
cualidades, es posible dividir la 1lista de procesos
listos (ready gqueue) en varias colas (una para cada
clasificacién) .

" Los procesos son asignados permanentemente a una de
las colas.

" Cada cola tendra su propio algoritmo de
planificacién propio.

* Ademas, se debe tener una estrategia de
planificacidén entre las diferentes colas. Por ejemplo,
una cola tendra prioridad sobre otra.

Multilevel Queue

highest priority

system processes [

batch processes

student processes I_

||

lowest priority

Multilevel Feedback Queue

" Se diferencia con el anterior en que procesos pueden
cambiar de cola (nivel).

" Se basa en categorizar los procesos segun el uso de
CPU (CPU-burst) que tengan.

" La cola de mayor prioridad seria la de los procesos
I/O-bound y la de menor la de procesos con alto CPU-
bound.

" De esta forma, se garantiza que los procesos con
poco uso de procesador tengan mayor prioridad y los
que consumen mucho procesador tendran baja prioridad.

" Los procesos, segun el consumo de CPU que hagan,
seran promovidos a una cola de mayor prioridad o
rebajados a una de menor prioridad.

Un planificador Multilevel-Feedback-Queue es definido
por:

* El numero de colas.
. El algoritmo de planificacidén para cada cola.

* E1 método wutilizado para promover a un
proceso a una cola de mayor prioridad.

o El método utilizado para bajar a un proceso a
una cola de menor prioridad.

" El método utilizado para determinar a que
cola sera asignado un proceso cuando este
pronto.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

133

Arquitectura del Computador y Sistemas Operativos

134

Multilevel Feedback Queue

T

quantum = 8

quantum = 16 i:
FCFS i

Sistemas multiprocesadores

A 4

4

A 4

" En un sistema simétrico cualquier procesador podra
ejecutar procesos de usuario.

" Una posibilidad es asignar una cola de procesos
listos para cada procesador y de esa forma mantener
los procesos asignados a un procesador (afinidad de
procesador) .

" Esto es conveniente para aprovechar los datos que
estan frescos en la memoria cache del procesador, vya
que al ejecutar un proceso en un procesador se nutre
su cache con datos del proceso.

" De esta forma, se logra mantener un mayor indice de
cache hit y, por lo tanto, un mayor rendimiento en el
sistema.

" Un problema que puede surgir es un desbalance en la
cantidad de trabajo por procesador. En estos casos se
migraradn procesos de cola para lograr balancear
nuevamente la carga.

Despachador

" Una vez que el planificador ejecuta y elige el
proceso a asignar al procesador, se invoca al
despachador (dispatcher) que es el encargado de
asignar el proceso al procesador.

" La tarea que realiza es:

- Cambiar el contexto: Salvar registros del
procesador en PCB del proceso saliente.
Cargar los registros con los datos del PCB
del proceso entrante.

= Cambiar el bit de modo a usuario.

= Saltar a la instruccién adecuada que habia
quedadc el proceso que se asigno a la CPU
(registro program counter) .

INDICE

Administracion de memoria I

Agenda

= Introduccién.
= Conceptos bésicos.
=" Preparacién de un programa para ejecutar.
= Areas de la memoria de un proceso.
" Asociacién de direcciones.
®" Ensamblaje dinadmico y bibliotecas compartidas.
®" Asociacién dinamica de la memoria a nivel de
proceso.
" Carga dinamica.
" Direccionamiento.
" Tipos de direccionamiento.
=" Proteccidén de memoria.
" Asignacién de memoria.
" Swapping.

Introduccidn

" La administracién de la memoria es una de las mas
importantes tareas del sistema operativo.

" En los sistemas operativos multiprogramados es
necesario mantener varios programas en memoria al
mismo tiempo.

" Existen varios esquemas para la administracién de
la memoria y requieren distinto soporte del hardware.

= E1 sistema operativo es responsable de 1las
siguientes tareas:

= Mantener que partes de la memoria estan siendo
utilizadas y por quién.

" Decidir cuales procesos seran cargados a memoria
cuando exista espacio de memoria disponible.

" Asignar y quitar espacio de memoria segun sea
necesario.

Conceptos basicos

= Preparacidén de un programa para ejecutar.

®= Los programas son escritos, por lo general, en
lenguajes de alto nivel y deben pasar por distintas
etapas antes de ser ejecutados:
— Compilacidén (compile): Traduccidn del cddigo fuente
del programa a un cdédigo objeto.
— Ensamblaje (linker): Ensamblaje de varios cdbédigos
objetos en un archivo ejecutable.
- Carga (load): Asignacidén del archivo ejecutable a la
memoria principal del sistema.

" Un programa ejecutable consta de secciones de
instrucciones y de datos.

" E1 linker surge ante la necesidad de modularizar y

reutilizar coédigo. Se resuelven las referencias
externas, asi como las posiciones relativas de los
simbolos en los diferentes mddulos, formando uno

consolidado.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

135

Arquitectura del Computador y Sistemas Operativos

136

Conceptos basicos

source
program

compiler or
assembler
N

object
module

linkage
editor

compile
time

load
time

system
library

‘dynamicall
loaded
system

library

executior
time (run|
time)

dynamic binar
linking memory

H
5322
8323
8328

<

b——

Conceptos basicos

®* Cuando un proceso es creado el cargador (loader) del
sistema crea en memoria el espacio necesario para las
diferentes areas y la carga con la informacién.

"= E1 compilador, ensamblador, sistema operativo vy
librerias dinamicas deben cooperar para administrar la
informacién y realizar la asignacién.

— Compilador: genera un archivo objeto para cada
archivo fuente. La informacién estd incompleta, ya
que se utilizan informaciones de otros archivos (como
llamados a funciones externas).

— Ensamblador: combina todos los archivos objetos de
un programa dentro de un unico archivo objeto.

— Sistemas operativos: Carga los programasen memoria,
permite compartir la memoria entre varios procesos y
brinda mecanismos a los procesos para obtener mas
memoria en forma dinamica.

- Librerias dinadmicas: proveen rutinas de asignacién
dinamica (malloc, free).

Conceptos basicos

" La memoria de un proceso cuando ejecuta se estructura
en diferentes Aareas:

cédigo

Datos

Librerias
dinamicas
Locales

libsistop.so

Librerias
dinamicas
Compartidas
1libC.s0

Mapeo de
archivos
fhome fsistoper/lab2.c

Heap

Y

f

stack

Asociacidén de direcciones
(Address binding)

= La asignacién de la ubicacidén de un programa en
memoria principal puede ser realizada en varios
tiempos:

* Tiempo compilacidén (compile time): El1 programa
seria asignado a un lugar especifico y conocido
de la memoria fisica. La direcciones de memoria
son referenciadas en forma absoluta (static

relocation) .

= Tiempo de carga (load time): La asignacién del
lugar de memoria donde sera cargado el programa
es hecho al momento de la carga. Las

direcciones de memoria deben ser referenciadas
en forma relativa (dynamic relocation).

= Tiempo de ejecucidn (execution time) : Un
programa puede variar su ubicacidén en memoria
fisica en el transcurso de la ejecucidn.

Ensamblaje dinamico (dynamic linking)

" En la etapa de ensamblaje de un programa las
bibliotecas compartidas pueden incorporarse al
archivo ejecutable generado (ensamblaje estatico -
static linking) .

Ej. en Linux: /usr/lib/libc.a

" Otra alternativa es que las bibliotecas compartidas
sean cargadas en tiempo de ejecucidén (ensamblaje
dinamico - dynamic linking) .

Ej. en Linux /lib/libc.so, en windows system.dll

" En los archivos ejecutables las Dbibliotecas
estaticas son incorporadas, mientras que para las
dinamicas se mantiene una referencia.

Ej. en Linux comando ls:

$ 1dd /bin/1ls
librt.so.l => /lib/librt.so.l (0x4001c000)
libc.so.6 => /lib/libc.so.6 (0x40030000)
libpthread.so.0 => /lib/libpthread.so.0 (0x40149000)
/1lib/1d-linux.so.2 (0x40000000)

" Esto permite, Jjunto con la carga dinamica, hacer
un uso mas eficiente de la memoria, ya que las
bibliotecas dinamicas se cargan una unica vez en
memoria principal.

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

137

Arquitectura del Computador y Sistemas Operativos

138

Asignacién dinamica a nivel de proceso Tipos de direccionamiento

. . s . - . P L] i i 1 i i i #:
* La asignacién dinamica en un proceso se da a través Se definen varios tipos de direccionamientos:

de:
= Asignacidén en el Stack. — Direccionamiento fisico (physical address) : La

* Asignacién en el Heap. unidad de memoria manipula direcciones fisicas.

: : - Di ionamien vi [by : n 1
* A nivel del stack la memoria se comporta en forma ch%recc%o @ elf:o. ekl [ERECHah Qe ess)d Son las
: : . irecciones dgicas e se eneran cuando existe
mas predictiva. - i g - qu : g .
asociacién de direccionamiento en tiempo de
ejecucidn.
variables [%
locales AN
] N, Stack " Para la asociacidén de direccionamiento en tiempo de
Parametros . para Y . - - - S 5
* compilacién o carga, las direcciones légicas o fisicas
hizegoisn Stack Stack Stack coinciden. No es asi para la asociacién en tiempo de
para X para X para X i L.
retorno e ejecucion.
S Luego de Luego de Luego de Luego de
invocar a X invocar a Y finalizar Y finalizar X

Tipos de direccionamiento
" La asignacién en el heap no es predictiva como en

el caso del stack: " Las traducciones de direcciones légicas a fisicas
son hechas por la MMU (Memory Management Unit). Los
procesos solo manipulan direcciones 1légicas y no
visualizan las fisicas, que solamente son vistas por

la MMU.
libres relocation
register
=
logical physical
. i address 7 3 address
" En este caso se genera fragmentacidon de la memoria. CPU ™ Q e memory
" Los sistemas operativos optan por delegar la
administracién de esta memoria a librerias de
usuario. MMU
Carga dinamica (dynamic loading)
Proteccién de memoria
= El tamafio de un proceso en memoria estd limitado
por la cantidad de memoria fisica del sistema. limit relocation
register register
" Con el fin de lograr un mayor aprovechamiento de la
memoria se puede utilizar la carga dinamica.
logical physical
) address yes address
" La carga dinamica dispone gque una rutina no es CPU < B B

+ > memor
_/ Y

cargada en memoria fisica hasta que no sea invocada.

no
" La ventaja de la carga dinamica es que las rutinas
que no son utilizadas no son cargadas en memoria
fisica y, por 1lo tanto, no consumen recursos
innecesariamente.

trap; addressing error

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

139

Arquitectura del Computador y Sistemas Operativos

140

Asignacidén de memoria a nivel del sistema

" La memoria, por lo general, es dividida en dos
particiones:

" Sistema operativo residente.
" Procesos de usuarios.

" Es necesario un mecanismo de proteccién de memoria
entre los procesos entre si y el sistema operativo.

" E1l registro de ubicacidén (relocation register) y el
registro 1limite son wutilizados para realizar la
verificacién de accesos validos a la memoria.

" Toda direccién légica debe ser menor al valor del
registro limite.

Estructuras para asignacién

" El sistema operativo debe 1llevar cuenta de las
particiones ocupadas y libres.

" Los métodos mas comunes utilizados son a través de:

= Mapa de bits.
" Lista encadenada.

®* Diccionarios (hash).

" En la asignacidén de memoria a un proceso existe
varias estrategias:

- First fit: Asigna el primer “agujero” de memoria
libre que satisface la necesidad.

- Best fit: Asigna el mejor “agujero” de memoria
libre que exista en la memoria principal.

- Worst fit: Asigna el requerimiento en el “agujero”
mas grande que exista en la memoria principal.

" Estudios de simulacién han mostrado que first-fit y
best-fit lograron mejores rendimientos en tiempo de
asignacién y wutilizacién de 1la memoria que la
estrategia worst-fit.

Estrategia de asignacién

INDICE

600

212
Kb

212
Kb

600
Kb

First fit

Best fit

Worst fit

Fragmentacién

" Las estrategias de asignacién presentadas muestran
problemas de fragmentacidén externa.

" En la memoria van gquedando una gran cantidad de
“agujeros” chicos que no son asignados. La memoria
libre esta fragmentada en una gran cantidad
“agujeros” chicos.

" La fragmentacién externa existe cuando existe
suficiente memoria libre en el sistema para
satisfacer un requerimiento de memoria, pero no es
posible asignarlo debido a que no es contiguo.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

141

Arquitectura del Computador y Sistemas Operativos

142

Swapping

" En sistemas multiprogramados mas de un proceso esta
cargado en memoria principal. Para obtener un mayor
nivel de multiprogramacidén, los procesos que no estan
ejecutando pueden ser llevados a disco temporalmente.

" E1 disco (backing store) es un espacio donde se
dispondran las imdgenes de memoria de los procesos.

" Al mecanismo de 1llevar un proceso desde memoria
principal a disco se le denomina swap-out. Al inverso
se le denomina swap-in.

" El mayor tiempo consumido en el swaping es el
tiempo de transferencia.

operating
system

@ swap out

process

@ swap in

user

space backing store

main memory

= E1l lugar de memoria donde serid asignado un proceso
en el momento de swap-in depende del método de
asociacién de direccionamiento (address binding)
utilizado.

" En la asociacién en tiempo de compilacidén o de
carga (compile, load time) debe ser el mismo lugar,
mientras que, si la asociacién es en tiempo de
ejecucidén la asignacidén del lugar es libre.

INDICE

Administracion de memoria 11

Unidad
La CPU envia P de
direcciones virtuales P rocesador
ala MMU.

~] | cpu

\“ Memoria
La MMU envia Principal

MMU direcciones fisica
a la memoria
«——— principal.

Paginacién

" La paginacién es wuna técnica que divide a 1la
memoria fisica en particiones de tamafio fijo
llamados frames.

" A su vez, el espacio de direccionamiento virtual
es divido en unidades fijas del mismo tamafioc que
los frames (page size) denominadas paginas (pages).
* Las paginas tienen un tamafic que es potencia de 2
Yy, en general, son desde 512 bytes a 16 Mb.

" En los sistemas que brindan paginacidén, la
transferencia entre la memoria principal y el disco
es siempre en unidad de pagina.

" Cuando un ©proceso ejecuta sus paginas son
cargadas en los frames de memoria principal y en
disco (seccidén de swap) .

" Los frames en el swap tienen el mismo tamano que
los frames de memoria principal.

frame
number
page O 0
page 1 1| page O
page 2 2
page 3 page table 3| page 2
logical 4| page 1
memory
5
6
7| page 3
physical
memory

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

143

Arquitectura del Computador y Sistemas Operativos

144

Soporte a nivel de hardware

" En los sistemas actuales no es posible guardar
todas las entradas en registros de rapido acceso.

" La tabla se mantiene en memoria principal y se
asigna un registro que apunta a la direccién base
de la tabla (PTBR - Page Table Base Register).

" La opcién del PTBR mejora el cambio de contexto
entre procesos ya que solo es necesario cambiar un
registro para acceder a la tabla de pagina.

" Sin embargo, el acceso a memoria se duplica
debido a que es necesario primero acceder a la
tabla para obtener el numero de frame vy,
posteriormente, al lugar de memoria solicitado.

" La solucidén es utilizar una pequefia cache de la
tabla de pagina: TLB - Translation Look-aside
Buffer.

" E1 cache TLB es asociativa y de rapido acceso.

" Cada entrada consiste de dos partes: una clave
(tag) y un valor (el numero de frame) .

" La busqueda de una clave en la cache TLB es
simultanea entre todas las tags.

= S3i la clave es encontrada (TBL hit),
inmediatamente se genera la direccién buscada a
partir del valor asociado. En caso contrario (TBL
miss), es necesario realizar el acceso a memoria
para obtener la entrada. Posteriormente, se guarda
el valor obtenido en la cache TLB para posteriores
accesos (principio de localidad).

logical
address

CPU b

page frame
number number

TLB hit

physical
address

f [d}l—

TLB

p {
TLB miss

physical
memory

page table

Soporte a nivel de hardware

®* Las TLB,por lo general, tienen pocas entradas (64
a 1024).

®* Algunas caches TLB agregan a cada entrada un
identificador de espacio de direccionamiento (ASID
— Address Space IDentifier).

= En la busqueda de una clave solo seran tenidas en
cuenta las entradas cuyo ASID coincida con el del
proceso que esta ejecutando en el procesador.

®= El uso del identificador permite que en la cache
TLB contengan entradas para varios procesos de
forma simultanea.

" Si no se utiliza el ASID, en cada cambio de
contexto es necesario “limpiar” las entradas de 1la
TLB, sino se realizarian accesos equivocados a
memoria.

Tiempo efectivo de acceso (Effective
Access Time)

= El porcentaje de veces que un numero de pagina es
encontrado en la cache TLB es denominado hit ratio.

= E1l tiempo efectivo de acceso se define mediante la
siguiente férmula:

EAT = hit ratio * (tiempo de biusqueda en TLB + tiempo
de acceso a memoria) + (1 - hit ratio) * (2 * tiempo
de acceso a memoria)

* La medida nos permite saber la ganancia de la
utilizacién de la cache TLB.

" La tabla de pagina tiene una entrada por cada pagina

posible que tenga el proceso.

" Es necesario identificar cuales son entradas validas

y cuales no.

®* La utilizacién de un bit de proteccién en cada
entrada determina si la pagina es valida o invalida

(valid-invalid bit).

*= E1 acceso a una pagina cuyo bit marca gque es
invalida genera un trap a nivel del sistema

operativo.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

145

Arquitectura del Computador y Sistemas Operativos

146

Proteccidédn de memoria

0
1
2| page 0
00000 frame number valid-invalid bit
page 0 \ ,/ 3| page 1
0|2 | v
page 1 1[3lv 4| page 2
2|4 v
age 2 5
bl 3|7 |v
page 3 4]8|v [
5[9|v
page 4 6|10 7| page3
10468 page s 7 8| paged
12,287 page table
9| page5
.
.
page n

Estructura de la tabla de pagina

* En un sistema de 32bits que utilice paginas de
4KB se necesitaran cerca deun millén de entradas en
la tabla de pagina.

= Es necesario buscar alguna estructura mas
eficiente en cuanto al tamafio ocupado por la tabla
de pagina.

* Se proponen las siguientes estructuras:
" Jerarquica.

" Diccionarios (hash).

" Invertida.

Jerarquica

" La estructura se basa en paginar la tabla de
pagina. De esta forma, existira una jerarquia de
paginas.

" La idea es dividir al componente de indexado en
la tabla de pagina, de la direccidn virtual, en
varios niveles.

logical address
Py [Pz | d

o

o

outer page d
table

page of
page table
" Este esquema se puede aplicar varias veces y
lograr varios niveles de indexacidén. En el grafico
se tienen dos niveles.

Estructura de la tabla de pagina -
Jerarquica

/

1
/ - 10Q >
500

500

708~ |

b 708
2 -
outer page ™= 029 H
table 2 ™~ 20
900 />< 5
page of 929
page table
0
page table :

memory

Diccionarios

" Una alternativa es implementar una tabla de hash
abierto con el valor del componente de numerc de
pagina.

" Estd estructura es conveniente para arquitecturas
de més de 32 bits.

physical

logical address

hash physical
Nieion — lals|| [|1I_L|_|_T memory

hash table

Invertida

" Se dispone de una funica tabla de pagina global
del sistema. A diferencia de los anteriores que
existe una tabla por proceso. Se aumentan los
tiempos de busqueda en favor de la reduccidén del
espacio utilizado en memoria principal.

logical 1
address physical

address physical
CcPU ~fpd[p [d] [[i[dpF—

‘ memory
}i

search l

pid] p

page tél_ble

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

147

Arquitectura del Computador y Sistemas Operativos

148

Compartimiento

= Los procesos se componen de una parte de cédigos
y datos privades y de otra que puede ser
compartida.

" La posibilidad de dividir el espacio de
direccionamiento en paginas, permite a los
procesos compartir de forma eficiente las paginas
comunes en memoria.

Ejemplo:
" La seccidén de cdédigo de un mismo proceso.
" El cédigo de una biblioteca dinamica.

" Memoria compartida.

" Esto permite un uso mas eficiente de la memoria.

ed1 0
ed2 1| datat
ed3 ﬁ 2| data3
data 1 page table 3 ed1
for Py ed1

process P, 4| ed2

6| ed3

data 2 page table
for P, 7| data2

process P,

ed2

ed3

data 3 page table
for P,

process P,

Segmentacién

* La segmentacién es wuna técnica que asigna
segmentos contiguos de memoria para las Areas de
memoria de un proceso.

" De esta forma, logra
acomodarse mas a la visidén de
la memoria por parte del

subroutine stack

usuario.

®* Un proceso se compone de una symbol
seccién de cédigo, una pila table
(stack) , un espacio para la

Sqrt

memoria dinamica (heap), la
tabla de simbolos, etc. pg@gm
" Cada componente se agrupa en

un segmento del tamafio
necesario.

logical address

Segmentacién
1
4
2
3
Visién del usuario Memoria principal

Soporte a nivel de hardware

" Cada segmento tendrid un nombre (o numero) y un
largo asociado.

" Las direcciones virtuales se componen de un
numero de segmento y el desplazamiento dentro del
segmento.

segment number | segment offset

s d

m-n n

" El1 desplazamiento debe ser menor que el largo
asociado al segmento.

* La tabla de segmentos tendra una entrada por cada
segmento en donde estara la direccidén fisica base
del segmento (base register) y el largo del mismo
(limit register).

" En la traduccién de direccién virtual a fisica se
controlan el numero de segmento con el maximo gque
tenga el proceso (el registro STLR - Segment Table
length Register - define el namero maximo de
segmento utilizado por el proceso) Y el
desplazamiento contra el registro limite.

" La tabla de segmentos es mantenida en memoria
principal y se asigna un registro que apunta a la
direccién base de la misma (STBR - Segment Table
Base Register).

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

149

Arquitectura del Computador y Sistemas Operativos

150

Soporte a nivel de hardware

E—]
— limit | base
segment
table
CPU s
4
trap; addressing error physical memory
subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 6300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
4[1000 | 4700
segment table 4300
segment 2
ment 2
4700 £
logical address space segment 4
5700
6300
isegment 1
6700
physical memory]|

Proteccién de memoria

" Al dividir la memoria en segmentos se permite que
cada uno tenga asociado un conjunto de permisos sobre
él.

" Un segmento de cédigo es normal que tenga permisos
de lectura y ejecucién y no de escritura.

" Un segmento de datos tendran permisos de lectura y
escritura.

" Se define un conjunto de bits de proteccidén (bit
protection) que el hardware controla.

Compartimiento

" Los segmentos permiten una forma clara y sencilla
para ser compartidos entre varios procesos.

f/ \‘
editor
‘segment O
43062
\ date 7 / limit | base
\ / o 25286 | 43062
S segment1 .~ 1| 4425 | 68348 editor
S — segment table
e process P,
lagical memory 1 68348 PP
process P, 72773
y \
/ \\\ 80003
editor a
98553
sagmaent O

data | imit | base

AN / 0| 25286 | 43062 ‘
/ 1

\ segment 1 - 8850 | 90003
R Bt segment table

physical memory

e process P,
logical memory
process P,

* La paginacidén genera fragmentacidén interna. Dado
que la granularidad es a nivel de pagina, se
generarad espacio de memoria dentro de las paginas
que quedaran sin uso.

* La segmentacién sufre de fragmentacién externa.
Los segmentos son asignados contiguos, pero a
medida que son liberados generan huecos que
luego, al no ser completados totalmente, generan
huecos mas chicos que quedan inutilizados. Para
solucionar esto es necesario una reorganizacién
de la memoria (tarea no menor).

* La segmentacidén logra implementar la visidn que
el usuario tiene de la memoria. En paginacidén el
espacio de direccionamiento de un proceso se
distribuye de forma no contigua.

Comparacién Paginacién - Segmentacién

" La segmentacién logra compartir y proteger
memoria entre procesos de forma mas directa. Por
ejemplo, en paginacidén, compartir un espacio de
direccionamiento de un proceso implica mantener una
gran cantidad de referencias de paginas
compartidas, mientras gque en segmentacién se
comparte el segmento.

" En paginacién la asignacién de wuna pagina en
memoria es mas rapida. Utilizando un vector de bits
se obtiene de forma sencilla un frame libre de
memoria donde puede ser asignada la pagina. En
segmentacién es necesario mantener una lista y la
busqueda se hace mas costosa.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

151

Arquitectura del Computador y Sistemas Operativos

INDICE

., . . Concurrencia
Segmentacién con paginacién

" La paginacidén y la segmentacidén se pueden combinar
para potenciar las ventajas de cada técnica.

Agenda

" Ejemplo de una arquitectura de este tipo es Intel.

n
" La memoria es segmentada, y los segmentos se Conceptos

conforman de paginas. " El poblema de la Seccién-Critica

" Hardware de Sincronizacidn
= Las direcciones virtuales contienen un = Semaforos
identificador de segmento y un desplazamiento. A
partir de ellos se genera una direccidén lineal de
32bits (en caso IA32). Luego, la direccidn es = Monitores
traducida a una direccidn fisica.

= Problemas Clésicos de Sincronizacién

. : . Conceptos
Segmentacidon con paginaciodn

logical address ‘ selector | offset ‘

"E1l acceso concurrente a datos compartidos puede
resultar en inconsistencia de los datos.

descriptor table

"Mantener los datos consistentes requiere de mecanismos
para segurar la ejecucidén de manera “ordenada” de los
procesos concurrentes.

segment descriptor +

y
linear address | directory page offset page frame

"Supongamos que deseamos dar solucidén al problema del
productor-consumidor. Se puede realizar teniendo un
physical address contador (count) entero que 1lleva la cuenta de 1la
cantidad de buffers llenos. Inicialmente, el contador
Y (count) se inicializa en 0. Es incrementado por el

page directory page table

productor cuando produce un nuevo buffer y es
directory entry | page table entry decrementado por el consumidor luego gque consume el
buffer.
b A
i .
ey ®* Datos Compartidos

#define BUFFER SIZE 10
typedef struct {

} item;

item buffer [BUFFER SIZE];
int in = 0;

int out = 0;

int counter = 0;

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

Arquitectura del Computador y Sistemas Operativos

154

Conceptos

= Proceso Productor:

item nextProduced;

while (1) {
while (counter == BUFFER_SIZE)
; /* do nothing */
buffer[in] = nextProduced;
in = (in + 1) % BUFFER SIZE;
counter++;

= Proceso Consumidor:

item nextConsumed;

while (1) {
while (counter == 0)

; /* do nothing */
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
counter--;

" LLas sentencias:

counter++;
counter—--;

deben ser ejecutadas de manera atémica.

" Una operacidén atdmica significa que esta debe
ejecutar completamente sin ningunainterrupciodn.

Conceptos

" La sentencia “count++” seguramente se encuentre
implementada en lenguaje de magquina como:

registrol = counter
registrol = registro + 1
counter = registrol

n

"T.a sentencia “count--" seguramente se encuentre
implementada en lenguaje de maquina como:

registro2 = counter
registro2 = registro2 -1
counter = registro2

" Si ambos, productor y consumidor, intentan
actualizar el buffer de manera concurrente, las
sentencias de lenguaje assembler pueden terminar
“mezcladas”.

"T.a “mezcla” depende de la manera en que los
procesos productor y consumidor son despachados.

sSupongamos que el contador inicialmente vale 5.
Una “mezcla” posible de sentencias es:

productor: registrol counter (registrol = 5)

productor: registrol = registrol + 1 (registrol = 6)
consumidor: registro2 = counter (registro2 = 5)
consumidor: registro2 = registro2 - 1 (registro2 = 4)

productor: counter = registrol (counter = 6)
consumidor: counter = registro2 (counter = 4)

"El valor de count puede ser 4 o 6, donde el valor

correcto debe ser 5.

" Race condition: La situacién en la cual varios
procesos acceden y manipulan datos compartidos
concurrentemente. El valor final de los datos
compartidos depende de cudl proceso finaliza
tultimo.

"Para prevenir las race conditions, los procesos
concurrentes deben estar “sincronizados”.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

155

Arquitectura del Computador y Sistemas Operativos

156

El problema de la Seccién Critica

" Existen n procesos compitiendo por el uso de
datos compartidos.

®"Cada procesos tiene un trozo de cédigo llamado
seccidén critica donde accedea los datos
compartidos.

"Problema: Asegurar que mientras un proceso se
encuentra ejecutando su propia seccidn critica,
ningan otro proceso pueda ejecutar su seccidén
critica.

®" Cualquier solucidén al problema de 1la seccidn
critica debe satisfacer las siguientes condiciones:
1. Exclusién Mutua. Si un procesos Pi se encuentra

ejecutando en su seccidén critica, ningun otro
proceso puede estar ejecutando su seccidn critica.

2. Progreso. Si ningin proceso esta ejecutando su
seccidén critica y hay procesos que desean ingresar
en sus secciones criticas, la seleccidén del préximo
proceso que entrarid en la seccidén critica no puede
ser pospuesto de manera indefinida.

3. Espera 1limitada. Debe existir un limite de
numero de veces que se permite a otros procesos
ingresar en sus secciones criticas después que un
proceso ha solicitado ingresar en su seccidn
critica y antes que se le otorgue la autorizacién
para hacerlo.

* Se debe asumir que cada proceso ejecuta a una
velocidad distinta de 0.

¢ No se deben hacer supuestos acerca de las
velocidades relativas de los N procesos.

Intento de solucidn inicial

— Solo dos procesos, PO and Pl.

— Estructura general del proceso Pi(El otro
proceso es Pj).

do {
‘entry section
critical section
’exit section
reminder section
} while (1) ;

— Los Procesos pueden compartir algunas variables
comunes para sincronizar sus acciones.

El problema de la Seccidén Critica
" Algoritmo 1

®" Variables Compartidas:
- int turn;
Se inicializa turn = 0
- turn = i = P, puede entrar a su seccidén critica

Process P;
do {
while (turn !'=1i) ;
critical section
turn = j;
reminder section
} while (1);

" Satisface la exclusidén mutua pero no la condicién
de Progreso.

= Algoritmo 2

" Variables Compartidas:
- boolean flag[2];
Se inicializa flag [0] = flag [1] = false.
- flag [i] = true => P, listo para acceder a su seccién

critica
Process P;

do {
flag[i] := true;
while (flag[j])

critical section
flag [i] = false;
remainder section
} while (1);

= Satisface la exclusién mutua pero no la condicidn
de Progreso.

= Algoritmo 3

" Variables Compartidas:
— Cambinacién de variables caompartidas en Algoritmol y
Algoritmo?2 ;

do {

flag [i] := true;

turn = j;

while (flag [j] and turn = Jj) ;
critical section

flag [i] = false;
remainder section

} while (1);

" Satisface los tres requerimientos. Resuelve el
problema de la exclusién mutua para dos procesos.

" ;Es posible generalizarlo para N procesos ?

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

157

Arquitectura del Computador y Sistemas Operativos

158

El problema de la Seccidén Critica

" Generalizacidén para N procesos.
" Algoritmo de la “Panaderia”.

= Antes de entrar a su seccidén critica el proceso
recibe un numero. El1 que tiene el numero menor
entra a su seccidén critica.

" Si los procesos P; y P; reciben el mismo nimero, si i < j
entonces P, entra primero; sino P; entra primero.
= E1l esquema de numeracidédn siempre genera numeros
en orden creciente, Ej: 1,2,3,3,3,3,4,5...
" Notacidn:
— Orden lexicografico (ticket #, process-id #)
- (ab) < (c,d Sia<coifa=cyb<d
- max (a,,.., &,;) es un mmero, k, tal que k2 a para i=0, ., n-1
®* Datos campartidos:
boolean choosing[n] ;
int mumber[n] ;
Las estructuras de datos se inicializan a false o 0 segin
corresponda

Hardware de Sincronizacién

" Muchos sistemas proveen soluciones basadas en hardware
para el problema de la seccidén critica.

" Monoprocesadores - se puede deshabilitar las
interrupciones.

- El1 cédigo ejecutara sin “preemption”.
— Solucidén ineficiente en sistemas multiprocesador.

* Sistemas Operativos que usan esta solucidén no
escalan.

" El equipamiento moderno provee instrucciones atdémicas
especiales.

* Atémico = no-interrumpible
— Puede ser: verificar una palabra de memoria y
escribir un valor

- O intercambiar (swap) el contenido de dos palabras
de memoria.

" Solucidén al problema de la seccidn critica utilizando
“locks”

do {
adquirir lock
critical section
liberar lock
remainder section
} while (TRUE);

Instruccidén TestAndSet

®* Definiciédn:

booclean TestAndSet (boolean *target)

{
boolean rv = *target;
*target = TRUE;
return rv:

}

Solucién utilizando TestAndSet
— Variable compartida lock inicializada en false:

do {
while (TestAndSet (&lock)) ; // do nothing
1/ critical secticon
lock = FALSE;
// remainder section
} while (TRUE);

®* Instruccidén Swap
" Definicidn:

void Swap (boolean *a, boolean *b)
{
boolean temp = *a;
*a = *b;
*b = temp:
}
Solucién utilizando Swap:
— Variable compartida lock inicializada en false.
- Cada proceso tiene una variable boolean local key:
do { key = TRUE;
while (key = TRUE)
Swap (&lock, &key);
/ critical section
lock = FALSE;
1/ remainder section
} while (TRUE);

Semaforos

Herramienta de sincronizacién que no requiere Busy Waiting.

Semaforo S — variable entera.

Dispone de dos primitivas estandar S: wait() and signal():

— Originalmente llamadas P() and V().
Solamente puede ser accedido mediante dos operaciones
indivisibles (atdmicas) .

- wait (8) {
while S <= 0
i // no-cp
§--;
}
— signal (S) {
S++;
}
S+

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

159

Arquitectura del Computador y Sistemas Operativos

INDICE

Semaforos Problema del Buffer Acotado

= SemAforos camo herramienta de sincronizacién.
* Semaforo Binario — El valor entero puede ser 0 o 1; es mas
sencillo de implementar.

" N buffers, cada uno puede contener un elemento.

- Son también conocidos camo “mmutex locks”. " Semaforo mutex inicializado en 1.
" Semaforo no binario — El valor entero tiene su dominio
scbre los nimeros enteros. ®» Semaforo full inicializado en O.

" Proveen exclusién mutua :

Semaphore mutex; // initialized to 1 = Semaforo empty inicializado en N.

do {
wait (mrbesd) ; = Cbodigo del proceso productor:
// Critical Section
signal (mutex) ; do |
// remainder section
} while (TRUE); // produce an item in nextp
P = s it 7
Semaforos - Implementacién i
wait (mutex) ; >
®" Debe garantizar que dos procesos puedan ejecutar wait() y e
signal () en el mismo semaforo a la vez. // add the item to the buffer ,%
]
" Ia implementacién se convierte en el prcblema de la signal (mutex); £
seccién critica donde el cédigo de signal y wait son signal (full); g_
colocados en la seccidn critica. o
— Existe busy waiting en la implementacién de la S. C. } while (TRUE); (@)
pero.... g
* El codigo de la seccién critica es corto. " Cédigo del proceso consumidor: o
* Existe poco Busy Waiting si la S. C. es ocupada &
eventualmente. do { g
=4
<
" Tas aplicaciones pueden pasar mucho tiempo dentro de las wait (full); (72}
S. C.,por lo tanto,no es una buena solucidn. wait (mutex) ; 2N
®
3
* TImplementacién sin Busy Waiting. // remove an item fram buffer to nextc b
@]
" Con cada semaforo hay una cola de espera asociada. Cada signal (mutex) ; B
entrada en lalista de espera tiene dos elementos. signal (empty); §
* Value (de tipo integer). g
+ Pointer (puntero) al préximo elemento en la lista. // consume the item in nextc 7
®* Existen dos i :
s operaciones } while (TRUE);

— block - inserta al proceso que invoca la operacidén en

la lista de espera apropiada. 161
— wakeup — Borra uno de los procesos de la lista de

espera y lo pone la lista de “ready”.

Arquitectura del Computador y Sistemas Operativos

162

Problema de los Lectores - Escritores

" Codigo del proceso escritor:

do {
wait (wrt) ;

// writing is performed
signal (wrt) ;

} while (TRUE) ;

" Cbdigo del proceso lector:

do {
wait (mutex) ;
readcount + ;
if (readcount = 1)
wait (wrt) ;
signal (mitex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);

Problema de los filésofos que cenan

" Datos campartidos:
— Tazén de arroz (Rice) (datos).
— Semaforo palito [5] inicializado en 1.

Problema de los fildésofos que cenan

= Estructura del fildsofo i
do |
wait (palito[i]);
wait (palito[(i + 1) % 5]);

// comer

signal (palito[i]);
signal (palito[(1 +1) % 5]);

// pensar
} while (TRUE) ;

Posibles problemas con semaforos

= Uso incorrecto de las operaciones scbre semaforos:
- signal (mutex) ... wait (mutex).
- wait (mutex) .. wait (mutex).

— COmitir un wait (mutex) o signal (mutex) (o ambos),

Monitores

" Una abstraccién de alto nivel que provee un mecanismo
efectivo para la sincronizacién de procesos.

" Solamente un proceso puede estar activo dentro del monitor
a la vez.

monitor nambre-del-monitor

{
// Declaracién de variables campartidas
procedure P1 (.) { ... }

procedure Pn (.) {...}

Codigo—de-inicializacién (...) { .. }

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

163

Arquitectura del Computador y Sistemas Operativos

164

Monitor - Internas

entry queue

shared data

v

operations

initialization
code

Monitores - Variables Condition

condition x, y;

Existen dos operaciocnes socbre las variables condition:

- x.wait () - Un proceso que invoca la operacién se
bloquea.

— x.signal () — desblogquea uno de los procesos (si hay
alguno) que previamente ejecutaron x.wait ()

entry queue

shared data

Xl
y —E-E-

operations

initialization
code

queues associated with
X, y conditions

N

Monitores - Filésofos que cenan

monitor DP
{
enum { PENSANDO; HAMBRIENTO, OCOMIENDO) state [5] ;
condition self [5];

void pickup (int i) {
state[i] = HAMBRIENTO;
test (i) ;
if (state[i] !'= COMIENDO) self [i].wait;

void putdown (int i) {
state[i] = PENSANDO;
// verificar vecinos derecho e izquierdo
test((i + 4) % 5);
test((1i + 1) % 5);

void test (int i) {
if ((state[(i + 4) % 5] != COMIENDO) &&
(state[i] = HAMBRIENTO) &&
(state[(i + 1) % 5] !'= COMIENDO)) {
state[i] = COMIENDO;
self[i].signal () ;

}
initialization code() {

for (int i = 0; i < 5; i+t)
state[i] = THINKING;

" Cada fildésofo invoca a las operaciones pickup() y

putdown () en el siguiente orden:

DiningPhilosophters.pickup (i) ;

CCMER

DiningPhilosophers.putdown (i) ;

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

165

Arquitectura del Computador y Sistemas Operativos

166

Subsistema de entrada-salida

Agenda

* Introduccidn.

» Métodos para realizar una E/S.
" Interfaz de aplicacién de E/S.
" Subsistema de E/S.

Introduccién

" Una de las principales funcicnes de un sistema
operativo es controlar todos 1los dispositivos de
Entrada/Salida que estén conectados al mismo:
teclado, ratdén, impresora, monitor, red, etc.

" Para encapsular los detalles de 1los diferentes
dispositivos el nucleo del sistema operativo es
estructurado en el uso de médulos de dispositivos.

" Los manejadores de dispositivos (devices drivers)
presentan un acceso uniforme al subsistema de
Entrada-Salida.

" Los dispositivos se comunican con la computadora a
través de sefiales sobre un puerto.

" Si varios dispositivos utilizan el mismo medio de
comunicacién, la conexidén es llamada bus.

" Un bus es un conjunto de lineas (wires) y un
protocolo que especifica un conjunto de mensajes que
son enviados a través de él.

" Los buses son comunmente usados en los sistemas de
computacién para interconectar los dispositivos.

Introduccién
_
3
monitor processor §
’ "—{ cache |

graphics bridge/memory _-
e e e sl SCsl controllar

] L T __PCl bus ‘

IDE disk controller expansion bus keyboard
interface

0 LT—expansion bus_i_l)
@ @ pil':rl:el s:(;il?t'l

Introduccién

® Un controlador (o adaptador) es un chip electroénico
que puede operar en un puerto, bus o dispositivo.

" Por ejemplo, un controlador de puerto serial es un
dispositivo que controla las sefales sobre un puerto
serial.

®* Un controlador de bus SCSI es mas complejo debido
al protocolo SCSI.

" Muchos dispositivos tienen implementado su propio
controlador que estad incorporado al dispositivo (ej.:
discos).

" La comunicacién con el controlador por parte del
procesador es a través de registros de datos vy
sefiales de control. El procesador se comunica con el
controlador escribiendo y leyendo informacién en los
registros del controlador.

®* Una via de comunicacién es a través de
instrucciones de E/S especiales, que especifican una
transferencia de wun byte, o palabra hacia una
direccién de puerto de E/S (I/O port address).

= La instruccién de E/S genera adecuadas sefiales
sobre las lineas del bus para lograr la comunicacidn
con el dispositivo adecuado y mover bits hacia y
fuera de los registros del dispositivo.

" Otra alternativa es utilizar mapeo de memoria del
dispositivo de E/S (memory-mapped I/O). Los
registros del dispositivos son “mapeados” a memoria
principal.

" Un ejemplo de este tipo de comunicacién es el
controlador de una tarjeta de video.

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

167

Arquitectura del Computador y Sistemas Operativos

168

Introduccién

Un puerto de E/S consiste, generalmente, en cuatro

registros:

= Estade (status): estos registros pueden ser
leidos por el equipo. Informan del estado del
dispositivo (completitud de una operacién,
disponibilidad de leer del registro de datos de
entrada, existencia de un error en el
dispositivo.

®* Control (control): pueden ser escritos por el
equipo para generar un pedidoo cambiar de modo el
dispositivo.

® Datos de entrada (data-in): son 1leidos por el

equipo para obtener la entrada.

" Datos de salida (data-out): son escritos por el
equipo para enviar una salida.

Métodos para efectuar una E/S

E/S Programada (Programmed I/0): El procesador le
comunica un pedido a la controladora del dispositivo
Yy queda en un ‘busy waiting’ consultande a 1la
controladora para verificar el estado del pedido.

Interupcciones (Interrupts-Driven I1/0): El
procesador le comunica el pedido a la controladora y
se libera para realizar otras tareas. Al culminar el
pedido el dispositivo, la controladora genera una
interrupcidén al procesador.

Acceso directo a memoria (DMA - Direct Memory
Access): Se utiliza un chip especial que permite
transferir datos desde alguna controladora a memoria
sin que el procesador tenga que intervenir en forma
continua.

E/S Programada (Programmed I/O)

" E1 procesador genera una solicitud de E/S v
luego se encarga de controlar la completitud de
la misma controlando algun registro del
controlador de dispositivo.

" La consulta la realiza en una iteracién continua
denominada polling o busy waiting.

® L.a técnica de busy waiting consume ciclos de
procesador en forma innecesaria.

E/S Programada (Programmed I/O)

copy_ from user (buffer,p,count) ;

for (i=0; i < count; i++) {
while (*print_status_reg != READY) ;
*printer data.register = p[i];

}

return_ to_user();

" Si bien permite una programacidén simple,
tiene como gran desventaja el desperdicio de
ciclos de procesador que no deben ser desperdiciados.

Interrupciones (Interrupt-Driven I/O)

= E1 proceso que se esta ejecutando realiza la

solicitud de E/S, se agrega a la cola de espera del
dispositivo y, finalmente, invoca al planificador
(scheduler) para gque asigne el procesador a otro
proceso.

" E1 controlador de dispositivo avisara la
completitud de la solicitud a través de una
interrupcidn. Una rutina de atencién de la
interrupcién sera invocada interrumpiendo la

ejecucién del proceso asignado al procesador. Es
necesario salvar el estado del proceso que estaba
ejecutando.

" Una vez que la completitud de la E/S es registrada
por el manejador de 1la interrupcidén (interrupt
handler), el proceso gque generd la solicitud es
desbloqueado y se lo asigna a la lista de procesos
listos:.

CPU 1/O controller

—* device driver initiates I/O X‘
initiates 1/0

T
H
!
CPU executing checks for
interrupts between instructions
'

1
[l
¥

CPU receiving interrupt, 4 input ready, output
transfers control to complete, or error
interrupt handler generates interrupt signal

7
IE
interrupt handler

processes data,
returns from interrupt

IE
CPU resumes

— processing of
interrupted task

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

169

Arquitectura del Computador y Sistemas Operativos

170

Interrupciones (Interrupt-Driven I/O)

copy_from user (buffer,p,cuenta) ;
habilitar interrupciones() ;

While (*printer status_reg != READY) ;
*printer data_ register = p[0];
add_to_queue (current) ;

scheduler () ;

remove_ from queue (current);

" La rutina scheduler asignara el procesador a
otro proceso. Cuando este proceso vuelva a
ejecutar, lo harid 1luego de la instruccidn
scheduler.
if (count == 0)
unblock_user() ;
else {
*printer_ data register = p[il];
count--;
i++;
}
acknowledge interrupt() ;
return_from interrupt() ;

" La gran ventaja es que el procesador queda

disponible para otro proceso dque requiera

el

recurso. Es necesario soporte de hardware, ademas,

se deben codificar los manejadores
interrupciones (interrupts handlers) .

vector number description
0 divide error
1 debug exception
2 null interrupt
3 breakpoint
4 INTO-detected overflow
5 bound range exception
6 invalid opcode
7 device not available
8 double fault
9 coprocessor segment overrun (reserved)
10 invalid task state segment
11 segment not present
12 stack fault
13 general protection
14 page fault
15 (Intel reserved, do not use)
16 floating-point error
il7 alignment check
18 machine check
19-31 (Intel reserved, do not use)
32-255 maskable interrupts

de

Interfaz de aplicacién de E/S

= El1 sistema operativo propone estructuras e
interfaces para lograr manipular dispositivos de E/S
de forma estandar y uniforme.

= Esta aproximacién genera abstraccioén,
encapsulamiento y utilizacién de capas en el software.

" Se abstraeran los dispositivos identificando sus
caracteristicas y proponiendo una forma uniforme de
acceso a los dispositivos del mismo tipo.

" Cada dispositive (si bien pueden pertenecer a un
mismo tipo) encapsulara la comunicacién con la
controladora en médulos llamados device drivers
independientes.

= Lograr independizar el subsistema de E/S del
hardware simplifica el trabajo a los desarrclladores
de un sistema operativo.

Interfaz de aplicacién de E/S

kernel
e
[v]
é kernel I/0 subsystem
3
SCsI keyboard | mouse PCl bus floppy ATAPI
device device device see device device device
driver driver driver driver driver driver
SCsSI keyboard | mouse PCl bus floppy ATAPI
device device device eee device device device
° controller | controller | controller controller | controller | controller
- A R T T T
2
2 ATAPI
scsl floppy- | | devices
ab] keyboard| | mouse (X PCI bus disk (dlisks
evices o g
rives tapes,
drives)

® Caracteristicas de los dispositivos de E/S

aspect variation example
character terminal
data-transfer mode e disk
sequential modem
access method A CD-ROM
synchronous tape
tansferischadulo asynchronous keyboard
Sharin dedicated tape
9 sharable keyboard
device speed latency
seek time
transfer rate
delay between operations
read only CD-ROM
1/0 direction write only graphics controller
read-write disk

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

171

Arquitectura del Computador y Sistemas Operativos

172

Interfaz de aplicacidén de E/S

" Dispositivos de bloques (Block devices)

Son dispositivos cuya granularidad de informacidn
es a nivel de Dbloques. Se especializan en
transferir grandes volumenes de datos.

Ej.: Discos.

" Dispositivos de caracteres (Char devices)
La granularidad es a través de caracteres.
Ej.: teclados, ratdédn, puertos serial.

" Operaciones bloqueantes (Blocking)

Cuando un proceso requiere de un servicio de E/S a
través de wuna rutina bloqueante el proceso se
suspende hasta que la operacidén haya finalizado.

Es facil de utilizar y entender.
® Operaciones no bloqueantes (Nonblocking)

El 1llamado al servicio de E/S es devuelto tan
prontoc como sea posible.

" Operaciones asincrénicas (asynchronous)

La operacidén es ejecutada en paralelo. Cuando
finaliza 1le avisa a través de una sefial. Son
dificiles de utilizar.

= Operaciones sincrdnicas (synchronous)

Los procesos gque realizan pedidos de E/S se
bloquean hasta que el pedido finalice.

Interfaz de aplicacién de E/S

Sincrénicas Asincrénicas
kernel user requesting process requesting process user
waiting 4 q ap 4
Pa \
device driver device driver
. : ‘ N
4 | v interrupt handler v tinterrupt handler > kernel
v
hardware hardware
L— data transfer — L - - data transfer —
~ J
time ——— time ——
(a) (b)

Subsistema de E/S

*" E1 nacleo del sistema operativo brinda varios
servicios para el manejo de E/S que estan
desarrollados en la infraestructura de hardware y
device drivers:

" Planificacién de E/S (I/0O Scheduling) .
* Buffering.

" Caching.

" Spooling.

" Manejo de errores (Error handling) .

Planificacién de E/S (I/O Scheduling)

®* La planificacién de requerimientos de E/S debe ser
hecha para lograr un buen rendimiento del dispositivo.

®* Seguramente, los pedidos generados a través de
llamados a sistema por parte de los procesos no
generan una buena secuencia de planificacidén para el
dispositivo.

" E1 sistema operativo implementa la planificacién
manteniendo una cola de pedidos por cada dispositivo.

= Cuando un proceso genera una E/S bloqueante, es
puesto en la cola del dispositivo correspondiente y el
subsistema de E/S reorganiza los pedidos para lograr
un mayor rendimiento.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

173

Arquitectura del Computador y Sistemas Operativos

174

Planificacién de E/S (I/O Scheduling)

device: keyboard
status: idle
device: laser printer request for L
status: busy *| laser printer
address: 38546
device: mouse length: 1372
status: idle
device: disk unit 1
status: idle
gtea‘ﬁfse':t;jli:k unit 2 » request for » request for __-l'
i | disk unit 2 disk unit 2
i file: xxx file: yyy
operation: read operation: write
address: 43046 address: 03458
length: 20000 length: 500
Buffering

" Es un lugar de memoria que guarda informacién
(datos) mientras son transferidos entre dos
dispositivos o un dispositivo y una aplicacién.

" Existen tres razones para realizar buffering:

®* Normalizar las velocidades entre diferentes
dispositivos.

®* Adaptarse entre dispositivos que difieren en los
tamafios de transferencia.

= Mantener la semantica de aplicaciones que
realizan E/S: en una operacién write el buffer de
usuario es copiado a un buffer del sistema
operativo. De esa forma, el sistema logra
independizarse de la aplicacién.

Caching

" La cache es una regidén de memoria mas rapida gque
contiene copias de datos.

" Su utilidad es acelerar el acceso a la informacién.

" En buffering se tienen los datosoriginales, mientras
que caching tiene una o varias copias en un medio
de memoria mas rapido.

" El caching introduce problemas de consistencia de la
informacién.

INDICE

Spooling

" Es un buffer que mantiene salida para un dispositivo
que no se pueda intercalar.

= El sistema captura la salida para el dispositivo y
la va guardando para brindarla en forma correcta (sin
intercalar).

= E1l spooling es una forma que el sistema operativo
tiene para coordinar salida concurrente para
dispositivos.

" Tiene la ventaja que libera al proceso, permitiendo
continuar su ejecucién. Su trabajo es guardado y sera
enviado al dispositivo cuando el subsistema lo crea
conveniente.

" Ej.: impresora.

Manejo de errores (Errors handling)

" Cada llamado a sistema retorna un bit que informa el
éxito o fracaso de la operacién sobre una E/S.

= En UNIX se wutiliza wuna variable errno dque es
utilizada para codificar el error.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

175

Arquitectura del Computador y Sistemas Operativos

176

Estructuras de dispositivos masivos de datos

Agenda

" Planificacién de disco.
= Estructuras RAID.

Planificacién de disco

" El sistema operativo es responsable de usar el hardware
de forma eficiente. Desde la perspectiva del disco esto
significa obtener un rapido acceso a 1los datos ¥y
aprovechar al maximo el ancho de banda al disco.

" Es por eso que el planificador de disco es uno de los
mas importantes.

= El acceso a disco tiene dos grandes componentes:

" Tiempo de posiciocnamiento (seek time): Es el tiempo
que el brazo del disco necesita para posicionar la
cabeza en el cilindro que contiene el sector.

" Latencia de rotacidn (rotational latency): Es el
tiempo que demora rotar el plato al sector correcto.

= E1 ancho de banda (bandwidth) de un disco es la
cantidad de bytes transferidos, dividido por tiempo
total de 1la transferencia (desde el comienzo del
pedido hasta la ultima transferencia).

" Para mejorar el acceso a los datos se debe
minimizar el tiempo de busqueda. De esa forma,
surgen varios métodos de planificacidén de disco:

= FCFS.
= SSTF.
= SCAN.
= C-SCAN.
" LOOK.
" C-LOOK.

FCFS - First-Come, First-Served

= En este caso, la planificacidén es realizar los
pedidos como vayan llegando.

" En un disco con 200 cilindros (numerados del 0 al
199), la cabeza posicionada en el cilindro 53 y una
lista de pedidos:

98, 183, 37, 122, 14, 124, 65, 67

" Genera un movimiento de la cabeza sobre 640
cilindros.

queue = 98, 183, 37, 122, 14, 124, 65, 67

head starts at 53

0 14 37 536567 98 122124 183199
|

| | 11l | 1 | |
l |

SSTF - Shortest Seek Time First

" Se elige como préximo pedido a realizar el que
genere menos tiempo de busqueda (seek time).

" Esto puede generar que pedidos nunca sean
ejecutados o demorados mucho tiempo.

= Para el ejemplo anterior tenemos que la cabeza
recorrera un total de 236 cilindros.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

177

Arquitectura del Computador y Sistemas Operativos

178

SSTF - Shortest Seek Time First

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

SCAN - C-SCAN

SCAN

®* El brazo posiciona la cabeza al comienzo del disco
y la mueve hacia el otro extremo resolviendo los
pedidos mientras pasa por los cilindros. Al llegar
al final hace el camino inverso resolviendo las
solicitudes.

Es también llamado el algoritmo del elevador.
En este caso se recorre un total de 208 cilindros.

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
10 14 37 536567 98 122124 183199

C-SCAN
queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
0 14 37 536567 98 122124 183199

C-LOOK

= Es parecido al C-SCAN,

pero el brazo wva hasta

donde haya pedidos y retorna hacia el otro sentido.

0

14

queue

37 536567

Comparacién

98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
98 122124 183199

" SSTF y LOOK son los ma&s utilizados.

" SCAN y C-SCAN han demostrado ser mejores ante
sistemas que tienen una alta carga en disco.

" El servicio de disco es muy dependiente del
método de asignacién de archivos.

INDICE

soAesadQ sewadlsig A Jopeindwos |9p ein}od}inbay

179

Arquitectura del Computador y Sistemas Operativos

180

Estructuras RAID

" Los sistemas de almacenamiento de disco (storage)
presentan tecnologias orientadas a mejorar el
servicio.

" Las mejoras implementadas se basan en dar:

" Confiabilidad: Casos de fallo de discos.

" Performance: Lograr mejorar los tiempos de
transferencia.

* Las técnicas denominadas RAID (Redundant Arrays of
Inexpensive Disks) tienen una amplia aceptacién.

= La confiabilidad es lograda a través de
redundancia de la informacién.

* La redundancia puede darse duplicando discos
(mirror) o a través de bits de control.

" La mejora de los tiempos de respuesta (performance)
se logra a través de la disposicién de 1la
informacién en los diferentes discos.

* Técnicas de striping son utilizadas a nivel de
bit, byte, sectores, bloque de sectores y bloque.

Diferentes niveles de RAID

T

(a) RAID 0: nen-redundant striping.

- RAID O.

- RAID 1. =38 E EEE]
2 (b) RAID 1: mirrored disks.

- RAID .

- RAID 3. EEEEEEE

— RAID 4. (c) RAID 2: memory-style error-correcting codes.

- RAID 5. SEEEE

- RAID 6. (d) RAID 3: bit-interleaved parity.

EEE=E

(e) RAID 4: block-interleaved parity.

EEEEE

(f) RAID 5: block-interleaved distributed parity.

EEEEEE

(g) RAID 6: P + Q redundancy.

RAID O

" Un RAID 0 (stripe set o striped volume) divide 1los
datos de forma homogénea en dos o mas discos
(rayadas) sin informacién de paridad para la
redundancia.

Es importante sefialar que el RAID 0 no era uno de los
niveles RAID originales y no proporciona redundancia
de datos.

RAID 0 se wutiliza normalmente para aumentar el
rendimiento, aungque también se puede utilizar como una
forma de crear un pequefio numero de grandes discos
virtuales de un gran numero de pequefias unidades
fisicas.

A pesar de RAID 0 no se ha especificado en el
documento original de RAID, Una aplicacién idealizada
de RAID 0 iba a dividir operaciones E / S en blogques
de igual tamafio y repartirlos uniformemente a través
de dos discos.

RAID 0 - Diagrama

RAID 0

—— e
Disk 0 Disk 1

RAID 0 - Performance

Si bien el tamafio del bloque técnice pueden ser tan
pequefio como un byte, es casi siempre un multiplo del
tamanio del disco duro de sector de 512 bytes.

De este modo, cada unidad sera independiente cuando
buscan al azar leyendo o escribiendo datos en el
disco. Para las lecturas y escrituras que son mas
grandes que el tamano de strip, tales como copiar
archivos o la reproduccidén de video, los discos deben
entrar en la misma posicién en cada disco, asi que el
tiempo de busqueda de la matriz sera el mismo que el
de una sola unidad.

Para las lecturas y escrituras que son mas pequefias
que el tamafio del strip, tales como el acceso de base
de datos, las unidades se pueden buscar de forma
independiente.

INDICE

soAnesadQ sewajlsig A Jopeindwod [ap ein}osdlinbay

181

Arquitectura del Computador y Sistemas Operativos

182

RAID 0 - Performance

"= Si los sectores accedidosse distribuyan de forma
equilibrada entre las dos unidades, la busqueda al
azar sera N veces mas rapida.

" La velocidad de transferencia de la matriz sera la
velocidad de transferencia de todos los discos
sumados, limitado sélo por la velocidad de la
controladora RAID.

RAID 1

" Un RAID 1 crea una copia exacta (o espejo) de un
conjunto de datos en dos o mas discos.

= Esto es Util cuando el rendimiento de lectura o la
confiabilidad son mas importantes que la capacidad de
almacenamiento de datos.

= Este tipo de arreglo sdélo puede ser tan grande como el
disco mas pequefio. Un clasico RAID 1 par duplicado
contiene dos discos.

" Puesto que cada miembro contiene una copia completa de
los datos, que pueden tratarse de forma independiente,
la fiabilidad es incermentada por la potencia del
numero de copias.

®* Vale la pena senalar que mientras que RAID 1 puede ser
una proteccién eficaz contra la falta de disco fisico,
no ofrece proteccidén contra la corrupcidén de datos
debido a virus, cambios o eliminaciones accidentales
de archivos o cualquier otro cambio de datos
especificos.

RAID 1 - Diagrama

RAID 1

g e

AL | A1 J
A2 A2
A3 A3
A4 AL

Disk 0 Disk 1

INDICE

RAID 5

Aborda las dos mejoras de servicio planteadas.

Un RAID 5 usa paridad a nivel de bloque con los datos
de paridad distribuido entre todos los discos
miembros.

RAID 5 ha logrado popularidad debido a su bajo costo
de redundancia.

Cuatro unidades de 1 TB pueden ser usadas para
construir un arreglo de 3-TB en RAID 5.

RAID 5 - Diagrama

Paridad distribuida (cada color representa el conjunto
c/bloque de paridad).

RAID 5

__—_ __#J —J

Disk 0 Disk 1 Disk 2 Disk 3

En el ejemplo, una solicitud de lectura para el
bloque Al seria servida por el disco 0.

Una solicitud de lectura simultanea para el blogque Bl
tendria que esperar, pero una solicitud de lectura de
B2 podrian ser revisados al mismo tiempo por el disco
1 logrando mejor tiempo de respuesta.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

183

Arquitectura del Computador y Sistemas Operativos

184

RAID 5 - Manejo de paridad (parity handling)

" Una serie de bloques simultéaneos (uno en cada uno de
los discos de una matriz) se le llama colectivamente
una raya. Si otro bloque, o alguna parte del mismo,
estd escrito en esa misma franja, el bloque de
paridad, o alguna parte del mismo, se vuelve a
calcular y reescrito.

® Para las pequefias escribe, esto requiere:
1. Leer el bloque de datos antiguos.
2. Leer el bloque de paridad de edad.

3. Comparar el bloque de datos de edad con la
solicitud de escritura. Por cada bit que se ha
invertido (cambia de 0 a 1, o de 1 a 0) en el
bloque de datos, dar la vuelta el bit
correspondiente en el bloque de paridad.

.Escribe el bloque de datos nuevos.
5. Escriba el nuevo bloque de paridad.

[

RAID 5 - Manejo de paridad (parity handling)

El disco utilizado para el bloque de paridad esta
escalonado de una banda a otra, de ahi el término
bloques de paridad distribuida.

RAID 5 escribe son costosas en términos de
operaciones de disco y el trafico entre los discos y
el controlador.

Los bloques de paridad no se leen en las lecturas de
datos. Los bloques de paridad se leen, sin embargo,
cuando una lectura de bloques en el strip y en el
bloque de paridad en la franja se utilizan para
reconstruir el sector andantes.

Leer y escribir al arreglo sigue sin problemas,
aunque con alguna degradacién en el rendimiento ...

RAID 5 - Performance

El error CRC se oculta asi de la computadora
principal. Del mismo modo, si un disco falla en la
matriz los bloques de paridad de los discos
sobrevivientes son combinados matematicamente con los
bloques de datos desde los discos sobrevivientes para
reconstruir los datos de la unidad que ha fallado en
la marcha.

" A veces se denomina interino Data Recovery Mode. El
equipo sabe que una unidad de disco ha fallado, pero
esto es solo para que el sistema operativo pueda
notificar al administrador de las necesidades de
reemplazode una unidad; aplicaciones que se
ejecutan en el equipo son conscientes de la falla.
Leer y escribir a la matriz unidad sigue sin
problemas, aunque con alguna degradacidén en el
rendimiento.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

185

Arquitectura del Computador y Sistemas Operativos

186

Sistema de archivos

Agenda

" Interfaz.
= Archivos.
®* Directorios.
®* Seguridad en archivos.
" Implementacién.
®* Definiciones.
= Sistema de archivos virtual.
" Estructura de los directorios.
= Métodos de asignacién.
®* Administracién del espacio libre.
" Ejemplo UNIX.

" Los dispositivos masivos (discos duros, cintas,
etc.) permiten guardar informacién de forma no
volatil.

" El sistema operativo se abstrae de las propiedades
fisicas de los dispositivos para definir una unidad
légica de almacenamiento: el archivo.

" Los archivos son “mapeados” por el sistema a los
distintos dispositivos.

" Un archivo es una agrupacién de informacidén que es
guardada en algun dispositivo no volatil.

" Desde la perspectiva del wusuario, es la unidad
minima de almacenamiento que el sistema le provee.

Los archivos poseen atributos:

" Nombre: un nombre simbélico que permite
identificar el archivo a los usuarios. Pueden
existir mads de un archivo con el mismo nombre en
un sistema de archivos jerarquico (directorios).

= Tdentificador: simbolo gque 1lo identifica de
forma wnica a nivel global del sistema de
archivos. Usualmente es un numero.

" Tipo: programa ejecutable, archivo de datos,
etc.

® Ubicacidén: Puntero al dispositivo y lugar donde
reside el archivo.

" Tamafio: E1 tamafio actual del proceso (en bytes,
palabras o bloques).

INDICE

Archivos

Los archivos poseen atributos:

= Proteccidn: informacidén de control para el
acceso al archivo. Ej.: wusuarios que pueden
acceder, en qué forma, etc.

" Tnformacién de conteo: fecha de creaciédn, ultimo
acceso, etc.

= El sistema operativo brinda servicios para la
manipulacién de archivos:

" Crear y abrir: provee la creacién de un archivo
en el sistema de archivos. Se debe proveer un
nombre del nuevo archivo. Ademas, se provee la
apertura de una archivo vya existente para
acceder o modificar la informaciédn.

= Escribir: poder escribir informacién en un
archivo previamente abierto.

= TLeer: poder leer informacién en un archivo
previamente abierto.

= Reposicionar dentro de un archivo: lograr
acceder a cualquier parte del archivo.

" FEliminar: destruir el archivo a nivel del
sistema de archivo.

= Truncar: eliminar la informacién que esta dentro
del archivo, pero sin eliminar el archivo.

= Por lo general, los sistemas tienen una tabla de
archivos abierto por proceso. Estos archivos se abren
a través de un llamado al sistema y, de esa forma, se
puede operar con ellos (leer, escribir, etc.).
Finalmente, el archivo es cerrado antes que finalice
la ejecucidén del proceso.

= Tener un archivo abierto para el sistema implica
mantener una estructura que tenga por lo menos:
puntero de archivo (file pointer).

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

187

Arquitectura del Computador y Sistemas Operativos

188

Operaciones sobre los archivos

" Tener un archivo abierto para el sistema implica
mantener una estructura que tenga por lo menos:
puntero de archivo (file pointer) para operaciones de
lectura y escritura, contador de archivos abiertos,
ubicacidén del archivo en el dispositivo, derechos de
acceso.

" Algunos sistemas proveen sistema de acceso tUnico a
un archivo (lock) por parte de los procesos.

" A su vez, varios sistemas implementan el mapeo de
archivos al espacio de usuario del proceso. De esta
forma no es necesario realizar read y write para
operar sobre el archivo, sino accederlo directamente.
Esto trae el beneficio de no hacer el llamadeo a
sistema para operar sobre el archivo.

" Existen varios métodos de acceso a los archivos:

= Secuencial: La informacidén es accedida en orden,
registro a registro. El registro depende del
tipo de archivo (texto plano seria byte). Las
operaciones de lectura accederan a la
informacién en forma secuencial e incrementando
el puntero de archivo file pointer. El1 acceso
secuencial es basado en el modelo de cinta
(tape) , en donde los archivos son accedidos de a
uno a la vez y en forma secuencial.

" Directo: La informacidén es accedida en cualquier

orden. No existen restricciones sobre el orden de

escritura y lectura de un archivo. Es basado en
el modelo de disco de un archivo, dque esta
estructurado en bloques.

" Método secuencial:

current position

beginning end

-‘---:zrewhmﬁ:::::::ﬁ::: .
read or write ==»>

Directorios

= E1 sistema de archivos es, por lo general,
estructurado en directorios que contienen archivos.

" Los directorios permiten a los usuarios del sistema
tener una organizacidén légica del sistema de archivo.

(| directory |) [[directory |]
partition A < files > disk 2|
. + disk 1
directory partition C <] S
files
partition B < Hlas
~ disk 3|
L J
\ -

Operaciones sobre directorios

®" Busqueda: es necesario poder buscar un archivo
en un directorio.

" Crear un archivo: archivos nuevos deben ser
creados e incorporados al directorio.

®* Eliminar: borrar un archivo del directorio.

" Tistar: wvisualizar los archivos que estan en un
directorio.

" Renombrar un archivo: cambiar el nombre de un
archivo dentro del directorio.

" Permitir la navegacién: lograr acceder a todos
los directorios del sistema de archivos.

Estructura de directorios - Nivel unico

" El esquema mas sencillo es tener un unico nivel de
directorios en el sistema de archivos.

wmﬂﬂﬂﬁ@?ﬁﬂﬂ

!

" A medida que el sistema crece trae limitaciones.
Por ejemplo, no permite archivos con el mismo nombre
en un mismo directorio.

files

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

189

Arquitectura del Computador y Sistemas Operativos

190

Estructura de directorios - Arbol

* Es ideal permitir varios niveles de directorios.

Esto se logra permitiendo tener archivos

directorio dentro de los directorios.

*Se genera una

estructura
jerarquica de
directorios en

forma de arbol.

*Se denomina ruta
(path) absoluta de

un archivo al
camino desde la
raiz hasta el
archivo.

de tipo

root | spell bi%

|shr|mm7‘eist| lﬁnd|counl hax]

o |

p

[o [mwr]

D60 b6

\‘o

(ool | 7 Lo |m4r) |

\6

‘ Tist |w,|wd hﬂlﬂm‘

I[Izl

Estructura de directorios - Grafo

" Para potenciar la estructura anterior de
seria deseable tener caminos de acceso directo a

otros directorios.

" Estos caminos se
logran a través de
archivos de tipo
enlace simbdlicos
(soft links). A su
vez, se permite que
un archivo esté en

mas de un directorio

(hard 1link) .

arbol

root | avi tc

| text | mail |coun!}book

| bookl mail |unhe hyp ‘

\

avi counr|

Juntex| hex |

Montaje de directorios

" Dada la estructura

grafo, los sistemas de

archivos se pueden solapar en un unico sistema de

archivos.

users

INDICE

Seguridad en archivos

" Debido a gque el sistema es multiusuario es
necesario proteger la informacidén de cada usuario.

" En muchos casos, los usuarios se agrupan segun el
uso que tienen sobre un sistema.

" Se definen permisos sobre los archivos tanto a
nivel de usuario como de grupo.

" Los permisos mas comunes son de escritura, lectura,
ejecucidn, eliminar y listar.

Implementacién

" El disefio de un sistema de archivo enfrenta dos
problemas:
= Como se vera, para el usuario: Implica definir
los atributos, las operaciones validas sobre los
archivos y la estructura de directorios para la
organizacidén de los archivos.
" La creacidén de algoritmos y estructura de datos

para hacer corresponder el sistema de archivos
légico con los dispositivos fisicos de datos.

application programs
= El sistema de archivos estad compuesto de
logical file system

varias capas. Cada una de las cuales utiliza
la funcionalidad de la capa inferior.

ffile-organization module)
basic file system
1/O control

4

devices

" Los dispositivos fisicos (discos) contienen la
siguiente estructura:

= Bloque de control para el boot (boot control
block): es necesario para lograr iniciar el
sistema operativo.

= Bloque de control de particién (partition
control block): contiene la informacidén de las
particiones que existenen el disco, bloques

utilizados y libres, cantidad de archivos, etc.

= Estructura de directorios: para la organizacidn
de los archivos.

= Blogque de control del archivo (File Control
Block): los bloques de control de los archivos
que estan en el sistema de archivos.

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

191

Arquitectura del Computador y Sistemas Operativos

192

Implementacién

" El sistema operativo en memoria mantiene las
siguientes estructuras:

"= La tabla de particién con los sistema de
archivos cargados.

" T.a estructura de directorio de los accedidos
ultimamente.

®= Tabla de descriptores de archivos abiertos a
nivel global del sistema.

" Tabla de descriptores de archivos abiertos por
proceso del sistema.

= Por cada archivo en el sistema se tendra un bloque
de control (File Control Block) .

= E1l bloque de control contiene varios atributos de
conteo, permisos y donde estan los datos del mismo:

" Permisos del archivo.

" Fechas (creacidn, acceso, modificaciédn) .

" Propietario, grupo propietario, lista de acceso.
" Tamano del archivo.

" Bloques de datos del archivo.

Sistema de archivos wvirtual

" Es comin que un sistema operativo acceda a mas
de una implementacién de sistema de archivos (ufs,
ext2, ext3, jfs, jfs2, ntfs, etc.).

" Se utilizan técnicas de orientacién a objetos para
lograr mantener una estructura independiente del
sistema de archivos que se utilice.

" Se genera una estructura en tres capas:

" Interfaz del sistema de archivo (open, read,

etc.).

= Sistema de archivos virtual (Virtual File
Server) .

" Implementacidn especifica del sistema de

archivo.

Sistema de archivos wvirtual

file-system interface

VFS interface

A A

local file system local file system remote file system
type 1 type 2 type 1

network

" E1l sistema de archivos wvirtual provee de dos
funcionalidades importantes:

= Propone una interfaz genérica de sistema de
archivo que es independiente del tipo de sistema
de archivo. De esta forma, se logra un acceso
transparente al sistema de archivos.

®* Propone un bloque de control de archive virtual
que puede representar tanto archivos locales
como remotos.

Estructura de los directorios

" Los directorios contienen la informacién de los
archivos que pertenecen a él. Para organizar la
informacién existen varias alternativas:

" Lista encadenada: los nombres de los archivos y
un puntero al bloque de control son dispuestos
en una Jlista encadenada. En la buasqueda,
insercidén o borrado es necesario un acceso
lineal. Es wusual el uso de caches en memoria
principal para acelerar el acceso.

= Tabla de hash abierto: con el nombre del archivo
se genera la clave utilizada.

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

193

Arquitectura del Computador y Sistemas Operativos

194

Métodos de asignaciédn

" Para la disposicién de los datos de los archivos en

disco se tienen, en general, tres métodos:

®* Asignacién contigua (Contiguous Allocation): Los
en forma contigua. Para
mantener la informacidén es necesario saber en
qué bloque comienza y la cantidad de bloques que

datos son dispuestos

tiene el archivo.

® Asignacidn en forma de lista
Allocation): Los bloques de datos

(Linked

forman una

lista encadenada. Es necesario una referencia al
primer y tltimo bloque de datos en el bloque de

control de archivo.

* Asignacién indexada
mantiene una tabla

referencia a un bloque de datos.

Asignacién contigua

(Contiguous Allocation)

" Sufre de
fragmentacidén externa.

" Es necesario reubicar
continuamente los
archivos si crecen en
tamafo.

* Se utilizan técnicas
de asignacidén de tamafios
mas grandes para prever
el crecimiento futuro de
los archivos.

Asignacién en forma de lista

(Linked Allocation)

" Soluciona el problema de
la fragmentacién.

= E1l acceso a los bloques
es lineal.

" Los punteros ocupan
espacio en los bloques.

= La pérdida de una
referencia genera la
perdida de gran parte de
informacién del archivo.

(Indexed Allocation): 8Se
en donde cada entrada
o . directory
m_’"/ fle start length
o] 1 200 3 count 0 2
f tr 14 3
4] s e[7 mail 19 6
8] 90010 J110] L
tr f 6 2
1201301400150
180170180190
mail
200210220231
24[2s5[J26[127[]
list
2829030311
\‘
directory
file start end
jeep 9 25

2021212301

24 J2s[1j26 27

28[J29[180 131[]
e 4

Asignacién en forma de lista
(Linked Allocation)

" Ej.: FAT directory entry

test [eee T 217

= Al comienzo de cada name start block
particién existe una
tabla de asignacidén de
archivos (File 217
Allocation Table), que
contiene 1la lista de
bloques. 339

" La tabla tiene una
entrada por cada bloque 618
de disco, y es indexada
por el namero de

no. of disk blocks -1
bloque.

618

339

FAT

Asignacién indexada
(Indexed Allocation)

* Los bloques son [— T

directory

accedidos directamente a [N\ =

través del Dblogque de

file
jeep

index block
19
1

indexacién (index block). | U "1\2'3 3L
* E1 blogque de indexacidn | 4[] 5[]
ocupa lugar. Se trata de

que sea lo mas pequefio
posible, pero 1limita 1la [45[]y3J14
cantidad de bloques.

" Una posible alternativa
es indexacidén en varios |s[p1[J22[/3
niveles. Algunos indices

hacen referencia a 24 J2s[26[127 |

bloques directos y otros 28 Jeo[130 131]
a bloques de indexacién. -

mode
" En UNIX los bloques de el
control de archivos -
tienen bloques de | (mestamps (3)

indexacidén directa, de | sizeblock count
uno, dos y hasta de tres
niveles de indexacién.

" Esto permite

: direct blocks 7
representar archivos muy *
grandes. .
single indirect —
double indirect _
triple indirect

INDICE

soAljesadQ sewa}sis A aopeindwod) |ap einjoajinbay

195

Arquitectura del Computador y Sistemas Operativos

196

Administracién del espacio libre

" En el sistema de archivos es necesario mantener qué
bloques estan ocupados y cudles estan libres.
Alternativas posibles para la administracién de los
bloques:

= Vector de bits (Bit Vector, Bit Map): se dispone
de un bit para cada bloque de datos del sistema,
que representa si estd ocupado o libre.

" Lista de bloques libres (Linked 1ist): Se
mantiene una lista encadenada con los bloques
libres a través de los bloques. Es necesario una
referencia al primer bloque.

* Agrupacidédn (Grouping): es una variacién de la
lista encadenada. En cada bloque de la lista se
contiene un grupo de bloques libres.

" Conteo (Counting): se mantiene una 1lista en
donde cada bloque contiene informacidén de
cuantos bloques contiguos, a partir de él, estén
libres.

Ejemplo UNIX

" Cada particién contiene un bloque descriptor del
sistema de archivo llamado super-block.

" E1 super-block contiene:

" Nombre del volumen.

" Cantidad maxima de archivos (inodos). Cantidad
de archivos utilizados y libres.

" Cantidad de bloques de datos, cantidad de
bloques utilizados y libres.

* Referencia a comienzo de bloques de datos, de
indexacién y de vector de bits.

* Informacidén de conteo.
= Ete.

" La administracién del espacio libre se realiza a
través de mapa de bits (bit vector). Se disponen
varios bloques al comienzo de la particién.

= E1l blogque de control de archivo es a la estructura
inode. Los inodos son identificados por un numero, gque
es Unico a nivel del sistema de archivos. Los inodos
poseen un tipo: archivo comin, directorio, enlace
simbdélico, pipes y socket. Utiliza un método de
asignacioén por indexaciodn.

" Los directorios son representados como un archivo
(inodo) , en donde los datos son entradas que tienen los
nombres de los archivos y el numero de inodo
correspondiente.

" Si es un soft 1link, se tiene 1la ruta (path) del
archivo al cual referencian. Los hard 1links son
tratados en forma natural, ya que la pertenencia de un
archivo a un directorio estd en los datos del
directorio y se referencia al numero de inodo.

INDICE

8. Taller de Formacion para sistemas

de Informacion geograficos

Ing. Bruno Rienzi
Ing. Flavia Serra

Ing. Raquel Sosa

INDICE

OGC Web Services

1.1 Introduccion

A medida que el analisis de datos geograficos se ha ido convirtiendo en una actividad
necesaria dentro de multiples disciplinas, también se ha ido incrementando la necesidad de
compartir e intercambiar esos datos. Los estandares elaborados por el Open Geospatial Con-
sortium (OGC) [1] son un elemento fundamental para que los desarrolladores puedan crear
software que permita a los usuarios acceder y procesar datos geo-espaciales de multiples y
heterogéneas fuentes utilizando un conjunto de interfaces genéricas.

Los servicios Web del OGC, denominados por su sigla OWS, estan definidos utilizando
principios fundamentales de una arquitectura orientada a servicios (Service Oriented Ar-
chitecture, SOA). Dentro de esta arquitectura, podemos definir los conceptos de servicio,
interfaz y operacion de la siguiente manera:

¢ Un servicio es una funcionalidad que ofrece una entidad a través de interfaces.

¢ Una interfaz es un conjunto de operaciones que caracterizan el comportamiento de una
entidad.

* Una operacion es la especificaciéon de una transformaciéon o consulta que un objeto es
capaz de ejecutar. Cada operacion se caracteriza por su nombre y su lista de parametros.

Los OWS han sido definidos en base a estandares de Internet no propietarios tales como
HTTP [2], URL, tipos MIME [4] y XML [3]. Mas recientemente, los OWS han comenzado
a definirse utilizando también otros estandares mas especificos de los Web services empre-
sariales tales como WSDL (Web Service Description Language) y SOAP, aunque aun no se
han convertido en estandares.

Dentro de los estandares de Web services definidos por OGC encontramos:

* Web Map Service (WMS), que permite la creacioén y visualizaciéon de mapas en base a
superponer capas geograficas provenientes de multiples fuentes remotas. [8]

* Web Feature Service (WES), que permite que un cliente reciba y actualice datos geo-
espaciales codificados en el lenguaje GML (Geography Markup Language) desde multiples
fuentes remotas. [0]

* Web Coverage Service (WCS), que permite a un cliente acceder a cierta parte de una
capa raster ofrecida por el servidor (codificada en algiin formato de imagen binario).

* Catalogue Service for the Web (CSW), que define interfaces para descubrir, navegar y
consultar metadata sobre datos, servicios y otros recursos potenciales.

Por otro lado, también se estan definiendo OWS para aplicaciones de mercado masivo
utilizando Web Services REST basados en GeoRSS y KML, por ejemplo. Estas aplicaciones
tienen el proposito de ampliar el uso de tecnologias basadas en la localizaciéon geografica para
el pablico en general.

El lenguaje KML [5] define una gramatica XML para codificar y transportar represen-
taciones de datos geograficos para desplegar en un navegador terraqueo, tal como Google
Earth jError! No se encuentra el origen de la referencia. El lenguaje KML fue entregado a
OGC por parte de la empresa Google para ser estandarizado y extendido.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

199

Taller de Formacién para Sistemas de Informacion Geograficos

200

GeoRSS (Geographically Encoded Object for RSS feeds) es una propuesta para etiquetar
RSS con informacién que permita la localizacion geografica.

Los Web services son considerados clave para la implementacion de arquitecturas orien-
tadas a servicios (SOA), ya que estos permiten alcanzar un alto grado de interoperabilidad
entre aplicaciones con una complejidad menor a la de otras alternativas. Los Web services
estan basados en protocolos para descubrimiento, descripcion y llamadas remotas a servicios,
asi como en los conocidos protocolos como HTTP y TCP/IP.

Una posible divisiéon en estandares de Web services, para los propositos de este documen-
to, puede ser la siguiente:

* SOAP: Estandares WS-*: los mas utilizados (especialmente en aplicaciones B2B).

e POX (Plain Old XML): Muy utilizados en Internet, similares a los REST.

* REST (Representational State Transfer): API simples, muy utilizados en sitios de e-
commerce.

Otros estandares de Web services basados en SOAP son los llamados Web services de
segunda generaciéon como, por ejemplo, WS-Security y BPEL (Business Process Execution
Language).

Los Web services POX utilizan HT'TP como protocolo de transferencia, con un conte-
nido en XML, cuyo esquema y semantica conocen los dos hosts. Los OWS que se analizan
en detalle en este documento son un ejemplo de este tipo, aunque un OWS no siempre debe
soportar XML, ya que también existen variante con codificacion KVP, como se vera a con-
tinuacion.

Los OWS, al tener una interfaz estandarizada, permiten que sean implementados por
clientes y servidores sin tener que programar cada Web Service individualmente, como su-
cede con Web Services SOAP. Es asi que los servidores de mapas, tales como MapServer
o GeoServer, permiten publicar datos geograficos mediante estandares tales como WMS o
WES, y clientes como gvSIG u Openlayers pueden consumirlos. El usuario solo debe con-
figurar las capas geograficas que se publican y consumen.

A

Ease of
Development

Application
Complexity

1.2 Implementacién sobre HTTP.

La Plataforma para Computacién Distribuida (DCP, Distributed Computing Platform) a
la que hacen referencia los estandares de OGC es concretamente la red de hosts en Internet

INDICE

que soportan el protocolo HTTP (Hypertext Transfer Protocol), es decir, la World Wide
Web (WWW). De esta manera, todo recurso online (Online Resource) es especificado me-
diante una URL HT'TP (definido en el IETF RFC 2610).

HTTP soporta dos métodos para realizar solicitudes al servidor: GET y POST. Los OWS
deben soportar obligatoriamente el método GET. El método POST es obligatorio para WES
pero opcional para WMS.

Cada protocolo OGC posee sus parametros especificos y los valores validos para cada
parametro.

HTTP GET

Un URL vialido para la operacion GET es un prefijo de URL al que se le concatenan
parametros. Un prefijo de URL (segun el IETF RFC 2396) es una cadena de caracteres for-
mada por el protocolo (ej. http o https), el nombre de host o direccién, el nimero de puerto
(opcional; cada protocolo tiene su well-known port que se usa por defecto si no se especifica
uno), un camino (path) y el signo de interrogacion (?), seguidos opcionalmente de una lista
de parametros. La lista de parametros se forma mediante parejas nombre/valor en la forma
“nombrel=valorl&nombre2=valor2&...”.

Cuando se utiliza el método GET, la codificacion de la solicitud se realiza mediante KVP
(Keyword-Value Pair), lo que permite construir la lista de parametros del URL.

Ejemplo: “REQUEST=GetCapabilites”, en donde REQUEST es la keyword o palabra
clave y GetCapabilities el valor.

HTTP POST.

Un URL valido para la operacion POST es un URL completo (no solamente un prefijo de
URL, como en el caso de GET) al que los clientes envian solicitudes codificadas en el cuerpo
del documento POST.

Cuando se utiliza el método POST, la codificacién de la solicitud se realiza mediante el
lenguaje XML (Extensible Markup Language) y no se agregan parametros al URL.

1.3 Operacion GetCapabilities

La operacion GetCapabilities es soportada por todos los OWS y permite que el cliente
conozca las capacidades del servidor, es decir, mediante esta operacion se obtiene la metadata
del servicio (ej. datos que posee, formatos que soporta, valores admitidos de los parametros,
etc.). De esta forma es posible hacer un “binding” entre un cliente y el servidor que posea la
informacién que necesita ese cliente.

Los parametros de una solicitud de esta operacion son:

e Service: el tipo de servicio que se desea (¢j. WMS). Un mismo servidor puede soportar
varios servicios.

* Request: el nombre de la operacion (GetCapabilities, en este caso).

* Version: el numero de version del protocolo que se esta consultando. Las versiones
tienen el formato x.y.z. AcceptVersions: versiones del protocolo que soporta el cliente, en
orden de preferencia. El cliente y el servidor negocian la version del protocolo. El servidor

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

201

Taller de Formacién para Sistemas de Informacion Geograficos

202

elige una version dentro del AcceptVersions y se la envia al cliente. Si no soporta ninguna de
las versiones, envia una excepcion.

* Sections: secciones de la metadata del servicio que se deben incluir en la respuesta (Ser-
viceldentification, ServiceProvider, OperationsMetadata, Contents, All).

* UpdateSequence: permite que el cliente averigle si su caché es consistente con el ser-
vidor.

* AcceptFormats: formatos de respuesta (tipos MIME) que soporta el cliente, en orden
de preferencia. Por omision es “text/XML”.

Ejemplo de GetCapabilities en KVP:

http://hostname:port/path?SERVICE=WCS&REQUEST=GetCapabilities&« ACCEP
TVERSIONS=1.0.0,0.8.3&SECTIONS=Contents& UPDATESEQUENCE=XYZ123&
ACCEPTFORMATS=text/xml

Ejemplo de GetCapabilities en XML:

<rxml version=""1.0" encoding=""UTF-8?>

<GetCapabilitiesxmlns="http:/ /www.opengis.net/ows/1.1” xmlns:ows=""http:/ /www.
opengis.net/ows/1.1” xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”
xsizschemal.ocation="http:/ /www.opengis.net/ows/1.1 fragmentGetCapabilitiesRequest.
xsd” service="WCS” updateSequence="XYZ123">
<AcceptVersions><Version>1.0.0</Version><Version>0.8.3</Version></AcceptVer-
sions>

<Sections><Section>Contents</Section></Sections>
<AcceptFormats><OutputFormat>text/xml</OutputFormat></AcceptFormats>
</GetCapabilities>

2 Web Map Service (WMS)

2.1 Introduccion

Un Web Map Service (WMS) es un servicio que proporciona una interfaz HTTP simple
para obtener un mapa georreferenciado creado dinamicamente a partir de informacioén geo-
grafica proveniente de una o varias fuentes de datos distribuidas. Dentro de este estandar, se
entiende como “mapa’” a una representacion de la informacion geografica en forma de un
archivo de imagen digital (Ej. PNG, GIE JPEG, SVG, etc.). A continuacién de analizan en
detalle todas las operaciones que comprende este protocolo.

2.2 Operaciones
WMS define dos operaciones obligatorias (GetCapabilities y GetMap) y una operacion

opcional (GetFeaturelnfo). Una secuencia posible de envio de mensajes entre el cliente y el
servidor WMS puede verse en la Figura 2.

INDICE

]
:

GetCapabilities(...)

Service Metadata (XML)

GetMap{layers, bbox, format,...)

y__ _1__ _¥_ _ _ |

Map (JPEG)

GetFeaturelnfoli,j,query_layers,...)

Info (HTML, XML)

B T A T S T

-4 __ =

Figura 2 — Secuencia de mensajes en WMS

2.2.1 GetCapabilities

Esta operacién permite obtener las capacidades del servicio. Concretamente, obtiene la
metadata que describe el contenido de la informaciéon que provee el servicio, asi como los
valores admitidos de los parametros con los que se realizan las solicitudes.

2.2.1.1 Solicitud
2.2.1.1.1 SERVICE

Indica el tipo de servicio (dentro de los varios tipos que puede brindar un servidor) que
se va a utilizar. En este caso, se pasa el valor “WMS” para este parametro.

2.2.1.1.2 REQUEST

Indica el nombre de la operacién (dentro de las operaciones que definen el servicio espe-
cificado en el parametro SERVICE) que se va a invocar. En este caso, se pasa el valor “Get-
Capabilities” para este parametro.

2.2.1.1.3 FORMAT

Indica el formato (tipo MIME) en el que se desee recibir la respuesta. El valor por defecto
es text/xml.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

203

Taller de Formacién para Sistemas de Informacion Geograficos

204

2.2.1.1.4 UPDATESEQUENCE
Permite que el cliente averigiie si su cache es consistente con el servidor.
2.2.1.1.5 VERSION

Permite negociar la version del protocolo a utilizar entre el cliente y el servidor. La version
del protocolo WMS, que abarca el esquema XML y la codificacién de las solicitudes, esta
determinado por tres enteros positivos en el rango de 0 a 99 separados por puntos (x.y.z). La
version actual, por ejemplo, es 1a 1.3.0. La negociacion de la version entre cliente y servidor
se realiza mediante una conversacion solicitudes GetCapabilites y respuestas del servidor.

2.2.1.2 Respuesta

La respuesta de la solicitud GetCapabilites es un documento XML conforme al esquema
XML de la versiéon negociada entre el cliente y el servidor. El documento contiene un ele-
mento raiz WMS_Capabilities en el namespace http://www.opengis.net/wms.

2.2.1.2.1 Service

La primera parte de la metadata esta constituida por un elemento <Service> que propot-
ciona los datos generales del servicio. Los datos obligatorios son Name, Title y OnlineResou-
rce. Los datos opcionales son Abstract, Keyword, List, Contact Information, Fees, Access
Constraints y limites en la cantidad de capas que puede componer en un mapa, o limite en el
tamafio del mapa retornado.

* Name

El elemento Name indica el nombre del servico, que en este caso es siempre “WMS”.

* Title

El elemento Title es un titulo que permita describir al proveedor.

* OnlineResource

El elemento OnlineResource permite referir al sitio Web del proveedor del servicio.

2.2.1.2.2 LayerLimit

El elemento <LayerLimit> es un entero positivo que indica la cantidad maxima de capas
que pueden solicitarse en una operacion GetMap (Ver 2.2.2.1.3).

2.2.1.2.3 MaxWidth y MaxHeight (opcionales)

Los elementos <MaxWidth> y <MaxHeight> indican el tamafio maximo en pixeles del
mapa que se puede solicitar mediante los parametros WIDTH y HEIGHT de la operacion
GetMap (ver 2.2.2.1.8).

INDICE

2.2.1.2.4 Capability

El elemento <Capability> enumera las operaciones que son soportadas por el servidor,
los formatos de respuesta de esas operaciones y el prefijo de URL de cada una.

2.2.1.2.5 Layer

La informacién geografica ofrecida por un WMS esta organizada en capas o “layers”: cada
capa es descripta individualmente por su propia metadata. Los clientes realizan las solicitudes
de un mapa en base a estas capas. Cada servicio debe proporcionar al menos un elemento
<Layer>. Si bien cada capa representa una entidad diferente, los elementos <Layer> se or-
ganizan en forma jerarquica (cada <Layer> puede tener otros <Layer> hijos). Esto permite
que los elementos hijos “hereden” propiedades de su elemento padre y asi se reduzca el
tamafio de la metadata necesaria.

* Title

El elemento <Title> es un titulo que describe a la capa. No es heredado por los hijos.

* Name

El elemento <Name> es un nombre de la capa que puede ser utilizado como parametro
LAYERS de la operacién GetMap. Si una capa posee un titulo pero no un nombre, entonces
actia solo como una agrupacion formal de las capas anidadas, y no deberia ser solicitada por
los clientes. Las capas con hijos también pueden poseer un nombre. En este caso, obtener la
capa por su nombre equivale a obtener todas las subcapas juntas. El elemento <Name> no
se hereda de padres a hijos.

* Abstract

El elemento opcional <Abstract> contiene una descripcién de la capa.

* KeywordList

El elemento opcional <KeywordList> posee una secuencia (eventualmente vacia) de ele-
mentos <Keyword> con palabras clave para ser utilizadas en busquedas de catalogos.

* Style
El elemento <Style> permite definir un posible estilo de presentacion de una capa. Den-

tro de los sub-elementos cabe destacar <LLegendURL> que contiene la URL de la leyenda
que corresponde a dicho estilo.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

205

Taller de Formacién para Sistemas de Informacion Geograficos

206

* EX GeographicBoundingBox

El elemento <EX_GeographicBoundingBox> define el rectangulo minimo en grados
decimales del area abarcada por la capa. Las coordenadas se definen mediante los elementos
<westBoundLongitude>, <eastBoundLongitude>, <southBoundLatitude> y <northBoun-
dLatitude>. Si la capa no se encuentra en coordenadas geograficas, las coordenadas de este
rectangulo pueden no ser exactas, ya que solo se busca facilitar las busquedas geograficas sin
exigir que el motor de busqueda deba realizar transformaciones de coordenadas.

* CRS

El elemento <CRS> de una capa define el sistema de referencia coordenado (Coordinate
Reference System) de la capa. Cada capa debe incluir todos los CRS que son comunes a la
capa y a todas sus sub-capas.

* BoundingBox

El elemento <BoundingBox>, define el rectangulo minimo que contiene la capa, al igual
que <EX_GeographicBoundingBox>, pero a diferencia del anterior, las coordenadas se
especifican en un determinado CRS. El EX_GeographicBoundingBox puede verse como
un BoundingBox en el atributo CRS="CRS:84” esta implicito. Sin embargo, el elemento
<EX_GeographicBoundingBox> no debe utilizarse como sustituto de <BoundingBox
CRS="CRS:84”> ya que sirven a propositos diferentes.

Los atributos de un BoundingBox son el CRS, las coordenadas (minx, miny, maxx, maxy)
en las unidades especificadas por el CRS y, opcionalmente, resx y resy que indican la resolu-
cién de la capa en esas unidades.

Los BoundingBox de una capa se heredan a la sub-capa. Los BoundingBox de una subca-
pa se agregan a los que hereda de su capa madre.

Una capa no debe proveer un BoundingBox en un CRS que no soporta.

Se debe proveer al menos de un BoundingBox en el CRS nativo de la capa (en el que estan
almacenados los datos).

No es una exigencia que servidor provea un BoundingBox para cada CRS al que pueda
transformar los datos nativos.

Si el CRS es “CRS:17, entonces las unidades estan en pixels, el origen de coordenadas es
en el vértice superior izquierdo, el sentido positivo de la abscisa es hacia la derecha y el de la
ordenada es hacia abajo.

¢ ScaleDenominatotr

Los elementos <MinScaleDenominator> y <MaxScaleDenominator> permiten definir el
rango de escalas en el que es conveniente generar el mapa de una capa.

Por ejemplo, para indicar una escala mayor o igual a 1:1000 y menor a 1:1000000, se uti-
lizan las siguientes definiciones:

<MinScaleDenominator>1e3</MinScaleDenominator>

<MaxScaleDenominator>1e6</MaxScaleDenominator>

INDICE

<MinScaleDenominator> siempre incluye el valor de borde (“mayor o igual”), mientras
que <MaxScaleDenominator> no lo incluye (“menor estricto”).

Ambos son elementos opcionales, por lo que la escala puede ser limitada solo en sentido.

Los limites de escala proporcionados de esta manera deben interpretarse como una gufa
para los clientes, no como limites estrictos. Las unidades de la escala son pixels, ya que el
tamafio del pixel en unidades de distancia depende del dispositivo en el que se muestre la
imagen. El tamafio de pixel estaindar se toma como 0,28 mm x 0,28 mm.

e Dimension

El elemento opcional <Dimension> proporciona la metadata sobre datos-multidimen-
sionales. Esta informacion refiere a dimensiones que se encuentran por fuera de las cuatro
dimensiones espacio-temporales habituales, por ejemplo, las bandas de longitud de onda en
una imagen satelital. Los elementos <Dimension> se heredan.

e MetadataURL

El elemento <MetadataURL> se utiliza para brindar informacién de la capa utilizando
un estandar de metadata. Su atributo type puede tomar los valores “ISO 19115:2003” o
“FGDC:1998”. Los elementos <MetadataURL> no se heredan.

¢ Attribution

El elemento <Attribution> permite identificar la fuente de donde provienen los datos de
una capa, proporcionando informacién como la URL del proveedor, un titulo, un logo, etc.
Los elementos <Attribution> se heredan.

« Identifier y AuthorityURL

Los elementos <Identifier> y <AuthorityURL> se utilizan en conjunto para definir qué
valor de un identificador externo posee una capa. Por ejemplo, si una cierta organizacion
identifica sus capas mediante un cierto identificador, con el elemento <AuthorityURL> po-
demos referenciar esa organizacion y con el <Identifier> declaramos el valor del identifica-
dor que utiliza esa organizacion. Los elementos <AuthorityURL> se heredan, los <Identi-
fier> no.

¢ FeatureListURL

El elemento <FeatureListURL> se utiliza para referenciar la URL en donde se listan las
caracteristicas geograficas pertenecientes a la capa. El sub-elemento <Format> define el tipo
MIME para leer esa lista. El elemento <FeatureListURL> no se hereda.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

207

Taller de Formacién para Sistemas de Informacion Geograficos

208

e DataURL

El elemento <DataURL> permite ofrecer el link al archivo de datos representados por
la capa. El sub-elemento <Format> define el tipo MIME para leer ese archivo. El elemento
<DataURL> no se hereda.

* queryable

El atributo booleano queryable indica si el servidor soporta la operacion GetFeaturelnfo
en esta capa.

¢ cascaded

El atributo entero cascaded indica que la capa se obtuvo desde otro servidor diferente al
servidor que envia la metadata (el servidor actual). El servidor actual puede estar actuando
como otro punto de acceso mas a esa capa, o puede ofrecer valor adicional a lo que ofrece el
servidor original, por ejemplo, con mas formatos de salida o con la capacidad de reproyectar
los datos a otros CRS (Ver). El valor del atributo cascaded es 0 (o se omite el atributo) en el
servidor original y por cada servidor que obtiene de otro se va incrementando en 1.

* opaque

El atributo booleano opaque se utiliza para marcar capas que cubren completamente o
casi completamente el mapa sin dejar espacios tranparentes, independientemente de la escala
utilizada (es el caso tipico de rasters y capas de poligonos, pero no de capas de lineas o pun-

tos). El atributo opaque sirve como una indicacion al cliente para que coloque esta capa por
debajo de las demas.

¢ noSubsets

El atributo noSubsets indica que el servidor no puede crear un mapa de una porcion de la
capa (un subconjunto de sus caracteristicas) sino solo de su BoundingBox.

* fixedWidth y fixedHeight

Los atributos fixedWidth y fixedHeight indican que el servidor solo puede proporcionar
un mapa con ese ancho y alto en pixels.

* 2.2.2 GetMap

Esta operacion permite solicitar un mapa. E1 WMS debe devolver el mapa solicitado o
una excepcion.

INDICE

2.2.2.1 Solicitud.
2.2.2.1.1 VERSION

La version del protocolo a utilizar.
2.2.2.1.2 REQUEST

Indica el nombre de la operacién (dentro de las operaciones que definen el servicio es-
pecificado en el parametro SERVICE) que se va a invocar. En este caso, se pasa el valor
“GetMap” para este parametro.

2.2.2.1.3 LAYERS

Indica las capas que deben componerse en el mapa resultante. El valor de este parametro
es una lista de nombres de capas separados por comas. Un nombre de capa es el contenido
de un elemento <Layer><Name>. Las capas se dibujan empezando con la que estd mas a
la izquierda en la lista.

2.2.2.1.4 STYLES

Indica los estilos en los que deben mostrarse las capas. El valor de este parametro es una
lista de nombres de estilos separados por comas. Un nombre de estilo es el contenido de
un elemento <Style><Name>. El estilo de la posiciéon N de la lista se asocia a la capa de la
posicion N de la lista del parametro LAYERS. El estilo debe estar contenido en la definicién
de la capa o ser heredado por esta. Si para una capa se quiere utilizar el estilo por defecto:

Ejemplo 1: Para capa2 no se especifica estilo (se utilizara el estilo por defecto).
“LAYERS=capal,capa2,capa3”
“STYLES=estilo1,,estilo3”

Ejemplo 2: Para capa3 no se especifica estilo (se utilizara el estilo por defecto).
“LAYERS=capal,capa2,capa3”

“STYLES=estilo1,estilo2,”

Ejemplo 3: Para ninguna capa se especifica estilo (se utilizara el estilo por defecto).
“LAYERS=capal,capa2,capa3”

“STYLES=,” o “STYLES="

2.2.2.1.5 CRS

Indica el CRS que corresponde al parametro BBOX. El CRS debe estar soportado para
esa capa.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

209

Taller de Formacién para Sistemas de Informacion Geograficos

210

2.2.2.1.6 BBOX

Indica el Bounding Box que se quiere obtener del mapa. El valor de este parametro es una
lista de cuatro nimeros reales separados por comas (minx,miny,maxx,maxy) que definen las
coordenadas del rectangulo. Las unidades, orden y direccién de incremento de la abscisa y la
ordenada dependen del CRS especificado. El area especificada en el BBOX debe superpo-
nerse en parte con el BoundingBox devuelto por GetCapabilities. Si la capa esta marcada por
el atributo noSubsets, las coordenadas de BBOX deben coincidir con las de BoundingBox
devuelto por GetCapabilities.

2.2.2.1.7 FORMAT

Indica el formato en que sera devuelto el mapa. El valor es cualquier tipo MIME que
se encuentre dentro de los elementos<Request><GetMap><Format> de la metadata de
servicio.

2.2.2.1.8 WIDTH, HEIGHT

Indican el ancho y alto en pixels de mapa. Si la relacién de aspecto (ancho:alto) deter-
minada por estos parametros no coincide con la determinada por BBOX, el mapa sera de-
formado (utilizando pixels rectangulares en lugar de cuadrados) para que el BBOX ocupe
exactamente ese tamafio. Los valores de WIDTH y HEIGHT estan limitados por los valores
<MaxWidth> y <MaxHeight> devueltos por GetCapabilities. Si una capa esta marcada con
atributos fixedWith y fixedSize, solo podran utilizarse esos valores de ancho y alto.

2.2.2.1.9 TRANSPARENT

Indica si el fondo del mapa debe ser transparente o no. Los valores posibles son “TRUE”
o “FALSE”. El fondo del mapa lo componen los pixels que no representan ninguna caracte-
ristica geografica. El formato de imagen especificado en el parametro FORMAT podtia no
soportar transparencia. Si se especifica el valor “FALSE”, el fondo se pinta del color especi-
ficado en el parametro BGCOLOR.

2.2.2.1.10 BGCOLOR

Indica el color a utilizarse en el fondo del mapa. El valor del parametro es una valor hexa-
decimal de la forma 0xRRGGBB en donde se utilizan dos caracteres para cada canal (rojo,
verde, azul), en el rango de 00 a FF (0-255 en decimal).

2.2.2.1.11 EXCEPTIONS

Indica el formato en el que se recibiran las excepciones. El valor por defecto es “XML”.

INDICE

2.2.2.1.12 TIME

En capas que poseen la dimension del tiempo, permite obtener los datos para un deter-
minado valor de la variable tiempo.

2.2.2.1.13 ELEVATION

En capas que poseen la dimension de elevacion, permite obtener los datos para un deter-
minado valor de la variable elevacion.

2.2.2.2 Respuesta

La respuesta a la solicitud GetMap es un mapa en el formato de imagen especificado,
formado por las capas solicitadas y con todas las propiedades y restricciones determinadas
por los parametros de la solicitud.

2.2.3 GetFeatureIlnfo

La operacion GetFeaturelnfo esta soportada para aquellas capas cuyo atributo queryable
tenga valor “1” (definido directamente o heredado). El caso de uso canénico de esta funcio-
nalidad es cuando el usuario esta viendo un mapa (obtenido mediante GetMap) y elige un
punto del que desea obtener mas informacién. Dado que WMS es un protocolo sin estado
(stateless) que no guarda informacién de la sesion, ademas de los parametros especificos
de esta operacion es necesario incluir parametros de la operacion GetMap (BBOX, CRS,
WIDTH, HEIGHT).

2.2.3.1 Solicitud
2.2.3.1.1 QUERY_LAYERS

Este parametro indica (mediante un lista de nombres separada por comas) las capas geo-
graficas que seran consideradas para devolver la informacién de las caracteristicas que con-
tengan el (o estén proximas al) punto especificado mediante (I,]). Estas capas deben ser un
subconjunto de las capas especificadas en el parametro LAYERS de GetMap.

2.2.3.1.2 INFO_FORMAT

Elparametro INFO_FORMAT indica el formato en que se generarala respuesta para devol-
ver lainformacién de la caracteristica. Los valores validos son los tipos MIME que se obtienen
mediate el método GetCapabilities en los elementos <Request><FeatureInfo><Format>,
por ejemplo, text/xml.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

211

Taller de Formacién para Sistemas de Informacion Geograficos

212

223131L)

Los parametros I y] son las coordenadas de pantalla (medidas en pixels) que identifican
el punto de interés en el mapa. Estas coordenadas van desde 0 hasta el valor de WIDTH y
HEIGHT del mapa correspondiente.

2.2.3.2 Respuesta

La respuesta contiene las caracteristicas que el servidor considera que estan relacionas con
el punto dado. El criterio de relacionamiento queda a discrecion de cada implementacion.
Por ejemplo, en una capa de poligonos, normalmente se devolveria el ploligono que contega
al punto. En una capa de lineas, la(s) linea(s) cuya(s) distancia(s) al punto sea minima, etc. El
formato de la respuesta queda determinado por el parametro INFO_FORMAT de la solici-
tud.

3 Web Feature Service (WFS)
3.1 Introduccién

WES define una interfaz para especificar las operaciones de altas, bajas y modificaciones
(ABM) de las entidades geograficas (geographical features) codificadas en el lenguaje GML
[7], que es un esquema de XML para representar informacion geografica. El estandar define
algunas operaciones como obligatorias y otras como opcionales. A continuacion se detallan
las principales operaciones (algunas obligatorias y otras opcionales) de este protocolo. Sélo
se omite la operaciéon LockFeature, que es la operacion opcional que permite bloquear una
caracteristica de un WIS transaccional. Operaciones.

3.1.1 DescribeFeatureType

La funcién de DescribeFeatureType es generar una descripcion de esquema de los tipos
de caracteristicas presentes. Este esquema define como las instancias de una caracteristica
deben ser codificadas en una entrada (mediantes un Insert o un Update) o como seran gene-
radas en una salida (en respuesta a un GetFeature o un GetGmlObject). Si el contenido del
elemento DescribeFeatureType esta vacio, el servidor debera generar la descripcion de todos
sus tipos.

3.1.1.1 Solicitud
El siguiente fragmento del esquema XML define las solicitudes de este tipo:

<xsd:element name="DesctibeFeatureType” type=""wfs:DesctibeFeature TypeType”/>
<xsd:complexType name=""DescribeFeature TypeType”>

<xsd:complexContent>

<xsd:extension base=""wfs:BaseRequestType”>

<xsd:sequence>

INDICE

<xsd:element name=""TypeName” type="xsd:(QName”
minOccurs="0" maxOccurs="unbounded”/>
</xsd:sequence>

p—p)

<xsd:attribute name="outputFormat”
type=""xsd:string”” use="optional”
default=""text/xml; subtype=gml/3.1.1”/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>
3.1.1.11

3.1.1.1.2 TypeName

El elemento TypeName especifica el nombre de un tipo de caracteristica del que se quiere
obtener la descripcion.

3.1.1.1.3 outputFormat

El atributo outputFormat indica el tipo MIME del lenguaje de descripcion del esquema
que se utilizarin en la respuesta. El valor por defecto es text/xml;subtype=gml/3.1.1, que
indica el esquema de aplicacion GML3. Ademas de éste, todos los tipos MIME validos se
obtienen a través del método GetCapabilities.

Es importante destacar que la definicién del esquema de caracteristicas es responsabilidad
de cada implementaciéon WES particular, siendo las siguientes las tnicas restricciones:

* La geometria de las caracteristicas debe estar expresada en GML (gml.xsd).

* El sistema de referencia coordenado (CRS) debe ser expresado en GML.

* El esquema de caracteristicas debe ser consistente con el modelo de caracteristicas de
OGC. Por ejemplo, dentro de este modelo, se considera que cada elemento contenidos inme-
diatamente por el elemento rafz de una caracteristica es una propiedad de esa caracteristica
(en otra interpretacion, inconsistente con el modelo mencionado, podria considerarse que el
elemento interior es una especializaciéon o sub-tipo de la caracteristica que lo contiene, por
ejemplo).

3.1.1.2 Respuesta

La respuesta de esta operacion, es la descripcion de esquema de las caracteristicas en el
formato solicitado. Si el formato es GML3, sera un esquema de aplicacion GML con un sub-
esquema por cada tipo de caracteristica solicitado.

Dado que un esquema XML solo puede describir elementos que pertenecen a un mismo
espacio de nombres, no es posible describir los esquemas de tipos de elementos que pertene-
cen a diferentes espacios. En este caso, la respuesta es un esquema XML en donde se utilizan
elementos <import>.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

213

Taller de Formacién para Sistemas de Informacion Geograficos

214

Por ejemplo, dada la siguiente solicitud:

<?xml version=""1.0" ?>

<DescribeFeatureType

version="1.1.0"

service="WFS”

xmlns="http://www.opengis.net/wfs”
xmlns:ns01="http://www.server0l.com/ns01”
xmlns:ns02=""http:/ /www.server02.com/ns02”
xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”

xsi:schemal.ocation="http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>

<TypeName>ns01:TreesA_1M</TypeName>
<TypeName>ns02:Roadl._1M</TypeName>
</DesctibeFeatureType>

La respuesta podria tener esta forma:

<rxml version="1.0" ?>
<schema
targetNamespace="http://www.someserver.com/myns”
xmlns:myns=http://www.somesetrvet.com/myns
xmlns="http://www.w3.0rg/2001/XMLSchema”
elementFormDefault="qualified”
attributeFormDefault=""unqualified”>
<import namespace="http://www.server0l.com/ns01”
schemal.ocation="http:/ /www.mysetrver.com/wfs.cgi?
request=DescribeFeature Type&typeName=ns01:TreesA_1M"/>
<import namespace="http://www.server02.com/ns02”
schemal.ocation=""http://www.yourserver.com/wfs.cgi?
request=DescribeFeature Type&typeName=ns02:Roadl._1M”/>
</schema>

3.1.2 GetFeature

3.1.2.1 Solicitud

El siguiente fragmento del esquema XML define las solicitudes de este tipo:

<xsd:element name="GetFeature” type="wfs:GetFeatureType” />
<xsd:complexType name=""GetFeatureType”>
<xsd:complexContent>

<xsd:extension base=""wfs:BaseRequestType”>

<xsd:sequence>

<xsd:element ref="wfs:Query” maxOccurs="unbounded”/>
</xsd:sequence>

p—p)

<xsd:attribute name="resultType”

type=""wfs:ResultTypeType” use="optional”

Consejo de Educacion Técnico Profesional Servicios Geograficos
-16 -
default="results” />

pa—p)

<xsd:attribute name="outputFormat”

—

type=""xsd:string”” use="optional”
default=""text/xml; subtype=3.1.1"/>
<xsd:attribute name="maxFeatures”
type="xsd:positivelnteget” use="optional”/>
<xsd:attribute name=""traverseXlinkDepth”
type="xsd:string” use="optional”’/>
<xsd:attribute name=""traverseXlinkExpiry”
type="
use="optional”/>

</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<xsd:simpleType name=""ResultTypeType”>

p—p)

<xsd:restriction base="xsd:string”>

xsd:positivelnteger”

<xsd:enumeration value="results” />
<xsd:enumeration value="hits”/>
</xsd:restriction>
</xsd:simpleType>

pu— | —).

<xsd:element name="Query” type="wfs:QueryType”/>
<xsd:complexType name=""QueryType”>

<xsd:sequence>

<xsd:choice minOccurs="0" maxOccurs="unbounded”>
<xsd:element ref="wfs:PropertyName” />

<xsd:element ref="ogc:Function”/>

</xsd:choice>

<xsd:element ref="ogc:Filter” minOccurs="0"" maxOccurs="1"/>
<xsd:element ref="ogc:SortBy” minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

<xsd:attribute name=""handle”

type="xsd:string” use="optional”’/>

<xsd:attribute name="typeName”

type=""wis: TypeNameListType” use="required” />

<xsd:attribute name=""featureVersion”

type="xsd:string” use="optional”’/>

<xsd:attribute name="srsName” type="xsd:anyURI”” use="optional”/>
</xsd:complexType>

<xsd:simpleType name=""Base_TypeNameListType”>

<xsd:list itemType="QName” />

</xsd:simpleType>

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

215

Taller de Formacién para Sistemas de Informacion Geograficos

216

<xsd:simpleType name=""TypeNameListType”>
<xsd:restriction base="wfs:Base_TypeNameListType”>
<xsd:pattern value="(\w:)?\w(=\w)?){1,}”/>
</xsd:restriction>
</xsd:simpleType>

3.1.2.1.1 Query

El elemento <Query> define qué tipos de caracteristicas se quiere consultar, qué pro-
piedades de los mismos se desea obtener y qué restricciones (espaciales y no-espaciales) se
deben aplicar para realizar la seleccion. Los resultados de todas las consultas especificadas en
la solicitud son concatenadas para producir el resultado (un conjunto de caracteristicas). A
continuacién se describen los principales atributos de este elemento.

* typeName

El atributo typeName es utilizado para indicar el nombre de una o mas instancias de un
tipo de caracteristica. Al especificar una lista de nombres separados por coma, se interpreta
como una operacion de JOIN entre las instancias de estos tipos.

Por ejemplo:

typeName="ns1:Ciudad=A,ns1:Ciudad=B,ns2:CiudadCostera”

especifica que se realizara un JOIN entre tres tipos, a los que se les definen los alias A, By
C. Dato que A y B son alias del mismo tipo (Ciudad en el espacio de nombres nsl), se realiza
un SELF-JOIN en el tipo Ciudad.

* PropertyName

El elemento <PropertyName> tiene como contenido el nombre de un elemento (cali-
ficado por su espacio de nombres) que representa un propiedad de una caracteristica (ej.
nsl:direccion). Estos elementos se incluyen para que las caracteristicas devueltas por la con-
sulta incluyan estas propiedades. En el caso de las propiedades que estan representados por
elementos obligatorias en el esquema de definicion de la caracteristica, no es necesario solici-
tarlas explicitamente mediante elementos <PropertyName>, ya que esas propiedades vienen
necesariamente siempre que se solicita esa caracteristica para que el documento XML sea
valido contra su esquema.

¢ Filter
El elemento <Filter> se utiliza para imponer restricciones en una consulta.
¢ srsName

El atributo srsName indica el SRS (Spatial Reference System) en que se solicita que se
devuelvan los datos.

INDICE

3.1.2.1.2 outputFormat.

El atributo outputFormat indica el tipo MIME del lenguaje de descripcion del esquema
que se utilizardn en la respuesta. El valor por defecto es text/xmlsubtype=gml/3.1.1 que
indica que se generara un documento GML3 que puede ser validado contra el esquema de
aplicacion GML3 generado como respuesta de la operacion DescribeFeatureType (ver 3.1.1).
Ademas de éste, todos los tipos MIME validos se obtienen a través del método GetCapabi-
lities.

3.1.2.1.3 resultType

El atributo resultType puede tomar dos valores que establecen qué tipo de respuesta se
espera del servicio. Si el valor es Results el servicio debera devolver la descripcion de todas
las caracteristicas que cumplan con las consultas de la solicitud; éste es el mismo comporta-
miento que se obtiene si omite este atributo. Si el valor es Hits el servicio debera devolver
unicamente el numero de caracteristicas que cumplan con las consultas de la solicitud.

3.1.2.1.4 maxFeatures

El atributo maxFeatures se utiliza para limitar el nimero de caracteristicas solicitadas en
forma explicita (via GetFeature/Query/@typeName).

3.1.2.2 Respuesta
La respuesta de esta operacion esta definida por este fragmento del esquema XML:

<xsd:element name=""FeatureCollection”
type=""wfs:FeatureCollectionType”
substituionGroup=""gml:_FeatureCollection”/>
<xsd:complexType name=""FeatureCollectionType”>
<xsd:complexContent>

<xsd:extension base=""gml:AbstractFeatureCollectionType”>

— pu—) }

<xsd:attribute name=""lockId” type=""xsd:string”’ use=""optional”/>
yp g

p—p) —

<xsd:attribute name=""timeStamp” type="xsd:dateTime” use="optional”’/>

p—p)

<xsd:attribute name="numberOfFeatures”

type="
use="optional”/>
</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

—.

xsd:nonNegativelnteger”

El elemento <FeatureCollection> es el elemento raiz de la respuesta. En el caso que re-
sultType en la solicitud tenga el valor results, el contenido de este elemento seran todas las
caracteristicas recuperadas. En el caso que se hits, el contenido sera vacio, pero se lleneran
los atributos timeStamp y numberOfFeatures.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

217

Taller de Formacién para Sistemas de Informacion Geograficos

218

3.1.2.3 Ejemplo

El siguiente ejemplo muestra la utilizacion de la operaciéon GetFeature para obtener las
instancias de las caracteristicas Calle y Via que se encuentre dentro de una cierta region. Para
esto se utiliza el operador Within como filtro, especificando las cordenadas de los puntos
superior izquierdo e inferior derecho de la region.

<?xml version="1.0" ?>

<GetFeature

version="1.1.0"

service="WFS”

handle="Example Query”

xmlns="http:/ /www.opengis.net/wfs”

xmlns:ogc="http:/ /www.opengis.net/ogc”
xmlns:gml="http:/ /www.opengis.net/gml”
xmlns:myns="http://www.someserver.com/myns”
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemalLocation="http:/ /www.opengis.net/wfs ../wfs/1.1.0/WEFS.xsd”>
<Query typeName="myns:Calle”>
<wfs:PropertyName>myns:path</wfs:PropertyName>
<wfs:PropertyName>myns:lanes</wfs:PropertyName>
<wfs:PropertyName>myns:surfaceType</wfs:PropertyName>
<ogc:Filter>

<ogc:Within>
<ogc:PropertyName>myns:path</ogc:PropertyName>
<gml:Envelope srsName="EPSG:63266405”>
<gml:lowerCorner>50 40</gml:lowerCorner>
<gml:upperCorner>100 60</gml:upperCorner>
</gml:Envelope>

</ogc:Within>

</ogc:Filter>

</Query>

<Query typeName="myns:Via”>
<wfs:PropertyName>myns:track</wfs:PropertyName>
<wfs:PropertyName>myns:gauge</wfs:PropertyName>
<ogc:Filter>

<ogc:Within>
<ogc:PropertyName>myns:track</ogc:PropertyName>
<gml:Envelope srsName=""...”>

<gml:lowerCorner>50 40</gml:lowerCorner>
<gml:upperCorner>100 60</gml:upperCorner>
</gml:Envelope>

</ogc:Within>

</ogc:Filter>

</Query>

</GetFeature>

INDICE

<?xml version="1.0" ?>

<wfs:FeatureCollection

xmlns="http://www.someserver.com/myns”

xmlns:wis="http:/ /www.opengis.net/wfs”

xmlns:gml="http:/ /www.opengis.net/gml”

xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”
xsizschemal.ocation=""http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd
http://www.someserver.com/myns ROADSRAILS.xsd”>
<gml:boundedBy>

<gml:Envelope stsName="http://www.opengis.net/gml/srs/epsgxml#63266405”>
<gml:lowerCorner>0 0</gml:lowerCorner>

<gml:upperCorner>180 360</gml:upperCorner>

</gml:Envelope>

</gml:boundedBy>

<gml:featureMember>

<Calle gml:id="Calle.100”>

<path>

<gml:LineString gid="1"

stsName="http:/ /www.opengis.net/gml/srs/epsgxml#63266405”>
<gml:posList>10 10 10 11 10 12 10 13</gml:posList>
</gml:LineString>

</path>

<sutrfaceType>ASPHALT</surfaceType>

<nlanes>4</nlLanes>

</Calle>

</gml:featureMember>

<gml:featureMember>

<Calle gml:id="Calle.105”>

<path>

<gml:LineString gid="2"

stsName="http:/ /www.opengis.net/gml/srs/epsgxml#63266405>
<gml:posList>10 10 10 11 10 12</gml:posList>

</gml:LineString>

</path>

<sutfaceType>GRAVEL</surfaceType>

<nlanes>2</nlLanes>

</Calle>

</gml:featureMember>

<gml:featureMember>

<Via gml:id="Via.119”>

<track>
<gml:LineString gid
stsName="http://www.opengis.net/gml/srs/epsgxml#63266405”>
<gml:posList>15 10 16 11 17 12</gml:posList>

—

n)’

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

219

Taller de Formacién para Sistemas de Informacion Geograficos

220

</gml:LineString>
</track>
<gauge>24</gauge>
</Via>
</gml:featureMember>

< /wfs:FeatureCollection>

3.1.3 GetGmlObject

Esta operacion permite obtener cualquier objeto GML a través de su identificador Gnico
(gml:id). Los objetos pueden ser caracteristicas, geometrias, topologias, etc. Si el elemento
solicitado posee XLinks a otros elementos, estos otros elementos se obtienen mediante soli-
citudes GetGmlObject recursivas, las que posiblemente se envien desde el WES actual a otro
WES remoto. Para saber a donde enviar la solicitud recursiva, se utiliza el valor del atributo
xlink:href, de donde se obtiene la URL del WES remoto y el identificador tnico del elemento
referenciado.

3.1.3.1 Solicitud
El siguiente fragmento de esquema XML define las solicitudes de este tipo:

<xsd:element name="GetGmlObject” type=""wis:GetGmlObjectType”/>
<xsd:complexType name="GetGmlObjectType”>
<xsd:complexContent>

<xsd:extension base=""wfs:BaseRequestType”>

<xsd:sequence>

<xsd:element ref="0gc:GmlObjectld”/>

</xsd:sequence>

<xsd:attribute name="outputFormat”

type="xsd:string” use=""optional” default="GML3” />

<xsd:attribute name=""traverseXlinkDepth”

type="xsd:string” use="required”/>
<xsd:attribute name=""traverseXlinkExpiry”
type=""xsd:positivelnteger”

pa—)

use="optional”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

3.1.3.1.1 GmlObjetcld

Consejo de Educacion Técnico Profesional Servicios Geograficos.

El elemento <GmlObjetld> se utiliza para especificar el identificador unico (el gml:id)
del elemento que se quiere obtener. Todos los objetos GML poseen un identificador gml:id
como atributo.

INDICE

3.1.3.1.2 outputFormat

El atributo outputFormat indica el tipo MIME del formato que se utilizara en la res-
puesta. El valor por defecto es text/xml;subtype=gml/3.1.1 que indica que se generara un
documento. Ademas de éste, todos los tipos MIME validos se obtienen a través del método
GetCapabilities.

3.1.3.1.3 traverseXlinkDepth

El atributo traverseXlinkDepth indica la profundidad de busqueda de elementos refe-
renciados mediante XLinks. Por ejemplo, si este atributo tiene el valor “1”, solo el elemento
solicitado sera devuelto sin agregar elementos anidados que sean vinculados por XLinks. En
cambio, si tiene valor “2”, se tratara de resolver el primer nivel de anidamiento de elementos,
enviando solicitudes GetGmlObject recursivas pero con un nivel menos de profundidad
(“17). Ademas de valores enteros positivos, se utiliza el literal “*”” para indicar una profundi-

dad de busqueda ilimitada.
3.1.3.1.4 traverseXlinkExpiry

El atributo traverseXlinkExpiry, especificado en minutos, indica el tiempo maximo que
un WES que ha recibido un GetGmlObject debe esperar por la respuesta de otro WES al
que ha enviado otro GetGmlObject para poder resolver un elemento referenciado mediante
XLinks.

3.1.3.2 Respuesta

La respuesta a una solicitud GetGmlObject es un elemento GML devuelto como un frag-
mento de documento XML. Esto se diferencia de la respuesta de solicitud GetFeature que es
un documento XML completo.

El contenido de la respuesta es afectado por los valores de las propiedades traverseXlink-
Depth y traverseXlinkExpiry, asi como de la capacidad del WES actual de resolver elementos
vinculados mediante XLinks enviando solicitudes GetGmlObject a otros WES.

Los Xlinks que son resueltos se mantienen en la respuesta en su forma original dentro de
comentarios XML (encerrados entre <!-- y -->).

3.1.3.3 Ejemplo

En el siguiente ejemplo, se solicita el elemento con identificador tnico “t1” y con una
profundidad “1”".

<?xml version=""1.0" encoding=""UTF-8?>
<wfs:GetGmlObject

xmlns:wis="http:/ /www.opengis.net/wfs”
xmlns:ogc="http://www.opengis.net/ogc”
xmlns:gml="http:/ /www.opengis.net/gml”

xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

221

INDICE

xsizschemal.ocation="http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd” 3.1.4 Transaction

service="WFS”

version="1.1.0" 3.1.4.1 Solicitud

outputFormat=""text/xml; subtype=gml/3.1.1”

traverseXlinkDepth="1" El siguiente fragmento de esquema XML define las solicitudes de este tipo:

traverseXlink Expiry="1">

<ogc:GmlObjectld gml:id="c1”/> <xsd:element name=""Transaction” type=""wfs:TransactionType”/>
</wis:GetGmlObject> <xsd:complexType name=""TransactionType”>
<xsd:complexContent>

<xsd:extension base=""ows:GetCapabilities Type”>

<xsd:sequence>

<Ciudad gml:id="c1”> <xsd:element ref="wfs:LockId” minOccurs="0"/>
<gml:id="c1”> <xsd:choice minOccurs="0" maxOccurs="unbounded”>
<xsd:element ref="wfs:Insert” />

<xsd:element ref="wfs:Update”/>

La respuesta que se obtiene es:

<gml:name>CiudadGotica</gml:name>
<gml:directedNode orientation="+" xlink:href="#n1"/>

</Ciudad> <xsd:element ref="wfs:Delete” />
<xsd:element ref=""wfs:Native” />
Se puede observar en la respuesta que el elemento <Ciudad> posee un elemento anida- </xsd:choice>

Taller de Formacién para Sistemas de Informacion Geograficos

do <gml:directedNode> que no esta resuelto, es decir, no esta completo sino que posee un
XLink a “#n1”. Para poder resolver todos los elementos en forma recursiva, harfamos la

misma solicitud pero con el valor traverseXlinkDepth="*"".

<Ciudad gml:id="c1”>
<gml:name>Bedford</gml:name>
<gml:directedNode orientation=""+">
<l-- xlink:href="#n1” -->

<gml:Node gml:id="n1">
<gml:pointProperty>

<!I-- xlink:href="http:/ /www.ciudadgotica.gov/gps.gml#townHall” -->

<gml:Point gml:id="townHall” srsName="...”>
<gml:pos>147 234</gml:pos>

</gml:Point>

</gml:pointProperty>

</gml:Node>

</gml:directedNode>

</Ciudad>

Enla nueva respuesta, dos XLinks fueron resueltos, uno de profundidad 2 y el otro de pro-
fundidad 3 respecto a la solicitud originaria. Para el primer elemento (<gml:directedNode>),

</xsd:sequence>

<xsd:attribute name=""releaseAction”
type=""wifs:AllSomeType” use="optional”/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:element name="LockId” type="xsd:string” />
<xsd:element name="Insert” type="wfs:InsertElementType”/>
<xsd:complexType name="InsertElementType”>

<xsd:choice>

<xsd:element ref="gml:_FeatureCollection” />
<xsd:sequence>

<xsd:element ref="gml:_Feature” maxOccurs="unbounded”/>
</xsd:sequence>

</xsd:choice>

<xsd:attribute name="idgen”
type="wfs:IdentifierGenerationOptionType”

use="optional” default="GenerateNew” />

p—)
p—p)

<xsd:attribute name="handle” type="xsd:string”’ use="optional” />

p—p) —

<xsd:attribute name="inputFormat” type=

p—)

use="optional” default="text/xml; subversion=gml/3.1.1”/>

xsd:string”

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

se realiz6 una solicitud GetGmlObject al WES local con el gml:id="n1”. Para el segundo <xsd:attribute name="srsName” type="xsd:anyURI”” use="optional”/>
Wyl clemento (<gml:Point>), se envi6 una solicitud GetGmlODbject al WES remoto alojado en la </xsd:complexType> 223
URL http://www.ciudadgotica.gov/gps.gml con el gml:id="townHall”. <xsd:simpleType name="IdentifierGenerationOptionType”>

p—p)

<xsd:restriction base="xsd:string”>
<xsd:enumeration value="UseExisting” />
<xsd:enumeration value="ReplaceDuplicate” />

Taller de Formacién para Sistemas de Informacion Geograficos

224

<xsd:enumeration value="GenerateNew”’ />

</xsd:restriction>

</xsd:simpleType>

<xsd:element name="Update” type="wfs:UpdateElementType”/>
<xsd:complexType name=""UpdateElementType”>
<xsd:sequence>

<xsd:element ref="wfs:Property” maxOccurs="unbounded”/>

—)

<xsd:element ref="ogc:Filter” minOccurs="0"" maxOccurs="1"/>

</xsd:sequence>

—

<xsd:attribute name="handle” type=""xsd:string’’ use="optional”’/>

pu—)}

<xsd:attribute name=""typeName” type="xsd:QName” use=""required”/>

pu—)} —

<xsd:attribute name="inputFormat” type=

p—)

use="optional” default="text/xml; subversion=gml/3.1.1”/>
<xsd:attribute name="srsName” type="xsd:anyURI”” use="optional”/>
</xsd:complexType>

<xsd:element name=""Property” type="wis:PropertyType”/>

<xsd:complexType name=""PropertyType”>

xsd:string”

<xsd:sequence>

<xsd:element name="Name” type="xsd:QName” />
<xsd:element name="Value” minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="Delete” type=""wis:DeleteElementType”/>
<xsd:complexType name=""DeleteElementType”>
<xsd:sequence>

<xsd:element ref="ogc:Filter” minOccurs="1" maxOccurs="1"/>
</xsd:sequence>

—

<xsd:attribute name="handle” type=""xsd:string’’ use="optional”’/>
<xsd:attribute name=""typeName” type="xsd:QName” use=""required”/>
</xsd:complexType>

<xsd:element name="Native” type=""wfs:Native Type”/>
<xsd:complexType name=""NativeType”>

—

<xsd:attribute name="vendorld” type=""xsd:string”” use="required” />
pa— 4

<xsd:attribute name="safeTolgnore” type="xsd:boolean” use="required”/>
</xsd:complexType>

3.1.4.1.1 Transaction

El elemento <Transaction> contiene una secuencia de elementos <Insert>, <Update>
y <Delete>, que define las operaciones que se ejecutaran sobre los datos y el orden corres-
pondiente. Notese que las operaciones de Update y Delete pueden ejecutarse sobre caracte-
risticas creadas mediante Insert de la misma transaccion.

Al finalizar la transaccion, el WES aplicara el procedimiento que corresponda al sistema
en el que se almacenan los datos. Por ejemplo, en un RDBMS, se aplicara un commit para
finalizar la transaccién o un rollback para abortar los cambios si ocurre algin error.

INDICE

3.1.4.1.2 Insert

Las caracteristicas que son insertadas por esta operacion vienen especificadas como una
secuencia de elementos <gml:_Feature>, es decir, elementos de caracteristicas en formato
GML.

El atributo idgen define el método para asociar identificadores a las nuevas caracteristicas.
Los valores que puede tomar son:

* GenerateNew: El WIS generara identificadores unicos para las nuevas caracteristicas.

¢ UseExisting: E1 WES utilizara los identificadores provistos en la solicitud por los atribu-
tos gml:id de cada caracteristica. Si se encuentra algin duplicado, se generara una excepcion.

* ReplaceDuplicate: EI WES utilizara los identificadores provistos en la solicitud por los
atributos gml:id de cada caracteristica. Si se encuentra algin duplicado, generara un identifi-
cador tnico para la nueva caracteristica.

En el siguiente ejemplo se utiliza la operacion <Insert> para crear dos nuevas caracterfs-
ticas en una capa de departamentos.

<rxml version=""1.0"?>

<wfs:Transaction

version="1.1.0"

service="WFS”

xmlns="http://www.someserver.com/myns”
xmlns:gml="http:/ /www.opengis.net/gml”
xmlns:ogc="http://www.opengis.net/ogc”
xmlns:wis="http:/ /www.opengis.net/wfs”

xmlns:xsi="http:/ /www.w3.org/2001 /XMLSchema-instance”
xsi:schemal.ocation="http://www.someservet.com/myns
http://www.someservetr.com/wfs/cwwfs.cgi?
request=describefeaturetype&typename=InWaterA_1M.xsd
http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFES.xsd”>
<wfs:Insert idgen="UseExisting”’>

<Departamento gml:id="Depto1”>

<wkbGeom>

<gml:Polygon gml:id="P1”
stsName="http://www.opengis.net/gml/srs/epsgxml#63266405”>
<gml:exterior>

<gml:LinearRing>

<gml:posList>-98.54 24.26 ...</gml:posList>
</gml:LinearRing>

</gml:extetior>

</gml:Polygon>

</wkbGeom>

<id>150</id>

<f code>ABCDE</f code>

<hyc>152</hyc>

<tileId>250</tileId>

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

225

Taller de Formacién para Sistemas de Informacion Geograficos

226

<facld>111</facld>

</ Departamento >

< Departamento gml:id="Depto2”>
<wkbGeom>

<gml:Polygon gml:id="P2”
stsName=""http://www.opengis.net/gml/sts/epsgxml#63266405>
<gml:exterior>

<gml:LinearRing>

<gml:posList>-99.99 22.22 ...</gml:posList>
</gml:LinearRing>

</gml:extetior>

</gml:Polygon>

</wkbGeom>

<id>111</id>

<f_code>FGHIJ</f_code>
<hyc>222</hyc>

<tileId>333</tileld>

<facld>444</facld>

</Departamento>

</wfs:Insert>

3.1.4.1.3 Update

Un elemento <Update> contiene uno o mas elementos <Property> que especifican el
nombre de una propiedad (<Name>) y el valor de reemplazo para la misma (<Value>). El
tipo de caracteristica al que pertenece la propiedad se declara mediante el atributo typeName.

Consejo de Educacion Técnico Profesional Servicios Geograficos

El alcance de la operacion, es decir, las instancias dentro del tipo que seran afectadas por
la actualizacion se restringe mediante el elemento <Filer>.

En el siguiente ejemplo se actualiza una propiedad, la poblacién, de una instancia del tipo
de caracteristica Ciudad. Dentro del filtro se utiliza un elemento <GmlObjectld> para indi-
car el gml:id que identifica la ciudad que se quiere actualizar.

<?xml version=""1.0" ?>

<wfs:Transaction

version="1.1.0"

service="WFS”

xmlns="http://www.someserver.com/myns”
xmlns:ogc="http://www.opengis.net/ogc”

xmlns:wis="http:/ /www.opengis.net/wfs”

xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”
xsi:schemal.ocation="http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<wfs:Update typeName=""Ciudad”>

<wfs:Property>

<wfs:Name>poblacion</wfs:Name>

INDICE

<wfs:Value>4070000< /wfs:Value>

</wfs:Property>

<ogc:Filter>

<ogc:GmlObjectld gml:id="CiudadGotica.10131”/>
</ogc:Filter>

</wfs:Update>

</wfs:Transaction

3.1.4.1.4 Delete

El elemento <Delete> permite indicar que una o mas instancias de una caracteristica
deben se borradas. Para esto se utiliza el elemento <Filter> de la misma forma que en la
operacion <Update>.

3.1.4.1.4.1 Ejemplo

En el siguiente ejemplo se muestra como se puede utilizar esta operacién para eliminar las
caracteristicas del tipo Ciudad que estén dentro de un poligono (elementos <ogc:Within> y
<gml:Polygon>).

<?xml version=""1.0" ?>

<wfs:Transaction

version="1.1.0"

service="WFS”

xmlns="http://www.someserver.com/myns”
xmlns:wis="http:/ /www.opengis.net/wfs”

xmlns:gml="http:/ /www.opengis.net/gml”
xmlns:ogc="http://www.opengis.net/ogc”

xmlns:xsi="http:/ /www.w3.0rg/2001 /XMLSchema-instance”
xsi:schemalL.ocation=""http:/ /www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<wfs:Delete typeName=""Ciudad”>

<ogc:Filter>

<ogc:Within>
<ogc:PropertyName>wkbGeom</ogc:PropertyName>
<gml:Polygon gid="pp9”

stsName="http://www.opengis.net/gml/srs/epsgxml#63266405”>
<gml:exterior>

<gml:LinearRing>

<gml:posList>-95.7 38.1 -97.8 38.2 ...</gml:posList>
</gml:LinearRing>

</gml:extetior>

</gml:Polygon>

</ogc:Within>

</ogc:Filter>

</wfs:Delete>

</wfs:Transaction>

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

227

Taller de Formacién para Sistemas de Informacion Geograficos

228

3.1.4.2 Respuesta

El siguiente fragmento de esquema XML define el formato de la respuesta a la operacion

Transaction.

<xsd:element name=""TransactionResponse”
type=""wfs:TransactionResponseType”/>

<xsd:complexType name=""TransactionResponseType”’>
y

<xsd:sequence>

<xsd:element name=""TransactionSummary”’
type=""wfs:TransactionSummaryType”/>
<xsd:element name=""TransactionResults”

—.

type=""wis:TransactionResultsType”” minOccurs="0"/>

<xsd:element name=""InsertResults”

p—))
type=
</xsd:sequence>

—)

<xsd:attribute name=""version”

type="
</xsd:complexType>

<xsd:complexType name=""TransactionSummaryType’” >
yly

<xsd:sequence>

<xsd:element name="totallnserted”
type="xsd:nonNegativelnteger”
minOccurs="0"/>

<xsd:element name=""totalUpdated”
type=""xsd:nonNegativelnteger”
minOccurs="0"/>

<xsd:element name=""totalDeleted”
type=""xsd:nonNegativelnteger”
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name=""TransactionResultsType”>

<xsd:sequence>

—.

<xsd:element name=""Action” type="wis:ActionType’

minOccurs="0" maxOccurs="unbounded”/>
</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=""ActionType”>
<xsd:sequence>

p—p)

<xsd:element name="Message” type=""xsd:string”

minOccurs="0" maxOccurs="1"/>
</xsd:sequence>

pa—)

<xsd:attribute name="locator” type="xsd:string”’ use="required”/>

wis:InsertResultsType” minOccurs="0"/>

xsd:string” use=""required” fixed="1.1.0"/>

2

INDICE

pa—p) —

<xsd:attribute name="code” type="xsd:string”’ use="optional”/>
</xsd:complexType>

<xsd:complexType name="1InsertResultsType”>

<xsd:sequence>

<xsd:element name=""Feature”

type=""wfs:InsertedFeatureType”

maxQOccurs="unbounded”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="InsertedFeatureType”>
<xsd:sequence>

<xsd:element ref="ogc:Featureld” maxOccurs="unbounded”/>
</xsd:sequence>

<xsd:attribute name="handle” type="xsd:string”’ use="optional”/>
</xsd:complexType>

Dentro de los elementos de la respuesta, el unico obligatorio es el <TransactionSum-
mary>, que indica el nimero de caracteristicas creadas, modificadas y eleminadas en la tran-
saccion,

3.1.5 GetCapabilities

Como todo OWS, WES posee una operacion GetCapabilities que le permite devolver la
metadata del servicio para poder comunicarle al cliente cuales son sus capacidades especifi-
cas.

A continuacién se muestra el formato XML de la solicitud y la respuesta de esta operacion
en el caso que se utilice el método HTTP POST. Si se utiliza HTTP GET, la solicitud debe
codificarse como KVP enviando la lista de parametros de la misma manera que se describi6
para el protocolo WMS (ver 2.2.1).

3.1.5.1 Solicitud

El siguiente fragmento de esquema XML define las solicitudes de este tipo.
<xsd:element name="GetCapabilities” type="wfs:GetCapabilities Type” />
<xsd:complexType name=""GetCapabilitiesType”>
<xsd:complexContent>

<xsd:extension base=""ows:GetCapabilities Type”>

<xsd:attribute name=""service” type="ows:ServiceType”

use="optional” default="WFS”/>

</xsd:extension>

</xsd:complexContent> 229

</xsd:complexType>

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

Taller de Formacién para Sistemas de Informacion Geograficos

230

3.1.5.2 Respuesta
El siguiente fragmento de esquema XML define parcialmente las respuestas de este tipo.

<xsd:element name="WFS_Capabilites”
type=""wis:WEFS_CapabilitiesType”
substitutionGroup=""ows:Capabilites” />

<xsd:complexType name="WFS_Capabilities Type”>
<xsd:complexContent>

<xsd:extension base=""ows:CapabilitiesBaseType”>
<xsd:sequence>

<xsd:element ref="wfs:FeatureTypeList” minOccurs="0"/>
<xsd:element ref="wfs:ServesGMLODbjectTypeList” minOccurs="0"/>
<xsd:element ref="wfs:SupportsGMLODbjectTypeList”/>
<xsd:element ref="ows:Filter_Capabilities” />
</xsd:sequence>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

El contenido de la respuesta de esta operacion se divide en las siguientes secciones:

¢ Service Identification: Provee informacion que identifica al servicio como un WES.

¢ Service Provider: Provee informacién que identifica a la organizacién que opera el WES.

* Operation Metadata: Provee metadata sobre cada una de las operaciones que provee
este WES, incluyendo los parametros y restricciones de cada una.

e Lista de FeatureType: Declara la lista de tipos de caracteristicas que estan disponibles en
el WES. Para cada tipo, se provee informacién adicional, como el SRS por defecto, los otros
SRS soportados, etc.

¢ Lista de ServesGMLODbjectType: Declara la lista de tipos de objetos GML que no son
caracteristicas (no son derivados de gml:AbstractFeatureType) que estan disponibles en el
WES y pueden obtenerse mediante la operacion GetGmlObject.

e Lista de SupportsGMLODbjectType: Declara la lista de tipos de objetos GML que el
WES podtia servir si estuviera configurado para servir datos descriptos por un esquema de
aplicacion que usara esos tipos directamente (tipos no-abstractos) o definiera otros tipos
derivados de ellos.

e Filter: Define los tipos de filtros que el WES soporta para restringir el alcance de las
operaciones. Si no presente, solo se soporta una conjunto minimo de filtros basicos.

4 Referencias

[1] Open Geospatial Consortium (OGC) (Junio 2011)
http:/ /www.opengeospatial.org/

[2] Hypertext Transer Protocol (HTTP) (Junio 2011)
http:/ /www.ietf.org/rfc/1fc2616.txt

[3] Extensible Markup Language (XML) (Junio 2011)
http:/ /www.w3.org/ XML/

[4] Multipurpose Internet Mail Extensions (MIME) (Junio 2011)
http:/ /tools.ietf.org/html/rfc2045

[5] KML (Junio 2011)

http:/ /www.opengeospatial.org/standards/kml/

[6] Web Feature Service (WES) (Junio 2011)

http:/ /www.opengeospatial.org/standards/wfs

[7] Geographic Markup Language (GML) (Junio 2011)
http:/ /www.opengeospatial.org/standards/gml

[8] Web Map Service (WMS) (Junio 2011)

http:/ /www.opengeospatial.org/standards/wms

INDICE

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

231

Taller de Formacién para Sistemas de Informacion Geograficos

232

Visualizacion de mapas

1. Introducciéon

El resultado final de muchas operaciones geograficas es un mapa, los mismos son datos
que almacenan y comunican informacién geografica. Dichos mapas representan datos es-
paciales y son los que contienen las ubicaciones y formas de caracteristicas cartograficas. La
cartografia es la ciencia que se encarga del estudio y de la elaboracion de los mapas geogra-
ficos y territoriales.

Estos datos son también llamados datos cartograficos digitales y son necesarios para rea-
lizar mapas y para estudiar relaciones espaciales.

Los datos espaciales incluyen puntos que representan bancos, hospitales, escuelas, etc., y
lineas que representan calles, rios, rutas, etc.

Dado que los mapas son un conjunto de datos, los mismos pueden ser visualizados y edi-
tados y, para esta tarea, son necesarios los visualizadores de mapas. Esta herramienta es un
software que se encarga de la interaccion con el usuario ofreciendo una interfaz facil de usar.

2. Visualizadores

En esta seccion se presentan ejemplos de visualizadores de escritorio y visualizadores
Web. Dentro de estos dltimos se diferencian los visualizadores que son sitios web en si mis-
mos (como Yahoo, Google Maps y Bing Maps) y, por otro lado, aquellos que son sitios de-
sarrollados a medida, que son aplicaciones que utilizan un simple Browser o navegador para
acceder a servicios geomaticos desde cualquier ubicacién con conexién a Internet.

Ademas, se comentan las principales funcionalidades de cada uno.

2.1 Visualizadores de escritorio
gvSIG[1]

gvSIG Desktop permite visualizar y editar informacion geografica. Es capaz de acceder al
formato vectorial y a rasters, tanto locales como remotos, integra estandares Open Geospa-
tial Consortium [2] (OGC) y cuenta con un amplio nimero de herramientas para trabajar con
informacién geografica (consulta, creacion de mapas, geoprocesamiento, redes, etc.).

La OGS define estandares abiertos e interoperables dentro de los Sistemas de Informa-
cién Geografica y de la World Wide Web.

De las funcionalidades de gvSIG se destacan las que se presentan a continuacion:

¢ Vectorial: Acceso a formatos vectoriales, acceso a bases de datos, navegacion, consulta,
seleccion, analisis y geoprocesamiento; edicion grafica y alfanumérica, simbologia, etique-
tado, disefiador de planos, conversion de datos a otros formatos y sistemas de proyeccion,
relaciones entre tablas, estadisticas, normalizacion, etc.. En la figura 1 se muestra un ejemplo
de dicha sesién de trabajo.

INDICE

Fle Show View Laer Table Field Snaiom Window Help

DpEE4@s 2 e0e -« TABEYSEED BES

@ View: Let's Gol

g
@) & mercasos o

L —e0
) Bfondoshp
[¥] 27 valencia2002.¢

Expression Column : |
[ToTenP1I<=2| |

KELECTION.
Insert selection point > 0.

i Loaded operators.

Raster: acceso a formatos raster, tabla de color y gradientes, recorte de datos, exportacion
de capas, procesamiento por pixel, histogramas, geolocalizacion, reproyeccion de raster, geo-
rreferenciacion, vectorizacién automatica, definiciéon de areas de interés, fusion de imagenes,
etc. En la figura 2 se presenta una imagen con estas funcionalidades.

T snm_23. 200
5 @ 8 snm_23. 1040
& @ 8 anm 22,11

Anzoategui

————,

(%] Appiy on preview
5 © Oniy on visuakzation
©NewLaer

ame o e imyer 1 [Qumem S
@ oosainmemon |

T T T

Figura 2 - gvSIG, acceso a formato raster

i Opening project 961G Assecition 9

3D: permite tener una vista 3D plana y 3D esférica. Tiene capas de elevacion, capas vec-
toriales con alturas, capas 3D, posibilidad de rasterizar o visualizar como primitivas graficas
las capas vectoriales; simbologia 3D, georreferenciacion y edicion de objetos 3D, seleccion,
informacion, busqueda geografica por nombre (gazeeteer), etc. La imagen de la figura 3 pre-
senta un ejemplo.

1 9VSIG 1.9:9vS1G_Ass

| D8 B e woion [& [@ 22 ¥ O[5
Vs

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

233

i Project fle saved: 0VSIG_Assocation. v,

Figura 3 - gvSIG, vista 3D

INDICE

QuantumGIS[3]

QuantumGIS o QGIS ofrece muchas funcionalidades SIG comunes. Se pueden ver y

. I =
superponer datos vectoriales; da la posibilidad de componer mapas y de explorar datos espa- 5 Clies and Toies
. . . . A . = ? Trarugeon ston

ciales. A su vez, es posible crear, editar, gestionar y exportar mapas vectoriales a varios for- e
= & Moo wobes

matos. Los rasters pueden ser importados a GRASS para poder ser editados y exportados a
otros formatos. En la figura 4 se muestra la ventana principal de QSIG con datos de ejemplo
y algunas de las principales funcionalidades de QGIS se listan a continuacion:

* Soporte raster y vectorial.

* Soporte para PostgreSQL con tablas espaciales utilizando PostGIS.

¢ Integracion con GRASS, incluida visualizacion, edicion y analisis.

* Digitalizacién GRASS y OGR/Shapefile.

¢ Disefio de Mapas.

* Soporte OGC.

* Edicién / Visualizacién / Busqueda de atributos. i

¢ Cambio de simbologia vectorial y raster, etc.

il
o o oo I]J[ﬂEEEiu' BEE O @
%

Ba
LY
g

U 5508, (TR <Preview) Wonto femi)
B

JHdd@s PRIIDDBBEBEE O BBRATEN
o JEEegEganos »{

e

BeeEpaas 2RAKIA00
L/ P 2

it

AL 1 PO W LN, L S8

Taller de Formacién para Sistemas de Informacion Geograficos
soolelbhoan) ugloew.oju| ap sewalsis eied uoidew.Io4 ap JdjjeL

=) 1)
Figura 4 - QGIS, ventana principal =k
ArcGIS Desktop[4] =
i |
Es un conjunto de productos software que corre en computadoras de escritorio estandar. K
Se utiliza para crear, importar, editar, consultar, hacer mapas, analizar y publicar informa- ':
cién geografica. Hay cuatro productos en la coleccion de ArcGIS Desktop y cada uno trae o
un nivel de funcionalidad creciente. Los mismos se describen a continuacion: d ' e hortp A e
¢ ArcReader: es un visor gratuito para mapas que usan los otros productos de ArcGIS ﬁ%ﬁé@t—.m:wmmww_ | map
Desktop. Este puede visualizar e imprimir todos los mapas y tipos de datos. También tiene Figura 6 - ArcView ”
algunas herramientas simples para explorar y consultar mapas. En la figura 5 se presenta una
imagen de dicha herramienta.
¢ ArcView: En la figura 6 se muestra la imagen de la herramienta ArcView, la misma se
234 centra en el uso adecuado de los datos, mapeos y analisis. 235

* ArcEditor: Agrega la funcionalidad de edicién geografica y creacién de datos. En la
figura 7 se presenta este software

 ArcInfo: En la figura 8 se muestra la herramienta de nivel superior y aqui se incluye
geoprocesamiento avanzado.

INDICE

Gy \omwiling eprlvad . Apddagy - o

T e e

Emerillon[5]

|[DEUS I MBX o HTEH L LRONE @AREEZOOESENOALL !
—— i S Es un visualizador de mapas de escritorio para Gnome. El proyecto Gnome es una comu-
« @ Edge of Pavement nidad que hace softwate libre y es el entorno de escritorio mas populatres para GNU/ Linux
« Buiing Footprint y sistemas operativos de tipo UNIX.
« @ Assessment Points , , .
s Busqueda por localidad, manejo de zoom, lista de favoritos, vista del transporte publico,
g o et vista del terreno, de mapas y de rutas son las principales funcionalidades de Emerillon, en la
~BlockLines . . .
- totines = figura 9 se presenta una imagen del visualizador.
PN o —
ad YP" ey ;
Z”;:.'.._ | Q,. q (\lnco(n
E: B Search results . %
" d No | Nauw
[y 4 v i 1L'in(oﬂll;x
el A e
B m 3 x:zuncaln
Sy e | . R AN B o UnconTomnship
T — | 1 2 -!:vj;;:_ - : s Cityof Lincoln Center
: 6 lincoln Electon Precinct
T (S of skt] A R v vyl
8 (Tl ool = & :l.l:z:hsear(hlngc.emzmdm ‘
| 5 [T 0| & m&“ﬁa‘;‘f?}mmnwiewmm,‘oronun
BN AL & 10 TownofLincoln gy Mapposiion ‘
%w 5 Y SrimadSoadE | Display in the statusbar the coordinates at th... |

Figura 9 - Emerillon

Google Earth|[6]

Google Earth es una aplicaciéon de escritorio que combina una base cartografica de ima-
genes aéreas y de satélite de alta resolucion de las zonas mas pobladas del mundo, con un
buscador de puntos de interés (POI) y direcciones, permitiendo vistas en 3D mediante la

proyeccion de las capas de imagenes sobre un modelo digital del terreno.

Google ofrecen una version gratuita y dos versiones de pago. La version gratuita de Goo-
gle Earth tiene, entre sus funcionalidades, la posibilidad de ir desde y hacia cualquier di-
recciéon o lugar, de realizar bisquedas de interés como son escuelas, parques, restaurantes,
hoteles, hospitales, etc. También ofrece las direcciones del trafico y rutas.

Figura 8 - ArcInfo Por otro lado, la vista puede ser inclinada y rotada para ver en 3D el terreno y los edificios.

Las busquedas y favoritos pueden ser guardadas y compartidas y, a su vez, se pueden
afiadir anotaciones geo-referenciadas. En la figura 10 se observa una vista del Cafién de Co-
lorado en las pantallas de Google Earth.

Taller de Formacién para Sistemas de Informacion Geograficos
soo1jelb60995 ugiorwWIOU| 9P Sewd)sIg eied uoloeWIO ap J3jjeL

236 237

Taller de Formacién para Sistemas de Informacion Geograficos

238

" Google

n Google Earth

2.2 Visualizadores Web
Google Maps|[7]

Google Earth permite utilizar al mismo tiempo la aplicacion Google Maps que es su ver-
sion Web mas sencilla. En la figura 11 se muestra una imagen del sitio Web de google Maps.
La base de informacién cartografica e imagenes que utiliza Google Earth es practicamente
la misma que se puede visualizar en Google Maps, aunque se observa que las imagenes estin
proyectadass de forma distinta, es decir, con distinta proyeccion cartografica.

Google Maps acepta tnicamente longitud y latitud, no posee geocoder. Un geocoder es
una herramienta que proporciona la ubicacién exacta o aproximada de algun dato geografico.
Ademas, en una ventana de informacion es posible agregar texto HTML o XML.

Vieb images Videos Maps News Snoppig Gmal more fonasoss@gmallcom~ &

Google maps Montevideo, Uruguay + | Searchiaps |

E

—)
Figura 11 - Sitio Web de google map

Yahoo(8]

Las funcionalidades de Yahoo Maps son: integraciéon de elementos al realizar busquedas,
pagina de impresion, seleccion de tipos de rutas y elementos destacados de los mapas; per-
mite agregar texto HTML en una pequefia ventana de informacién y proporciona su propio
geocoder. Sus caracteristicas son muy parecidas a Google Maps y Bing Maps.

INDICE

Figura 12 - Mapa ‘ ciudad de Montevideo en el sitio Web de Yahoo Ma
Bing Microsoft[9]

Bing Maps es un servicio de mapas Web, parte del motor de busqueda Bing de Microsoft.

Es un sitio Web que ofrece un mapa de la Tierra navegable en tres dimensiones, inclu-
yendo monumentos, edificios y parajes naturales. Entre sus funcionalidades presenta visién
alterna 2D y 3D. Ademas, ofrece un modo de viaje a vista de pajaro y estd integrado con el
buscador Bing.

Por otro lado, ofrece el servicio Street side, que presenta una vista completa y continua
de las calles, pero sélo esta disponible para las grandes ciudades de Estados Unidos. Por lo
que, una de las desventajas de Bing Maps es que carece de informaciéon completa de muchos
paises. En la figura 13 se muestra una imagen del mapa de la ciudad de Montevideo.

esiin_LainoaméncalEngish) Prearencias

M ‘”"*ﬁ,?% fror i

Pocitos
mes 2w

= [@*]=a]g]2] s ot et 0

Figura 13 - Localizacién de la ciudad de Montevideo en Bihg Mébs

Las herramientas que se presentan a continuaciéon son productos personalizables, son
desarrollos a media.

OpenstreetMap[10]

OpenStreetMap (OSM) es un proyecto colaborativo para crear mapas libres y editables.

Los mapas se crean utilizando informacion geografica capturada con dispositivos GPS
moviles, ortofotografias y otras fuentes libres. Esta cartografia, tanto las imagenes creadas
como los datos vectoriales, son almacenados en su base de datos.

Los datos en bruto que los colaboradores capturan con sus dispositivos GPS sirven como
guia para dibujar las nuevas vias. Estos datos suelen cargarse desde el equipo local del usuario
o bien solicitando al servidor de OSM que descargue aquellas trazas de la zona que van a ser
editadas y que otros usuarios han subido previamente a OpenStreetMap. Los datos brutos
son de libre acceso para el desarrollo de otras aplicaciones. El usuario debe registrarse de

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

239

Taller de Formacién para Sistemas de Informacion Geograficos

240

manera gratuita mediante una direccién de correo para poder realizar ediciones pero, si solo
se desea consultar informacion, dicho registro no es necesario. A continuaciéon se muestra el
mapa de Uruguay en una vista de OSM.

Openstreetitap iew | IETEH T Export | GPS Traces | User Diaies gl

’ Figura 14 - Vista del mapa de Uruguay con OpenStreetMaps

Sistema de Informacion Ambiental - DINAMA
o s m v a 3

: e B Kometaies
i 7 Monores

&

I}

m;:fﬂ' Longitud W 550 08’
Figura 15 - Interfaz p.mapper del sistema de Informacion ambiental de
DINAMA

13Geo|[13]

13Geo es un software para internet basado en un conjunto de software libres, principal-
mente Mapserver [12]. Ofrece datos geograficos que pueden ser consultados utilizando he-
rramientas de navegacion, generacion de analisis, etc. I3Geo incorpora funcionalidades que
facilitan el acesso remoto a los datos, permitiendo el establecimento de redes cooperativas.
En la figura 16 se adjunta una imagen del sitio i13Geo.

Se busca difundir el uso del geoprocesamiento como instrumento técnico-cientifico e
implementar una interfaz genérica para acceder a los datos geograficos existentes en institu-
ciones publicas, privadas o no gubernamentales, por esto puede ser utilizado e incorporado
por cualquier institucion interesada, sin costos.

[phatos |8 v sarie_| 9 pnion_[3 A

(€806 < vz T iTE O& I

' 'Figura 16 - Vista del sitio i3Geo

INDICE
3. OpenLayers

OpenlLayers [14] es un cliente visualizador de mapas ligero basado en JavaScript. Ofrece
un API para acceder a diferentes fuentes de informacion cartografica en la red:

* Protocolo Web Map Services (WMS, permite acceder a diferentes servidores de carto-
grafia digital utilizando un lenguaje comun).

* Mapas comerciales (tipo Google Maps, Bing Maps, Yahoo Maps).

* Protocolo Web Features Services (WES, ofrece una interfaz de comunicacién que per-
mite interactuar con los mapas servidos por el estaindar WMS como, por ejemplo, editar la
imagen que nos ofrece el servicio WMS o analizar la imagen siguiendo criterios geograficos).

* Distintos formatos vectoriales

* Mapas de OpenStreetMap, etc.

Una interfaz de programacion de aplicaciones o API (del inglés Application Program-
ming Interface) es el conjunto de funciones y procedimientos (o métodos, en la programa-
ci6én orientada a objetos) que ofrece cierta biblioteca para ser utilizado por otro software
como una capa de abstraccion.

Openlayers hace que sea facil colocar un mapa dinamico en cualquier pagina Web. Se
puede mostrar cuadros de mapas de cualquier fuente y se ha desarrollado para promover el
uso de la informacién geografica de todo tipo.

Tiene por objeto separar las herramientas de mapas de los datos de mapas, de forma que
todas las herramientas pueden funcionar en todas las fuentes de datos.

Ejemplos de uso de Openlayers pueden ser encontrados en [15], algunos como los que
se presentan a continuacion pueden ser destacados:

* demostracion de uso de capas Bing,

¢ uso de OpenlLayers usando un servidor ArcGIS,

* demostracion de la version 3 del API de Google Maps, etc.

Como se observa, varios de los visualizadores antes presentados utilizan OpenLayers. En
las figuras que se ofrecen a continuacion se presenta como es posible personalizar un mapa
utilizando OpenLayers.

En la figura 17 se muestra como editar y crear puntos, lineas y poligonos. En este caso se
dibujé un punto en la ciudad de Montevideo.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

241

INDICE

4 Bibliografia

http:/ /www.gvsig.com/

http://www.opengeospatial.org/

http://www.qgis.org/

http:/ /www.geoinfo-int.com/htmls/prod_arcgis_desk.html.

http:/ /www.webcoz.com/install-emetillon-desktop-map-viewer-for-gnome/
http://google-earth.uptodown.com/

o http://maps.google.com/
© navigate http://espanol.maps.yahoo.com/
j:‘x [Fi’:;"‘ http://www.bing.com/maps/#
& v vokig http:/ /www.openstreetmap.org/
© drag feature http://www.pmapper.net/

Figura 17 - Edicion y creacion de puntos, lineas y poligonos con OpenlLayers.

http://mapservet.gis.umn.edu/

http://mapas.mma.gov.br/i3geo/aplicmap/openlayers.htm?ba0ac7{f2d4740bd21e68eb2
592d509¢

http://www.openlayers.org/

http://openlayers.org/dev/examples/

Permalink
Figura 18 - Ejemplos de controles de mapas con OpenlLayers.

En la figura 18 se observa, en un mapa de referencia, dénde se hizo el zoom sobre el
mapa de trabajo. Ademas, se puede ver que en las opciones de capa base esta seleccionado el
protocolo de WMS y es posible la superposicion de capas.

Las clases basicas de Openlayers son las que se describen a continuacion:

* Map.js: Es el objeto central de Openlayers y contiene a todos los demas.

e Layer.js: Cada capa hereda los métodos basicos de esta capa.

¢ Control.js: Controles del Mapa. Tienen una relacién “1 a 1”7 con los handlers y general-
mente son los elementos que suelen personalizarse.

* Handler.js: Son los manejadores de eventos. Estan asociados a los eventos tipicos de la
web como es, por ejemplo, el “Click”.

Taller de Formacién para Sistemas de Informacion Geograficos
soo1jelb60995 ugiorwWIOU| 9P Sewd)sIg eied uoloeWIO ap J3jjeL

242 243

Taller de Formacién para Sistemas de Informacion Geograficos

244

Metadatos y calidad de la
informacion geografica

1. Introducciéon

La primer pregunta que surge es qué son los metadatos. L.os metadatos son informacion
acerca de los datos [1] [2] [3] o, como suele decirse, son los datos de los datos; en definitiva,
diferentes formas que se refieren a la descripcion de los datos.

LLos metadatos son creados para comunicar, por lo tanto deben compartirse y es conve-
niente que se haga a través de un estandar. El mas aceptado en cuanto a informacién geoes-
pacial es el del Comité Federal de Datos Geograficos de los Estados Unidos (Federal Geo-
graphic Data Committee o su sigla FGDC) [4]. También esta muy avanzado el tratamiento
del estandar de International Standard Organization (ISO TC/211) [5]. La importancia de
los estandares radica en que éstos se han definido para determinar qué informaciéon debe
documentarse de las bases de datos; proveen una terminologia comin y un conjunto de
definiciones para la documentacion de los datos geoespaciales. Un ejemplo de estandar de
metadatos de informacion geografica se encuentra disponible en [2].

Una de las principales ventajas de los metadatos es la organizacion y mantenimiento de
un catalogo de datos de una organizacion o sistema y su interaccion entre estas entidades,
ya que podrian manejar independientemente diferentes estructuras pero comunicarse enten-
diendo el mismo estandar de metadatos. Los metadatos describen el contenido, la calidad,
la condicién y otras caracteristicas de los datos. En el caso de los Sistemas Geograficos es
importante mencionar que el contenido de los estandares para metadatos geo-espaciales del
Comité Federal de Datos Geograficos (FGDC) de los Estados Unidos [4] fue disefiado para
documentar un conjunto de datos geo-espaciales.

Los estandares para metadatos documentan las caracteristicas o propiedades de los datos.

Los principales usos de los metadatos son:

* Ayudar a las empresas a organizar y dar valor agregado a su inversion en datos geo-
referenciados.

* Proveer informacion sobre las bases de datos de las que dispone las empresas, de forma
tal que se puedan formar catalogos de datos, repositorios de datos y proveer informacion agil
a potenciales comercializadores de datos.

* Proveer informacién que permita procesar los archivos de una fuente externa al usuario.

* Proveer una guia para los usuarios de los datos en cuanto a su resolucién espacial, siste-
ma de coordenadas, datum y calidad.

2. Diseflo y organizacion de los Metadatos

Los metadatos, segun FGDC [4] estan constituidos por datos o elementos agrupados en
siete secciones principales y tres de apoyo, algunas de ellas son de caracter obligatorio. En la
figura 1 se muestra dicha distribucion.

INDICE

g I Seccién 2: Calidad

I Seccién 3: Organizacién y Tipos

FGDC

Metadatos <

(s3|qeayde uos 1g)

| Seccion 5: Entidades y Atributos

souoeblqo

l
I
| Seccién 4: Referencia Espacial |
|
|

Figura 1.- Organizacion del estandar de Metadatos de la FGDC
Cada una de las secciones del estandar dispone de elementos obligatorios, otros elemen-

tos obligatorios para el caso en el que sean aplicables, y elementos opcionales.

Cuando no se cuenta con un dato que es obligatorio se debe incluir un contenido que
aclare su inexistencia. Los elementos obligatorios, cuando son aplicables, se deben especificar
si los datos cuentan con las caracteristicas a describir. Los elementos opcionales se incorpo-
ran si el proveedor de la informacién lo desea. Para cada una de las secciones que se observa
en la imagen anterior se presenta una breve descripcion:

* Laseccion 1 se refiere a la “Identificacion” de la informacion. Trata informacion acerca
de la identificacion de los metadatos, como puede ser su proposito y descripcion, los tiempos
de publicacién y de su actualizacion, la frecuencia de mantenimiento y el estado de avance.
También los datos de posicionamiento espacial, las personas de contactos y las palabras cla-
ves, es decir los términos que describen y permiten ubicar representativamente al metadato.

* La secciéon 2 corresponde a la “Calidad”. Basicamente almacena informacién sobre la
precision y la consistencia logica de los datos, también los métodos y tiempos de captura o
creacion.

* La seccion 3 se refiere a la “Organizacion y Tipos”. Considera la informacion sobre la
referencia espacial y los objetos vectoriales o rasters que la conforman.

* La seccién 4 corresponde a la “Referencia Espacial”. Se refiere al Datum y a la defini-
cion del sistema de coordenadas, ya sean geograficas, planas o locales.

* La seccién 5 toma en cuenta las “Entidades y Atributos”. Detalla en forma repetitiva la
definicién de cada campo de las estructuras de datos asociadas.

* La seccién 6 corresponde la “Distribucion” que describe el medio y modo en que se
presenta y distribuye la informacion, ello incluye formato, disponibilidad, ubicacién, accesi-
bilidad y precio, entre otras caracteristicas.

* La seccién 7 corresponde a la “Referencia de los metadatos”. Esta incluye una breve
descripcion del metadato en si, y no de la informacién que describe el metadato, por este
motivo, junto a la seccion 1, esta seccion es obligatoria.

* Incluye la fecha del metadato y de su revisiéon, nombre, versiéon y persona de contacto
del metadato, ademas de cierta informacién del uso y restricciones de seguridad.

¢ Toda la informacién que recoge un metadato se almacena en un simple archivo de texto
cumpliendo con todas las definiciones del estandar.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

245

Taller de Formacién para Sistemas de Informacion Geograficos

246

3. Herramientas

Existen varias herramientas o asistentes (wizard) que permiten generar metadatos, entre
ellas MetaLite [6], Tkme [7], CorpsMet95 [8], Catmdedit [9] y ArcCatalog [10]. Los editores
tienen la intencién de simplificar el proceso de creacion de metadatos que se ajustan a la
norma.

MetaLite [6] es una de las mas utilizadas, es gratuita, incluye el idioma espafiol y funciona
sobre plataformas Windows. Permite crear y validar metadatos respetando un conjunto de
datos minimos del estandar FGDC [4], abarcando las secciones 1, 3, 6 y 7, incluso genera una
base de datos (archivo mdb) almacenando todos los metadatos creados.

Por otro lado, Tkme [7] comparte gran parte de su cddigo con su progenitor, Xtme.

Ambos, Tkme y Xtme, estan estrechamente relacionados con mp, un compilador de me-
tadatos formales, cuyo propésito es verificar que la estructura sintactica de un archivo que
contiene metadatos formales se ajusta al estindar FGDC [4] y para volver a expresar los
metadatos en varios formatos utiles. Tkme se puede construir para los sistemas Unix, si se
desea. Tkme esta disefiado especificamente como un puerto de Xtme de Microsoft Windows
95, 98, NT y 2000.

CorpsMet95 [8] es una herramienta de creacion de metadatos originalmente desarrollado
para el Cuerpo de Ingenieros del Ejército de los EE.UU. (USACE). Inicialmente se trataba
de una version del producto comercial Metagen32. Desde la version inicial ha sido actuali-
zada por USACE. Al igual que tkme, la interfaz de esta herramienta ofrece al usuario varios
paneles.

Otra herramienta de edicién de metadatos es Catmdedit [9], que facilita la documentacion
de los recursos, con especial énfasis en la descripcion de los recursos de informacion geogra-
fica. Se trata de una iniciativa del Instituto Geografico Nacional de Espafia IGN) [11], que
es el resultado de la colaboracién cientifica y técnica entre IGN y el Grupo de Sistemas de
Informacion Avanzados (IAAA) [12] de la Universidad de Zaragoza con el apoyo técnico de
GeoSpatiumLab (GSL) [13].

Dos editores de metadatos se proporcionan con ArcCatalog [14]. Un editor permite crear
documentos siguiendo el estandar para Metadatos Digitales Geoespaciales de la FGDC [4].
El otro editor permite documentar datos segin la norma ISO 19115 [14], metadatos de
informacién geografica, que solo es compatible con los elementos de metadatos basicos
definidos por esa norma.

4. Calidad de la Informaciéon Geografica

Como se observo en la figura 1, la seccion 2 del estandar de Metadatos de la FGDC [4]
corresponde a la Calidad. Esta seccién se refiere a la calidad de los datos de acuerdo a la pre-
cisién y la consistencia logica de los mismos. Ya en el momento de pensar en la descripcion
de los datos, metadatos, se esta considerando la calidad de la informacién geografica.

En [15] se menciona que los datos geograficos son datos de propésito general que tienen
un ciclo de generacién y uso muy diferente a los datos tradicionales de negocio de las em-
presas. Son generados por organizaciones especializadas que los brindan a las organizaciones
que los usaran para diferentes aplicaciones. Por esto, es muy importante conocer la calidad
de los datos que se pueden obtener y poder evaluar si son adecuados para el uso que se les

INDICE

quiere dar. En este mismo trabajo se subraya que, por la forma tradicional de generaciéon de
los datos geograficos, el propio proceso establece parametros de control del proceso. De este
modo, los productores de datos geograficos realizan controles internos sobre la calidad de
los datos en relaciéon a la especificacion del producto. Algunos de los parametros son, por
ejemplo: escala, extension (cobertura), nivel de detalle. Por ejemplo, en un mapa de escala
mundial las ciudades seran puntos, mientras que en un mapa de escala nacional las ciudades
pueden ser representadas por poligonos que muestren su extension e, incluso, en un mapa
de una ciudad se consideran otros datos y los limites de la ciudad.

En los mapas tradicionales (en papel), en la misma hoja de impresién se anexaban meta-
datos sobre el mapa (escala, fecha de edicién, leyenda, etc.). Ahora, con los datos geograficos
digitales, puede suceder que se cuente con un conjunto de datos sin sus metadatos. Esto hace
mas complejo el poder evaluar si el conjunto de datos es apropiado para el uso que se le quie-
re dar. Sumado a esto, cada vez se cuenta con mayor cantidad de datos geograficos generados
a demanda para un proyecto o dominio que pueden, o no, ser apropiados para otro proyecto.

4.1 Normas de Calidad

En el trabajo realizado en [15] se presentan un conjunto de normas de Calidad, y men-
ciona que la comunidad de generadores de datos geograficos ha propuesto estandares que
especifican desde la forma de representar, intercambiar y publicar, hasta cémo manipular
la informacion geografica. Estos estandares se han ido normalizando a través de la familia
de normas ISO 19100 [16]. Dentro de esta familia se definen las siguientes normas sobre
calidad:

¢ ISO 19113 — Principios de la Calidad.

* ISO 19114 — Procedimientos de Evaluacién de la Calidad.

* ISO 19138 — Medidas de la Calidad.

Estas normas buscan estandarizar los aspectos de identificacion, evaluacion y descripcion
de la calidad de los datos geograficos. De este modo, se pueden comparar productos, evitar
informaciones ambiguas y facilitar la eleccion y el uso de los datos geograficos.

Estas normas, junto con las de metadatos (ISO 19115), facilitan la comunicacién entre
productores y consumidores de datos geograficos.

Para describir la calidad de los datos geograficos se distinguen dos tipos de atributos:
cualitativos y cuantitativos. Los datos cualitativos son solamente descriptivos e incluyen, por
ejemplo: la historia de los datos (el linaje), los casos de uso para los que fueron recopilados
y el proposito para el que fue generado el conjunto de datos. Aqui también se considera la
especificacion que se tomd en cuenta para la generacion de los datos geograficos (de acuerdo
a la norma ISO 19131 — Geographic Information — Data Product Specifications). Los datos
cuantitativos son los que se pueden medir de acuerdo a las medidas establecidas en la norma
ISO 19138 y que se implementan en base a las normas ISO 28593 ¢ ISO 3159 que tratan de
muestreo y procesos estadisticos en general. En la Figura 2 se muestra el ciclo de evaluacion
de la calidad de los datos geograficos y los puntos donde intervienen las normas. Aqui se asu-
me que los datos estan almacenados en una Base de Datos Geografica — BDG. También se
asume que se esta trabajando con un conjunto de datos geograficos que ya fueron generados
y estan listos para su evaluacion de calidad. No consideramos los controles correctivos que
se puedan haber aplicado en las diferentes etapas del proceso de generacion.

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

247

Taller de Formacién para Sistemas de Informacion Geograficos

248

Para definir el Modelo de Calidad, las normas establecen cinco grandes Elementos de la
calidad para los datos geograficos. Estos son:

R, l | 150 19131
AMUNDO REAL Especificaciones |~
C_ 3y BDG del Producto
<. - 1 E
1] Identificacién o
1SO 19113 elomentosisybelemantos 2
B %
1SO 19138 1 Elsesion medtdns* l Nivel de
confommidad
150 2659 "jrﬁmrnl(\n método]
150 M8
41 ¥ 5

| Resultado }'" '---il Prueba de conformidad |
-a * ISOC 19115
I Informe jcentorme/re contorm,

| Informe (cuantitative) |

Figura 2.- Relacion entre los procesos y las normas de Calidad de la Informacién
Geografica

1. Complecién (traduccion oficial espafiola para Completitud): describe los errores de
omisién/comision en los elementos, atributos y relaciones.

2. Consistencia Logica: adherencia a las reglas logicas del modelo, de la estructura de
datos, de los atributos y las relaciones.

3. Exactitud Posicional: exactitud alcanzada en la componente posicional de los datos.

4. Exactitud Temporal: exactitud alcanzada en la componente temporal de los datos.

5. Exactitud Tematica: exactitud de los atributos y de la correccion de las clasificaciones
de los elementos y sus relaciones.

Para cada Elemento se definen Subelementos que ayudan a definir mas precisamente lo
que se desea medir. Estos subelementos se presentan la tabla 1 vinculados al Elemento que
los contiene.

La norma propone luego un conjunto de descriptores para cada subelemento de forma de
estandarizar su documentacion:

£ eyl

tual — de Dominio — de Formato — Topolgica
Exactitud Posicienal o Relativ

Exactitud Temporal

Exactitud de 1a Medida — Validez Temporal — Consistencia Temporal
Tabla 1.- Subelementos definidos para cada Elemento

Exactitud Temitica

« Ambito: alcance de aplicacién del subelemento, puede ser una seccién de un conjunto
de datos.

* Medida: definicion del tipo de prueba a realizar y sus parametros.

* Procedimiento: metodologia para ejecutar la medicion.

* Resultado: resultado para la medida, puede ser un valor, conjunto de valores o su evalua-
cion frente a un umbral determinado por los requerimientos de calidad.

* Tipo de Valor: se asocia al tipo de resultado: numérico, booleano, graduado.

¢ Unidad del Valor: unidad del tipo de valor. Por ejemplo, para una medida de precisiéon
posicional se puede dar en metros, kilémetros u otra unidad.

INDICE

* Fecha: fecha de realizacién de la medida. Es particularmente importante para las evalua-
ciones relativas a la temporalidad.

Esto brinda un modelo genérico y extensible (ya que la norma permite definir nuevos
elementos y subelementos) para la medicion y el reporte de la calidad de datos geograficos.

Normas sobre Metadatos y Calidad de Informaciéon Grografica pueden ser consultadas

en [17] y [18].
5. Bibliografia

http:/ /www.iiap.otg.pe/

http:/ /wwwagtimensoreschubut.org.atr/Ptsig/metadatos.htm

http:/ /wwwsigfam.com.at/content/view/102/2/

http:/ /www.ifgdc.gov/

http:/ /wwwisotc211.0rg

http:/ /edents11.crusgs.gov/metalite/

http:/ /geology.usgs.gov/tools/metadata/tools/doc/ tkme.html

http:/ /wwwsco.wisc.edu/wisclinc/metatool/ cormet95.htm

http:/ /catmdedit.sourceforge.net/

http:/ /webhelp.esti.com/arcgisdesktop/9.2/index.cfm?TopicName=Editing_metadata
http:/ /wwwign.es/ign/main/index.do

http:/ /webdiis.unizat.es/ ~zarazaga/workPage/docencia/ingSoft1 /index.html
http:/ /wwwgeoslab.com/

http:/ /wwwiso.otg/iso/ catalogue_detail htm?csnumber=26020

Ing Sosa, Raquel. “Calidad de Datos Geograficos”. Curso: Calidad de Datos
http:/ /www fing.edu.uy/inco/cursos/ caldatos/).

http:/ /www.eurogeographics.org/documents/Guidelines_ISO19100_Quality.pdf
http:/ /wwwmappinginteractivo.com/ plantilla-ante.asp?id_articulo=1457

http:/ /wwwmappinginteractivo.com/ ptin-ante2.asprid_periodo=137

soolelbhoan) uoloew.IoU| ap sewalsig eled uoideWIO dp Jd|eL

249

INDICE

Laboratorio de Integracion de Sistemas
Introducciéon a NET Framework

Agenda

¢ Qué es INET Framework?
* Componentes Fundamentales
* Funcionamiento Interno del CLR
* Bibliotecas Principales
* Caracteristicas de NET
* Herramientas de Desarrollo NET
* Lab. Punto de venta

¢Qué es NET Framework?

Tecnologia de desarrollo de aplicaciones empresariales, compuesta de:
9. Taller de Formacion.NET * Entorno de Ejecucidn (Runtime)

* Bibliotecas de Funcionalidad (Class Library)

* Lenguajes de Programacion

* Visual Basic

* CH#

s F#

* C++

Ing. Gustavo Guimerans * Compiladores

* Herramientas de Desarrollo IDE VS2010 & Tools)
* Guias de Arquitectura

A/C. Nicolas Sampietro

A/C. Emiliano Martinez

. .y . =

Plataforma de Ejecucion Intermedia 8

o

o

®

S

Aplicacion .NET =

3

Q

Lenguajes de Programacion g

T— o Entorno de >

Librerias de Funcionalidad Decartollo %

Entorno de Ejecucion =i

Sistema Operativo (Familia Windows)
251
Agenda

¢Qué es NET Framework?
¢ Componentes Fundamentales
* Arquitectura

Taller de Formacion.NET

252

¢ Common Language Runtime (CLR)
* Microsoft Intermediate Language (MSIL)
* Assemblies

e NET Class Library
* Common Language Specification (CLS)

CLR - Arquitecturas de Ejecucion de Aplicaciones

Componentes
Manejados
(manage code)

|

h 4
Componentes Servicios y API del Entorno
tradicionales. de Ejecucion intermedio
(unmanage code) NET
L
u Vv

Servicios y API del Sistema Operativo

\ |) L

v v v v

Hardware

Arquitectura del .NET Framework

ASP.NET
(WebForms,
MVC, Dynamic
Data)

Windows Windows
Presentation Data Services Communication

Entity.
Foundation Foundation Framework

Windows
WinForms Worktiow LINQto SQL
Foundation

Managed °V"""". BaseClass
gla

Common Language Runtime

CLR - Common Language Runtime
* ElI CLR es el motor de ejecucion (runtime) de .NET.
* Caracteristicas.
* Compilacion Just-In-Time (JIT).
* Gestion automatica de memoria (Garbage Collector).
* Gestion de errores consistente (Excepciones).
* Ejecucién basada en componentes (Assemblies).
* Gestion de Seguridad.
* Multithreading.

CLR - Componentes Internos

The CLR

ecurity Exception

lode Handling

Coclicjo Assembly

Euente MSIL
S Compilador ()

Cualqu‘ier Biblioteca
lenguaje .NET o Ejecutable

CLR - MSIL

void Main(string[] args)

8
L_0000: Idstr
L_0005: call void [mscorlib]System.Console::WriteLine(string)
L_000a: ret

}

¢Qué es un “Assembly”?

* Un Assembly es la unidad minima de ejecucion, distribucion, instalacién y versionado

de aplicaciones NET

Descripcion de Tipos

MiBiblioteca.DLL

Metada
Recurs

Cédigo Compilado) el
MS| Gultura)

Otros Assemblies
Permisos de Seguridad
Tipos EXternos:

INDICE

13N uoIdeWIO 9p JajjeL

253

Taller de Formacion.NET

254

Assemblies - Aplicaciones NET

* Uno o mas Assemblies (.dll, .exe).

* Al ejecutar una aplicacién, scémo ubico los assemblies necesarios?
* El Class Loader busca en el directorio local (preferido).

* Global Assembly Cache (GAC).

* Diferentes aplicaciones pueden usar diferentes versiones.

* Actualizaciones mas simples.

* Desinstalacion mas simple.

NET Framework Class Library

* Conjunto de Tipos basicos (clases, interfaces, etc.) que vienen incluidos en el .NET
Framework.

* Los tipos estan organizados en jerarquias logicas de nombres, denominados NAMES-
PACES.

* Los tipos son INDEPENDIENTES del lenguaje de desarrollo.

* Es extensible y totalmente orientada a objetos.

.NET Framework Class Library

SEviceel DESign Componentmoael

Protocols -

Gaching Security’ DrawingzD Printing’

CGonfiguration Sessionstate Imaging Text

lo][-l0)) otBe Seriaizatony

‘Common SglClient’

Collections Security’ RURtiNE:
‘Configuration Net' 'ServiceProcess

Diagnostics’ Reflection! ext

Globalization: Resources Threading)

Agenda
¢ Qué es NET Framework?

» Componentes Fundamentales

* Funcionamiento Interno del CLR
* Modelo de Ejecucion

¢ Common Type System

INDICE

Modelo de Ejecucion del CLR

Cédigo
Mane‘:agdu { Assembly Assembly Assembly
) Codit o MSIL Cédigo MSIL Codigo MSIL

CTS (Common Type System)

* Define un conjunto comun de “tipos” de datos orientados a objetos.

* Todo lenguaje de programaciéon NET debe implementar los tipos definidos por el CTS.
* Todo tipo hereda directa o indirectamente del tipo System.Object.

* Define Tipos de VALOR y de REFERENCIA.

La Memoria y los Tipos de Datos

El CLR administra dos segmentos de memoria: Stack (Pila) y Heap (Montoén).

* El Stack es liberado automaticamente y el Heap es administrado por el GC (Garbage
Collector).

La Memoria y los Tipos de Datos.

* Los tipos VALOR se almacenan en el Stack.

* Los tipos REFERENCIA se almacenan en el Heap.

Int32: 169

Intl6: 43

Stack

Value Type I

13N uoIdeWIO 9p JajjeL

255

Taller de Formacion.NET

256

Agenda

¢ Qué es NET Framework?

¢ Componentes Fundamentales

* Funcionamiento Interno del CLR
* Bibliotecas Principales

* Caracterfsticas de NET

Caracteristicas de NET

Entorno de Ejecucion robusto y seguro:

* Gestion automatica de memoria.

* Manejo de excepciones.

Independiente del lenguaje de programacion.

¢ Libertad en la eleccion del lenguaje (o mixto).
¢ Herramientas de desarrollo compartidas.
Interoperabilidad con cédigo existente:

¢ Unmanage code. COM.

Simplifica la instalacién y administracion de las aplicaciones:

* GAC, multiples versiones.

Extensible:

¢ Las clases pueden ser extendidas usando herencia.
* Herencia entre distintos lenguajes.

Interoperabilidad

.‘\

Servicios Web XML
.NET Framework

COM INTEROP

¢ Qué es NET Framework?

» Componentes fundamentales
* Funcionamiento interno

* Bibliotecas Principales

* Ventajas de NET

Herramientas de Desarrollo NET

* Visual Studio 2010

* SQL Server 2010 Express

* SQL Server Managment Studio.

 1IS7

Microsoft Visual Studio 2010

¢ “Solucién” es un contenedor de proyectos.

INDICE

* “Proyecto” es un contenedor de: archivos fuente, conexiones a base, recursos etc.

§ 22 B2 gemplo.por

Conectar | M m 7V

Archivo Editar Ver Consulta Depurar Hemamientas Ventana Comunided Ayuda
N cons] | 0 | 3 |5 W 3 |
Y > = v BAECROED 2 FE Ny

Explorador de soluciones

54 My Project
@[3 Controles
-3 Documentacion
-3 Recursos

vb

[23 solucion "MyMovieCollection (proyecto 1)
= {5 MyMoviecollection

|1l bvDCollectionDatabase.mdf
+|Z] bvDCollectionDataSet.xsd

> ax

Default.aspx |

* Diferentes tipos de proyectos, (VS Projects Templates).
¢ Area editor o diseniador depende del tipo de archivo que se esta usando.

CF

Link 1 Link 2 Link 3

Main (Custom)

I Recordamelo f proxima...; | o
~ inicar sesién
O blen

- crear cuenta

Paragraph
text.

Text > Text
. Area de Inicio de sesién o
Este es Mi sitio
e e eaTa i) Este es mi sito personal.
Nombre de usuario
mngﬂnﬁ Lo nuevo [Vinculos interesantes

Link 1
Link 2
Unk 3

Diseno

SQL Server Management Studio

SQLQuerylsql - PAVILIONDV\n_)"|
select + trom fibo. Productos

Elr)
5 (2 Bases de datos.
El=}

& (3 DevelopmentStorageDb200S05IS

& (3 gjemplo_pos
® 2 Disgramas de base de datos
© 02 Tablas

@ (2 Tabls de sistema
T dboltemsVents

Codigo _ Descripcion Precio.
1 [] Manerdoor P33 53
2 2 PocadeRed 100Mps 1575
33 Mopocesdr 1GH: 1129
el ¢ Disco Rigido 7200 pm 841
55 AcemPanWRMRIG 664
6 6 PacadeRedPOMCA 25
77 HbUSB4Pustos 128
8 8 Mouse Sptico 36
39 Monkor 7pugadas 75
1010 Gabiels MdTower 3
T 1 Tedado ktemet 28 -
212 PocadeVdeo 18ME 457 d
,———-————i © Help make Microsoft® SQL Server™ 2008 better! & X l:
v e i Cick | 000000 | 13 flas

13N uoIdeWIO 9p JajjeL

257

Taller de Formacion.NET

(NS}
ul
o

* SQL Server Management Studio es un entorno integrado para obtener acceso a todos
los componentes de SQL Server, configurarlos, administrarlos y desarrollarlos.

¢ Con SQL Server Management Studio, el programador y el administrador de bases de
datos pueden desarrollar o administrar cualquier componente del Motor de base de datos.

Agenda

¢ Qué es NET Framework?
¢ Componentes Fundamentales
* Funcionamiento Interno del CLR
* Bibliotecas Principales
* Caracteristicas de NET
* Herramientas de Desarrollo NET
* Lab. Punto de venta

Lab 0

/* HolaMundo.cs */

public class HolaMundo{
public static void Main() {
//Imprimir hola mundo
System.Console.WriteLine ("Hola !");

}
}

Invocamos al compilador C# con:
>csc Holamundo.cs

Lab. Punto de venta

¢ La aplicacion “Punto de venta” posee una arquitectura en tres capas (presentacion, re-
glas de negocios y acceso a datos).

Presentacion (proyecto de consola)

Reglas de negocio Entidades

Acceso a datos

Funcionalmente, la aplicacion permite:

e Listar una serie de productos disponibles para vender.

* Iniciar una nueva venta.

e Agregar un {tem a la venta (se agrega un producto al carrito de compras).
* Listar los productos contenidos en el carrito.

* Confirmar la venta (obteniéndose el total a pagar).

INDICE

* Cancelar la venta (vaciando el carrito de compras).
* Salir (cancelando las ventas no confirmadas).

Lab. POS. Presentacion

» Assembly .EXE, proyecto de consola.

* Main(), punto de entrada a la aplicacion.

* Utiliza el patrén command, para las opciones del menda.

* Este proyecto contiene, App.config, (Cadenas de conexion, variables etc.).

Lab. POS. Reglas de negocio

* Assembly .dll, librerfa.
* Clases que representan Entidades (Venta producto, ItemVenta).
* Clases que representan maestros de las entidades. (CatalogoProductos, CatalogoVentas).

Lab. POS. Acceso a datos

* Assembly .dll, librerfa.

* Contiene una clase que encapsula y simplifica el acceso a datos con ADO.NET. (Base-
Datos).

¢ Clase que representa un error (BaseDatosexception).

Acceso a datos

13N uoIdeWIO 9p JajjeL

259

Taller de Formacion.NET

260

Lab. Punto de venta

ItemsVenta
¥ Codigo
CodigoVenta
CodigoProducto
Cantidad

Productos
¥ Codigo

Desaipdon
Predo

Ventas
% Codigo
Fecha

Bibliografia

MSDN .NET Framework 4
ohttp://msdn.microsoft.com/es-es/library/w0x726c2.aspx

DCE
ohttp://mslatam.com/latam/msdn/comunidad/dce2005/

SQL Server Managment Studio
ohttp://msdn.microsoft.com/en-us/library/ms174173.aspx

INDICE

INDICE

Multi-agent systems applied
to land use and social changes
in Rio de la Plata basin

(South America)

Corral, Jorge, Facultad de Ingenierfa, Uruguay
Arbeletche, Pedro, Facultad de Agronomia, Uruguay
Burges, Julio César, INTA-EEABalcarce, Argentina
Morales, Hermes, Instituto Plan Agropecuario, Uruguay
Continanza, Guadalupe, INTA-EEA Balcarce, Argentina
Couderc, Jorge, INTA-EEA Bordenave, Argentina
Courdin, Virginia, Facultad de Agronomia, Uruguay
Bommel, Pierre, CIRAD-Univ. Brasilia, Brazil

Abstract

Dynamics in agrarian systems of Uruguay and Argentina present some positive aspects as
well as other potentially devastating, Traditional producers have a production strategy based
on looking for a balance between cattle and agriculture production, alternating pasture and
mu Iti d i SC i p I i na ri 0oS.: Ag rote (od g [0} I (0] g ia S crops. A new actor: investment-fund-managers rent the land for agriculture production, and
from our team’s discussions emerged that they follow a strategy similar to that of financial
capital: decide what to do in terms of the expected net profit. Economical, ecological and
social consequences could be expected. Modeling and simulating with Multi-Agent-Systems
was used for exploring the system’s evolution with the objective of improving our under-
standing of the agrarian system and to contribute to the envision of possible effects on land
use caused by changes in product prices and/or policy changes. The model considers the
soil resource as having productive potential and assumes that each traditional producer an-
nually decides whether to change or not its production activity over 25% of its land units or
to rent to investment fund managers. A six year database with historical production activity
revenues and product’s prices was used for the simulation, where each simulated year ran-
domly chooses from this database. The first results of these simulations generate questions
about the dynamics of the natural resources, challenge the survival of traditional farmers
and anticipate landscape changes associated to economic, ecological and social changes. A
strong variability was observed from year to year in respect to land use. Results show that if
the current price structure is maintained as well as the relation between net profits of agri-
culture and cattle, then a tendency to expand Investment Fund Managers’ lands will occur.
We conclude that the newly arrived Investment Fund Managers tend to induce a rent activity
in traditional producers as well as a substantial increase in agricultural activities (decreasing Fors]
cattle activities). The historical cattle-agricultural model well known in Uruguay and Argen-
tina has been challenged by market-imposed conditions.The simulation shows that social
effects should also be foreseen.

Keywords: land use change; simulation models (modelling); farm(farmers) strategy(ies).

13. Integracion de equipos

Jousajouby :soneuldiosipiyinw sodinba ap uoloeiabaju|

1

seibo

Integeracion de equipos multidisciplinarios: Agrotecnologias

264

Introduction

Recently observed changes in agrarian systems of the Rio de la Plata Basin (MERCO-
SUR, South America), with important similarities between the different regions, should be
given some thought in the sense of possible economical, ecological and social consequences,
which could be anticipated from these changes in the farming sector due to the explosive
introduction of soybean crops and a new push of the forest industry. The increase in the
soybean production is common to all countries in Rio de la Plata Basin since it is mainly
produced by large companies and had the effect of increasing the rent value, and therefore
the values of properties that could put pressure on traditional cattle producers to incorporate
more intensive practices. The evolution in the structure of farms has lead to a new kind of
actor (agricultural investment fund managers -IFM from now on- that rent land) which to-
gether with all these changes raise questions about which could be the positive and negative
aspects, what kind of actors will still be present in the near future and if it possible to state
it agriculture is going through a concentration process similar to those observed in other
sectors of the economy? This soybean expansion process takes over new lands now devoted
to agriculture or leaving behind traditional activities. For example, in Uruguay between 2000
and 2000 the total agricultural area increased in 17% due to the expansion of soybean crops
which have multiplied by 25 (in area) in just 5 years. Among soybean producers, 6% have
control of 40% of the sowed area; while among the whole agricultural area, 1% of the pro-
ducers have control of 45% of the sowed area.

This expansion in the production takes place in an agrarian structure characterized by an
increasingly economic concentration, which affects thousands of producers, especially small
ones since in just 5 years 45% of them were no longer agricultural producers. (Arbeletche
et al, 2006) This expansion process is also characterized by the denationalization of the ag-
ricultural production, the coming of a soybean complex related to a monopolistic offer of
inputs (especially seeds and machinery), an almost monopolistic export demand, and a set of
technologies driven by a few foreign companies.

As in Argentina, Brazil and Paraguay, this expansion is not the result of a planned pro-
ductive one, based on social and economic development objectives. Instead it is the result of
capital advance (mainly financial capital) due to: new conditions result of the disappearance
of legal regulations that existed until the 90%; technological changes related with direct sow-
ing and transgenic crops; and finally the increasing demand of agricultural products by the
international market.

Also, aspects such as biodiversity, soil fertility conservation and, in general, the capacity
of ecosystems to satisfy human needs are all related to land use, and therefore, related to
economic or socio-political disturbances (Paruelo et al. 2000).

In order to understand and predict land use change effects historical reconstructions
should be made that identify the essential factors and develop models that help us explore
future scenarios. These models should show these dynamics at different levels, including the
global scale (Lambin et al. 2000).

The current agricultural situation with these unprecedented changes requires us to imag-
ine and examine actions that could leverage the positive aspects and mitigate the negative
ones. In this context, this work refers to a Uruguayan region and can be seen as a case study

INDICE

with relatively abundant information, where a methodology can be adjusted and later be
used in similar circumstances, or in comparison to other regions of the Rio de la Plata Basin.
Displace

Objectives

The objectives of this work are:

¢ Identify and model the strategies followed by the different kinds of farm producers
present in Uruguay, in order to analyze and understand their long term consequences.

* Develop a model to allow the simulation of the evolution of the different kinds of
producers and land uses.

* Perform these exploratory and prospective simulations using a Multi-Agent System
constructed by our multidisciplinary team over the Cormas simulation platform (Cormas
2000).

This first approach focuses on analyzing possible evolutions in land use (on lands per-
fectly suitable for crops) as well as the evolution in the different kinds of producers. This
approach is supported by various ongoing works from different team members, such as the
construction of a typology of producers’ behavior and their corresponding organization of
production activities, among others.

This work is part of the TRANS programme (Transformation de I’élevage et dynamiques
des espaces de la Agence Nationale de Recherche - France).

Methods and materials

The general characterization of the agrarian dynamics was created from secondary infor-
mation, national and international statistics and from other documents that allow a compari-
son with other regions as well as with other historical information.

The typology used was developed from the General Farming Census (year 2000) and the
farming polls (years 2002 to 2005) of the Economic Research head office of the Livestock,
Agriculture and Fishing Ministry of Uruguay (Arbeletche et al. 2006). The classification was
done using the Cluster Analysis methods from the (Sparks) algorithms contained in the SPSS
software (version 10).

The methodology that was followed consists of three stages:

Stage I: A multidisciplinary team was formed with researchers, teachers and extensionists
from Uruguay and Argentina that complement their competences in understanding a phe-
nomenon that is present in various areas of the Rio de la Plata Basin, with their similarities
and differences.

Stage II: In order to make the model (understood as the construction of an image that
highlights those aspects of interest for the modeler, ruling out others) we used UML (Unified
Modeling Language, Fowler 2003). The use of a common modeling language (such as UML)
enables many people to communicate with each other with little ambiguities (Krutchen 2003)
and allows us to understand, analyze, communicate and improve a given situation or reality.
UML defines a model as a set of diagrams, accepting from the beginning that no single dia-
gram can represent an entire system. UML proposes 13 different kinds of diagrams: six of

selbojousajolby :soueuljdiosipi3inw sodinba ap uoioelabaju|

265

Integeracion de equipos multidisciplinarios: Agrotecnologias

266

these are for describing the structure of a system (being the Class Diagram the most
widely used) and seven are for describing the dynamic of a system (being the Activity Dia-
gram and the Sequence Diagram the most widely used) (Fowler 2003).

Stage III: We define simulation as the computer implementation of a model that allows
for exploring its evolution as well as proving the coherence and consistency of its construc-
tion. In order to simulate a model where bio-physical and social subsystems interact, the
model should:

1. Take into account the dynamic present in decision-making, For that it should incorpo-
rate qualitative information in the form of decision rules;

2. Show the dynamic of this interaction, and

3. Include heterogeneous components with quantitative and qualitative dynamics.

This simulation, using Multi-Agent Systems (MAS from now on) is supported by object
oriented programming and it is getting more and more attention as a tool, especially adapted
for these kind of analysis. MAS appears as a tool especially adapted when trying to simulate
the functioning and evolution of systems composed by heterogeneous agents interacting
among themselves that are influenced by their location in space, in situations that can or can-
not be of equilibrium (Bonabeau, 2002; Weiss, 1999; Bousquet, 20006; Janssen 2002). When
trying to study systems that include human behavior, prospective simulation take distance
from the normative approach that has been common in many sciences, and this difference is
important enough as to classify it as a “new kind of science” (Bradbury 2000).

Axelrod (1997) proposes that agent-based simulation constitutes a third way of acquir-
ing knowledge, different from the usual deduction and induction methods. The potential of
MAS to study the dynamics of natural resources that interact with society has been identified
more than a decade ago (Bousquet, 2006; Janssen 2002). Their capacity to simulate social sys-
tems (Gilbert & Terna 1999) and its interaction with heterogeneous elements such as those
that dynamically characterize ecological systems, place them as an adequate tool for such
situations (Parker et al. 2002; Moran & Orstrom 2005).

The actual way of modeling depends on the right judgment of the team that is involved
(Ericsson & Penker 2000), and the task of defining the level of abstraction is quite sensi-
tive since the main capacity of the modeler consists of choosing what to include and what
to exclude from the model, keeping in mind the objectives (Schmuller 2004, Holland 1998).

According to Le Page & Bommel (2006), a MAS is a set of agents with the ability to
act and communicate; with perception, communication, production, consumption and data
transformation within an environment; a topological space; a whole that contains agents and
objects; a resource for communication and action; passive objects such as resources, organi-
zation plans, or ways coordinate represented by the set of rules and relations.

Each agent presents a collective behavior, consequence of its perceptions, representa-
tions and interactions with the environment and with other agents, and it communicates
with these, it has a perception of them as well as of the environment, and it perceives and
acts over objects (Janssen 2002; Weiss 1999). In equation-based models, agents are frequently
(and sometimes even implicitly) assumed as representing an average behavior, so these ap-
proaches cannot take into account the interactions between agents or their heterogeneity.

INDICE

Results
The different kinds of producers

Beginning from the typology created by Arbeletche and Carballo (2006) two subsets of
producers were identified: first, traditional producers that integrate into their production
system crop and pasture rotations, as well as cattle production; and second, newly arrived
farmers (IFMs) that base their productive systems in continuous crops over rented land.
Within the first subset of traditional producers, a second classification was done identifying
three kinds of traditional producers according to their amount and combination of farm
resources (land, work and capital): family producers (also called “small producers”), medium
size entrepreneurs (also called “medium producers”) and full size entrepreneurs (also called
“big producers”).

Description of the simulation model

The model shows the interactions generated through the use of the land (agriculture and
cattle) and the ownership of the land (rented or owned). The model looks forward to gener-
ate knowledge about these aspects and understand the relation among traditional producers
and IFMs. The strategy of the latter consists of renting land (plots) in order to intensively
and continuously produce soy bean crops. The model also considers that traditional produc-
ers (including small, medium and big) who have a history of combining cattle and crops, are
profit-sensitive, meaning that they will try to practice whatever activity is more profitable.

The model simulates the behavior of both, traditional producers and IFMs and assumes
that the three kinds of traditional producers behave in the same way (that means that their
rules are the same) but they differentiate in the amount of resources they manage (that
means the number of plots they own and/or operate). Therefore traditional producers risk
their properties, while IFMs manage capital (other people’s money).

In our model, IFMs rent (and eventually release) plots as long as traditional producers are
willing to put some of their plots to rent (and eventually recover them). This means that the
initiative of whether to rent or not is taken by the traditional producers according to their
decision rules, represented by a UML Activity Diagram (which will be later presented).

The main assumptions of the model are the following:

¢ Traditional producers can give up for rent one or more of their plots,

¢ They can only give their plots for rent to the IFM,

¢ The rented plots are always used for continuous crops (the only activity of IFMs) at the
very moment they are rented, and it can or cannot coincide with its previous use,

¢ Traditional producers can buy and sell plots between
up for rent to the IFMs, which can only rent plots to traditional producers (therefore IFMs
cannot buy land).

themselves, as well as give

Model’s structure

Figure 1 presents the UML Class Diagram (Fowler 2003) with the (simplified) structure
of the model. Class Diagrams graphically show the main components of the model (classes)

selbojousajolby :soueuljdiosipi3inw sodinba ap uoioelabaju|

267

Integeracion de equipos multidisciplinarios: Agrotecnologias

268

and their associations (relations between classes). Each component (class) contains its
name (first section), its attributes (second section) and its operations (third section) and dur-
ing the simulation run, each individual element will be an instance of some class (for exam-
ple, producers A, B and C will all be instances of the class Traditional). The relations among
classes are typically an association (represented by an open-ended arrow) or a specification
(represented by a close-ended arrow).

The right-hand side of the diagram represents the resources (the Plot class) and their use
(classes LandUse, Cattle, SoyBean and Empty). Each plot (land unit) has just one use at a
time. Each plot (100 hectares) can be either rented (to the IFM) or sold (to other traditional
producers). When they are not exploited their state is empty. Exploitation then consists of
choosing between cattle and soybean. Each productive activity has its own cost and price that
evolve according to the market (this evolution will be discussed later).

The left-hand side of the diagram represents the agents present in the model: the classes
InvestmentFundManager and Traditional, both subclasses of Producer. Any producer can
manage a set of N plots (represented by the relation Producer —manages Plot) but only tra-

Producer

-accumulatedProfit
-consumption manages -
-productivity L N

+calcProductionProfit() Plot has pu 1 LandUse
+produce()

-landValue = 30008/ha -cost
-size = 100ha -price

- tivil
ownspe N +calcRentValue() productvy

InvestmentFundManage Traditional +isRented?() +calcProfit()

-consumption = 0 § -type T
-productivity = 1.3 -consumption = 12000 $ | ‘ |
di itionToChange = 25%

+payRent()
+returnPlot()

+decideRentValue()

3

-grentsTo

predisp
-productivity = 1

+giveUpForRent()
+calcRentProfit()
+sellPlot()
+buyPlot()

Cattle

SoyBean

Empty

-cost = 109%/ha
-price = 9008/T
-productivity = 0.31T/ha

-cost = 424%/ha
-price = 106$/T
-productivity = 4.6T/ha

-cost = 03
-price = 08
-productivity = 0T/ha

+calcProfit()

+calcProfit()

+calcProfit()

FIGURE 1: CLASS DIAGRAM

ditional producers can own a set of N plots (represented by the relation Traditional —owns
Plot). According to the number of plots owned by a traditional producer we further classify
them in “small”, “medium” and “big” producers (represented by the attribute type of the
Traditional class). Only traditional producers can buy and sell land (represented by the opera-
tions buyPlot() and sellPlot()) since this is a strategy that IFMs do not have (they systemati-
cally choose to sow continuous crops —soybean— over rented plots using high technology
which gives them a productivity 30% higher than traditional producers).

Traditional producers can use their plots in the following ways (represented by the relation

Plot has— LandUse):

* continuous crops (every year with double crop, covering 100% of the surface with a
winter crop and 80% with a second summer crop),

e cattle fattening,

e rent the plot to the IFM, or

* leave it empty.

The decision of what activity to perform depends on which activity is the most profitable
(gross margin) for the traditional producer. The current version of the model assumes that
all three kinds of traditional producers are in the same conditions to perform any of these
activities.

INDICE

Models rules
—>

Figure 2 presents the UML Activity Diagram (Fowler 2003) with the (simplified) strategy
of traditional producers (remember that only these kinds of producers are proactive, while
IFMs react to the actions of these). The Activity Diagram graphically shows the activities
that a traditional producer can perform during a certain year. The diagram has a beginning
(represented as a solid circle) and an end (represented as a circle & dot) and in between there
are tasks or individual activities (represented as rounded rectangles). These tasks or activities
are connected with arrows that represent the flow within the diagram and this flow can be
controlled by decisions (represented as rhombus). Each decision has a set of outgoing flows,
each one with a guard (represented as a boolean yes/no expression within) and only one of
these guards can be true at a time (therefore choosing that outgoing flow).

The diagram could be divided in three sections: left, center and right. The left-hand side
corresponds to the situation in which the traditional producer presents good levels of ac-
cumulated profit that year (remember that the diagram shows the decision rules for one year
and is “executed” each year of the simulation period). These “good levels” are defined as
having enough accumulated profit for (at least) the next two yeats (that means that he/she
can produce and consume for at least two more years). Under this situation the traditional
producer could try to regain its rented plots (if this activity is not more profitable than cattle
or soybean). Eventually the traditional producer could even buy one (or more) plots. The
right-hand side of the diagram corresponds to the opposite situation: the accumulated profit
is not enough for the next year, so the traditional producer is faced to, firstly, try to give up
plots for rent, and secondly, try to sell one by one their plots, until either of two things hap-
pen: they can upfront the next year, or declare bankruptcy (and leave the simulation). The
center part of the diagram corresponds to the intermediate situation: the traditional produc-
er has enough money to face only the next year. In all cases (except of course when declaring
bankruptcy) the traditional producer plans the activities for next year (considering renting an
activity) and according to market prices (which can evolve and will be discussed later) they
will produce (or rent) up to 25% of their plots. This percentage (which can actually change,
but for clarity reasons was fixed in 25% in the diagram) is represented as the predisposition-
ToChange attribute of the Traditional class. This attribute is necessary since if not present,
traditional producers could change 100% of their managed plots from one year to the other.

IFMs’ activities and rules are much simpler, since each year they produce soybean crops
over all the plots they have rent. Even though these kind of producers are not proactive
(meaning that traditional producers are the ones that offer their plots for rent) they can
decline a rent offering if the price of the rent is too high (meaning that they would have no
profit with such high rents). They can also return rented plots in that situation. The simula-
tion model also allows IFMs to determine the price of rent (this is a parameter that can be
turned on or off and it will be discussed later when showing the simulation results for dif-
ferent input parameters).

Juj

oloelaba

Joudajouby :soueuljdiosipijnw sodinba ap u

seibo

269

Integeracion de equipos multidisciplinarios: Agrotecnologias

Simulation initialization

NOTE:

{_profit > INOTE:
2 * (production_costs + | family’s.
family_consumption)) consumption
for this year

AND
have at least one rented plot
[AND

calc. this year's profit and
update accum. profit

[else] [accum. profit is not enough for next year]

[accumulated
profit is enough only

else)
leise] for next year]

[else]

recover a
rented plot >
[can recover
a rented plot]

buy one
plot

[can give up for
rent one plot]

[else]

give up for
rent one plot
[can buy one plot]

[rent is the
best alternative]

NOTE- [still own plots]
{accumulated_profit > m o
, s give up for rent up to produce up to 25%
2 (fl;f:i’§""°"»°°5'5. i (25% of owned plots) (ofmanaged plots
+ land_value} bankruptcy
D
there are plots for sell

FIGURE 2: AcTIVITY DIAGRAM FOR TRADITIONAL PRODUCERS

The simulation assigns to each kind of traditional producer (small, medium & big) a cer-
tain amount of land units (plots) with a randomly selected land use that can be cattle faten-
ing or continuous crop. Each plot (according to its use) has a certain production level that
corresponds to average values of Uruguay. Each plot can be bought, sell or rented at market
values. All values of products have been average market values for the last five years, and are
the same for all producers. Rent and property values are the same as market values.

All plot yields are the same for all traditional producers.

At the beginning of the simulation (time step zero) each traditional producer is given a
randomly selected activity, and while the simulation runs, they change this activity according
to their decision rules (that is, according to that activity that is most profitable) due to the
evolution of prices. Giving up for rent one or more plots is also considered an activity. The
initial distribution of the number of each kind of traditional producers was taken from the
results of the typology performed over traditional farmers corresponding to the year 2005.
The capital of each traditional producer is initiated in zero and increases with each randomly
assigned plot. When the simulation runs, each time the traditional producer buys, sells, rents
or recovers a rented plot, this capital is updated. This capital is also updated when calculating
the profits for each year due to the activity of each managed plot.

The current version of the model assumes that all traditional producers have the same
annual cost of living (consumption) which is subtracted from the profits for that year.

4.2.4 Simulation

344’which are a subset of the combination of three parameters: the way the rent value is
determined (this value can be: a) determined by the IFM as 1 § higher than the best alterna-
tive —crop or cattle- or b) defined as 35% of the value earned by producing soybean); the
evolution of soybean price (this evolution can be: a) sinusoidal or b) increasing sinusoidal,
which starts with very low prices for soybean and ends with very high soybean prices) and
the presence of the IFM which can be present or not in the simulation. If it is not present,

INDICE

there won’t be rented plots, therefore, they won’t be able to determine the rent value. The
reason that makes the situation where the IFM determines the rent value is supported on the
idea that they can pay traditional producers more (for their rented land) than if the traditional
producer produces cattle or soybean by himself in his plots (evidently as long as the IFM
continues to earn a positive net profit from his activity).

Case 1:

Rent Value: determined
by the IFM as the best
alternative plus one
money unit: rent value =
MAX(soybean_profit;
cattle_profit) + 1$

Soybe,an P':Ice =e—rent value ==cattle profit
Evolution: sinusoidal —a—soybean profit i IFM margin
(ranging from historical
min. and max. values).

Figure 3: Evolution of Profits (incl. rent) and IFM’s Margin Through Time

Presence of IFM: yes
(and determining the
rent value as indicated

above). —+—rented plots.

=m=cattieplots
—4—soybean plots
——empty plots

Note: the X-axis of both
graphs have the same
scale so they canbe
analyzed together.

Figure 4: Evolution of Land Use Through Time

Case 2:

Rent Value: defined
as 35% of the value
of soybean.

Soybean Price
Evolution: increasing
sinusoidal (starting
from very low prices
up to very high
soybean prices).

—=—cattle profit —— soybean profit

Presence of IFM: no

(itis not present in . . -
the simulation, so no Figure 5: Evolution of Cattle & Soybean Profits Through Time

plots will be rented).

Note: the X-axis of all
four graphs have the
same scale so they can
be analyzed together.

——rented plots
Ll =Secattleplots
W

i ——soybean plots

==empty plots

Figure 6: Evolution of Land Use Through Time

——tismalltrad. prod. —Eitbig trad. prod.
~—#medium trad. prod.

7 I

Figure 7: Evolution of Traditional Producers Through Time

—<— tiplots belonging to small trad. prod.

—&—tiplats belonging to big trad. prod.

Figure 8: Evolution of Traditional Producers’ Size Through Time

Jousajouby :soueuljdiosipijnw sodinba ap uoioelabajul

seibo

271

Integeracion de equipos multidisciplinarios: Agrotecnologias

272

Cattle profit is always considered as evolving with a sinusoidal function with historical
minimum and maximum values (normal distribution).

Case 3:

Rent Value:
determined by the IFM
as the best alternative
plus one money unit:
rent value =
MAX(soybean_profit;
cattle_profit) + 1$

Soybean Price
Evolution: increasing
sinusoidal (starting
from very low prices up
to very high soybean
prices).

Presence of IFM: yes
(and determining the
rent value as indicated
above).

Note: the X-axis of both
graphs have the same
scale so they can be
analyzed together.

The results achieved so far are limited since the model is still under construction. We
will extend it introducing variability in traditional producers’ productivity, including lands of
lower quality and less productive potential.

Conclusions

From the analysis and synthesis of all available data we can conclude that new ways of
land use appeared in the Rio de la Plata Basin region, with a steady increase of continuous
crops that was not present at the end of the past century. From the modeling and simulation
we conclude that:

If the decisions of traditional producers are supported by the expected profit and with a
normal price distribution (Case 1):

When soybean prices are good, the IFM rents all plots for agriculture. There are no
changes in land property. There is no concentration of land concerning property, but there
will be a concentration of land use. Traditional producers do not sell their plots, and they will
tend to rent all of them.

If the IFM is willing to pay a fixed rent value in tones of product (Case 2):

It could be the case that for traditional producers is more profitable to produce soybean
by themselves (if rent is less profitable) so no rent will occur.

In this case, the simulation showed that big traditional producers would buy land in order
to grow more soybean crops, so land property as well as land use concentration would occur.
Small traditional producers would tend to extinction (see Figures 7 and 8).

If the price of soybean increases (Case 3):

Even in the case that IFMs do not exist there still is a continuous crop usage. Also, a land
property concentration will occur where at first small and medium producers would disap-
pear.

In any case, cattle is moved out to non-farming areas of lower quality lands.

The preliminary simulations using MAS that we have done showed us that this tool has a
good potential for exploring the evolution of these kinds of systems.

It should be considered that the results obtained are limited since we deal with a model
under construction. However, the model suggests that changes on international prices and

INDICE

policies in countries like Uruguay and Argentina greatly determine that the best quality lands
are mainly used for agriculture.

It would be of major importance to reevaluate land use dynamics and its causes, since the
survival of small producers is in stake (which represents a large part of total producers and
support the existence of multiple rural populations in the Rio de la Plata Basin region). On
the other hand, these models allows us to anticipate and act in prevention, facing potential
land use changes associated to economical, ecological and social changes.

References

Arbeletche, P, Carballo, C., 2006 Crecimiento agricola y exclusion: el caso de la agricultura
de secano en Uruguay in Proceedings VII Congreso de Alasru, Quito, Ecuador, november
6-10.

Arbeletche, P, Carballo, C., 2006 Sojizaciéon y concentracion de la agricultura uruguaya in
Proceedings del XXXIV Congreso de la Asociacion Argentina de Economia Agricola Cor-
doba, Argentina, october 18-20.

Bonabeau E., 2002 Agent-Based modeling: Methods and techniques for simulating hu-
man systems in Proceedings of the National Academy of Sciences of the USA 99: 7280-87.

Bousquet E, 2006 Multi-agent systems, companion modeling and land use change in Lam-
bin E.F. & Geist H. (eds): Land-Use and Land-Cover Change. L.ocal Processes and Global
Impacts. Springer. Berlin Germany.

Bradbury R., 2006 Towards a new ontology of complexity science in Perez P. Batten D.
(eds) Complex Science for a Complex World. ANU E Press. Camberra Australia.

Cormas, 2006 Ressources naturelles et simulations multi-agents. CIRAD. URL: http://
cormas.cirad.fr

Ericsson H. E., Penker M., 2000 Business Modeling with UML. Business Patterns at
Work. OMG Press. John Wiley & Sons, Inc. USA.

Fowler M., 2003. UML Distilled, Third Edition. A Brief Guide to the Standard Object
Modeling Language. Addison Wesley. USA.

Gilbert N., Terna P, 1999, How to build and use agent-based models in social science,
URL: http://web.econ.unito.it/ terna/deposito/gil_ter.pdf/

Holland J.H. 1998. Emergence. From Chaos to Order. Basic Books.

Janssen M. (Ed.), 2002 Complexity and Ecosystem Management: The Theory and Prac-
tice of Multi-agent Approaches, Edward Elgar Publishers.

Kruchten P. (2003) The Rational Unified Process: An Introduction, Third edition. Ad-
dison Wesley. 302 pp.

Lambin E. F, Geist H., Rindfuss R. R., 20006, Introduction: local processes with global im-
pacts, in Lambin E.F & Geist H. (eds) Land-Use and Land-Cover Change. Local Processes
and Global Impacts. Springer. Berlin Germany.

Lambin E. E; Geist H. J.; Lepers E., 2003, Dynamics of land-use and land-cover change
in Tropical Regions, Annu. Rev. Environ. Resour. 20:205-41.

Le Page C., Bommel P. 2006, A methodology to building agent-based simulations of
common pool resources management: from a conceptual model designed with UML to its
implementation in Cormas.

CORMAS, in Bousquet E; Trébuil G.; Hardy B. (eds) Companion Modeling and Multi-

selbojousajolby :soueuljdiosipi3inw sodinba ap uoioelabaju|

273

Integeracion de equipos multidisciplinarios: Agrotecnologias

274

INDICE

Agent Systems for Integrated Resource Management in Asia. Los Bafos (Philippines):
International Rice Research Institute. 327-350.

MGAP-DIEA, 2001, Censo General Agropecuario 2000, Montevideo, Uruguay.

Moran E. F, Orstrom E (eds), 2005), Seeing the forest and the trees: Human-environ-
ment interactions in forest ecosystems, MIT Press, Cambridge London.

Parker D.C. Berger Th. Manson M., 2001, Agent-Based Models of Land-Use and Land-
Cover Change, Report and Review of an International Workshop October 4-7, 2001 Irvine,
California, USA Edited by: Parker D.C., Berger T., Manson SM. URL: http://www.indiana.
edu/%7Eact/focusl/ABM_Report6.pdf

Paruelo .M, Guerschman, J.P; Pifieiro, G.; Jobbagy, E.G, Verén, S.R.; Baldi, G. y Baeza,
S., 2006, Cambios en el uso de la tierra en Argentina y Uruguay: Marcos Conceptuales para
su analisis, Agrociencia. Vol. X N° 2 pp. 47 — 61.

Schmuller J. 2004, Sams Teach Yourself UML in 24 hours, SAMS Publishing USA.

Weiss G. (ed), 1999, Multiagent Systems. A Modern Approach to Distributed Artificial
Intelligence, MIT. USA.

Web pages consulted: URL: http://www.mgap.gub.uy/diea and URL http://www.mgap.

gub.uy/opypa

14. Ingenieria de Software

Ing. Alejandro Adorjan

INDICE

Ingenieria de software:
un enfoque en ingenieria
de requerimientos

Introduccion

La ingenierfa de software es una disciplina que estudia la aplicacion de la teorfa, el cono-
cimiento y la practica de la construccion eficaz y eficiente de sistemas de software que satis-
facen las necesidades de usuarios y clientes.

Un proyecto de ingenierfa de software requiere desarrollar algunas competencias como
ser: identificar los interesados en un proyecto, determinar sus necesidades, negociar un con-
junto de especificaciones, planes y, fundamentalmente, establecer el alcance del proyecto y
responder a los distintos cambios en el transcurso del mismo.

El objetivo del curso es brindar los conceptos tedricos y practicos que permitan compren-
der y ejecutar los distintos procesos involucrados en el desarrollo de software e implementar
una aplicacion en el contexto de un proyecto de ingenierfa. Si bien el area de ingenieria de
software es muy amplia, y las metodologias y herramientas muy variadas, nos enfocaremos
en la metodologfa tradicional.

En el contenido del curso se incluyen los siguientes temas: Introduccion a la Ingenieria de
Software, Procesos de Software, Gestion de Proyectos, Requerimientos de Software (donde
se realiza un enfoque exhaustivo), Pruebas, Gestiéon de la Calidad (SQA) y Gestion de la
Configuraciéon (SCM).

Marco Teérico

A continuacion se realizara una sintesis de una de las areas mas relevantes de la ingenierfa
de software que sera tratada en el curso: la ingenierfa de requerimientos.

Segun el Software Engineering Body of Knowledge (Swebok), el area de conocimientos
de requerimientos de software refiere al analisis, la especificacion y la validacion de los requi-
sitos del software. Sommerville [2] expone que en el proceso de ingenierfa de requerimientos
se establecen: la obtencién, analisis, validacion y gestion de requerimientos. A su vez, refiere
que la obtencion y analisis de requerimientos es un proceso iterativo que puede ser represen-
tado como una espiral de actividades (Boehm [1]), las cuales incluyen actividades de elicita-
cion, clasificacion, negociacion y documentacion de requerimientos. Sommerville [2] explica
que el proceso de gestion de requerimientos incluye la gestion de la planificaciéon donde se
analizan, a su vez, los posibles cambios de requerimientos y su impacto en el proyecto.

Es importante tener en cuenta la problematica de este proceso: el 45% de los errores de-
tectados en los proyectos son por mala o poca especificacion. Dichos errores, descubiertos
en etapas tardias, son muy costosos (Boehm [1]).

A su vez, ciertos proyectos que se entregan fuera de tiempo con menor calidad son conse-
cuencia de un input insuficiente por parte de los usuarios o por requerimientos incompletos
o cambiantes (Standish Group).

alemy)jog ap ensiuabuj

277

Ingenieria de Software

278

Una referencia para la especificacion de requerimientos esta dada por la Asociacién de Es-
tandares de la IEEE, en su documento 830-1998 [5], el cual establece un formato estandar de
la especificacion de requerimientos. En este documento, conocido como ESRE (Documento
de especificacion de requerimientos), se deben establecer: el propésito, el alcance del sistema,
las definiciones, acrénimos y abreviaciones que correspondan, las referencias y una visiéon
del documento. A su vez, se describe la perspectiva del producto, las funciones del mismo,
los requerimientos funcionales y no funcionales. En otra secciéon del mismo se establecen
las caracteristicas de los usuarios, las restricciones, suposiciones y dependencias del sistema;
se documentan, si corresponden, las interfaces externas, los requisitos de rendimiento y las
restricciones de disefio.

En el proceso de captura de requerimientos existen distintas fuentes de requerimientos y,
a su vez, distintas técnicas de captura de los mismos. Algunas de las caracteristicas que son
deseables en la especificacion de un requerimiento son: correctitud, no ambigtiedad, comple-
titud, consistencia y verificabilidad.

Es importante recordar que el principal objetivo de la ingenierfa de requerimientos es
comprender el problema, especificarlo adecuadamente definiendo una solucién y validarlo
con el cliente.

Ejemplo de Aplicacion

A continuacién se muestra un bosquejo de la documentacion de especificacion de requeri-
mientos de software realizada por uno de los grupos del curso, siguiendo el formato sugerido
por el estandar IEEE Std 830-1998 [5].

1. Introduccion

El presente documento provee una descripcion general del producto:

1.1 Propésito

Se pretende orientar el desarrollo de un producto de software...

1.2 Alcance

El desarrollo del producto permitira registrar. ..

1.3 Definiciones, Acréonimos y Abreviaciones

Insumo: Conjunto de bienes empleados en...

1.4 Referencias

IEEE. IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements
Specifications. IEEE Computer Society, 1998.

2. Descripcion General

2.1 Actores

Administrativo: Es la persona encargada de realizar los registros.

Director: Es el usuario que tendra el perfil para obtener los informes brindados por el
sistema.

2.2 Funciones del producto

Las principales funciones del producto son:

Administracién de usuarios.

Registro de alumnos.

Registro de alumnos para el servicio...

INDICE

Registro de...

2.1.1 Requerimientos funcionales

RF1 Administracién de Usuarios.

Descripcion: El administrador del sistema podra gestionar los usuarios (agregar, modifi-
car, eliminar, buscar, listar).

Especificacion: Caso de uso 3.1.

Prioridad: 1

REF2: Registro de Alumnos.

Descripcion: El sistema debera registrar los alumnos, ingresando los datos correspon-
dientes a los mismos.

Especificacion: Caso de uso 3.2

Prioridad: 1

2.1.2 Requerimientos no funcionales

RNF1 El sistema debera ser codificado en... version...

Descripcion: El sistema debera codificarse segun la version. ..

Prioridad: 1

3. Especificacion de Casos de Uso

Caso de Uso 3.3: Registro de inscripcion en el servicio

Actores: Usuario.

Precondicion: El usuario debe estar registrado. ..

Sinopsis: El caso uso comienza cuando...

Referencia: RIF3.

Caso de Uso | 3.3
Nombre
Descripcion
Prioridad

Estado

Actores
Precondiciones
Entradas

Flujo de Eventos

Curso Normal

Curso Alternativo

Post Condiciones
Salidas

Restricciones

=3
Q
)
=4
)
=,
)
o
o
»
o
=
3
2
o

Ingenieria de Software

280

Casos de uso rela-
cionados

Es una buena practica establecer la interfag de usuario asociada al caso de
1s0.

Interfaz de Usuario

4. Contexto de presentacion del curso

El curso se dicta en modalidad semipresencial con tres instancias presenciales y activi-
dades semanales orientadas al estudio guiado sobre las tematicas del curso en la plataforma
educativa de UTU, a través del Campus Virtual.

Los libros de Sommerville [2] y Pressman [3] son parte de la bibliografia sugerida del
curso. Si bien el enfoque es tradicional se recomiendan articulos y libros de las metodologias
agiles. Se realizan cuestionarios de los distintos temas planteados y se propone un trabajo
final donde el tema es de libre eleccion de los alumnos, planteandose el desafio de la resolu-
ci6n de un producto de software y la gestion del mismo desde el analisis hasta su implemen-
tacion.

5. Algunas preguntas planteadas a los participantes

A continuacién se exponen algunas de las preguntas que pueden plantearse a los partici-
pantes del curso en los cuestionarios de evaluacion:

¢Cual fue la crisis del software?

¢Cudles son los dos tipos fundamentales de producto de software?

¢Qué es la ingenierfa de software?

¢Cuales son las actividades fundamentales en los procesos de software?

¢Cudles son los tres paradigmas en el desarrollo de software (en estas metodologias tra-
dicionales)?

¢Por qué es importante el mantenimiento de software?

¢Cuales son las actividades fundamentales que son comunes a todos los procesos de soft-
ware?

¢Cudles son las ventajas de utilizar el desarrollo incremental?

¢Cudles son las principales actividades de ingenierfa de requerimientos?

¢Cuales son las etapas importantes en el proceso de pruebas?

¢Cuales son las principales diferencias entre la gestion de proyectos de software y otros
tipos de gestion de proyectos?

¢Cual es la diferencia entre un hito y una entrega?

¢Qué se incluye en un plan de calidad y en un plan de validacion?

¢Qué son los requisitos de un sistema?

¢Qué son los requisitos del usuario y los requisitos del sistema?

¢Cual es la diferencia entre los requerimientos funcionales y los no funcionales?

¢Qué problemas pueden surgir cuando los requisitos estan escritos en lenguaje natural?

¢Cuales son las principales ventajas de utilizar un formato estandar para especificar los
requerimientos?

INDICE

¢Qué es un documento de especificacion de requerimientos?

¢Qué es un caso de uso?

¢Cudles son los dos objetivos complementarios del proceso de pruebas?
¢Qué herramientas de gestion de la configuracién conoce?

¢Cuando una prueba de defectos es exitosa?

¢Qué tipos de pruebas conoce?

¢Qué enfoques pueden ser utilizados en el disefio de casos de prueba?
¢Qué es una particién de equivalencia?

¢Qué se entiende por gestién de la configuracion?

6. Conclusion

En este curso se presentan algunos de los temas mas relevantes del area de ingenieria de
software a partir de una especificacion de requerimientos formal. Se enfatizan los conceptos
tedricos y practicos que permiten comprender y ejecutar los distintos procesos involucrados
en el desarrollo de software.

7. Bibliografia

Boehm B, (1986). “A Spiral Model of Software Development and Enhancement”, ACM
SIGSOFT Software Engineering Notes”, “ACM”, 11(4):14-24,

Sommerville, I. (2010). Software Engineering, (9th ed.) Addison-Wesley.

Pressman, Roger. (2010). Software Engineering: A Practitioner’s Approach, (7th ed.).
NY: McGraw-Hill.

Kotonya Gerald, Sommerville Ian. Requirements Engineering Processes and Techniques.
John Wiley & Sons Ltd. ISBN 0-471-97208-8

IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements Specifica-
tions —Description.

8. Referencias Web

Se aconseja, para ampliar los conocimientos sobre este tema, visitar el sitio web de Ian
Sommertville, autor de uno de los libros de referencia del curso:

http:/ /www.softwareengineering-9.com/

Recomendamos, asimismo, el estudio del mismo autor para el tema Enfoque de requeri-
mientos:

Procesos y Técnicas de requerimientos:
www.comp.lancs.ac.uk/computing/resources/re/
http:/ /www.comp.lancs.ac.uk/computing/resources/re-gpg/

al1em}jog ap euaiuabuj

281

