
Proyecto UTU - ANII - UDELAR

Experiencia de capacitación
docente en modalidad b-learning

Tecnólogo
Informático
de Paysandú

Consejo de Educación Técnico Profesional

Prof. Wilson Netto Marturet
Director General

Prof. Javier Landoni Seijas

Consejero

Mtro. Téc. César González Saldivia
Consejero

ANII

Dr. Rodolfo Silveira
Presidente

Ing. Luciana Balseiro
Ejecutiva

Facultad de Ingeniería
Dr. Ing. Héctor Cancela

Decano

Campus Virtual
Programa de Educación en Procesos Industriales
Consejo de Educación Técnico Profesional
Avenida Italia 6201 LATU Edificio “Los Cedros” 1er piso
Montevideo-Uruguay

Diseño de tapa: Gabriela Iaci
Diseño de interior y diagramación: Pablo Márquez
Corrección de Estilo: Lic. Andrés González
Compilación: Prof. Pablo Meyer
Coordinación: Prof. Gabriela Castro
ISBN: 978-9974-688-99-5

Índice

4. Base de Datos 									 42
A/S. Gabriella Savoia
6. Arquitectura del Computador y Sistemas Operativos 			 90
Ing. Pablo Gestido

8. Taller de Formación para sistemas 						 198
de información geográficos
Ing. Bruno Rienzi, Ing. Flavia Serra, Ing. Raquel Sosa

9. Taller de Formación.NET	 						 250
Ing. Gustavo Guimerans, A/C. Nicolás Sampietro, A/C. Emiliano Martínez

Presentación				 	 				 	 8
Prof. Wilson Netto Marturet
Dr. Ing. Héctor Cancela
Ing. Tecnol. Luis Marco

13. Integración de equipos multidisciplinarios: Agrotecnologías 		 262
Ing. Agr. Pedro Arbeleche, Ing. Jorge Corral, Dra. Ing. Agr. Elly Ana Navajas

14. Ingeniería de Software 							 276
Ing. Alejandro Adorjan

Agradecimientos			 	 				 	 7
Prof. Gabriela Castro del Pino

3. Programación Avanzada 							 12
Ing. Daniel Calegari

INICIO

Agradecimientos

Esta publicación recoge el material de cada uno de los cursos, jornadas de capacitación
y formación técnico - docente que se dictaron en modalidad b_learning a través del Cam-
pus Virtual del CETP- UTU. Nuestro deseo es que este material sirva de base y guía para
docentes y estudiantes de la carrera del Tecnólogo Informático; una pequeña contribución
desde el convencimiento que la información debe estar accesible a todos y no depender de
las circunstancias geográficas en que se encuentre el estudiante. Su existencia no sería posible
sin la generosa participación de todas las personas que han compartido sus conocimientos y
competencias.

Concretar un esfuerzo de esta naturaleza no habría sido posible sin la ayuda y colabora-
ción de todos los docentes, compañeros de ruta virtuales y no virtuales, técnicos, integrantes
de comisión de carrera del tecnólogo de Paysandú y de Montevideo que participaron del
proyecto. A ellos se suma el apoyo desinteresado de la profesora Ana Iruleguy coordinadora
del Tecnólogo de Paysandú, quien nos hizo sentir como en casa en cada instancia presencial,
y de la Ingeniera Luciana Balseiro de ANII.

Un especial reconocimiento a la Fundación Ricaldoni quien administró nuestro proyecto.

Deseo expresar mi profundo agradecimiento al Ingeniero Luis Marco por alentarme y
confiar la coordinación de este proyecto interinstitucional y a las autoridades de la Univer-
sidad del Trabajo del Uruguay que apoyaron esta iniciativa, en especial al profesor Wilson
Netto y su visión integradora.

Nuestra gratitud al pro rector de enseñanza de la Universidad de la República, Dr. Luis
Calegari, quien nos asistió en varias oportunidades y al Ingeniero Héctor Cancela quien, al
inicio del proyecto, desde su cargo como director del InCo, y luego como decano de la Facul-
tad de Ingeniería, tuvo un rol preponderante en todo el desarrollo del mismo.

A nuestras familias por su enorme paciencia.

Extiendo a todos ustedes mi profundo aprecio.

Prof. Gabriela Castro del Pino
Coordinadora del Campus Virtual

ÍNDICE

Presentación

Cuando una sociedad define modificar su lugar en el concierto mundial respecto a la
distribución internacional del trabajo, un requerimiento imprescindible es el desarrollo de su
población, donde el conocimiento ocupa un lugar relevante.

La actividad desarrollada, como su publicación, son una muestra más del camino que ha
tomado la educación para abordar éstos desafíos.

La Universidad de la República y la Universidad del Trabajo del Uruguay no sólo desarro-
llan carreras conjuntas, sino que contribuyen a generar una nueva cultura interinstitucional
modificando esa concepción y organización balcanizada de nuestra sociedad.

La modalidad en que se desarrolló la actividad también muestra como las TICs permiten
generar nuevas oportunidades de socialización del conocimiento, construyendo ámbitos de
intercambio entre personas y profesionales radicados en distintos puntos del país, la región,
o el mundo.

Es de destacar la muestra de pasión y compromiso, componente sustantivo de la profe-
sión docente, de todos quienes han participado en esta actividad.

Por su aporte personal y el de sus equipos expreso un agradecimiento muy especial al Ing.
Héctor Cancela y a la Prof. Gabriela Castro.

Profesor Wilson Netto Marturet

Es una tarea muy grata el escribir unas breves palabras para presentar esta publicación
que recoge el material generado en el transcurso del proyecto de capacitación docente en
modalidad b-learning, orientado a promover el desarrollo de la sede Paysandú del Tecnólogo
en Informática, carrera mixta UTU/UDELAR.

Este proyecto, que fue posible gracias a la iniciativa y visión de la UTU y el apoyo y finan-
ciación de la ANII, contó desde su puesta en marcha con el apoyo entusiasta del Instituto
de Computación y la Facultad de Ingeniería, y el soporte de la Fundación Julio Ricaldoni,
convirtiéndose en un verdadero caso de éxito de cooperación interinstitucional.

Las características del proyecto lo hacían sumamente atractivo por varios motivos. Desde
un punto de vista práctico, la sede Paysandú del Tecnólogo en Informática apenas comenza-
ba su actividad cuando el proyecto fue formulado y puesto en marcha. Mediante su ejecución
fue posible apoyar la formación de un conjunto importante de docentes de diversas disci-
plinas, que estaban participando o se incorporaron posteriormente en el equipo a cargo del
dictado de esa carrera. Del punto de vista conceptual, un proyecto cuyo objetivo es formar
a formadores, y particularmente utiliza la informática (en este caso concreto, un espacio
virtual de aprendizaje) como herramienta para transmitir conocimientos en distintas áreas
temáticas de la informática, tiene una formulación recursiva y un aspecto demostrativo del
poder de las tecnologías de la información que podemos catalogar de irresistible.

Adicionalmente, el proyecto ha permitido generar un material que será seguramente de
interés para docentes actuales y futuros de las diversas sedes de la carrera de Tecnólogo en
Informática, por lo que nos congratulamos de que esta publicación permita su difusión entre
todos aquellos que puedan aplicarlo.

Para cerrar, agradecemos al Prof. Wilson Netto, Director de UTU/CETP durante la rea-
lización del proyecto, que con su calidez, empuje y disposición a colaborar permitió gene-
rar este espacio de acción conjunta; a la Prof. Gabriela Castro, que coordinara las distintas
acciones del proyecto, con gran eficiencia, y calidad humana; y a todos los docentes que
participaron, sea preparando y orientando estos cursos, sea responsabilizándose de su propia
formación mediante una participación activa en estas instancias de formación muy intensas.

Dr. Ing. Héctor Cancela
Decano de la Facultad de Ingeniería

ÍNDICE

El anhelar un País Productivo implica contar con una masa crítica de recursos humanos
formados, en regiones donde hoy no se encuentran fácilmente.

Para alcanzar esa meta debemos optimizar una interacción entre las instituciones que nos
posibilite trabajar como un verdadero Sistema.

El libro que hoy llega a sus manos recoge el trabajo de muchos compañeros, quienes han
demostrado que innovando en estrategias educativas se puede fortalecer la desconcentra-
ción de la enseñanza terciaria. A todos ellos muchas gracias por su enorme aporte el cual,
seguramente, despertará nuevas iniciativas.

Ing. Tecnol. Luis Marco

13

Program
ación Avanzada

ÍNDICE

3. Programación avanzada

Ing. Daniel Calegari

Diseño
Diseño de la estructura de

una colaboración

14 15

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

16 17

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

18 19

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

20 21

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

Diseño
Guías para el abordaje del diseño

22 23

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

24 25

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

26 27

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

28 29

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

Implementación
Generación de código

30 31

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

32 33

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

Implementación
Manejo de objetos

34 35

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

Implementación
Colecciones

36 37

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

38 39

Pr
og

ra
m

ac
ió

n
Av

an
za

da
Program

ación Avanzada
ÍNDICE

40

Pr
og

ra
m

ac
ió

n
Av

an
za

da
ÍNDICE

43

B
ase de datos

ÍNDICE

4. Base de datos

A/S. Gabriella Savoia

Ejemplo 1
CREATE TABLE Empleados(
IdEmp INT NOT NULL,
Apellido VARCHAR(30) NOT NULL,
Nombre VARCHAR(30) NOT NULL,
Direccion VARCHAR(100) NOT NULL,
FecNac DATETIME NOT NULL,
Salario MONEY NOT NULL CONSTRAINT check_salario CHECK (Salario >

0))

Ejemplo 2
ALTER TABLE Empleados
ADD CONSTRAINT pk_empleado PRIMARY KEY (IdEmp)

Ejemplo 3
ALTER TABLE Empleados
DROP CONSTRAINT pk_empleado

Ejemplo 4
Dependiendo del DBMS, se pueden habilitar o deshabilitar (sin eliminarlas):
-- deshabilitar la restricción check_salario en la tabla.
 ALTER TABLE Empleados
 NOCHECK CONSTRAINT check_salario
-- habilitar la restricción check_salario en la tabla.
 ALTER TABLE Empleados
 CHECK CONSTRAINT check_salario

Ejemplo 5
“Todo libro se identifica por un ISBN. Todo libro es escrito por al menos UN autor.”
CREATE TABLE Libros (
ISBN 	 INT NOT NULL PRIMARY KEY,
idAutor 	 INT NOT NULL,
Nombre 	 VARCHAR(100) NOT NULL,
Precio 	 MONEY NOT NULL);

CREATE TABLE Autores (
idAutor 	 INT NOT NULL PRIMARY KEY,
Nombre 	 VARCHAR(100) NOT NULL);

ALTER TABLE Libros
ADD CONSTRAINT fk_autor FOREIGN KEY (idAutor)
REFERENCES Autores (idAutor)
ON DELETE CASCADE;

44 45

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

CREATE TABLE
Crea una nueva tabla.
Dependiendo del DBMS, exigirá crearla bajo un Esquema determinado.
Sintaxis:
CREATE TABLE table_name
 ({ < column_definition >
 | < table_constraint > } [,...n]
)
< column_definition > ::= column_name data_type
[DEFAULT constant_expression]
[< column_constraint >] [...n]

Definición de restricciones por COLUMNA
< column_constraint >::= [CONSTRAINT constraint_name]
{ [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE }]
| [[FOREIGN KEY]
REFERENCES ref_table [(ref_column)]
[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE | NO ACTION }]
]
| CHECK (logical_expression) }

Definición de restricciones a nivel de TABLA
< table_constraint > ::= [CONSTRAINT constraint_name]
{ [{ PRIMARY KEY | UNIQUE }
			 { (column [ASC | DESC] [,...n]) }]
| FOREIGN KEY [(column [,...n])]
REFERENCES ref_table [(ref_column [,...n])]
[ON DELETE { CASCADE | NO ACTION }]
[ON UPDATE { CASCADE| NO ACTION }] }

Ejemplo:
PostgreSQL:
		 CREATE TABLE “Empleados” (
 			 “CI” character(8) PRIMARY KEY ,
 			 “Nombre” character varying(100),
 			 “Direccion” character varying(200),
 			 “Fec_Nacimiento” date)
		 WITH (OIDS=FALSE);
MS-SQLServer:
		 CREATE TABLE Empleados (
 			 CI character(8) PRIMARY KEY ,
 			 Nombre varchar(100),
 			 Direccion varchar(200),
 			 Fec_Nacimiento smalldatetime);

MySQL:
 		 CREATE TABLE Empleados (
 			 CI character(8) PRIMARY KEY ,
 			 Nombre varchar(100),
 			 Direccion varchar(200),
 			 Fec_Nacimiento date);

Ejemplos con constraints:

CREATE TABLE PuestosDeTrabajo(
Id_puesto	 smallint	 PRIMARY KEY,
Descripcion		 varchar(50)	 NOT NULL
	 DEFAULT ‘Nueva posición’,
Nivel_Min		 tinyint
	 NOT NULL
	 CHECK (min_lvl >= 10),
Nivel_Max		 tinyint
	 NOT NULL
	 CHECK (max_lvl <= 250)
)
Estas restricciones son a nivel de COLUMNA

CREATE TABLE Empleados (
Id_emp int	 PRIMARY KEY,
Id_puesto smallint NOT NULL ,
id_seccion smallint NOT NULL

FOREIGN KEY (Id_puesto) REFERENCES 	
PuestosDeTrabajo(Id_Puesto)
CHECK (id_seccion IN (‘1389’, ‘0736’, ‘0877’, ‘1622’, ‘1756’)
OR id_seccion LIKE ‘99[0-9][0-9]’)		
)
Contiene restricciones a nivel de COLUMNA y TABLA.

46 47

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

ALTER TABLE
Modifica la definición de una tabla. Permite:
•	Alterar, agregar o eliminar: columnas o restricciones.
•	Habilitar o deshabilitar constraints y triggers.
No puede aplicarse a tablas del sistema.

Sintaxis:
ALTER TABLE table
{ [ALTER COLUMN column_name
 { new_data_type [(precision [, scale])] [NULL | NOT NULL] }]
 | ADD { [< column_definition >]
 	 | column_name AS computed_column_expression ej: cost AS price * qty} [,...n]
	 | [WITH CHECK | WITH NOCHECK]
		 { < table_constraint > } [,...n]

WITH CHECK :
Indica si la nueva constraint será chequeda o no sobre los datos ya existentes en la tabla

(al momento de crear el constraint).

ALTER TABLE
 | DROP
		 { [CONSTRAINT] constraint_name
		 | COLUMN column } [,...n]
 | { [WITH CHECK | WITH NOCHECK] CHECK | 	 NOCHECK }

CONSTRAINT
| { ENABLE | DISABLE } TRIGGER
}

Ejemplos
•	Agregar una nueva columna:
 CREATE TABLE doc_exa (column_a INT);
 ALTER TABLE doc_exa ADD column_b VARCHAR(20) NULL ;

•	Eliminar una columna:
 CREATE TABLE doc_exb (colA INT, colB VARCHAR(20) NULL) ;
 ALTER TABLE doc_exb DROP COLUMN colB;

•	Agregar columna con restricción de integridad UNIQUE:
 CREATE TABLE doc_exc (column_a INT);
 ALTER TABLE doc_exc ADD column_b VARCHAR(20) NULL
 CONSTRAINT exb_unique UNIQUE;

Usos de ALTER
1 - Crear claves foraneas.
“La ciudad se identifica por un codigo, pero un codigo de ciudad puede repetirse en

diferentes departamentos (entidad débil Ciudad).”
CREATE TABLE DEPARTAMENTOS (
 	 IdDep int primary key,
 	 NomDep varchar(100) not null);
CREATE TABLE CIUDADES (
 	 IdDep int,
 	 IdCiud int,
 	 NomCiud varchar(100) not null
	 CONSTRAINT PK_CIUDADES PRIMARY KEY (IdDep,IdCiud));
ALTER TABLE CIUDADES ADD CONSTRAINT FK_DEPTOS
	 FOREIGN KEY(IdDep)
	 REFERENCES DEPARTAMENTOS (IdDep);

2 - Agregar una columna con valores por defecto.
WITH VALUES provee valores para las filas ya existentes en la tabla (sino cada fila que-

daría con el valor NULL).
ALTER TABLE MyTable
ADD AddDate smalldatetime NULL
CONSTRAINT AddDateDflt
DEFAULT getdate() WITH VALUES ;

3 - Agregar constraints en tablas que ya lo violan.
Se agrega una constraint para una columna existente.
Si la columna actualmente posee un valor que viola la constraint, se puede usar WITH

NOCHECK para evitar el chequeo contra las filas existentes y permitir agregar la restric-
ción de todos modos.

CREATE TABLE	 T1 (column_a INT) ;
INSERT INTO 	 T1 VALUES (-1);
ALTER TABLE 	 T1 WITH NOCHECK
ADD CONSTRAINT exd_check CHECK (column_a > 1);

DROP TABLE
•	Elimina:
	 La definición de la tabla:
	 Todos sus datos.
	 Objetos asociados: índices, triggers, constraints, especificaciones de permisos.
•	No siempre pueden eliminarse: solo cuando no existen constraints de otras tablas

hacia ella.
•	Cualquier vista o stored procedure referenciado deben ser explícitamente eliminados

antes con DROP VIEW o DROP PROCEDURE.
•	No pueden eliminarse tablas del sistema.
Sintaxis:
DROP TABLE table_name

48 49

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Comparativo: Restricciones estáticas vs. dinámicas

Consejos:
•	Usar Constraints porque son ANSI-Compliant.
•	CON CUIDADO: usar integridad referencial en cascada en lugar de Triggers (siempre

que se pueda).
•	Siempre generar SCRIPTS con los objetos de cada base, al mayor detalle posible (in-

cluir indices, restricciones, etc.).

DML – SELECT
SELECT

•	Sentencia única de consulta en bases de datos relacionales.
•	Implementación de operaciones vistas en Algebra Relacional (selección, proyección,

join, etc.).
•	Permite obtener datos de varias tablas simultáneamente.
•	Los resultados siempre serán conjuntos de tuplas: No necesariamente se devuelven en

orden.
•	La ejecución de esta sentencia NO MODIFICA dato alguno ni genera cambios en las

base.
Puede afectar el rendimiento general del DBMS si se hace descuidadamente.

Formato de la sentencia:
	 SELECT [ALL|DISTINCT] columnas deseadas
	 FROM tablas
	 [WHERE condición]
	 [GROUP BY lista-nombre-columna o lista-posición]
	 [HAVING condición de grupo]
	 [ORDER BY nombre-columna o posición]

Seleccionando todas las columnas
Ejemplo:	
SELECT * FROM SECCIONES

Seleccionando columnas específicas (proyección)
Ejemplo:	
SELECT NomEmp, Direccion FROM EMPLEADOS

Seleccionando valores únicos:
Ejemplo:	

La cláusula WHERE:
Especifica un criterio de selección de registros a ver (selección).
	 SELECT lista_de_columnas
	 FROM nombre_de_tablas
	 WHERE condición

Delimitadores
•	En Strings o Fechas, suelen ser comillas dobles o apóstrofes.
•	Se usan para delimitar los literales usados en el SELECT y evitar la confusión entre el

nombre de una columna y su contenido:
Ejemplo:
FecNacimiento = ’01/01/2001’
apellido = ‘PEREZ’
CI >= “1000000-0”

50 51

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Operadores Relacionales

DML – Uso del NULL

DML – Operadores Lógicos

IMPORTANTE:
Los operadores poseen prioridad de asociación.
•	El AND posee la más alta prioridad.
•	Si necesitamos condiciones complejas con AND y OR debemos utilizar PARÉNTESIS.

1) Listar las personas que viven en “La Paloma” (en el departamento de Rocha).
SELECT persona, nombre
FROM personas
WHERE ciudad = “La Paloma”
AND departamento = “Rocha”

2) Listar las personas que viven en Rocha o Durazno.
SELECT persona, nombre
FROM personas
WHERE departamento = “Rocha”
OR departamento = “Durazno”

3) Ejemplo combinado de AND y OR.
¿Cuáles son los títulos de las películas del estudio “MGM” que fueron filmadas luego de

1970 o cuya duración es menor a 90 minutos?
Incorrecto :
SELECT NomPelicula
FROM Peliculas
WHERE anio > 1970 OR duracion < 90 AND NomEstudio = ‘MGM’

Error: el AND tiene mayor precedencia, el compilador entiende
anio > 1970 OR (duracion < 90 AND NomEstudio = ‘MGM’)

Correcto:
SELECT NomPelicula
FROM Peliculas
WHERE (anio > 1970 OR duracion < 90) AND NomEstudio = ‘MGM’

52 53

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

DML – Más búsquedas
Buscando en un rango de valores (BETWEEN).
Dos ejemplos equivalentes:

SELECT fecha,cuenta,importe
FROM movimientos
WHERE sucursal = 1 AND
	 (importe >= 10000 AND
 	 importe <= 20000)

SELECT fecha,cuenta,importe
FROM movimientos
WHERE sucursal = 1 AND
	 importe BETWEEN 10000 AND 20000

Buscando en un conjunto de valores (IN).
Dos ejemplos equivalentes:

SELECT cliente,nombre
FROM clientes
WHERE cliente = 10052
 OR cliente = 10035
 OR cliente = 10028
 OR cliente = 10068

SELECT cliente,nombre
FROM clientes
WHERE cliente IN (10052,10035,10028,10068)

Uso del operador LIKE.

Búsquedas por caracteres
o patrones.

Búsquedas en Strings
(char, varchar, char varying, etc.)
Ejemplo: Nombres que finalizan en Pérez.

Búsquedas en Strings (char, varchar, char varying, etc.)
Nombres que terminan en Pere y el último carácter es cualquiera:

Otros ejemplos:

La cláusula ORDER BY
SELECT no devuelve los registros en algún orden preestablecido.
•	 ORDER BY indica en qué orden quiero que muestre el resultado.
•	 Pueden ser varias columnas, en ese caso se respeta el orden de izquierda a derecha.
•	 ASC o DESC indican Ascendente o Descendente, ASC es el default.

Sintaxis:
SELECT 	 campos
FROM 	 tablas
[WHERE 	 condición]
...
ORDER BY nombre-columnas o posiciones [ASC | DESC]

Ej.:

54 55

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Operadores Aritméticos
Permiten formar expresiones complejas.

Utilidad:
•	Devolver valores calculados (no incluidos en campos).
•	Expresar condiciones (en WHERE o HAVING).
•	Nuevos campos en Vistas.

Operadores:
•	+	suma.
•	 -	 resta.
•	*	 multiplicación.
•	/	 división.
•	%	módulo (resto).

Ejemplo 1
“Necesitaria ver la cotizacion de las monedas y cuánto sería si subieran todas un 5%.”

Ejemplo 2
“Quiero todos los articulos cuyo precio de compra sea menor al 80% del precio de venta”
Select *
From ARTICULOS
Where precio_compra < (precio_venta * 0.8).

Etiquetas

Los campos calculados devueltos en SELECT no poseen nombre: se les puede inventar
un nombre “on-the-fly”.

	 select moneda, cotización, ‘nueva_cotizacion’ = cotización * 1.05
	 from cotizaciones
	 where moneda <> moneda_val
	 ORDER BY nueva_cotizacion DESC

También pueden utilizarse para presentar otro nombre para el campo:
select “Codigo Articulo” = IdArt, “Nombre Articulo” = NomArt
from ARTICULOS
where ….

•	Permite recuperar información de varias tablas vinculadas lógicamente entre si.
•	Implementa la operación Join del Algebra Relacional.

Ej: “Quiero saber todos los datos de los Clientes más sus Nº de cuenta.”
Tengo las tablas:
CLIENTES (nro_cliente, nom_cliente, direccion).
CUENTAS (nro_cliente,nro_cuenta, cod_moneda).

Joins

Joins: ¿Qué son?
•	Es la implementación del Producto Cartesiano (T1 x T2) + Selección.
•	Si no se especifica una condición, el conjunto resultante no posee sentido práctico.

Aplicando la condición de Join:

El campo Nro_cliente aparece dos veces: uno por cada tabla donde aparece.
Solución:
1.	 Exponer en el SELECT solo los campos que queremos ver.
2.	 Utilizar ALIAS.

56 57

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Joins: Alias
•	Son un modo de “renombrar” las tablas para mayor comodidad.
•	Permite hacer más legible joins de varias tablas.
Ejemplo: “Listado de todos los Clientes con su Nº de cuenta y moneda.”
SELECT CLI.nom_cliente, CU.nro_cuenta, M.nom_moneda
FROM Clientes CLI, Cuentas CU, Monedas M
WHERE
 CLI.nro_cliente = CU.nro_cliente
AND CU.cod_moneda = M.cod_moneda

Sintaxis ANSI del Join

SELECT CU.*, CLI.nro_cliente, CLI.nom_cliente
FROM		 Cuentas
AS CU JOIN Clientes AS CLI
ON CU.nro_cliente = CU.nro_cliente
WHERE CLI.nom_cliente like ‘%PEREZ%’ ;
	

Equivalente más compacto:
SELECT CU.*, CLI.nro_cliente, CLI.nom_cliente
FROM 		 Clientes CLI , Cuentas CU
	 WHERE CU.nro_cliente = CU.nro_cliente
		 and CLI.nom_cliente like ‘%PEREZ%’;

Creando un JOIN:
Usualmente se desea recuperar información de más de una tabla. Por ejemplo:

•	Creación de JOINs.
1.	 Creación del Producto Cartesiano.
2.	 Refinamiento aplicando restricciones y eliminando filas sin significado relevante

incluyendo una claúsula WHERE válida.
•	Tipos:
3.	 Equi-Join, Natural-Join and Join Multi-Tabla.
4.	 Outer-Joins.
•	Información adicional en las cláusulas de la sentencia Select:
SELECT	 Indicar qué columnas se quiere seleccionar de cada una de las tablas.
FROM	 Especificar las tablas de las que se esta seleccionando informacion en la SELECT.
WHERE	 Indicar las columnas de las tablas seleccionadas que se igualarán para esta-

blecer el join.	

•	Consideraciones:
Clave Primaria (Primary Key)
Se define como el conjunto de uno o más campos de un registro que conforman su

clave, determinando la unicidad de cada fila en la tabla.
Clave Externa (Foreign Key)
Asocia los campos de una tabla con un conjunto idéntico de campos, definidos como

Clave Primaria en otra tabla. Esta asociación permite el chequeo de integridad referencial y
actualizaciones automáticas.

•	Algunas particularidades:
Primary Key – Foreign Key
Es muy común realizar joins entre tablas que se encuentran en una Relación de uno a

muchos.
Las columnas que se igualarán para establecer el join no tienen porque tener el mismo

nombre.
NOTA: Recordemos que el valor null significa sin valor o desconocido. A traves de él

no se puede hacer un join.

El orden en el que se escriben las condiciones del join no afecta el significado del mis-
mo.

Equi-Join:
Theta-Join basado en

condición de igualdad:

Equi-Join: Join en el cual la condición de selección está basada en la igualdad de valo-
res entre columnas, las que pueden aparecer como información redundante en el resulta-
do.

Obs: los nombres de las columnas en las diferentes tablas no necesariamente debe ser el
mismo.

SELECT * FROM Clientes, Cuentas
WHERE Clientes.cliente = Cuentas.cliente
¿Recupera?

Resultado con
duplicado de
información:

58 59

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

SELECT clientes.cliente, clientes.nombre,
	 cuenta, moneda, saldo
FROM clientes, cuentas
WHERE clientes.cliente = cuentas.cliente;
¿Problema?

Si el cliente No tiene cuenta, no figura en el resultado.

Un error común:
SELECT cliente, clientes.nombre, cuenta,			 	

	 moneda, saldo
FROM clientes, cuentas
WHERE clientes.cliente = cuentas.cliente;
Columna ambigua, existe en ambas tablas.

Natural Join

Natural Join es un Equi-Join en el cual una de las columnas duplicadas es eliminada de la
tabla resultante, usualmente utilizadas en la condición de Join.

SELECT 	 monedas.*, fecha, cotizacion
FROM 	 monedas, cotizaciones
WHERE 	 monedas.moneda = cotizaciones.moneda;

Resultado:
se evita la
información
redundante.

Join con muchas tablas:
SELECT clientes.nombre,
 productos.nombre, 	 	 		 	

 	 monedas.nombre
FROM clientes, cuentas, productos, monedas
WHERE cuentas.cliente = clientes.cliente AND		

 	 cuentas.producto = productos.producto AND 	
 	 cuentas.moneda = monedas.moneda

Resultado:

Los ALIAS:
SELECT	 CE.nombre cliente,
		 P.nombre producto,
		 M.nombre moneda
FROM 	 clientes CE, cuentas CU,
		 productos P, monedas M
WHERE 	 CU.cliente = CE.cliente
 AND 	 CU.producto = P.producto
 AND 	 CU.moneda = M.moneda

Resultado:

60 61

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Sintaxis ANSI del Join:
SELECT M.*, fecha, cotización
FROM	 monedas AS M JOIN cotizaciones AS C
		 ON M.moneda = C.moneda
WHERE fecha < “01/05/2002” ;

El OUTER Join:

El Join común (INNER Join) trae solamente los registros de ambas tablas que cumplan
con las condiciones del JOIN. Por ejemplo, cuando recuperamos los clientes con sus cuen-
tas NO trae los clientes sin cuentas.

Es por ello que existe el OUTER Join que trae todos los registros de la tabla principal.
Si no existen registros de la otra que cumplan la condición de Join pone sus campos en
NULO (Null) y en caso contrario los trae.

Existen tres tipos: left, right, o full, según cual se considere la tabla “dominante”.

Ejemplo de Left OUTER Join:
SELECT C.cliente, C.nombre,U.cuenta
FROM clientes C LEFTOUTER JOIN
 cuentas U ON (c.cliente = u.cliente)

Resultado Outer Join Simple:

Right Outer Join

Left Outer Join

62 63

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Full Outer Join

Nested Simple Join:
SELECT C.cliente, C.nombre, U.cuenta, P.nombre
FROM clientes C LEFT OUTER JOIN
(cuentas U JOIN productos P ON U.producto = P.producto)
 ON (C.cliente = U.cliente)

1.	 Realiza un join simple entre las tablas cuentas y productos.
2.	 Luego realiza un outer join para combinar la información con la tabla clientes.
Resultado Nested Simple Join:

Self Join

Utilidad: comparación de valores en una columna con otros valores en la misma colum-
na.

SELECT X.cod_orden, X.peso, X.fecha_envio,
	 Y.cod_orden, Y.peso, Y.fecha_envio
FROM Ordenes X, Ordenes Y
WHERE X.peso >= 5*Y.peso AND
	 X.fecha_envio IS NOT NULL AND
	 Y.fecha_envio IS NOT NULL

Resultado: Este SELECT encuentra pares de órdenes cuyo peso difiere en, por lo me-
nos, un factor de 5 y cuyas fechas de envío no son nulas.

cod_orden peso fecha_envio cod_orden peso fecha_envio
1004	 95.8 05/03/1991 1011 10.4 07/03/1991
1004	 95.8 05/03/1991 1020	 14.0 07/16/1991
1007	 125.9 06/03/1991 1015	 20.6 07/30/1991
1007	 125.9 06/03/1991 1020	 14.0 07/16/1991
1007	 125.9 06/03/1991 1022	 15.0 07/16/1991

Funciones de Agregación
Toman valores que dependen de las columnas y retornan información respecto a las co-

lumnas (no las columnas propiamente):
•	COUNT (*)
•	COUNT (DISTINCT nombre_columna)
•	SUM (columna/expresión)
•	AVG (columna/expresión)
•	MAX (columna/expresión)
•	MIN (columna/expresión)

COUNT
Devuelve la cantidad de tuplas que cumplen la condición de WHERE o HAVING.
Ejemplo 1: ¿Cuántos movimientos se han hecho en el banco?
		 SELECT COUNT (*) FROM Movimientos;
Ejemplo 2: ¿Cuántos alumnos hay Inscriptos a una materia?
		 SELECT COUNT (DISTINCT cod_alumno)
		 FROM Inscripciones;

SUM
Suma los contenidos de un campo numerico.
Ej: ¿Cuánto dinero se ha depositado en la cuenta 100101?

SELECT SUM(importe)
FROM Movimientos
WHERE importe>0 AND cuenta=100101;

Se les puede aplicar Etitquetas:
SELECT SUM(importe) AS ‘Total Depositos’
FROM Movimientos
WHERE importe>0 AND cuenta=100101;

AVG
Devuelve el promedio de los contenidos de un campo numerico.
AVG = SUM() / COUNT()
¿Cuál es el monto promedio depositado en la cuenta 100101?
SELECT AVG(importe) as Promedio
FROM Movimientos
WHERE importe>0 AND cuenta=100101;

64 65

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

MAX, MIN
Devuelven el mayor o menor valor del conjunto seleccionado.

Ej. 1: ¿Cuál fue el depósito más alto en la cuenta 100101?
SELECT MAX(importe)
FROM Movimientos
WHERE cuenta = 100101;

Ej. 2: ¿Cuál fue el depósito más pequeño en la cuenta 100101?
SELECT MIN(importe)
FROM Movimientos
WHERE cuenta=100101 AND importe>0;

Las funciones de Agregación se pueden aplicar simultáneamente.
En este caso se aplican al MISMO conjunto de tuplas.
SELECT MAX(importe), MIN(importe), AVG(importe)
FROM Movimientos
WHERE cuenta = 100101 and importe > 0;
En este ejemplo devuelve una tupla con tres campos.

Agrupamientos
GROUP BY

•	Permite agrupar los registros por un campo (o más de uno).
•	Produce un solo registro por cada grupo de registros.

Su utilidad es combinarlo con las Funciones Agregadas:
Ejemplo 1: “Quiero saber cantidad de movimientos y el importe por Cuenta.”

Ejemplo 2: “Quiero saber cantidad de personas por Departamento y luego por Ciudad.”
SELECT departamento, ciudad, COUNT(*)
FROM clientes
GROUP BY departamento, ciudad.

Nota: No necesariamente se ordenan por ese criterio.

Ordenando el GROUP BY:

Ejemplo 1: Ordenado por departamento y luego ciudad.
		 SELECT departamento, ciudad, COUNT(*)
		 FROM Clientes
		 GROUP BY departamento, ciudad
		 ORDER BY departamento, ciudad

Ejemplo 2: Ordenado por Cantidad (descendente) y luego por ciudad y departamento.
		 SELECT departamento, ciudad, COUNT(*)
		 FROM Clientes
		 GROUP BY departamento, ciudad
		 ORDER BY 3 DESC, 2, 1

IMPORTANTE:
Todas las columnas en la lista del SELECT que no estén en funciones de agregación,

deben figurar en los campos de GROUP BY.
Esto es porque el GROUP BY solo puede retornar una fila por grupo y para esas filas

se aplica la función de agregación.

HAVING

•	La claúsula HAVING usualmente complementa a GROUP BY aplicando condiciones
a los grupos (especificados por el GROUP BY) luego de que éstos están formados.

•	Ventajas: se pueden incluir funciones de agregación como condición de búsqueda,
facilidad que no está permitida en:
WHERE.

66 67

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Ejemplo:
“Quiero saber el total de dinero (por cuenta) de las cuentas > 10.000, pero solo de los

que tengan un total positivo.”

SELECT 	 cuenta, SUM(importe) AS Total
FROM	 Movimientos
WHERE 	 cuenta > 10000
GROUP BY cuenta
HAVING SUM(importe) > 0;

Ejemplo de agrupamientos:

SELECT	 cuenta,
 		 MAX(importe) Maximo,
 		 MIN (importe) Minimo,
 		 AVG(importe) Promedio
FROM 	 Movimientos
WHERE 	 cuenta > 10000
GROUP BY cuenta
HAVING 	 COUNT(*) > 2 AND 				

 		 SUM(importe) > 0

Funciones Escalares
•	Funciones de String.
•	Funciones Aritméticas.
•	Funciones de Fecha.
•	Funciones del Sistema.
Se pueden componer, siempre que se respeten los dominios de Entrada y Salida.

•	LEN
•	STR
•	SUBSTRING
•	LOWER 		
•	UPPER
•	LTRIM 	
•	CHARINDEX
•	PATINDEX 	
•	SPACE
•	CHAR 		
•	REPLICATE 	
•	REVERSE 	
•	STUFF
•	DIFFERENCE 	
•	RIGHT 	

Funciones de String

LEN (campo/valor)
Devuelve el largo del string pasado como argumento.
len(‘HOLA’) 	 Resultado : 4
len(‘’) 		 Resultado : 0

STR (valor_numerico[, largo[, pos_decimales]])
SELECT str(-165.8768, 7, 2)
Resultado: ‘-165.88’

SUBSTRING (campo/valor, posicion inicial, largo).
Devuelve un fragmento del String (parametro 1).
Los caracteres comienzan en la posición 1.
SELECT substring(“ROBERTO MARTINEZ DELGADO”,8,7).
Resultado: ‘ MARTIN’.

LOWER (<char_expr>) Devuelve el mismo string pasado a minúsculas.

UPPER (<char_expr>) Devuelve el mismo string pasado a mayúsculas.

SELECT upper(‘Bob Smith1234*&^’), lower(‘Bob Smith1234*&^’)
---------------- 	 ----------------
BOB SMITH1234*&^ bob smith1234*&^

LTRIM (<char_expr>) Remueve espacios en blanco a la izq.

SELECT ltrim(‘ valor ‘)

valor

68 69

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

CHARINDEX retorna la posición de comienzo de una determinada cadena en una
expresión, donde expresión usualmente es el nombre de una columna.

CHARINDEX (<’char_expr’>, <expression>)

SELECT charindex (‘de’, ‘Un pequeño texto de muestra’)

Resultado: 18

Funciones Aritméticas

Función	 Parámetros	 Semántica
•	ABS	 (N) Devuelve el valor absoluto de N
•	SIGN	 (N)	 Devuelve -1 si N<0 , 1 si N>0 o 0
•	CEILING (N)	 Entero inmediato siguiente a N
•	FLOOR	 (N)	 Entero inmediato anterior a N
•	EXP	 (N) 	 EXP(N) = eN

•	LOG	 (N)	 LOG(N) = Loge(N)
•	POWER (x,y) 	 POWER(x,y) = xy

•	ROUND	 (N, d) 	 Redondea N a d dígitos
•	SQRT	 (N)	 Raíz cuadrada de N
•	Trigonométricas

Funciones de Fecha
DATEPART (<date_part>, d)
	 Devuelve un componente de la fecha d: year, month, day, hour, minute, second
	 select datepart(day, getdate()) 14
	 select datepart(year, ’25/07/2009’) 2009

DATENAME (<date part>, d)
	 Devuelve el nombre de una parte de la fecha d:
	 select datename(month,’25/07/2009’) ‘July’
	 select datename(weekday,’25/07/2009’) ‘Saturday’

DATEADD (<date part>, <number>, <date>)
Suma o resta intervalos a una fecha (dias, meses, años, etc.):
select dateadd(day, 10, ’25/07/2009’) ‘4/8/2009’
select dateadd(month, 2, ’25/07/2009’) ‘25/9/2009’
select dateadd(month, -9, ’25/07/2009’) ‘25/10/2008’

DATEDIFF(<date part>, <date1>, <date2>)
Calcula diferencia entre 2 fechas (en dias , meses, años, etc):
select datediff(day, ‘25/07/2009’, ‘25/08/2009’) 31
select datediff(month, ‘25/07/2009’, ‘25/08/2009’) 1

Funciones del Sistema
Permiten obtener información del entorno.
Devuelven información del sistema, usuario, BD y objetos de la BD.
Suelen depender del DBMS.
•	 getdate(), CURRENT_DATE(), CURRENT_TIME()
	 Devuelven fecha/hora actual.
•	 host_name()
	 Nombre del equipo desde donde se conectó.
•	 db_name(), DATABASE()
	 Nombre de la base en que estamos posicionados.
•	 user_name(), CURRENT_USER()
	 Devuelve el nombre del usuario del DBMS actualmente conectado.
•	 @@VERSION, VERSION()
	 Devuelven la version del DBMS

Subqueries
•	Son sentencias SELECT anidadas dentro de otra sentencia SELECT.
•	Devuelven información a la principal y deben figurar siempre entre paréntesis.
•	Permiten implementar la operación DIFERENCIA del Algebra Relacional.
Ejemplo: “Necesito listar personas que viven en la misma ciudad que

‘CLIENTE 10010’” SELECT persona, nombre, ciudad, departamento
FROM Personas
WHERE ciudad = (SELECT ciudad
			 FROM Personas
 	 WHERE nombre = ‘CLIENTE 10010’)
Las subqueries son evaluadas primero y su(s) valor(es) son sustituido(s) en la consulta

principal.
Una subquery puede retornar:
•	Ningun valor.
	 Consecuencias: Dicha subquery es equivalente a un valor Nulo.
	 La query general no retona ningún valor.
•	Un valor.
	 Consecuencia: La subquery es equivalente a un número o valor carácter.
•	Un conjunto de valores.
	 Consecuencia: La subquery retorna o una fila o una columna.
Restricciones:
•	Solo si el subquery devuelve UN valor puede preguntarse por =.
•	Si el subquery devuelve UN campo se puede preguntar por IN.
•	En caso contrario se debe preguntar por EXISTS.
Ejemplo 1: Listar las personas que viven en la misma ciudad que ‘ JUAN PEREZ’.
SELECT persona, nombre, ciudad, departamento
FROM Personas
WHERE ciudad = (select 	ciudad
			 from 	 personas
 where 	nombre = ‘JUAN PEREZ’)

70 71

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Ejemplo 2: Listar personas que viven en la misma ciudad y departamento que ‘JUAN
PEREZ’.

SELECT persona, nombre, ciudad, departamento
FROM Personas P
WHERE EXISTS (select 	 *
			 from 	 personas P2
 	where 	 P2.nombre = ‘JUAN PEREZ’
				 and P.ciudad = P2.ciudad
				 and P.departamento = P2.departamento)

•	Correlacionadas
•	No-Correlacionadas

Correlacionadas (o inner SELECT): el valor producido por ella depende de un valor
producido por el SELECT externo. En cualquier otro caso son No-Correlacionadas.

Tipo de Subqueries

Subqueries Correlacionados
Listar los Empleados cuyo sueldo está por debajo del promedio de su Sección:
SELECT nro_emp, nom_emp, seccion, sueldo
FROM Empleados E1
WHERE sueldo < (SELECT AVG (sueldo)
			 FROM Empleados E2
 WHERE E2.seccion = E1.seccion)
ORDER BY 1, 2, 3
La subquery es ejecutada por cada fila considerada por el SELECT externo.

Negación
Permiten implementar DIFERENCIA de tablas.
Ej: Qué clientes no tienen cuentas.
	 SELECT	 *
	 FROM		 Clientes
	 WHERE	 cod_cliente NOT IN
			 (SELECT cod_cliente FROM Cuentas)
Sentencia equivalente (correlacionada):
	 SELECT	 *
	 FROM		 Clientes
	 WHERE	 NOT EXISTS
			 (SELECT *
			 FROM Cuentas
			 WHERE Cuentas.cod_cliente = Clientes.cod_cliente)

Se utiliza NOT EXISTS cuando se desea evaluar un NOT IN con más de una columna.

Ej: “Movimientos para los cuales no se ha ingresado una cotización aun (están en tabla
MOVIMIENTOS pero NO en COTIZACIONES).”

SELECT M.id_mov, M.fecha, M.cuenta, C.moneda
FROM movimientos M, cuentas C
WHERE M.cuenta = C.cuenta
 AND NOT EXISTS
		 (SELECT *
		 FROM Cotizaciones COT
		 WHERE COT.moneda = C.moneda
		 AND COT.fecha = M.fecha)
ORDER BY 1, 2, 3

Uso en HAVING
Se pueden utilizar en la cláusula HAVING para mayor expresividad.
“Clientes con un saldo en plazo fijo igual al más alto de todos los plazos fijos.”
SELECT cliente, sum(saldo)
FROM Cuentas
WHERE producto = 3 and moneda = 1
GROUP BY cliente
HAVING sum (saldo) = (SELECT max (saldo)
			 FROM cuentas
			 WHERE producto = 3 AND
					 moneda = 1)

UNION
•	Combina múltiples consultas en una sola.
•	Facilita ordenamiento no posible con una consulta simple.
•	UNION : Operador que une el resultado de dos o más Consultas en una Consulta Simple.
Dos tipos:
UNION: Excluye los resultados repetidos de las consultas unidas.
UNION ALL: Incluye TODAS las tuplas de las consultas unidas (aún con repetición).

Sintaxis:	 SELECT lista de columnas
		 FROM tablas
		 [WHERE condicion]
		 UNION [ALL]
		 SELECT lista de columnas
		 FROM tablas
		 [WHERE condicion]
		 [Order By lista de columnas]

Condiciones y Requisitos:
•	La cantidad de columnas en cada sentencia SELECT debe ser la misma.
•	El tipo de datos de cada columna entre los dos SELECT’s debe coincidir. No se exige

que sea la misma columna, ni siquiera que posea el mismo nombre.
•	Si deseo ordenar la salida, debo ubicar la sentencia ORDER BY al final de la consulta.

Referencio las columnas por sus posiciones.

72 73

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Ejemplo:		 SELECT unique cuentas.cuenta, cuentas.producto
			 FROM movimientos, cuentas
			 WHERE movimientos.cuenta = cuentas.cuenta
	 			 and sucursal = 4
	 			 and importe > 3000000
			 UNION
			 SELECT unique cuentas.cuenta, cuentas.producto
			 FROM cuentas, cuentas_intereses
			 WHERE cuentas.cuenta =cuentas_intereses.cuenta
 			 and cuentas_intereses.interes = 0;

Ejemplos Válidos:
1)	 SELECT	 cod_cliente, nro_cuenta, cod_moneda, ‘Cliente 102’ as Grupo
	 FROM 	 Cuentas
	 WHERE	 cod_cliente = 102
	 UNION
	 SELECT	 cod_cliente, nro_cuenta, cod_moneda , ‘Euros’ as Grupo
	 FROM 	 Cuentas
	 WHERE	 cod_moneda = 3 and cod_cliente <> 102
	 ORDER BY 3,1,2
2)	 SELECT	 E.id_persona, P.nombre
	 FROM 	 Personas P, Empleados E
	 WHERE 	 P.id_persona = E.id_persona
	 UNION
	 SELECT 	 C.cod_cliente, P.nombre
	 FROM 	 Personas P, Clientes C
	 WHERE 	 P.id_persona = C.id_persona

Ejemplos Incorrectos:
1)	 SELECT	 cod_cliente, fec_apertura
	 FROM 	 Cuentas
	 WHERE	 cod_cliente = 102
	 UNION
	 SELECT	 cod_cliente, nro_cuenta
	 FROM 	 Cuentas
	 WHERE	 cod_moneda = 3 and cod_cliente <> 102
2)	 SELECT	 E.id_persona, P.nombre, E.fec_ingreso
	 FROM 	 Personas P, Empleados E
	 WHERE 	 P.id_persona = E.id_persona
	 UNION
	 SELECT 	 C.cod_cliente, P.nombre, ???????
	 FROM 	 Personas P, Clientes C
	 WHERE 	 P.id_persona = C.id_persona

Modificación de Datos (INSERT, UPDATE, DELETE)
INSERT

Única forma de agregar nuevos registros a una tabla.
Se pueden insertar valores NULL explícitamente, siempre que la definición de la colum-

na lo permita.
Dos variantes:
1.	 INSERT con valores explícitos (una tupla a la vez).
2.	 INSERT con valores tomados de otra tabla.
En ambos tipos se pueden especificar los campos EXPLICITAMENTE o NO:
INSERT INTO T ……
INSERT INTO T (campo1, campo2, ……) ……..
Se recomienda poner siempre los campos a insertar EXPLÍCITAMENTE.

INSERT Tipo 1: Valores dados explícitamente.
Sintaxis:
INSERT INTO <tabla> [(columnas)] VALUES (v1, v2,… , vn).
Ej: (2 modos equivalentes de escribirlo):
1.	 Tabla : EMPLEADOS(nro_emp, nombre, direccion).
 INSERT INTO EMPLEADOS VALUES (1,’Juan’,’Colonia 6499’);
2.	 INSERT INTO EMPLEADOS(nro_emp, nombre, direccion)
 VALUES (1,’Juan’,’Colonia 6499’);

INSERT Tipo 2: Trayendo datos de otra tabla
Si una sola tupla fallara no se insertá NINGUNA: es una sola sentencia.
Sintaxis :
INSERT INTO <tabla> [(columnas)] SELECT <campos> FROM …..
Ej: INSERT INTO MovCta545 (fecha, sucursal, importe)
 SELECT fecha, sucursal, importe
 FROM movimientos
 WHERE cuenta = 545;

74 75

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

UPDATE
Actualiza datos de una Tabla.
Sintaxis:
	 UPDATE <tabla>
	 SET <campo1> = <valor1>, <campo2> = <valor2>, ….. ,
 	 <campoN> = <valorN>
	 [WHERE <condicion>]
IMPORTANTE:
1.	 Si no se especifica WHERE el cambio se aplica a TODA LA TABLA.
2.	 Si el WHERE no es por un campo clave se corre el riesgo de actualizar tuplas que no

se deseaba.
3.	 El UPDATE puede fallar si:
		 a) Se intentan asignar valores NULL a columnas que no lo permiten.
		 b) Se violan CHECKS.
		 c) Se viola una PRIMARY KEY.

Ejemplo 1:
	 UPDATE EMPLEADOS
	 SET nombre = ‘Juan Martínez’, direccion = ’Colonia 6401’
	 WHERE nro_emp = 1;
Modifica nombre y dirección del empleado con codigo = 1

Ejemplo 2:
	 UPDATE EMPLEADOS
	 SET direccion= ‘Mercedes 3423’
	 WHERE nombre like ’%Perez%’
Atención: modifica TODOS los Perez, pueden modificarse más de los que deseábamos.
Sugerencia: hacer antes un SELECT COUNT(*) …. .

Ejemplo 3:
	 UPDATE EMPLEADOS
	 SET direccion = ’’
Deja en blanco TODAS las direcciones de la tabla EMPLEADOS.

Variante: UPDATE con subquery relacionado.
Ejemplo:
Recalcular el saldo de todas las cuentas.
	 UPDATE Cuentas
		 SET saldo = (SELECT SUM (importe)
				 FROM Movimientos
				 WHERE Cuentas.cuenta = Movimientos.cuenta
)

DELETE
Elimina filas de una Tabla.
•	Al igual que UPDATE se debe especificar con WHERE cuales tuplas se desean borrar.
•	Puede fallar si se violaran restricciones de integridad.
Caso típico: se borran tuplas de tabla referenciada por FOREIGN KEYS desde otras.
Si ese fuera el caso no se borra NINGUNA tupla.
Sintaxis:
 DELETE FROM <tabla> WHERE <condicion>

Ejemplos:
1) DELETE FROM Clientes WHERE cliente = 10001;
2) DELETE FROM Empleados;
		 Borra el contenido de TODA la tabla Empleados.
3) Quiero eliminar las personas del departamento de MALDONADO.
		 DELETE FROM Personas
		 WHERE departamento LIKE “M%O”;
Atención: No se usó la Clave primaria y obtengo:

Hemos eliminado también los clientes de “MONTEVIDEO”.

Modelos de Datos y DBMS
Modelos de Datos:

¿QUÉ SON?
Lenguajes usados para especificar BDs.
Un Modelo de Datos permite expresar:
•	Estructuras
	 Objetos de los problemas:
	 Por ejemplo: CURSOS(nro_curso, nombre, horas).
•	Restricciones
	 Reglas que deben cumplir los datos.
	 Por ejemplo: () (c.horas < 120)
•	Operaciones.
	 Insertar, borrar y consultar la BD.
	 Por ejemplo: Insert into CURSOS (303,”BD”,90).

CLASIFICACIÓN
Según el nivel de abstracción:
•	Conceptuales
	 Representan la realidad independientemente de cualquier implementación de BD.
	 Usado en etapa de Análisis.

76 77

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

•	Lógicos
	 Implementados en DBMSs.
	 Usado en etapas de Diseño e Implementación.
•	Físicos
	 Implementación de estructuras de datos.
	 Ej.: Arboles B, Hash.

APLICACIÓN

Esquema de una BD:
•	Tipos de datos existentes.
	 Por ejemplo:
		 CURSOS(nro_curso, nombre, horas).
		 ESTUDIANTES(CI, nombre, fecha_nacimiento).
		 TOMA_CURSO(nro_curso, CI).
•	Muy estables.

Instancia de una BD
•	Datos almacenados.
•	Muy volátiles.

Arquitectura lógica de DBMS
Propiedades importantes de DBMSs:
•	Control global único de la BD.
•	Separación entre esquema y aplicaciones.
	 Esquema: visión global de los datos de la realidad.
	 Aplicaciones: programas sobre la BD.
•	Soporte a diferentes visiones de los datos.
	 Usuarios/aplicaciones ven subconjuntos de la BD.
•	Independencia de datos.
	 Esquema lógico independiente de implementación.

ARQUITECTURA EN TRES NIVELES

Independencia de datos
•	Independencia Lógica.
	 - Independencia entre especificaciones de nivel Lógico y Externo.
	 - Cambiar partes de esquema lógico sin afectar a los esquemas externos o a las
 aplicaciones.
•	Independencia Física.
	 - Independencia entre especif. de nivel Lógico y Físico.
	 - Cambiar implementaciones sin afectar esq. Lógico.

Lenguajes e Interfaces en ambientes BD
•	Provistos por DBMS:
	 - Definición de esquema:
		 - VDL (o SSDL) - View Definition Language.
		 - SDL - Storage Definition Language.
		 - DDL - Data Definition Language.
			 - Suele englobar estos tres lenguajes.
	 - Manipulación de la BD:
		 - DML - Data Manipulation Language.
			 - Modificaciones en instancias.
		 - QL - Query Language.
			 - Subconjunto del DML, sólo para consultas.

•	Tipos de QL:
	 - Declarativos.
		 - Se especifica qué propiedad cumplen los datos.
		 - No se especifica cómo se recuperan de la BD.
		 - Suelen recuperar conjuntos de items (registros).
		 - Es el DBMS que define el plan de ejecución.
	 - Procedurales.
		 - Se especifica un algoritmo que accede a estructuras del esquema lógico y

recupera los datos ítem por ítem (registro a registro).

78 79

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

•	Lenguajes de programación:
	 - Lenguajes host (anfitrión):
		 - Lenguajes de uso general (C, COBOL, etc.) en el cual se embeben sentencias
	 de DML.
		 - Se tiene un pre-procesador que traduce el programa con DML embebido en 	

		 un programa puro.
		 - PROBLEMAS: impedance-mismatch.
	 - Lenguajes 4GL:
		 - Lenguajes procedurales orientados a acceso a BDs.
		 - Conexión privilegiada con DMLs, reduce el impedance-mismatch.

•	Interfaces especializadas:
	 - Interfaces gráficas de consulta.
		 - Se visualizan las estructuras en forma gráfica.
		 - Resultados como gráficas (torta, lineas, etc.).
	 - Interfaces de Lenguaje Natural.
		 - Se procesan frases y se traducen al QL.
	 - Interfaces para Administración.
		 - Ambientes especializados.

ESTRUCTURA DE DBMS

Diferentes tipos de DBMS
•	Según el Modelo de Datos:
	 - Relacional.
	 - Orientado a Objetos.
	 - Otros: Redes, Jerárquico, Deductivo, ...
•	Según el porte:
	 - Desktop (escritorio) / mono-usuario.
	 - Servidor / multi-usuario.
•	Según distribución de la BD:
	 - Centralizado.
	 - Distribuido.

RESUMEN DE LOS ELEMENTOS DE BASES DE DATOS

MODELOS DE DATOS

Calidad de Esquemas Conceptuales
Para asegurar la calidad de los esquemas conceptuales se define un conjunto de propie-

dades que se deben chequear durante y al final de su desarrollo:

•	Completitud
Un esquema es completo cuando representa todas las características relevantes del
problema.
	 Chequeo:
		 - Controlar que todos los conceptos del problema estén representados en 	

		 alguna parte del esquema.
		 - Controlar que todos los requerimientos sean realizables con el esquema.
		 - Leer el resultado y compararlo con la descripción original.

80 81

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

•	Correctitud
	 Hay dos tipos:
		 - Sintáctica: Habla de la forma en que se especifica el esquema con respecto 	

		 al lenguaje usado para hacer esa especificación.
		 - Semántica: Habla de la forma en que la especificación representa el
		 problema.

Correctitud Sintáctica:
Un esquema es correcto sintácticamente cuando las distintas partes de éste están
construidas correctamente con respecto al lenguaje utilizado.
Ej.: Las agregaciones se construyen sobre una relación, no sobre dos entidades
cualesquiera u otra cosa.

Chequear:
- Existencia de cardinalidades en cada relación.
- Existencia de atributos determinantes en cada entidad. Si no existen, entonces verificar
 que sea entidad débil con respecto a otra.
- Existencia de una y sólo una relación y todas las entidades que intervienen en la misma
 dentro de cada agregación.

Correctitud Semántica:
Un esquema es correcto semánticamente si cada elemento del problema se representa
utilizando estructuras adecuadas.
	 - Chequear o Responder para cada concepto del problema (de la realidad):
		 - ¿Atributo o Entidad o Relación?
		 - ¿Una sola categoría de entidades o más de una?
		 - ¿Una Relación es binaria o múltiple?
		 - ¿Cuál es el mecanismo de determinación del conjunto de entidades?
		 - Las cardinalidades y totalidades, ¿tienen sentido?
	 - En general: la representación, ¿tiene sentido con respecto a la realidad?

Minimalidad:
Un esquema es minimal si cualquier elemento de la realidad aparece sólo una vez en el
esquema.
	 - Chequear:
		 - Donde está representado en el esquema cada elemento de la realidad.
		 - A qué elemento de la realidad corresponde cada elemento del esquema.
		 - Controlar atributos calculados.

Expresividad:
Un esquema es expresivo si representa la realidad en una forma natural que puede ser
fácilmente comprensible usando sólo la semántica del modelo.

Explicitud:
Un esquema es explícito si no utiliza más formalismos que el diagrama E-R.

Resumen:
Hay cinco propiedades fundamentales a controlar:
	 - Completitud
	 - Correctitud
	 - Minimalidad
	 - Expresividad
	 - Explicitud
Para las tres primeras propiedades se definieron criterios elementales de Chequeo.
Todas las propiedades se deben balancear, buscando un buen diseño:
	 - Hay que buscar esquemas completos y correctos, minimales, expresivos y
	 explícitos.

82 83

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Diseño de Base de Datos Relacional
Pautas informales para el diseño.
	 Cuatro medidas informales de la calidad:
		 – Semántica de los atributos.
		 – Reducción de los valores redundantes en las tuplas.
		 – Reducción de los valores nulos en las tuplas.
		 – No generación de tuplas erróneas.

•	Semántica de los atributos:
 Ejemplos:

Pauta 1:
Diseñe un esquema de relación de modo que sea fácil explicar su significado. No combi-

ne atributos de varios tipos de entidades y tipos de vínculos en una sola relación.

•	Reducción de los valores redundantes:
 	 Información redundante en las tuplas.

	 Anomalías de actualización:
		 – Anomalías de inserción.
		 – Anomalías de eliminación.
		 – Anomalías de modificación.
Pauta 2
Diseñe los esquemas de las relaciones de modo que no haya anomalías de inserción, 	

 eliminación o modificación en las relaciones. Si hay anomalías señálelas con claridad 	
 a fin de que los programas que actualicen la BD operen correctamente.

•	Valores nulos en las tuplas
	 Posibles problemas:
		 – Desperdicio de espacio.
		 – Dificultad para entender el significado.
		 – Aplicación de funciones agregadas (count,sum).
		 – Múltiples interpretaciones.
Pauta 3
Hasta donde sea posible, evite incluir en una relación atributos cuyos valores pueden ser
nulos. Si no es posible, asegúrese de que se apliquen solo en casos excepcionales y no a
la mayoría de las tuplas de una relación.

84 85

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

•	Tuplas erróneas
	 Ejemplo 1: Se aplica proyección a EMP-PROY.

	 Ejemplo 2: Se aplica join natural a EMP-PROY1 y LUGARES-EMP.

Pauta 4
Diseñe los esquemas de modo que puedan reunirse por condición de igualdad sobre 	

 atributos claves, para garantizar que no se formen tuplas erróneas.

Resumen
	 Problemas a evitar:
		 – Anomalías en insercion, modificacion y eliminacion de tuplas por
		 redundancia.
		 – Desperdicio de espacio y dificultad para operaciones por valores nulos.
		 – Generación de datos erróneos por joins hechos relacionando mal las
		 relaciones.
	 Entonces se presentarán…
		 – Conceptos y teorías formales para detectar y evitar estos problemas.

Dependencias Funcionales
Definición:

Ejemplo 1 – Deducir atributos y dfs.

•	Clausura de F - F+
	 Definición:
		 F - conjunto de dfs que se especifican sobre el esquema relación R.
		 F+ - conjunto de todas las dfs que se cumplen en todas las instancias que

satisfacen a F.
	 Inferencia de dfs
	 Ejemplo:

86 87

B
as

e
de

 d
at

os
B

ase de datos
ÍNDICE

Reglas de inferencias para las dfs:

88

B
as

e
de

 d
at

os
ÍNDICE

91

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Estructura de los
sistemas de computación

6. Arquitectura del Computador
y Sistemas Operativos

Ing. Pablo Gestido

92 93

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

94 95

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

96 97

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

98 99

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

100 101

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

102 103

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

104 105

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Estructura de los
sistemas operativos

106 107

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

108 109

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

110 111

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

112 113

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

114 115

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Introducción a procesos

116 117

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

118 119

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

120 121

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Procesos

122 123

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

124 125

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

126 127

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Planificación

128 129

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

130 131

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

132 133

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

134 135

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Administración de memoria I

136 137

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

138 139

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

140 141

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

142 143

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Administración de memoria II

144 145

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

146 147

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

148 149

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

150 151

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

152 153

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Concurrencia

154 155

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

156 157

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

158 159

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

160 161

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

162 163

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

164 165

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

166 167

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Subsistema de entrada-salida

168 169

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

170 171

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

172 173

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

174 175

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

176 177

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Estructuras de dispositivos masivos de datos

178 179

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

180 181

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

182 183

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

184 185

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

186 187

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

Sistema de archivos

188 189

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

190 191

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

192 193

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

194 195

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

A
rquitectura del C

om
putador y Sistem

as O
perativos

ÍNDICE

196

A
rq

ui
te

ct
ur

a
de

l C
om

pu
ta

do
r y

 S
is

te
m

as
 O

pe
ra

tiv
os

ÍNDICE

199

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

8. Taller de Formación para sistemas
de Información geográficos

Ing. Bruno Rienzi
Ing. Flavia Serra
Ing. Raquel Sosa

OGC Web Services

1.1 Introducción

A medida que el análisis de datos geográficos se ha ido convirtiendo en una actividad
necesaria dentro de múltiples disciplinas, también se ha ido incrementando la necesidad de
compartir e intercambiar esos datos. Los estándares elaborados por el Open Geospatial Con-
sortium (OGC) [1] son un elemento fundamental para que los desarrolladores puedan crear
software que permita a los usuarios acceder y procesar datos geo-espaciales de múltiples y
heterogéneas fuentes utilizando un conjunto de interfaces genéricas.

Los servicios Web del OGC, denominados por su sigla OWS, están definidos utilizando
principios fundamentales de una arquitectura orientada a servicios (Service Oriented Ar-
chitecture, SOA). Dentro de esta arquitectura, podemos definir los conceptos de servicio,
interfaz y operación de la siguiente manera:

•	Un servicio es una funcionalidad que ofrece una entidad a través de interfaces.
•	Una interfaz es un conjunto de operaciones que caracterizan el comportamiento de una

entidad.
•	Una operación es la especificación de una transformación o consulta que un objeto es

capaz de ejecutar. Cada operación se caracteriza por su nombre y su lista de parámetros.
Los OWS han sido definidos en base a estándares de Internet no propietarios tales como

HTTP [2], URL, tipos MIME [4] y XML [3]. Más recientemente, los OWS han comenzado
a definirse utilizando también otros estándares más específicos de los Web services empre-
sariales tales como WSDL (Web Service Description Language) y SOAP, aunque aún no se
han convertido en estándares.

Dentro de los estándares de Web services definidos por OGC encontramos:
•	Web Map Service (WMS), que permite la creación y visualización de mapas en base a

superponer capas geográficas provenientes de múltiples fuentes remotas. [8]
•	Web Feature Service (WFS), que permite que un cliente reciba y actualice datos geo-

espaciales codificados en el lenguaje GML (Geography Markup Language) desde múltiples
fuentes remotas. [6]

•	Web Coverage Service (WCS), que permite a un cliente acceder a cierta parte de una
capa raster ofrecida por el servidor (codificada en algún formato de imagen binario).

•	Catalogue Service for the Web (CSW), que define interfaces para descubrir, navegar y
consultar metadata sobre datos, servicios y otros recursos potenciales.

Por otro lado, también se están definiendo OWS para aplicaciones de mercado masivo
utilizando Web Services REST basados en GeoRSS y KML, por ejemplo. Estas aplicaciones
tienen el propósito de ampliar el uso de tecnologías basadas en la localización geográfica para
el público en general.

El lenguaje KML [5] define una gramática XML para codificar y transportar represen-
taciones de datos geográficos para desplegar en un navegador terráqueo, tal como Google
Earth ¡Error! No se encuentra el origen de la referencia. El lenguaje KML fue entregado a
OGC por parte de la empresa Google para ser estandarizado y extendido.

200 201

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

GeoRSS (Geographically Encoded Object for RSS feeds) es una propuesta para etiquetar
RSS con información que permita la localización geográfica.

Los Web services son considerados clave para la implementación de arquitecturas orien-
tadas a servicios (SOA), ya que estos permiten alcanzar un alto grado de interoperabilidad
entre aplicaciones con una complejidad menor a la de otras alternativas. Los Web services
están basados en protocolos para descubrimiento, descripción y llamadas remotas a servicios,
así como en los conocidos protocolos como HTTP y TCP/IP.

Una posible división en estándares de Web services, para los propósitos de este documen-
to, puede ser la siguiente:

•	SOAP: Estándares WS-*: los más utilizados (especialmente en aplicaciones B2B).
•	POX (Plain Old XML): Muy utilizados en Internet, similares a los REST.
•	REST (Representational State Transfer): API simples, muy utilizados en sitios de e-

commerce.
Otros estándares de Web services basados en SOAP son los llamados Web services de

segunda generación como, por ejemplo, WS-Security y BPEL (Business Process Execution
Language).

Los Web services POX utilizan HTTP como protocolo de transferencia, con un conte-
nido en XML, cuyo esquema y semántica conocen los dos hosts. Los OWS que se analizan
en detalle en este documento son un ejemplo de este tipo, aunque un OWS no siempre debe
soportar XML, ya que también existen variante con codificación KVP, como se verá a con-
tinuación.

Los OWS, al tener una interfaz estandarizada, permiten que sean implementados por
clientes y servidores sin tener que programar cada Web Service individualmente, como su-
cede con Web Services SOAP. Es así que los servidores de mapas, tales como MapServer
o GeoServer, permiten publicar datos geográficos mediante estándares tales como WMS o
WFS, y clientes como gvSIG u OpenLayers pueden consumirlos. El usuario solo debe con-
figurar las capas geográficas que se publican y consumen.

1.2 Implementación sobre HTTP.

La Plataforma para Computación Distribuída (DCP, Distributed Computing Platform) a
la que hacen referencia los estándares de OGC es concretamente la red de hosts en Internet

que soportan el protocolo HTTP (Hypertext Transfer Protocol), es decir, la World Wide
Web (WWW). De esta manera, todo recurso online (Online Resource) es especificado me-
diante una URL HTTP (definido en el IETF RFC 2616).

HTTP soporta dos métodos para realizar solicitudes al servidor: GET y POST. Los OWS
deben soportar obligatoriamente el método GET. El método POST es obligatorio para WFS
pero opcional para WMS.

Cada protocolo OGC posee sus parámetros específicos y los valores válidos para cada
parámetro.

HTTP GET

Un URL válido para la operación GET es un prefijo de URL al que se le concatenan
parámetros. Un prefijo de URL (según el IETF RFC 2396) es una cadena de caracteres for-
mada por el protocolo (ej. http o https), el nombre de host o dirección, el número de puerto
(opcional; cada protocolo tiene su well-known port que se usa por defecto si no se especifica
uno), un camino (path) y el signo de interrogación (?), seguidos opcionalmente de una lista
de parámetros. La lista de parámetros se forma mediante parejas nombre/valor en la forma
“nombre1=valor1&nombre2=valor2&…”.

Cuando se utiliza el método GET, la codificación de la solicitud se realiza mediante KVP
(Keyword-Value Pair), lo que permite construir la lista de parámetros del URL.

Ejemplo: “REQUEST=GetCapabilites”, en donde REQUEST es la keyword o palabra
clave y GetCapabilities el valor.

HTTP POST.

Un URL válido para la operación POST es un URL completo (no solamente un prefijo de
URL, como en el caso de GET) al que los clientes envían solicitudes codificadas en el cuerpo
del documento POST.

Cuando se utiliza el método POST, la codificación de la solicitud se realiza mediante el
lenguaje XML (Extensible Markup Language) y no se agregan parámetros al URL.

1.3 Operación GetCapabilities

La operación GetCapabilities es soportada por todos los OWS y permite que el cliente
conozca las capacidades del servidor, es decir, mediante esta operación se obtiene la metadata
del servicio (ej. datos que posee, formatos que soporta, valores admitidos de los parámetros,
etc.). De esta forma es posible hacer un “binding” entre un cliente y el servidor que posea la
información que necesita ese cliente.

Los parámetros de una solicitud de esta operación son:
•	Service: el tipo de servicio que se desea (ej. WMS). Un mismo servidor puede soportar

varios servicios.
•	Request: el nombre de la operación (GetCapabilities, en este caso).
•	Version: el número de versión del protocolo que se está consultando. Las versiones

tienen el formato x.y.z. AcceptVersions: versiones del protocolo que soporta el cliente, en
orden de preferencia. El cliente y el servidor negocian la versión del protocolo. El servidor

202 203

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

elige una versión dentro del AcceptVersions y se la envía al cliente. Si no soporta ninguna de
las versiones, envía una excepción.

•	Sections: secciones de la metadata del servicio que se deben incluir en la respuesta (Ser-
viceIdentification, ServiceProvider, OperationsMetadata, Contents, All).

•	UpdateSequence: permite que el cliente averigüe si su caché es consistente con el ser-
vidor.

•	AcceptFormats: formatos de respuesta (tipos MIME) que soporta el cliente, en orden
de preferencia. Por omisión es “text/XML”.

Ejemplo de GetCapabilities en KVP:
http://hostname:port/path?SERVICE=WCS&REQUEST=GetCapabilities&ACCEP

TVERSIONS=1.0.0,0.8.3&SECTIONS=Contents&UPDATESEQUENCE=XYZ123&
ACCEPTFORMATS=text/xml

Ejemplo de GetCapabilities en XML:
<?xml version=”1.0” encoding=”UTF-8”?>
<GetCapabilitiesxmlns=”http://www.opengis.net/ows/1.1” xmlns:ows=”http://www.
opengis.net/ows/1.1” xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/ows/1.1 fragmentGetCapabilitiesRequest.
xsd” service=”WCS” updateSequence=”XYZ123”>
<AcceptVersions><Version>1.0.0</Version><Version>0.8.3</Version></AcceptVer-
sions>
<Sections><Section>Contents</Section></Sections>
<AcceptFormats><OutputFormat>text/xml</OutputFormat></AcceptFormats>
</GetCapabilities>

2 Web Map Service (WMS)

2.1 Introducción

Un Web Map Service (WMS) es un servicio que proporciona una interfaz HTTP simple
para obtener un mapa georreferenciado creado dinámicamente a partir de información geo-
gráfica proveniente de una o varias fuentes de datos distribuidas. Dentro de este estándar, se
entiende como “mapa” a una representación de la información geográfica en forma de un
archivo de imagen digital (Ej. PNG, GIF, JPEG, SVG, etc.). A continuación de analizan en
detalle todas las operaciones que comprende este protocolo.

2.2 Operaciones

WMS define dos operaciones obligatorias (GetCapabilities y GetMap) y una operación
opcional (GetFeatureInfo). Una secuencia posible de envío de mensajes entre el cliente y el
servidor WMS puede verse en la Figura 2.

2.2.1 GetCapabilities

Esta operación permite obtener las capacidades del servicio. Concretamente, obtiene la
metadata que describe el contenido de la información que provee el servicio, así como los
valores admitidos de los parámetros con los que se realizan las solicitudes.

2.2.1.1 Solicitud

2.2.1.1.1 SERVICE

Indica el tipo de servicio (dentro de los varios tipos que puede brindar un servidor) que
se va a utilizar. En este caso, se pasa el valor “WMS” para este parámetro.

2.2.1.1.2 REQUEST

Indica el nombre de la operación (dentro de las operaciones que definen el servicio espe-
cificado en el parámetro SERVICE) que se va a invocar. En este caso, se pasa el valor “Get-
Capabilities” para este parámetro.

2.2.1.1.3 FORMAT

Indica el formato (tipo MIME) en el que se desee recibir la respuesta. El valor por defecto
es text/xml.

204 205

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

2.2.1.1.4 UPDATESEQUENCE

Permite que el cliente averigüe si su cache es consistente con el servidor.

2.2.1.1.5 VERSION

Permite negociar la versión del protocolo a utilizar entre el cliente y el servidor. La versión
del protocolo WMS, que abarca el esquema XML y la codificación de las solicitudes, está
determinado por tres enteros positivos en el rango de 0 a 99 separados por puntos (x.y.z). La
versión actual, por ejemplo, es la 1.3.0. La negociación de la versión entre cliente y servidor
se realiza mediante una conversación solicitudes GetCapabilites y respuestas del servidor.

2.2.1.2 Respuesta

La respuesta de la solicitud GetCapabilites es un documento XML conforme al esquema
XML de la versión negociada entre el cliente y el servidor. El documento contiene un ele-
mento raíz WMS_Capabilities en el namespace http://www.opengis.net/wms.

2.2.1.2.1 Service

La primera parte de la metadata está constituida por un elemento <Service> que propor-
ciona los datos generales del servicio. Los datos obligatorios son Name, Title y OnlineResou-
rce. Los datos opcionales son Abstract, Keyword, List, Contact Information, Fees, Access
Constraints y límites en la cantidad de capas que puede componer en un mapa, o límite en el
tamaño del mapa retornado.

•	Name
El elemento Name indica el nombre del servico, que en este caso es siempre “WMS”.
•	Title
El elemento Title es un título que permita describir al proveedor.
•	OnlineResource
El elemento OnlineResource permite referir al sitio Web del proveedor del servicio.

2.2.1.2.2 LayerLimit

El elemento <LayerLimit> es un entero positivo que indica la cantidad máxima de capas
que pueden solicitarse en una operación GetMap (Ver 2.2.2.1.3).

2.2.1.2.3 MaxWidth y MaxHeight (opcionales)

Los elementos <MaxWidth> y <MaxHeight> indican el tamaño máximo en pixeles del
mapa que se puede solicitar mediante los parámetros WIDTH y HEIGHT de la operación
GetMap (ver 2.2.2.1.8).

2.2.1.2.4 Capability

El elemento <Capability> enumera las operaciones que son soportadas por el servidor,
los formatos de respuesta de esas operaciones y el prefijo de URL de cada una.

2.2.1.2.5 Layer

La información geográfica ofrecida por un WMS está organizada en capas o “layers”: cada
capa es descripta individualmente por su propia metadata. Los clientes realizan las solicitudes
de un mapa en base a estas capas. Cada servicio debe proporcionar al menos un elemento
<Layer>. Si bien cada capa representa una entidad diferente, los elementos <Layer> se or-
ganizan en forma jerárquica (cada <Layer> puede tener otros <Layer> hijos). Esto permite
que los elementos hijos “hereden” propiedades de su elemento padre y así se reduzca el
tamaño de la metadata necesaria.

•	Title

El elemento <Title> es un título que describe a la capa. No es heredado por los hijos.

•	Name

El elemento <Name> es un nombre de la capa que puede ser utilizado como parámetro
LAYERS de la operación GetMap. Si una capa posee un título pero no un nombre, entonces
actúa solo como una agrupación formal de las capas anidadas, y no debería ser solicitada por
los clientes. Las capas con hijos también pueden poseer un nombre. En este caso, obtener la
capa por su nombre equivale a obtener todas las subcapas juntas. El elemento <Name> no
se hereda de padres a hijos.

•	Abstract

El elemento opcional <Abstract> contiene una descripción de la capa.

•	KeywordList

El elemento opcional <KeywordList> posee una secuencia (eventualmente vacía) de ele-
mentos <Keyword> con palabras clave para ser utilizadas en búsquedas de catálogos.

•	Style

El elemento <Style> permite definir un posible estilo de presentación de una capa. Den-
tro de los sub-elementos cabe destacar <LegendURL> que contiene la URL de la leyenda
que corresponde a dicho estilo.

206 207

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

•	EX_GeographicBoundingBox

El elemento <EX_GeographicBoundingBox> define el rectángulo mínimo en grados
decimales del area abarcada por la capa. Las coordenadas se definen mediante los elementos
<westBoundLongitude>, <eastBoundLongitude>, <southBoundLatitude> y <northBoun-
dLatitude>. Si la capa no se encuentra en coordenadas geográficas, las coordenadas de este
rectángulo pueden no ser exactas, ya que sólo se busca facilitar las búsquedas geográficas sin
exigir que el motor de búsqueda deba realizar transformaciones de coordenadas.

•	CRS

El elemento <CRS> de una capa define el sistema de referencia coordenado (Coordinate
Reference System) de la capa. Cada capa debe incluir todos los CRS que son comunes a la
capa y a todas sus sub-capas.

•	BoundingBox

El elemento <BoundingBox>, define el rectángulo mínimo que contiene la capa, al igual
que <EX_GeographicBoundingBox>, pero a diferencia del anterior, las coordenadas se
especifican en un determinado CRS. El EX_GeographicBoundingBox puede verse como
un BoundingBox en el atributo CRS=”CRS:84” está implícito. Sin embargo, el elemento
<EX_GeographicBoundingBox> no debe utilizarse como sustituto de <BoundingBox
CRS=”CRS:84”> ya que sirven a propósitos diferentes.

Los atributos de un BoundingBox son el CRS, las coordenadas (minx, miny, maxx, maxy)
en las unidades especificadas por el CRS y, opcionalmente, resx y resy que indican la resolu-
ción de la capa en esas unidades.

Los BoundingBox de una capa se heredan a la sub-capa. Los BoundingBox de una subca-
pa se agregan a los que hereda de su capa madre.

Una capa no debe proveer un BoundingBox en un CRS que no soporta.
Se debe proveer al menos de un BoundingBox en el CRS nativo de la capa (en el que están

almacenados los datos).
No es una exigencia que servidor provea un BoundingBox para cada CRS al que pueda

transformar los datos nativos.
Si el CRS es “CRS:1”, entonces las unidades están en pixels, el origen de coordenadas es

en el vértice superior izquierdo, el sentido positivo de la abscisa es hacia la derecha y el de la
ordenada es hacia abajo.

•	ScaleDenominator

Los elementos <MinScaleDenominator> y <MaxScaleDenominator> permiten definir el
rango de escalas en el que es conveniente generar el mapa de una capa.

Por ejemplo, para indicar una escala mayor o igual a 1:1000 y menor a 1:1000000, se uti-
lizan las siguientes definiciones:

<MinScaleDenominator>1e3</MinScaleDenominator>
<MaxScaleDenominator>1e6</MaxScaleDenominator>

<MinScaleDenominator> siempre incluye el valor de borde (“mayor o igual”), mientras
que <MaxScaleDenominator> no lo incluye (“menor estricto”).

Ambos son elementos opcionales, por lo que la escala puede ser limitada solo en sentido.
Los límites de escala proporcionados de esta manera deben interpretarse como una guía

para los clientes, no como límites estrictos. Las unidades de la escala son pixels, ya que el
tamaño del píxel en unidades de distancia depende del dispositivo en el que se muestre la
imagen. El tamaño de píxel estándar se toma como 0,28 mm x 0,28 mm.

•	Dimension

El elemento opcional <Dimension> proporciona la metadata sobre datos-multidimen-
sionales. Esta información refiere a dimensiones que se encuentran por fuera de las cuatro
dimensiones espacio-temporales habituales, por ejemplo, las bandas de longitud de onda en
una imagen satelital. Los elementos <Dimension> se heredan.

•	MetadataURL

El elemento <MetadataURL> se utiliza para brindar información de la capa utilizando
un estándar de metadata. Su atributo type puede tomar los valores “ISO 19115:2003” o
“FGDC:1998”. Los elementos <MetadataURL> no se heredan.

•	Attribution

El elemento <Attribution> permite identificar la fuente de donde provienen los datos de
una capa, proporcionando información como la URL del proveedor, un título, un logo, etc.
Los elementos <Attribution> se heredan.

•	Identifier y AuthorityURL

Los elementos <Identifier> y <AuthorityURL> se utilizan en conjunto para definir qué
valor de un identificador externo posee una capa. Por ejemplo, si una cierta organización
identifica sus capas mediante un cierto identificador, con el elemento <AuthorityURL> po-
demos referenciar esa organización y con el <Identifier> declaramos el valor del identifica-
dor que utiliza esa organización. Los elementos <AuthorityURL> se heredan, los <Identi-
fier> no.

•	FeatureListURL

El elemento <FeatureListURL> se utiliza para referenciar la URL en donde se listan las
características geográficas pertenecientes a la capa. El sub-elemento <Format> define el tipo
MIME para leer esa lista. El elemento <FeatureListURL> no se hereda.

208 209

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

•	DataURL

El elemento <DataURL> permite ofrecer el link al archivo de datos representados por
la capa. El sub-elemento <Format> define el tipo MIME para leer ese archivo. El elemento
<DataURL> no se hereda.

•	queryable

El atributo booleano queryable indica si el servidor soporta la operación GetFeatureInfo
en esta capa.

•	cascaded

El atributo entero cascaded indica que la capa se obtuvo desde otro servidor diferente al
servidor que envía la metadata (el servidor actual). El servidor actual puede estar actuando
como otro punto de acceso más a esa capa, o puede ofrecer valor adicional a lo que ofrece el
servidor original, por ejemplo, con más formatos de salida o con la capacidad de reproyectar
los datos a otros CRS (Ver). El valor del atributo cascaded es 0 (o se omite el atributo) en el
servidor original y por cada servidor que obtiene de otro se va incrementando en 1.

•	opaque

El atributo booleano opaque se utiliza para marcar capas que cubren completamente o
casi completamente el mapa sin dejar espacios tranparentes, independientemente de la escala
utilizada (es el caso típico de rasters y capas de polígonos, pero no de capas de líneas o pun-
tos). El atributo opaque sirve como una indicación al cliente para que coloque esta capa por
debajo de las demás.

•	noSubsets

El atributo noSubsets indica que el servidor no puede crear un mapa de una porción de la
capa (un subconjunto de sus características) sino solo de su BoundingBox.

•	fixedWidth y fixedHeight

Los atributos fixedWidth y fixedHeight indican que el servidor solo puede proporcionar
un mapa con ese ancho y alto en pixels.

•	2.2.2 GetMap

Esta operación permite solicitar un mapa. El WMS debe devolver el mapa solicitado o
una excepción.

2.2.2.1 Solicitud.

2.2.2.1.1 VERSION

La versión del protocolo a utilizar.

2.2.2.1.2 REQUEST

Indica el nombre de la operación (dentro de las operaciones que definen el servicio es-
pecificado en el parámetro SERVICE) que se va a invocar. En este caso, se pasa el valor
“GetMap” para este parámetro.

2.2.2.1.3 LAYERS

Indica las capas que deben componerse en el mapa resultante. El valor de este parámetro
es una lista de nombres de capas separados por comas. Un nombre de capa es el contenido
de un elemento <Layer><Name>. Las capas se dibujan empezando con la que está más a
la izquierda en la lista.

2.2.2.1.4 STYLES

Indica los estilos en los que deben mostrarse las capas. El valor de este parámetro es una
lista de nombres de estilos separados por comas. Un nombre de estilo es el contenido de
un elemento <Style><Name>. El estilo de la posición N de la lista se asocia a la capa de la
posición N de la lista del parámetro LAYERS. El estilo debe estar contenido en la definición
de la capa o ser heredado por esta. Si para una capa se quiere utilizar el estilo por defecto:

Ejemplo 1: Para capa2 no se especifica estilo (se utilizará el estilo por defecto).
“LAYERS=capa1,capa2,capa3”
“STYLES=estilo1,,estilo3”

Ejemplo 2: Para capa3 no se especifica estilo (se utilizará el estilo por defecto).
“LAYERS=capa1,capa2,capa3”
“STYLES=estilo1,estilo2,”
Ejemplo 3: Para ninguna capa se especifica estilo (se utilizará el estilo por defecto).
“LAYERS=capa1,capa2,capa3”
“STYLES=,,” o “STYLES=”

2.2.2.1.5 CRS

Indica el CRS que corresponde al parámetro BBOX. El CRS debe estar soportado para
esa capa.

210 211

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

2.2.2.1.6 BBOX

Indica el Bounding Box que se quiere obtener del mapa. El valor de este parámetro es una
lista de cuatro números reales separados por comas (minx,miny,maxx,maxy) que definen las
coordenadas del rectángulo. Las unidades, orden y dirección de incremento de la abscisa y la
ordenada dependen del CRS especificado. El area especificada en el BBOX debe superpo-
nerse en parte con el BoundingBox devuelto por GetCapabilities. Si la capa está marcada por
el atributo noSubsets, las coordenadas de BBOX deben coincidir con las de BoundingBox
devuelto por GetCapabilities.

2.2.2.1.7 FORMAT

Indica el formato en que será devuelto el mapa. El valor es cualquier tipo MIME que
se encuentre dentro de los elementos<Request><GetMap><Format> de la metadata de
servicio.

2.2.2.1.8 WIDTH, HEIGHT

Indican el ancho y alto en pixels de mapa. Si la relación de aspecto (ancho:alto) deter-
minada por estos parámetros no coincide con la determinada por BBOX, el mapa será de-
formado (utilizando pixels rectangulares en lugar de cuadrados) para que el BBOX ocupe
exactamente ese tamaño. Los valores de WIDTH y HEIGHT están limitados por los valores
<MaxWidth> y <MaxHeight> devueltos por GetCapabilities. Si una capa está marcada con
atributos fixedWith y fixedSize, solo podrán utilizarse esos valores de ancho y alto.

2.2.2.1.9 TRANSPARENT

Indica si el fondo del mapa debe ser transparente o no. Los valores posibles son “TRUE”
o “FALSE”. El fondo del mapa lo componen los píxels que no representan ninguna caracte-
rística geográfica. El formato de imagen especificado en el parámetro FORMAT podría no
soportar transparencia. Si se especifica el valor “FALSE”, el fondo se pinta del color especi-
ficado en el parámetro BGCOLOR.

2.2.2.1.10 BGCOLOR

Indica el color a utilizarse en el fondo del mapa. El valor del parámetro es una valor hexa-
decimal de la forma 0xRRGGBB en donde se utilizan dos caracteres para cada canal (rojo,
verde, azul), en el rango de 00 a FF (0-255 en decimal).

2.2.2.1.11 EXCEPTIONS

Indica el formato en el que se recibirán las excepciones. El valor por defecto es “XML”.

2.2.2.1.12 TIME

En capas que poseen la dimensión del tiempo, permite obtener los datos para un deter-
minado valor de la variable tiempo.

2.2.2.1.13 ELEVATION

En capas que poseen la dimensión de elevación, permite obtener los datos para un deter-
minado valor de la variable elevación.

2.2.2.2 Respuesta

La respuesta a la solicitud GetMap es un mapa en el formato de imagen especificado,
formado por las capas solicitadas y con todas las propiedades y restricciones determinadas
por los parámetros de la solicitud.

2.2.3 GetFeatureInfo

La operación GetFeatureInfo está soportada para aquellas capas cuyo atributo queryable
tenga valor “1” (definido directamente o heredado). El caso de uso canónico de esta funcio-
nalidad es cuando el usuario está viendo un mapa (obtenido mediante GetMap) y elige un
punto del que desea obtener más información. Dado que WMS es un protocolo sin estado
(stateless) que no guarda información de la sesión, además de los parámetros específicos
de esta operación es necesario incluir parámetros de la operación GetMap (BBOX, CRS,
WIDTH, HEIGHT).

2.2.3.1 Solicitud

2.2.3.1.1 QUERY_LAYERS

Este parámetro indica (mediante un lista de nombres separada por comas) las capas geo-
gráficas que serán consideradas para devolver la información de las características que con-
tengan el (o estén próximas al) punto especificado mediante (I,J). Estas capas deben ser un
subconjunto de las capas especificadas en el parámetro LAYERS de GetMap.

2.2.3.1.2 INFO_FORMAT

El parámetro INFO_FORMAT indica el formato en que se generará la respuesta para devol-
ver la información de la característica. Los valores válidos son los tipos MIME que se obtienen
mediate el método GetCapabilities en los elementos <Request><FeatureInfo><Format>,
por ejemplo, text/xml.

212 213

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

2.2.3.1.3 I,J

Los parámetros I y J son las coordenadas de pantalla (medidas en pixels) que identifican
el punto de interés en el mapa. Estas coordenadas van desde 0 hasta el valor de WIDTH y
HEIGHT del mapa correspondiente.

2.2.3.2 Respuesta

La respuesta contiene las características que el servidor considera que están relacionas con
el punto dado. El criterio de relacionamiento queda a discreción de cada implementación.
Por ejemplo, en una capa de polígonos, normalmente se devolvería el plolígono que contega
al punto. En una capa de líneas, la(s) línea(s) cuya(s) distancia(s) al punto sea mínima, etc. El
formato de la respuesta queda determinado por el parámetro INFO_FORMAT de la solici-
tud.

3 Web Feature Service (WFS)

3.1 Introducción

WFS define una interfaz para especificar las operaciones de altas, bajas y modificaciones
(ABM) de las entidades geográficas (geographical features) codificadas en el lenguaje GML
[7], que es un esquema de XML para representar información geográfica. El estándar define
algunas operaciones como obligatorias y otras como opcionales. A continuación se detallan
las principales operaciones (algunas obligatorias y otras opcionales) de este protocolo. Sólo
se omite la operación LockFeature, que es la operación opcional que permite bloquear una
característica de un WFS transaccional. Operaciones.

3.1.1 DescribeFeatureType

La función de DescribeFeatureType es generar una descripción de esquema de los tipos
de características presentes. Este esquema define como las instancias de una característica
deben ser codificadas en una entrada (mediantes un Insert o un Update) o cómo serán gene-
radas en una salida (en respuesta a un GetFeature o un GetGmlObject). Si el contenido del
elemento DescribeFeatureType está vacío, el servidor deberá generar la descripción de todos
sus tipos.

3.1.1.1 Solicitud

El siguiente fragmento del esquema XML define las solicitudes de este tipo:

<xsd:element name=”DescribeFeatureType” type=”wfs:DescribeFeatureTypeType”/>
<xsd:complexType name=”DescribeFeatureTypeType”>
<xsd:complexContent>
<xsd:extension base=”wfs:BaseRequestType”>
<xsd:sequence>

<xsd:element name=”TypeName” type=”xsd:QName”
minOccurs=”0” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”outputFormat”
type=”xsd:string” use=”optional”
default=”text/xml; subtype=gml/3.1.1”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

3.1.1.1.1

3.1.1.1.2 TypeName

El elemento TypeName especifica el nombre de un tipo de característica del que se quiere
obtener la descripción.

3.1.1.1.3 outputFormat

El atributo outputFormat indica el tipo MIME del lenguaje de descripción del esquema
que se utilizarán en la respuesta. El valor por defecto es text/xml;subtype=gml/3.1.1, que
indica el esquema de aplicación GML3. Además de éste, todos los tipos MIME válidos se
obtienen a través del método GetCapabilities.

Es importante destacar que la definición del esquema de características es responsabilidad
de cada implementación WFS particular, siendo las siguientes las únicas restricciones:

•	La geometría de las características debe estar expresada en GML (gml.xsd).
•	El sistema de referencia coordenado (CRS) debe ser expresado en GML.
•	El esquema de características debe ser consistente con el modelo de características de

OGC. Por ejemplo, dentro de este modelo, se considera que cada elemento contenidos inme-
diatamente por el elemento raíz de una característica es una propiedad de esa característica
(en otra interpretación, inconsistente con el modelo mencionado, podría considerarse que el
elemento interior es una especialización o sub-tipo de la característica que lo contiene, por
ejemplo).

3.1.1.2 Respuesta

La respuesta de esta operación, es la descripción de esquema de las características en el
formato solicitado. Si el formato es GML3, será un esquema de aplicación GML con un sub-
esquema por cada tipo de característica solicitado.

Dado que un esquema XML solo puede describir elementos que pertenecen a un mismo
espacio de nombres, no es posible describir los esquemas de tipos de elementos que pertene-
cen a diferentes espacios. En este caso, la respuesta es un esquema XML en donde se utilizan
elementos <import>.

214 215

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

Por ejemplo, dada la siguiente solicitud:

<?xml version=”1.0” ?>
<DescribeFeatureType
version=”1.1.0”
service=”WFS”
xmlns=”http://www.opengis.net/wfs”
xmlns:ns01=”http://www.server01.com/ns01”
xmlns:ns02=”http://www.server02.com/ns02”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<TypeName>ns01:TreesA_1M</TypeName>
<TypeName>ns02:RoadL_1M</TypeName>
</DescribeFeatureType>

La respuesta podría tener esta forma:

<?xml version=”1.0” ?>
<schema
targetNamespace=”http://www.someserver.com/myns”
xmlns:myns=http://www.someserver.com/myns
xmlns=”http://www.w3.org/2001/XMLSchema”
elementFormDefault=”qualified”
attributeFormDefault=”unqualified”>
<import namespace=”http://www.server01.com/ns01”
schemaLocation=”http://www.myserver.com/wfs.cgi?
request=DescribeFeatureType&typeName=ns01:TreesA_1M”/>
<import namespace=”http://www.server02.com/ns02”
schemaLocation=”http://www.yourserver.com/wfs.cgi?
request=DescribeFeatureType&typeName=ns02:RoadL_1M”/>

</schema>

3.1.2 GetFeature

3.1.2.1 Solicitud

El siguiente fragmento del esquema XML define las solicitudes de este tipo:

<xsd:element name=”GetFeature” type=”wfs:GetFeatureType”/>
<xsd:complexType name=”GetFeatureType”>
<xsd:complexContent>
<xsd:extension base=”wfs:BaseRequestType”>
<xsd:sequence>
<xsd:element ref=”wfs:Query” maxOccurs=”unbounded”/>
</xsd:sequence>

<xsd:attribute name=”resultType”
type=”wfs:ResultTypeType” use=”optional”
Consejo de Educación Técnico Profesional Servicios Geográficos
- 16 -
default=”results”/>
<xsd:attribute name=”outputFormat”
type=”xsd:string” use=”optional”
default=”text/xml; subtype=3.1.1”/>
<xsd:attribute name=”maxFeatures”
type=”xsd:positiveInteger” use=”optional”/>
<xsd:attribute name=”traverseXlinkDepth”
type=”xsd:string” use=”optional”/>
<xsd:attribute name=”traverseXlinkExpiry”
type=”xsd:positiveInteger”
use=”optional”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name=”ResultTypeType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”results”/>
<xsd:enumeration value=”hits”/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name=”Query” type=”wfs:QueryType”/>
<xsd:complexType name=”QueryType”>
<xsd:sequence>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element ref=”wfs:PropertyName”/>
<xsd:element ref=”ogc:Function”/>
</xsd:choice>
<xsd:element ref=”ogc:Filter” minOccurs=”0” maxOccurs=”1”/>
<xsd:element ref=”ogc:SortBy” minOccurs=”0” maxOccurs=”1”/>
</xsd:sequence>
<xsd:attribute name=”handle”
type=”xsd:string” use=”optional”/>
<xsd:attribute name=”typeName”
type=”wfs:TypeNameListType” use=”required”/>
<xsd:attribute name=”featureVersion”
type=”xsd:string” use=”optional”/>
<xsd:attribute name=”srsName” type=”xsd:anyURI” use=”optional”/>
</xsd:complexType>
<xsd:simpleType name=”Base_TypeNameListType”>
<xsd:list itemType=”QName”/>
</xsd:simpleType>

216 217

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

<xsd:simpleType name=”TypeNameListType”>
<xsd:restriction base=”wfs:Base_TypeNameListType”>
<xsd:pattern value=”((\w:)?\w(=\w)?){1,}”/>

</xsd:restriction>
</xsd:simpleType>

3.1.2.1.1 Query

El elemento <Query> define qué tipos de características se quiere consultar, qué pro-
piedades de los mismos se desea obtener y qué restricciones (espaciales y no-espaciales) se
deben aplicar para realizar la selección. Los resultados de todas las consultas especificadas en
la solicitud son concatenadas para producir el resultado (un conjunto de características). A
continuación se describen los principales atributos de este elemento.

•	 typeName

El atributo typeName es utilizado para indicar el nombre de una o más instancias de un
tipo de característica. Al especificar una lista de nombres separados por coma, se interpreta
como una operación de JOIN entre las instancias de estos tipos.

Por ejemplo:

typeName=”ns1:Ciudad=A,ns1:Ciudad=B,ns2:CiudadCostera”

especifica que se realizará un JOIN entre tres tipos, a los que se les definen los alias A, B y
C. Dato que A y B son alias del mismo tipo (Ciudad en el espacio de nombres ns1), se realiza
un SELF-JOIN en el tipo Ciudad.

•	PropertyName

El elemento <PropertyName> tiene como contenido el nombre de un elemento (cali-
ficado por su espacio de nombres) que representa un propiedad de una característica (ej.
ns1:direccion). Estos elementos se incluyen para que las características devueltas por la con-
sulta incluyan estas propiedades. En el caso de las propiedades que están representados por
elementos obligatorias en el esquema de definición de la característica, no es necesario solici-
tarlas explícitamente mediante elementos <PropertyName>, ya que esas propiedades vienen
necesariamente siempre que se solicita esa característica para que el documento XML sea
válido contra su esquema.

•	Filter

El elemento <Filter> se utiliza para imponer restricciones en una consulta.

•	srsName

El atributo srsName indica el SRS (Spatial Reference System) en que se solicita que se
devuelvan los datos.

3.1.2.1.2 outputFormat.

El atributo outputFormat indica el tipo MIME del lenguaje de descripción del esquema
que se utilizarán en la respuesta. El valor por defecto es text/xml;subtype=gml/3.1.1 que
indica que se generará un documento GML3 que puede ser validado contra el esquema de
aplicación GML3 generado como respuesta de la operación DescribeFeatureType (ver 3.1.1).
Además de éste, todos los tipos MIME válidos se obtienen a través del método GetCapabi-
lities.

3.1.2.1.3 resultType

El atributo resultType puede tomar dos valores que establecen qué tipo de respuesta se
espera del servicio. Si el valor es Results el servicio deberá devolver la descripción de todas
las características que cumplan con las consultas de la solicitud; éste es el mismo comporta-
miento que se obtiene si omite este atributo. Si el valor es Hits el servicio deberá devolver
únicamente el número de características que cumplan con las consultas de la solicitud.

3.1.2.1.4 maxFeatures

El atributo maxFeatures se utiliza para limitar el número de características solicitadas en
forma explícita (via GetFeature/Query/@typeName).

3.1.2.2 Respuesta

La respuesta de esta operación está definida por este fragmento del esquema XML:

<xsd:element name=”FeatureCollection”
type=”wfs:FeatureCollectionType”
substitutionGroup=”gml:_FeatureCollection”/>
<xsd:complexType name=”FeatureCollectionType”>
<xsd:complexContent>
<xsd:extension base=”gml:AbstractFeatureCollectionType”>
<xsd:attribute name=”lockId” type=”xsd:string” use=”optional”/>
<xsd:attribute name=”timeStamp” type=”xsd:dateTime” use=”optional”/>
<xsd:attribute name=”numberOfFeatures”
type=”xsd:nonNegativeInteger”
use=”optional”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

El elemento <FeatureCollection> es el elemento raíz de la respuesta. En el caso que re-
sultType en la solicitud tenga el valor results, el contenido de este elemento serán todas las
características recuperadas. En el caso que se hits, el contenido será vacío, pero se llenerán
los atributos timeStamp y numberOfFeatures.

218 219

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

3.1.2.3 Ejemplo

El siguiente ejemplo muestra la utilización de la operación GetFeature para obtener las
instancias de las características Calle y Via que se encuentre dentro de una cierta región. Para
esto se utiliza el operador Within como filtro, especificando las cordenadas de los puntos
superior izquierdo e inferior derecho de la región.

<?xml version=”1.0” ?>
<GetFeature
version=”1.1.0”
service=”WFS”
handle=”Example Query”
xmlns=”http://www.opengis.net/wfs”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:myns=”http://www.someserver.com/myns”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<Query typeName=”myns:Calle”>
<wfs:PropertyName>myns:path</wfs:PropertyName>
<wfs:PropertyName>myns:lanes</wfs:PropertyName>
<wfs:PropertyName>myns:surfaceType</wfs:PropertyName>
<ogc:Filter>
<ogc:Within>
<ogc:PropertyName>myns:path</ogc:PropertyName>
<gml:Envelope srsName=”EPSG:63266405”>
<gml:lowerCorner>50 40</gml:lowerCorner>
<gml:upperCorner>100 60</gml:upperCorner>
</gml:Envelope>
</ogc:Within>
</ogc:Filter>
</Query>
<Query typeName=”myns:Via”>
<wfs:PropertyName>myns:track</wfs:PropertyName>
<wfs:PropertyName>myns:gauge</wfs:PropertyName>
<ogc:Filter>
<ogc:Within>
<ogc:PropertyName>myns:track</ogc:PropertyName>
<gml:Envelope srsName=”…”>
<gml:lowerCorner>50 40</gml:lowerCorner>
<gml:upperCorner>100 60</gml:upperCorner>
</gml:Envelope>
</ogc:Within>
</ogc:Filter>
</Query>
</GetFeature>

<?xml version=”1.0” ?>
<wfs:FeatureCollection
xmlns=”http://www.someserver.com/myns”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd
http://www.someserver.com/myns ROADSRAILS.xsd”>
<gml:boundedBy>
<gml:Envelope srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:lowerCorner>0 0</gml:lowerCorner>
<gml:upperCorner>180 360</gml:upperCorner>
</gml:Envelope>
</gml:boundedBy>
<gml:featureMember>
<Calle gml:id=”Calle.100”>
<path>

<gml:LineString gid=”1”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:posList>10 10 10 11 10 12 10 13</gml:posList>
</gml:LineString>
</path>
<surfaceType>ASPHALT</surfaceType>
<nLanes>4</nLanes>
</Calle>
</gml:featureMember>
<gml:featureMember>
<Calle gml:id=”Calle.105”>
<path>
<gml:LineString gid=”2”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:posList>10 10 10 11 10 12</gml:posList>
</gml:LineString>
</path>
<surfaceType>GRAVEL</surfaceType>
<nLanes>2</nLanes>
</Calle>
</gml:featureMember>
<gml:featureMember>
<Via gml:id=”Via.119”>
<track>
<gml:LineString gid=”n”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:posList>15 10 16 11 17 12</gml:posList>

220 221

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

</gml:LineString>
</track>
<gauge>24</gauge>
</Via>
</gml:featureMember>
</wfs:FeatureCollection>

3.1.3 GetGmlObject

Esta operación permite obtener cualquier objeto GML a través de su identificador único
(gml:id). Los objetos pueden ser características, geometrías, topologías, etc. Si el elemento
solicitado posee XLinks a otros elementos, estos otros elementos se obtienen mediante soli-
citudes GetGmlObject recursivas, las que posiblemente se envíen desde el WFS actual a otro
WFS remoto. Para saber a dónde enviar la solicitud recursiva, se utiliza el valor del atributo
xlink:href, de donde se obtiene la URL del WFS remoto y el identificador único del elemento
referenciado.

3.1.3.1 Solicitud

El siguiente fragmento de esquema XML define las solicitudes de este tipo:

<xsd:element name=”GetGmlObject” type=”wfs:GetGmlObjectType”/>
<xsd:complexType name=”GetGmlObjectType”>
<xsd:complexContent>
<xsd:extension base=”wfs:BaseRequestType”>
<xsd:sequence>
<xsd:element ref=”ogc:GmlObjectId”/>
</xsd:sequence>
<xsd:attribute name=”outputFormat”
type=”xsd:string” use=”optional” default=”GML3”/>
<xsd:attribute name=”traverseXlinkDepth”
type=”xsd:string” use=”required”/>
<xsd:attribute name=”traverseXlinkExpiry”
type=”xsd:positiveInteger”
use=”optional”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

3.1.3.1.1 GmlObjetcId

Consejo de Educación Técnico Profesional Servicios Geográficos.
El elemento <GmlObjetId> se utiliza para especificar el identificador único (el gml:id)

del elemento que se quiere obtener. Todos los objetos GML poseen un identificador gml:id
como atributo.

3.1.3.1.2 outputFormat

El atributo outputFormat indica el tipo MIME del formato que se utilizará en la res-
puesta. El valor por defecto es text/xml;subtype=gml/3.1.1 que indica que se generará un
documento. Además de éste, todos los tipos MIME válidos se obtienen a través del método
GetCapabilities.

3.1.3.1.3 traverseXlinkDepth

El atributo traverseXlinkDepth indica la profundidad de búsqueda de elementos refe-
renciados mediante XLinks. Por ejemplo, si este atributo tiene el valor “1”, solo el elemento
solicitado será devuelto sin agregar elementos anidados que sean vinculados por XLinks. En
cambio, si tiene valor “2”, se tratará de resolver el primer nivel de anidamiento de elementos,
enviando solicitudes GetGmlObject recursivas pero con un nivel menos de profundidad
(“1”). Además de valores enteros positivos, se utiliza el literal “*” para indicar una profundi-
dad de búsqueda ilimitada.

3.1.3.1.4 traverseXlinkExpiry

El atributo traverseXlinkExpiry, especificado en minutos, indica el tiempo máximo que
un WFS que ha recibido un GetGmlObject debe esperar por la respuesta de otro WFS al
que ha enviado otro GetGmlObject para poder resolver un elemento referenciado mediante
XLinks.

3.1.3.2 Respuesta

La respuesta a una solicitud GetGmlObject es un elemento GML devuelto como un frag-
mento de documento XML. Esto se diferencia de la respuesta de solicitud GetFeature que es
un documento XML completo.

El contenido de la respuesta es afectado por los valores de las propiedades traverseXlink-
Depth y traverseXlinkExpiry, así como de la capacidad del WFS actual de resolver elementos
vinculados mediante XLinks enviando solicitudes GetGmlObject a otros WFS.

Los Xlinks que son resueltos se mantienen en la respuesta en su forma original dentro de
comentarios XML (encerrados entre <!-- y -->).

3.1.3.3 Ejemplo

En el siguiente ejemplo, se solicita el elemento con identificador único “t1” y con una
profundidad “1”.

<?xml version=”1.0” encoding=”UTF-8”?>
<wfs:GetGmlObject
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

222 223

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”
service=”WFS”
version=”1.1.0”
outputFormat=”text/xml; subtype=gml/3.1.1”
traverseXlinkDepth=”1”
traverseXlinkExpiry=”1”>
<ogc:GmlObjectId gml:id=”c1”/>
</wfs:GetGmlObject>

La respuesta que se obtiene es:

<Ciudad gml:id=”c1”>
<gml:id=”c1”>
<gml:name>CiudadGotica</gml:name>
<gml:directedNode orientation=”+” xlink:href=”#n1”/>
</Ciudad>

Se puede observar en la respuesta que el elemento <Ciudad> posee un elemento anida-
do <gml:directedNode> que no está resuelto, es decir, no está completo sino que posee un
XLink a “#n1”. Para poder resolver todos los elementos en forma recursiva, haríamos la
misma solicitud pero con el valor traverseXlinkDepth=”*”.

<Ciudad gml:id=”c1”>
<gml:name>Bedford</gml:name>
<gml:directedNode orientation=”+”>
<!-- xlink:href=”#n1” -->
<gml:Node gml:id=”n1”>
<gml:pointProperty>
<!-- xlink:href=”http://www.ciudadgotica.gov/gps.gml#townHall” -->
<gml:Point gml:id=”townHall” srsName=”…”>
<gml:pos>147 234</gml:pos>
</gml:Point>
</gml:pointProperty>
</gml:Node>
</gml:directedNode>
</Ciudad>

En la nueva respuesta, dos XLinks fueron resueltos, uno de profundidad 2 y el otro de pro-
fundidad 3 respecto a la solicitud originaria. Para el primer elemento (<gml:directedNode>),
se realizó una solicitud GetGmlObject al WFS local con el gml:id=”n1”. Para el segundo
elemento (<gml:Point>), se envió una solicitud GetGmlObject al WFS remoto alojado en la
URL http://www.ciudadgotica.gov/gps.gml con el gml:id=”townHall”.

3.1.4 Transaction

3.1.4.1 Solicitud

El siguiente fragmento de esquema XML define las solicitudes de este tipo:

<xsd:element name=”Transaction” type=”wfs:TransactionType”/>
<xsd:complexType name=”TransactionType”>
<xsd:complexContent>
<xsd:extension base=”ows:GetCapabilitiesType”>
<xsd:sequence>
<xsd:element ref=”wfs:LockId” minOccurs=”0”/>
<xsd:choice minOccurs=”0” maxOccurs=”unbounded”>
<xsd:element ref=”wfs:Insert”/>
<xsd:element ref=”wfs:Update”/>
<xsd:element ref=”wfs:Delete”/>
<xsd:element ref=”wfs:Native”/>
</xsd:choice>
</xsd:sequence>
<xsd:attribute name=”releaseAction”
type=”wfs:AllSomeType” use=”optional”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:element name=”LockId” type=”xsd:string”/>
<xsd:element name=”Insert” type=”wfs:InsertElementType”/>
<xsd:complexType name=”InsertElementType”>
<xsd:choice>
<xsd:element ref=”gml:_FeatureCollection” />
<xsd:sequence>
<xsd:element ref=”gml:_Feature” maxOccurs=”unbounded”/>
</xsd:sequence>
</xsd:choice>
<xsd:attribute name=”idgen”
type=”wfs:IdentifierGenerationOptionType”
use=”optional” default=”GenerateNew”/>
<xsd:attribute name=”handle” type=”xsd:string” use=”optional”/>
<xsd:attribute name=”inputFormat” type=”xsd:string”
use=”optional” default=”text/xml; subversion=gml/3.1.1”/>
<xsd:attribute name=”srsName” type=”xsd:anyURI” use=”optional”/>
</xsd:complexType>
<xsd:simpleType name=”IdentifierGenerationOptionType”>
<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”UseExisting”/>
<xsd:enumeration value=”ReplaceDuplicate”/>

224 225

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

<xsd:enumeration value=”GenerateNew”/>
</xsd:restriction>
</xsd:simpleType>
<xsd:element name=”Update” type=”wfs:UpdateElementType”/>
<xsd:complexType name=”UpdateElementType”>
<xsd:sequence>
<xsd:element ref=”wfs:Property” maxOccurs=”unbounded”/>
<xsd:element ref=”ogc:Filter” minOccurs=”0” maxOccurs=”1”/>
</xsd:sequence>
<xsd:attribute name=”handle” type=”xsd:string” use=”optional”/>
<xsd:attribute name=”typeName” type=”xsd:QName” use=”required”/>
<xsd:attribute name=”inputFormat” type=”xsd:string”
use=”optional” default=”text/xml; subversion=gml/3.1.1”/>
<xsd:attribute name=”srsName” type=”xsd:anyURI” use=”optional”/>
</xsd:complexType>
<xsd:element name=”Property” type=”wfs:PropertyType”/>
<xsd:complexType name=”PropertyType”>
<xsd:sequence>
<xsd:element name=”Name” type=”xsd:QName”/>
<xsd:element name=”Value” minOccurs=”0”/>
</xsd:sequence>
</xsd:complexType>
<xsd:element name=”Delete” type=”wfs:DeleteElementType”/>
<xsd:complexType name=”DeleteElementType”>
<xsd:sequence>
<xsd:element ref=”ogc:Filter” minOccurs=”1” maxOccurs=”1”/>
</xsd:sequence>
<xsd:attribute name=”handle” type=”xsd:string” use=”optional”/>
<xsd:attribute name=”typeName” type=”xsd:QName” use=”required”/>
</xsd:complexType>
<xsd:element name=”Native” type=”wfs:NativeType”/>
<xsd:complexType name=”NativeType”>
<xsd:attribute name=”vendorId” type=”xsd:string” use=”required”/>
<xsd:attribute name=”safeToIgnore” type=”xsd:boolean” use=”required”/>
</xsd:complexType>

3.1.4.1.1 Transaction

El elemento <Transaction> contiene una secuencia de elementos <Insert>, <Update>
y <Delete>, que define las operaciones que se ejecutarán sobre los datos y el orden corres-
pondiente. Nótese que las operaciones de Update y Delete pueden ejecutarse sobre caracte-
rísticas creadas mediante Insert de la misma transacción.

Al finalizar la transacción, el WFS aplicará el procedimiento que corresponda al sistema
en el que se almacenan los datos. Por ejemplo, en un RDBMS, se aplicará un commit para
finalizar la transacción o un rollback para abortar los cambios si ocurre algún error.

3.1.4.1.2 Insert

Las características que son insertadas por esta operación vienen especificadas como una
secuencia de elementos <gml:_Feature>, es decir, elementos de características en formato
GML.

El atributo idgen define el método para asociar identificadores a las nuevas características.
Los valores que puede tomar son:

•	GenerateNew: El WFS generará identificadores únicos para las nuevas características.
•	UseExisting: El WFS utilizará los identificadores provistos en la solicitud por los atribu-

tos gml:id de cada característica. Si se encuentra algún duplicado, se generará una excepción.
•	ReplaceDuplicate: El WFS utilizará los identificadores provistos en la solicitud por los

atributos gml:id de cada característica. Si se encuentra algún duplicado, generará un identifi-
cador único para la nueva característica.

En el siguiente ejemplo se utiliza la operación <Insert> para crear dos nuevas caracterís-
ticas en una capa de departamentos.

<?xml version=”1.0”?>
<wfs:Transaction
version=”1.1.0”
service=”WFS”
xmlns=”http://www.someserver.com/myns”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.someserver.com/myns
http://www.someserver.com/wfs/cwwfs.cgi?
request=describefeaturetype&typename=InWaterA_1M.xsd
http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<wfs:Insert idgen=”UseExisting”>
<Departamento gml:id=”Depto1”>
<wkbGeom>
<gml:Polygon gml:id=”P1”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:exterior>
<gml:LinearRing>
<gml:posList>-98.54 24.26 ...</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</wkbGeom>
<id>150</id>
<f_code>ABCDE</f_code>
<hyc>152</hyc>
<tileId>250</tileId>

226 227

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

<facId>111</facId>
</ Departamento >
< Departamento gml:id=”Depto2”>
<wkbGeom>
<gml:Polygon gml:id=”P2”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:exterior>
<gml:LinearRing>
<gml:posList>-99.99 22.22 ...</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</wkbGeom>
<id>111</id>
<f_code>FGHIJ</f_code>
<hyc>222</hyc>
<tileId>333</tileId>
<facId>444</facId>
</Departamento>
</wfs:Insert>

3.1.4.1.3 Update

Un elemento <Update> contiene uno o más elementos <Property> que especifican el
nombre de una propiedad (<Name>) y el valor de reemplazo para la misma (<Value>). El
tipo de característica al que pertenece la propiedad se declara mediante el atributo typeName.

Consejo de Educación Técnico Profesional Servicios Geográficos
El alcance de la operación, es decir, las instancias dentro del tipo que serán afectadas por

la actualización se restringe mediante el elemento <Filer>.
En el siguiente ejemplo se actualiza una propiedad, la población, de una instancia del tipo

de característica Ciudad. Dentro del filtro se utiliza un elemento <GmlObjectId> para indi-
car el gml:id que identifica la ciudad que se quiere actualizar.

<?xml version=”1.0” ?>
<wfs:Transaction
version=”1.1.0”
service=”WFS”
xmlns=”http://www.someserver.com/myns”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<wfs:Update typeName=”Ciudad”>
<wfs:Property>
<wfs:Name>poblacion</wfs:Name>

<wfs:Value>4070000</wfs:Value>
</wfs:Property>
<ogc:Filter>
<ogc:GmlObjectId gml:id=”CiudadGotica.10131”/>
</ogc:Filter>
</wfs:Update>
</wfs:Transaction

3.1.4.1.4 Delete

El elemento <Delete> permite indicar que una o más instancias de una característica
deben se borradas. Para esto se utiliza el elemento <Filter> de la misma forma que en la
operación <Update>.

3.1.4.1.4.1 Ejemplo

En el siguiente ejemplo se muestra como se puede utilizar esta operación para eliminar las
características del tipo Ciudad que estén dentro de un polígono (elementos <ogc:Within> y
<gml:Polygon>).

<?xml version=”1.0” ?>
<wfs:Transaction
version=”1.1.0”
service=”WFS”
xmlns=”http://www.someserver.com/myns”
xmlns:wfs=”http://www.opengis.net/wfs”
xmlns:gml=”http://www.opengis.net/gml”
xmlns:ogc=”http://www.opengis.net/ogc”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.opengis.net/wfs ../wfs/1.1.0/WFS.xsd”>
<wfs:Delete typeName=”Ciudad”>
<ogc:Filter>
<ogc:Within>
<ogc:PropertyName>wkbGeom</ogc:PropertyName>
<gml:Polygon gid=”pp9”
srsName=”http://www.opengis.net/gml/srs/epsg.xml#63266405”>
<gml:exterior>
<gml:LinearRing>
<gml:posList>-95.7 38.1 -97.8 38.2 ...</gml:posList>
</gml:LinearRing>
</gml:exterior>
</gml:Polygon>
</ogc:Within>
</ogc:Filter>
</wfs:Delete>
</wfs:Transaction>

228 229

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

3.1.4.2 Respuesta

El siguiente fragmento de esquema XML define el formato de la respuesta a la operación
Transaction.

<xsd:element name=”TransactionResponse”
type=”wfs:TransactionResponseType”/>
<xsd:complexType name=”TransactionResponseType”>
<xsd:sequence>
<xsd:element name=”TransactionSummary”
type=”wfs:TransactionSummaryType”/>
<xsd:element name=”TransactionResults”
type=”wfs:TransactionResultsType” minOccurs=”0”/>
<xsd:element name=”InsertResults”
type=”wfs:InsertResultsType” minOccurs=”0”/>
</xsd:sequence>
<xsd:attribute name=”version”
type=”xsd:string” use=”required” fixed=”1.1.0”/>
</xsd:complexType>
<xsd:complexType name=”TransactionSummaryType”>
<xsd:sequence>
<xsd:element name=”totalInserted”
type=”xsd:nonNegativeInteger”
minOccurs=”0”/>
<xsd:element name=”totalUpdated”
type=”xsd:nonNegativeInteger”
minOccurs=”0”/>
<xsd:element name=”totalDeleted”
type=”xsd:nonNegativeInteger”
minOccurs=”0”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”TransactionResultsType”>
<xsd:sequence>
<xsd:element name=”Action” type=”wfs:ActionType”
minOccurs=”0” maxOccurs=”unbounded”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”ActionType”>
<xsd:sequence>
<xsd:element name=”Message” type=”xsd:string”
minOccurs=”0” maxOccurs=”1”/>
</xsd:sequence>
<xsd:attribute name=”locator” type=”xsd:string” use=”required”/>

<xsd:attribute name=”code” type=”xsd:string” use=”optional”/>
</xsd:complexType>
<xsd:complexType name=”InsertResultsType”>
<xsd:sequence>
<xsd:element name=”Feature”
type=”wfs:InsertedFeatureType”
maxOccurs=”unbounded”/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name=”InsertedFeatureType”>
<xsd:sequence>
<xsd:element ref=”ogc:FeatureId” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”handle” type=”xsd:string” use=”optional”/>
</xsd:complexType>

Dentro de los elementos de la respuesta, el único obligatorio es el <TransactionSum-
mary>, que indica el número de características creadas, modificadas y eleminadas en la tran-
sacción.

3.1.5 GetCapabilities

Como todo OWS, WFS posee una operación GetCapabilities que le permite devolver la
metadata del servicio para poder comunicarle al cliente cuáles son sus capacidades específi-
cas.

A continuación se muestra el formato XML de la solicitud y la respuesta de esta operación
en el caso que se utilice el método HTTP POST. Si se utiliza HTTP GET, la solicitud debe
codificarse como KVP enviando la lista de parámetros de la misma manera que se describió
para el protocolo WMS (ver 2.2.1).

3.1.5.1 Solicitud

El siguiente fragmento de esquema XML define las solicitudes de este tipo.
<xsd:element name=”GetCapabilities” type=”wfs:GetCapabilitiesType”/>
<xsd:complexType name=”GetCapabilitiesType”>
<xsd:complexContent>
<xsd:extension base=”ows:GetCapabilitiesType”>
<xsd:attribute name=”service” type=”ows:ServiceType”
use=”optional” default=”WFS”/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

230 231

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

3.1.5.2 Respuesta

El siguiente fragmento de esquema XML define parcialmente las respuestas de este tipo.

<xsd:element name=”WFS_Capabilites”
type=”wfs:WFS_CapabilitiesType”
substitutionGroup=”ows:Capabilites”/>
<xsd:complexType name=”WFS_CapabilitiesType”>
<xsd:complexContent>
<xsd:extension base=”ows:CapabilitiesBaseType”>
<xsd:sequence>
<xsd:element ref=”wfs:FeatureTypeList” minOccurs=”0”/>
<xsd:element ref=”wfs:ServesGMLObjectTypeList” minOccurs=”0”/>
<xsd:element ref=”wfs:SupportsGMLObjectTypeList”/>
<xsd:element ref=”ows:Filter_Capabilities”/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

El contenido de la respuesta de esta operación se divide en las siguientes secciones:

•	Service Identification: Provee información que identifica al servicio como un WFS.
•	Service Provider: Provee información que identifica a la organización que opera el WFS.
•	Operation Metadata: Provee metadata sobre cada una de las operaciones que provee

este WFS, incluyendo los parámetros y restricciones de cada una.
•	Lista de FeatureType: Declara la lista de tipos de características que están disponibles en

el WFS. Para cada tipo, se provee información adicional, como el SRS por defecto, los otros
SRS soportados, etc.

•	Lista de ServesGMLObjectType: Declara la lista de tipos de objetos GML que no son
características (no son derivados de gml:AbstractFeatureType) que están disponibles en el
WFS y pueden obtenerse mediante la operación GetGmlObject.

•	Lista de SupportsGMLObjectType: Declara la lista de tipos de objetos GML que el
WFS podría servir si estuviera configurado para servir datos descriptos por un esquema de
aplicación que usara esos tipos directamente (tipos no-abstractos) o definiera otros tipos
derivados de ellos.

•	Filter: Define los tipos de filtros que el WFS soporta para restringir el alcance de las
operaciones. Si no presente, solo se soporta una conjunto mínimo de filtros básicos.

4 Referencias

[1] Open Geospatial Consortium (OGC) (Junio 2011)
http://www.opengeospatial.org/
[2] Hypertext Transer Protocol (HTTP) (Junio 2011)
http://www.ietf.org/rfc/rfc2616.txt
[3] Extensible Markup Language (XML) (Junio 2011)
http://www.w3.org/XML/
[4] Multipurpose Internet Mail Extensions (MIME) (Junio 2011)
http://tools.ietf.org/html/rfc2045
[5] KML (Junio 2011)
http://www.opengeospatial.org/standards/kml/
[6] Web Feature Service (WFS) (Junio 2011)
http://www.opengeospatial.org/standards/wfs
[7] Geographic Markup Language (GML) (Junio 2011)
http://www.opengeospatial.org/standards/gml
[8] Web Map Service (WMS) (Junio 2011)
http://www.opengeospatial.org/standards/wms

232 233

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

Visualización de mapas

1. Introducción

El resultado final de muchas operaciones geográficas es un mapa, los mismos son datos
que almacenan y comunican información geográfica. Dichos mapas representan datos es-
paciales y son los que contienen las ubicaciones y formas de características cartográficas. La
cartografía es la ciencia que se encarga del estudio y de la elaboración de los mapas geográ-
ficos y territoriales.

Estos datos son también llamados datos cartográficos digitales y son necesarios para rea-
lizar mapas y para estudiar relaciones espaciales.

Los datos espaciales incluyen puntos que representan bancos, hospitales, escuelas, etc., y
líneas que representan calles, ríos, rutas, etc.

Dado que los mapas son un conjunto de datos, los mismos pueden ser visualizados y edi-
tados y, para esta tarea, son necesarios los visualizadores de mapas. Esta herramienta es un
software que se encarga de la interacción con el usuario ofreciendo una interfaz fácil de usar.

2. Visualizadores

En esta sección se presentan ejemplos de visualizadores de escritorio y visualizadores
Web. Dentro de estos últimos se diferencian los visualizadores que son sitios web en sí mis-
mos (como Yahoo, Google Maps y Bing Maps) y, por otro lado, aquellos que son sitios de-
sarrollados a medida, que son aplicaciones que utilizan un simple Browser o navegador para
acceder a servicios geomáticos desde cualquier ubicación con conexión a Internet.

Además, se comentan las principales funcionalidades de cada uno.

2.1 Visualizadores de escritorio

gvSIG[1]

gvSIG Desktop permite visualizar y editar información geográfica. Es capaz de acceder al
formato vectorial y a rasters, tanto locales como remotos, integra estándares Open Geospa-
tial Consortium [2] (OGC) y cuenta con un amplio número de herramientas para trabajar con
información geográfica (consulta, creación de mapas, geoprocesamiento, redes, etc.).

La OGS define estándares abiertos e interoperables dentro de los Sistemas de Informa-
ción Geográfica y de la World Wide Web.

De las funcionalidades de gvSIG se destacan las que se presentan a continuación:
•	Vectorial: Acceso a formatos vectoriales, acceso a bases de datos, navegación, consulta,

selección, análisis y geoprocesamiento; edición gráfica y alfanumérica, simbología, etique-
tado, diseñador de planos, conversión de datos a otros formatos y sistemas de proyección,
relaciones entre tablas, estadísticas, normalización, etc.. En la figura 1 se muestra un ejemplo
de dicha sesión de trabajo.

Raster: acceso a formatos raster, tabla de color y gradientes, recorte de datos, exportación
de capas, procesamiento por píxel, histogramas, geolocalización, reproyección de raster, geo-
rreferenciación, vectorización automática, definición de áreas de interés, fusión de imágenes,
etc. En la figura 2 se presenta una imagen con estas funcionalidades.

3D: permite tener una vista 3D plana y 3D esférica. Tiene capas de elevación, capas vec-
toriales con alturas, capas 3D, posibilidad de rasterizar o visualizar como primitivas gráficas
las capas vectoriales; simbología 3D, georreferenciación y edición de objetos 3D, selección,
información, búsqueda geográfica por nombre (gazeeteer), etc. La imagen de la figura 3 pre-
senta un ejemplo.

234 235

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

QuantumGIS[3]

QuantumGIS o QGIS ofrece muchas funcionalidades SIG comunes. Se pueden ver y
superponer datos vectoriales; da la posibilidad de componer mapas y de explorar datos espa-
ciales. A su vez, es posible crear, editar, gestionar y exportar mapas vectoriales a varios for-
matos. Los rasters pueden ser importados a GRASS para poder ser editados y exportados a
otros formatos. En la figura 4 se muestra la ventana principal de QSIG con datos de ejemplo
y algunas de las principales funcionalidades de QGIS se listan a continuación:

•	Soporte ráster y vectorial.
•	Soporte para PostgreSQL con tablas espaciales utilizando PostGIS.
•	Integración con GRASS, incluída visualización, edición y análisis.
•	Digitalización GRASS y OGR/Shapefile.
•	Diseño de Mapas.
•	Soporte OGC.
•	Edición / Visualización / Busqueda de atributos.
•	Cambio de simbología vectorial y raster, etc.

ArcGIS Desktop[4]

Es un conjunto de productos software que corre en computadoras de escritorio estándar.
Se utiliza para crear, importar, editar, consultar, hacer mapas, analizar y publicar informa-

ción geográfica. Hay cuatro productos en la colección de ArcGIS Desktop y cada uno trae
un nivel de funcionalidad creciente. Los mismos se describen a continuación:

•	ArcReader: es un visor gratuito para mapas que usan los otros productos de ArcGIS
Desktop. Este puede visualizar e imprimir todos los mapas y tipos de datos. También tiene
algunas herramientas simples para explorar y consultar mapas. En la figura 5 se presenta una
imagen de dicha herramienta.

•	ArcView: En la figura 6 se muestra la imagen de la herramienta ArcView, la misma se
centra en el uso adecuado de los datos, mapeos y análisis.

•	ArcEditor: Agrega la funcionalidad de edición geográfica y creación de datos. En la
figura 7 se presenta este software

•	ArcInfo: En la figura 8 se muestra la herramienta de nivel superior y aquí se incluye
geoprocesamiento avanzado.

236 237

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

Emerillon[5]

Es un visualizador de mapas de escritorio para Gnome. El proyecto Gnome es una comu-
nidad que hace software libre y es el entorno de escritorio más populares para GNU/ Linux
y sistemas operativos de tipo UNIX.

Búsqueda por localidad, manejo de zoom, lista de favoritos, vista del transporte público,
vista del terreno, de mapas y de rutas son las principales funcionalidades de Emerillon, en la
figura 9 se presenta una imagen del visualizador.

Google Earth[6]

Google Earth es una aplicación de escritorio que combina una base cartográfica de imá-
genes aéreas y de satélite de alta resolución de las zonas más pobladas del mundo, con un
buscador de puntos de interés (POI) y direcciones, permitiendo vistas en 3D mediante la
proyección de las capas de imágenes sobre un modelo digital del terreno.

Google ofrecen una versión gratuita y dos versiones de pago. La versión gratuita de Goo-
gle Earth tiene, entre sus funcionalidades, la posibilidad de ir desde y hacia cualquier di-
rección o lugar, de realizar búsquedas de interés como son escuelas, parques, restaurantes,
hoteles, hospitales, etc. También ofrece las direcciones del tráfico y rutas.

Por otro lado, la vista puede ser inclinada y rotada para ver en 3D el terreno y los edificios.
Las búsquedas y favoritos pueden ser guardadas y compartidas y, a su vez, se pueden

añadir anotaciones geo-referenciadas. En la figura 10 se observa una vista del Cañón de Co-
lorado en las pantallas de Google Earth.

238 239

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

2.2 Visualizadores Web

Google Maps[7]

Google Earth permite utilizar al mismo tiempo la aplicación Google Maps que es su ver-
sión Web más sencilla. En la figura 11 se muestra una imagen del sitio Web de google Maps.
La base de información cartográfica e imágenes que utiliza Google Earth es prácticamente
la misma que se puede visualizar en Google Maps, aunque se observa que las imágenes están
proyectadass de forma distinta, es decir, con distinta proyección cartográfica.

Google Maps acepta únicamente longitud y latitud, no posee geocoder. Un geocoder es
una herramienta que proporciona la ubicación exacta o aproximada de algún dato geográfico.
Además, en una ventana de información es posible agregar texto HTML o XML.

Yahoo[8]

Las funcionalidades de Yahoo Maps son: integración de elementos al realizar búsquedas,
página de impresión, selección de tipos de rutas y elementos destacados de los mapas; per-
mite agregar texto HTML en una pequeña ventana de información y proporciona su propio
geocoder. Sus características son muy parecidas a Google Maps y Bing Maps.

Bing Microsoft[9]

Bing Maps es un servicio de mapas Web, parte del motor de búsqueda Bing de Microsoft.
Es un sitio Web que ofrece un mapa de la Tierra navegable en tres dimensiones, inclu-

yendo monumentos, edificios y parajes naturales. Entre sus funcionalidades presenta visión
alterna 2D y 3D. Además, ofrece un modo de viaje a vista de pájaro y está integrado con el
buscador Bing.

Por otro lado, ofrece el servicio Street side, que presenta una vista completa y continua
de las calles, pero sólo está disponible para las grandes ciudades de Estados Unidos. Por lo
que, una de las desventajas de Bing Maps es que carece de información completa de muchos
países. En la figura 13 se muestra una imagen del mapa de la ciudad de Montevideo.

Las herramientas que se presentan a continuación son productos personalizables, son
desarrollos a media.

OpenstreetMap[10]

OpenStreetMap (OSM) es un proyecto colaborativo para crear mapas libres y editables.
Los mapas se crean utilizando información geográfica capturada con dispositivos GPS

móviles, ortofotografías y otras fuentes libres. Esta cartografía, tanto las imágenes creadas
como los datos vectoriales, son almacenados en su base de datos.

Los datos en bruto que los colaboradores capturan con sus dispositivos GPS sirven como
guía para dibujar las nuevas vías. Estos datos suelen cargarse desde el equipo local del usuario
o bien solicitando al servidor de OSM que descargue aquellas trazas de la zona que van a ser
editadas y que otros usuarios han subido previamente a OpenStreetMap. Los datos brutos
son de libre acceso para el desarrollo de otras aplicaciones. El usuario debe registrarse de

240 241

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

manera gratuita mediante una dirección de correo para poder realizar ediciones pero, si solo
se desea consultar información, dicho registro no es necesario. A continuación se muestra el
mapa de Uruguay en una vista de OSM.

i3Geo[13]

i3Geo es un software para internet basado en un conjunto de software libres, principal-
mente Mapserver [12]. Ofrece datos geográficos que pueden ser consultados utilizando he-
rramientas de navegación, generación de análisis, etc. I3Geo incorpora funcionalidades que
facilitan el acesso remoto a los datos, permitiendo el establecimento de redes cooperativas.
En la figura 16 se adjunta una imagen del sitio i3Geo.

Se busca difundir el uso del geoprocesamiento como instrumento técnico-científico e
implementar una interfáz genérica para acceder a los datos geográficos existentes en institu-
ciones públicas, privadas o no gubernamentales, por esto puede ser utilizado e incorporado
por cualquier institución interesada, sin costos.

3. OpenLayers

OpenLayers [14] es un cliente visualizador de mapas ligero basado en JavaScript. Ofrece
un API para acceder a diferentes fuentes de información cartográfica en la red:

•	Protocolo Web Map Services (WMS, permite acceder a diferentes servidores de carto-
grafía digital utilizando un lenguaje común).

•	Mapas comerciales (tipo Google Maps, Bing Maps, Yahoo Maps).
•	Protocolo Web Features Services (WFS, ofrece una interfaz de comunicación que per-

mite interactuar con los mapas servidos por el estándar WMS como, por ejemplo, editar la
imagen que nos ofrece el servicio WMS o analizar la imagen siguiendo criterios geográficos).

•	Distintos formatos vectoriales
•	Mapas de OpenStreetMap, etc.
Una interfaz de programación de aplicaciones o API (del inglés Application Program-

ming Interface) es el conjunto de funciones y procedimientos (o métodos, en la programa-
ción orientada a objetos) que ofrece cierta biblioteca para ser utilizado por otro software
como una capa de abstracción.

OpenLayers hace que sea fácil colocar un mapa dinámico en cualquier página Web. Se
puede mostrar cuadros de mapas de cualquier fuente y se ha desarrollado para promover el
uso de la información geográfica de todo tipo.

Tiene por objeto separar las herramientas de mapas de los datos de mapas, de forma que
todas las herramientas pueden funcionar en todas las fuentes de datos.

Ejemplos de uso de OpenLayers pueden ser encontrados en [15], algunos como los que
se presentan a continuación pueden ser destacados:

•	demostración de uso de capas Bing,
•	uso de OpenLayers usando un servidor ArcGIS,
•	demostración de la versión 3 del API de Google Maps, etc.
Como se observa, varios de los visualizadores antes presentados utilizan OpenLayers. En

las figuras que se ofrecen a continuación se presenta cómo es posible personalizar un mapa
utilizando OpenLayers.

En la figura 17 se muestra cómo editar y crear puntos, líneas y polígonos. En este caso se
dibujó un punto en la ciudad de Montevideo.

242 243

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

En la figura 18 se observa, en un mapa de referencia, dónde se hizo el zoom sobre el
mapa de trabajo. Además, se puede ver que en las opciones de capa base está seleccionado el
protocolo de WMS y es posible la superposición de capas.

Las clases básicas de OpenLayers son las que se describen a continuación:
•	Map.js: Es el objeto central de OpenLayers y contiene a todos los demás.
•	Layer.js: Cada capa hereda los métodos básicos de esta capa.
•	Control.js: Controles del Mapa. Tienen una relación “1 a 1” con los handlers y general-

mente son los elementos que suelen personalizarse.
•	Handler.js: Son los manejadores de eventos. Están asociados a los eventos típicos de la

web como es, por ejemplo, el “Click”.

4 Bibliografía

http://www.gvsig.com/
http://www.opengeospatial.org/
http://www.qgis.org/
http://www.geoinfo-int.com/htmls/prod_arcgis_desk.html.
http://www.webcoz.com/install-emerillon-desktop-map-viewer-for-gnome/
http://google-earth.uptodown.com/
http://maps.google.com/
http://espanol.maps.yahoo.com/
http://www.bing.com/maps/#
http://www.openstreetmap.org/
http://www.pmapper.net/
http://mapserver.gis.umn.edu/
http://mapas.mma.gov.br/i3geo/aplicmap/openlayers.htm?ba0ac7ff2d4740bd21e68eb2

592d509e
http://www.openlayers.org/
http://openlayers.org/dev/examples/

244 245

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

Metadatos y calidad de la
información geográfica

1. Introducción

La primer pregunta que surge es qué son los metadatos. Los metadatos son información
acerca de los datos [1] [2] [3] o, como suele decirse, son los datos de los datos; en definitiva,
diferentes formas que se refieren a la descripción de los datos.

Los metadatos son creados para comunicar, por lo tanto deben compartirse y es conve-
niente que se haga a través de un estándar. El más aceptado en cuanto a información geoes-
pacial es el del Comité Federal de Datos Geográficos de los Estados Unidos (Federal Geo-
graphic Data Committee o su sigla FGDC) [4]. También está muy avanzado el tratamiento
del estándar de International Standard Organization (ISO TC/211) [5]. La importancia de
los estándares radica en que éstos se han definido para determinar qué información debe
documentarse de las bases de datos; proveen una terminología común y un conjunto de
definiciones para la documentación de los datos geoespaciales. Un ejemplo de estándar de
metadatos de información geográfica se encuentra disponible en [2].

Una de las principales ventajas de los metadatos es la organización y mantenimiento de
un catálogo de datos de una organización o sistema y su interacción entre estas entidades,
ya que podrían manejar independientemente diferentes estructuras pero comunicarse enten-
diendo el mismo estándar de metadatos. Los metadatos describen el contenido, la calidad,
la condición y otras características de los datos. En el caso de los Sistemas Geográficos es
importante mencionar que el contenido de los estándares para metadatos geo-espaciales del
Comité Federal de Datos Geográficos (FGDC) de los Estados Unidos [4] fue diseñado para
documentar un conjunto de datos geo-espaciales.

Los estándares para metadatos documentan las características o propiedades de los datos.
Los principales usos de los metadatos son:
•	Ayudar a las empresas a organizar y dar valor agregado a su inversión en datos geo-

referenciados.
•	Proveer información sobre las bases de datos de las que dispone las empresas, de forma

tal que se puedan formar catálogos de datos, repositorios de datos y proveer información ágil
a potenciales comercializadores de datos.

•	Proveer información que permita procesar los archivos de una fuente externa al usuario.
•	Proveer una guía para los usuarios de los datos en cuanto a su resolución espacial, siste-

ma de coordenadas, datum y calidad.

2. Diseño y organización de los Metadatos

Los metadatos, según FGDC [4] están constituidos por datos o elementos agrupados en
siete secciones principales y tres de apoyo, algunas de ellas son de carácter obligatorio. En la
figura 1 se muestra dicha distribución.

Cada una de las secciones del estándar dispone de elementos obligatorios, otros elemen-
tos obligatorios para el caso en el que sean aplicables, y elementos opcionales.

Cuando no se cuenta con un dato que es obligatorio se debe incluir un contenido que
aclare su inexistencia. Los elementos obligatorios, cuando son aplicables, se deben especificar
si los datos cuentan con las características a describir. Los elementos opcionales se incorpo-
ran si el proveedor de la información lo desea. Para cada una de las secciones que se observa
en la imagen anterior se presenta una breve descripción:

•	La sección 1 se refiere a la “Identificación” de la información. Trata información acerca
de la identificación de los metadatos, como puede ser su propósito y descripción, los tiempos
de publicación y de su actualización, la frecuencia de mantenimiento y el estado de avance.
También los datos de posicionamiento espacial, las personas de contactos y las palabras cla-
ves, es decir los términos que describen y permiten ubicar representativamente al metadato.

•	La sección 2 corresponde a la “Calidad”. Básicamente almacena información sobre la
precisión y la consistencia lógica de los datos, también los métodos y tiempos de captura o
creación.

•	La sección 3 se refiere a la “Organización y Tipos”. Considera la información sobre la
referencia espacial y los objetos vectoriales o rasters que la conforman.

•	La sección 4 corresponde a la “Referencia Espacial”. Se refiere al Datum y a la defini-
ción del sistema de coordenadas, ya sean geográficas, planas o locales.

•	La sección 5 toma en cuenta las “Entidades y Atributos”. Detalla en forma repetitiva la
definición de cada campo de las estructuras de datos asociadas.

•	La sección 6 corresponde la “Distribución” que describe el medio y modo en que se
presenta y distribuye la información, ello incluye formato, disponibilidad, ubicación, accesi-
bilidad y precio, entre otras características.

•	La sección 7 corresponde a la “Referencia de los metadatos”. Esta incluye una breve
descripción del metadato en sí, y no de la información que describe el metadato, por este
motivo, junto a la sección 1, esta sección es obligatoria.

•	Incluye la fecha del metadato y de su revisión, nombre, versión y persona de contacto
del metadato, además de cierta información del uso y restricciones de seguridad.

•	Toda la información que recoge un metadato se almacena en un simple archivo de texto
cumpliendo con todas las definiciones del estándar.

246 247

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

3. Herramientas

Existen varias herramientas o asistentes (wizard) que permiten generar metadatos, entre
ellas MetaLite [6], Tkme [7], CorpsMet95 [8], Catmdedit [9] y ArcCatalog [10]. Los editores
tienen la intención de simplificar el proceso de creación de metadatos que se ajustan a la
norma.

MetaLite [6] es una de las más utilizadas, es gratuita, incluye el idioma español y funciona
sobre plataformas Windows. Permite crear y validar metadatos respetando un conjunto de
datos mínimos del estándar FGDC [4], abarcando las secciones 1, 3, 6 y 7, incluso genera una
base de datos (archivo mdb) almacenando todos los metadatos creados.

Por otro lado, Tkme [7] comparte gran parte de su código con su progenitor, Xtme.
Ambos, Tkme y Xtme, están estrechamente relacionados con mp, un compilador de me-

tadatos formales, cuyo propósito es verificar que la estructura sintáctica de un archivo que
contiene metadatos formales se ajusta al estándar FGDC [4] y para volver a expresar los
metadatos en varios formatos útiles. Tkme se puede construir para los sistemas Unix, si se
desea. Tkme está diseñado específicamente como un puerto de Xtme de Microsoft Windows
95, 98, NT y 2000.

CorpsMet95 [8] es una herramienta de creación de metadatos originalmente desarrollado
para el Cuerpo de Ingenieros del Ejército de los EE.UU. (USACE). Inicialmente se trataba
de una versión del producto comercial Metagen32. Desde la versión inicial ha sido actuali-
zada por USACE. Al igual que tkme, la interfaz de esta herramienta ofrece al usuario varios
paneles.

Otra herramienta de edición de metadatos es Catmdedit [9], que facilita la documentación
de los recursos, con especial énfasis en la descripción de los recursos de información geográ-
fica. Se trata de una iniciativa del Instituto Geográfico Nacional de España (IGN) [11], que
es el resultado de la colaboración científica y técnica entre IGN y el Grupo de Sistemas de
Información Avanzados (IAAA) [12] de la Universidad de Zaragoza con el apoyo técnico de
GeoSpatiumLab (GSL) [13].

Dos editores de metadatos se proporcionan con ArcCatalog [14]. Un editor permite crear
documentos siguiendo el estándar para Metadatos Digitales Geoespaciales de la FGDC [4].
El otro editor permite documentar datos según la norma ISO 19115 [14], metadatos de
información geográfica, que sólo es compatible con los elementos de metadatos básicos
definidos por esa norma.

4. Calidad de la Información Geográfica

Como se observó en la figura 1, la sección 2 del estándar de Metadatos de la FGDC [4]
corresponde a la Calidad. Esta sección se refiere a la calidad de los datos de acuerdo a la pre-
cisión y la consistencia lógica de los mismos. Ya en el momento de pensar en la descripción
de los datos, metadatos, se está considerando la calidad de la información geográfica.

En [15] se menciona que los datos geográficos son datos de propósito general que tienen
un ciclo de generación y uso muy diferente a los datos tradicionales de negocio de las em-
presas. Son generados por organizaciones especializadas que los brindan a las organizaciones
que los usarán para diferentes aplicaciones. Por esto, es muy importante conocer la calidad
de los datos que se pueden obtener y poder evaluar si son adecuados para el uso que se les

quiere dar. En este mismo trabajo se subraya que, por la forma tradicional de generación de
los datos geográficos, el propio proceso establece parámetros de control del proceso. De este
modo, los productores de datos geográficos realizan controles internos sobre la calidad de
los datos en relación a la especificación del producto. Algunos de los parámetros son, por
ejemplo: escala, extensión (cobertura), nivel de detalle. Por ejemplo, en un mapa de escala
mundial las ciudades serán puntos, mientras que en un mapa de escala nacional las ciudades
pueden ser representadas por polígonos que muestren su extensión e, incluso, en un mapa
de una ciudad se consideran otros datos y los límites de la ciudad.

En los mapas tradicionales (en papel), en la misma hoja de impresión se anexaban meta-
datos sobre el mapa (escala, fecha de edición, leyenda, etc.). Ahora, con los datos geográficos
digitales, puede suceder que se cuente con un conjunto de datos sin sus metadatos. Esto hace
más complejo el poder evaluar si el conjunto de datos es apropiado para el uso que se le quie-
re dar. Sumado a esto, cada vez se cuenta con mayor cantidad de datos geográficos generados
a demanda para un proyecto o dominio que pueden, o no, ser apropiados para otro proyecto.

4.1 Normas de Calidad

En el trabajo realizado en [15] se presentan un conjunto de normas de Calidad, y men-
ciona que la comunidad de generadores de datos geográficos ha propuesto estándares que
especifican desde la forma de representar, intercambiar y publicar, hasta cómo manipular
la información geográfica. Estos estándares se han ido normalizando a través de la familia
de normas ISO 19100 [16]. Dentro de esta familia se definen las siguientes normas sobre
calidad:

•	 ISO 19113 – Principios de la Calidad.
•	 ISO 19114 – Procedimientos de Evaluación de la Calidad.
•	 ISO 19138 – Medidas de la Calidad.
Estas normas buscan estandarizar los aspectos de identificación, evaluación y descripción

de la calidad de los datos geográficos. De este modo, se pueden comparar productos, evitar
informaciones ambiguas y facilitar la elección y el uso de los datos geográficos.

Estas normas, junto con las de metadatos (ISO 19115), facilitan la comunicación entre
productores y consumidores de datos geográficos.

Para describir la calidad de los datos geográficos se distinguen dos tipos de atributos:
cualitativos y cuantitativos. Los datos cualitativos son solamente descriptivos e incluyen, por
ejemplo: la historia de los datos (el linaje), los casos de uso para los que fueron recopilados
y el propósito para el que fue generado el conjunto de datos. Aquí también se considera la
especificación que se tomó en cuenta para la generación de los datos geográficos (de acuerdo
a la norma ISO 19131 – Geographic Information – Data Product Specifications). Los datos
cuantitativos son los que se pueden medir de acuerdo a las medidas establecidas en la norma
ISO 19138 y que se implementan en base a las normas ISO 28593 e ISO 3159 que tratan de
muestreo y procesos estadísticos en general. En la Figura 2 se muestra el ciclo de evaluación
de la calidad de los datos geográficos y los puntos dónde intervienen las normas. Aquí se asu-
me que los datos están almacenados en una Base de Datos Geográfica – BDG. También se
asume que se está trabajando con un conjunto de datos geográficos que ya fueron generados
y están listos para su evaluación de calidad. No consideramos los controles correctivos que
se puedan haber aplicado en las diferentes etapas del proceso de generación.

248 249

Ta
lle

r d
e

Fo
rm

ac
ió

n
pa

ra
 S

is
te

m
as

 d
e

In
fo

rm
ac

ió
n

G
eo

gr
áfi

co
s

Taller de Form
ación para Sistem

as de Inform
ación G

eográficos
ÍNDICE

Para definir el Modelo de Calidad, las normas establecen cinco grandes Elementos de la
calidad para los datos geográficos. Estos son:

1.	 Compleción (traducción oficial española para Completitud): describe los errores de
omisión/comisión en los elementos, atributos y relaciones.

2.	 Consistencia Lógica: adherencia a las reglas lógicas del modelo, de la estructura de
datos, de los atributos y las relaciones.

3.	 Exactitud Posicional: exactitud alcanzada en la componente posicional de los datos.
4.	 Exactitud Temporal: exactitud alcanzada en la componente temporal de los datos.
5.	 Exactitud Temática: exactitud de los atributos y de la corrección de las clasificaciones

de los elementos y sus relaciones.
Para cada Elemento se definen Subelementos que ayudan a definir más precisamente lo

que se desea medir. Estos subelementos se presentan la tabla 1 vinculados al Elemento que
los contiene.

La norma propone luego un conjunto de descriptores para cada subelemento de forma de
estandarizar su documentación:

•	Ámbito: alcance de aplicación del subelemento, puede ser una sección de un conjunto
de datos.

•	Medida: definición del tipo de prueba a realizar y sus parámetros.
•	Procedimiento: metodología para ejecutar la medición.
•	Resultado: resultado para la medida, puede ser un valor, conjunto de valores o su evalua-

ción frente a un umbral determinado por los requerimientos de calidad.
•	Tipo de Valor: se asocia al tipo de resultado: numérico, booleano, graduado.
•	Unidad del Valor: unidad del tipo de valor. Por ejemplo, para una medida de precisión

posicional se puede dar en metros, kilómetros u otra unidad.

•	Fecha: fecha de realización de la medida. Es particularmente importante para las evalua-
ciones relativas a la temporalidad.

Esto brinda un modelo genérico y extensible (ya que la norma permite definir nuevos
elementos y subelementos) para la medición y el reporte de la calidad de datos geográficos.

Normas sobre Metadatos y Calidad de Información Grográfica pueden ser consultadas
en [17] y [18].

5. Bibliografía

http://www.iiap.org.pe/
http://www.agrimensoreschubut.org.ar/Ptsig/metadatos.htm
http://www.sigfam.com.ar/content/view/102/2/
http://www.fgdc.gov/
http://www.isotc211.org
http://edcnts11.cr.usgs.gov/metalite/
http://geology.usgs.gov/tools/metadata/tools/doc/tkme.html
http://www.sco.wisc.edu/wisclinc/metatool/cormet95.htm
http://catmdedit.sourceforge.net/
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=Editing_metadata
http://www.ign.es/ign/main/index.do
http://webdiis.unizar.es/~zarazaga/workPage/docencia/ingSoft1/index.html
http://www.geoslab.com/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26020
Ing. Sosa, Raquel. “Calidad de Datos Geográficos”. Curso: Calidad de Datos
http://www.fing.edu.uy/inco/cursos/caldatos/).
http://www.eurogeographics.org/documents/Guidelines_ISO19100_Quality.pdf
http://www.mappinginteractivo.com/plantilla-ante.asp?id_articulo=1457
http://www.mappinginteractivo.com/prin-ante2.asp?id_periodo=137

251

Taller de Form
ación.N

ET
ÍNDICE

9. Taller de Formación.NET

Ing. Gustavo Guimerans
A/C. Nicolás Sampietro
A/C. Emiliano Martínez

Laboratorio de Integración de Sistemas
Introducción a .NET Framework

Agenda

¿ Qué es .NET Framework?
•	Componentes Fundamentales
•	Funcionamiento Interno del CLR
•	Bibliotecas Principales
•	Características de .NET
•	Herramientas de Desarrollo .NET
•	Lab. Punto de venta

¿Qué es .NET Framework?

Tecnología de desarrollo de aplicaciones empresariales, compuesta de:
•	Entorno de Ejecución (Runtime)
•	Bibliotecas de Funcionalidad (Class Library)
•	Lenguajes de Programación
•	Visual Basic
•	C#
•	F#
•	C++
•	Compiladores
•	Herramientas de Desarrollo (IDE VS2010 & Tools)
•	Guías de Arquitectura

Plataforma de Ejecución Intermedia

Agenda

¿Qué es .NET Framework?
•	Componentes Fundamentales
•	Arquitectura

252 253

Ta
lle

r d
e

Fo
rm

ac
ió

n.
N

ET
Taller de Form

ación.N
ET

ÍNDICE

•	Common Language Runtime (CLR)
•	Microsoft Intermediate Language (MSIL)
•	Assemblies
•	 .NET Class Library
•	Common Language Specification (CLS)

CLR - Arquitecturas de Ejecución de Aplicaciones

Arquitectura del .NET Framework

CLR – Common Language Runtime
•	El CLR es el motor de ejecución (runtime) de .NET.
•	Características.
•	Compilación Just-In-Time (JIT).
•	Gestión automática de memoria (Garbage Collector).
•	Gestión de errores consistente (Excepciones).
•	Ejecución basada en componentes (Assemblies).
•	Gestión de Seguridad.
•	Multithreading.

CLR – Componentes Internos

CLR – Proceso de Compilación

CLR - MSIL

¿Qué es un “Assembly”?

•	Un Assembly es la unidad mínima de ejecución, distribución, instalación y versionado
de aplicaciones .NET

254 255

Ta
lle

r d
e

Fo
rm

ac
ió

n.
N

ET
Taller de Form

ación.N
ET

ÍNDICE

Assemblies - Aplicaciones .NET

•	Uno o más Assemblies (.dll, .exe).
•	Al ejecutar una aplicación, ¿cómo ubico los assemblies necesarios?
•	El Class Loader busca en el directorio local (preferido).
•	Global Assembly Cache (GAC).
•	Diferentes aplicaciones pueden usar diferentes versiones.
•	Actualizaciones más simples.
•	Desinstalación más simple.

NET Framework Class Library

•	Conjunto de Tipos básicos (clases, interfaces, etc.) que vienen incluidos en el .NET
Framework.

•	Los tipos están organizados en jerarquías lógicas de nombres, denominados NAMES-
PACES.

•	Los tipos son INDEPENDIENTES del lenguaje de desarrollo.
•	Es extensible y totalmente orientada a objetos.

.NET Framework Class Library

Agenda

¿ Qué es .NET Framework?

•	Componentes Fundamentales
•	Funcionamiento Interno del CLR
•	Modelo de Ejecución
•	Common Type System

Modelo de Ejecución del CLR

CTS (Common Type System)

•	Define un conjunto común de “tipos” de datos orientados a objetos.
•	Todo lenguaje de programación .NET debe implementar los tipos definidos por el CTS.
•	Todo tipo hereda directa o indirectamente del tipo System.Object.
•	Define Tipos de VALOR y de REFERENCIA.

La Memoria y los Tipos de Datos

El CLR administra dos segmentos de memoria: Stack (Pila) y Heap (Montón).
•	El Stack es liberado automáticamente y el Heap es administrado por el GC (Garbage

Collector).
La Memoria y los Tipos de Datos.
•	Los tipos VALOR se almacenan en el Stack.
•	Los tipos REFERENCIA se almacenan en el Heap.

256 257

Ta
lle

r d
e

Fo
rm

ac
ió

n.
N

ET
Taller de Form

ación.N
ET

ÍNDICE

Agenda

¿ Qué es .NET Framework?
•	Componentes Fundamentales
•	Funcionamiento Interno del CLR
•	Bibliotecas Principales
•	Características de .NET

Características de .NET

Entorno de Ejecución robusto y seguro:
•	Gestión automática de memoria.
•	Manejo de excepciones.
Independiente del lenguaje de programación.
•	Libertad en la elección del lenguaje (o mixto).
•	Herramientas de desarrollo compartidas.
Interoperabilidad con código existente:
•	Unmanage code. COM.
Simplifica la instalación y administración de las aplicaciones:
•	GAC, múltiples versiones.
Extensible:
•	Las clases pueden ser extendidas usando herencia.
•	Herencia entre distintos lenguajes.

Interoperabilidad

¿ Qué es .NET Framework?

•	Componentes fundamentales
•	Funcionamiento interno
•	Bibliotecas Principales
•	Ventajas de .NET

Herramientas de Desarrollo .NET
•	Visual Studio 2010
•	SQL Server 2010 Express
•	SQL Server Managment Studio.
•	 IIS7

Microsoft Visual Studio 2010

•	“Solución” es un contenedor de proyectos.
•	“Proyecto” es un contenedor de: archivos fuente, conexiones a base, recursos etc.

•	Diferentes tipos de proyectos, (VS Projects Templates).
•	Area editor o diseñador depende del tipo de archivo que se esta usando.

SQL Server Management Studio

258 259

Ta
lle

r d
e

Fo
rm

ac
ió

n.
N

ET
Taller de Form

ación.N
ET

ÍNDICE

•	SQL Server Management Studio es un entorno integrado para obtener acceso a todos
los componentes de SQL Server, configurarlos, administrarlos y desarrollarlos.

•	Con SQL Server Management Studio, el programador y el administrador de bases de
datos pueden desarrollar o administrar cualquier componente del Motor de base de datos.

Agenda

¿ Qué es .NET Framework?
•	Componentes Fundamentales
•	Funcionamiento Interno del CLR
•	Bibliotecas Principales
•	Características de .NET
•	Herramientas de Desarrollo .NET
•	Lab. Punto de venta

Lab 0

Invocamos al compilador C# con:
>csc Holamundo.cs

Lab. Punto de venta

•	La aplicación “Punto de venta” posee una arquitectura en tres capas (presentación, re-
glas de negocios y acceso a datos).

Funcionalmente, la aplicación permite:

•	Listar una serie de productos disponibles para vender.
•	Iniciar una nueva venta.
•	Agregar un ítem a la venta (se agrega un producto al carrito de compras).
•	Listar los productos contenidos en el carrito.
•	Confirmar la venta (obteniéndose el total a pagar).

•	Cancelar la venta (vaciando el carrito de compras).
•	Salir (cancelando las ventas no confirmadas).

Lab. POS. Presentación

•	Assembly .EXE, proyecto de consola.
•	Main(), punto de entrada a la aplicación.
•	Utiliza el patrón command, para las opciones del menú.
•	Este proyecto contiene, App.config, (Cadenas de conexión, variables etc.).

Lab. POS. Reglas de negocio

•	Assembly .dll, librería.
•	Clases que representan Entidades (Venta producto, ItemVenta).
•	Clases que representan maestros de las entidades. (CatalogoProductos, CatalogoVentas).

Lab. POS. Acceso a datos

•	Assembly .dll, librería.
•	Contiene una clase que encapsula y simplifica el acceso a datos con ADO.NET. (Base-

Datos).
•	Clase que representa un error (BaseDatosexception).

Presentación: (Proyecto de consola)

Reglas de negocio

Acceso a datos

SQL
SERVER

260

Ta
lle

r d
e

Fo
rm

ac
ió

n.
N

ET

Lab. Punto de venta

Bibliografía

MSDN .NET Framework 4
ohttp://msdn.microsoft.com/es-es/library/w0x726c2.aspx

DCE
ohttp://mslatam.com/latam/msdn/comunidad/dce2005/

SQL Server Managment Studio
ohttp://msdn.microsoft.com/en-us/library/ms174173.aspx

ÍNDICE

263

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

13. Integración de equipos
multidisciplinarios: Agrotecnologías

Multi-agent systems applied
to land use and social changes

 in Rio de la Plata basin
(South America)

Corral, Jorge, Facultad de Ingeniería, Uruguay
Arbeletche, Pedro, Facultad de Agronomia, Uruguay
Burges, Julio César, INTA-EEABalcarce, Argentina

Morales, Hermes, Instituto Plan Agropecuario, Uruguay
Continanza, Guadalupe, INTA-EEA Balcarce, Argentina

Couderc, Jorge, INTA-EEA Bordenave, Argentina
Courdin, Virginia, Facultad de Agronomia, Uruguay

Bommel, Pierre, CIRAD-Univ. Brasilia, Brazil

Abstract

Dynamics in agrarian systems of Uruguay and Argentina present some positive aspects as
well as other potentially devastating. Traditional producers have a production strategy based
on looking for a balance between cattle and agriculture production, alternating pasture and
crops. A new actor: investment-fund-managers rent the land for agriculture production, and
from our team’s discussions emerged that they follow a strategy similar to that of financial
capital: decide what to do in terms of the expected net profit. Economical, ecological and
social consequences could be expected. Modeling and simulating with Multi-Agent-Systems
was used for exploring the system’s evolution with the objective of improving our under-
standing of the agrarian system and to contribute to the envision of possible effects on land
use caused by changes in product prices and/or policy changes. The model considers the
soil resource as having productive potential and assumes that each traditional producer an-
nually decides whether to change or not its production activity over 25% of its land units or
to rent to investment fund managers. A six year database with historical production activity
revenues and product’s prices was used for the simulation, where each simulated year ran-
domly chooses from this database. The first results of these simulations generate questions
about the dynamics of the natural resources, challenge the survival of traditional farmers
and anticipate landscape changes associated to economic, ecological and social changes. A
strong variability was observed from year to year in respect to land use. Results show that if
the current price structure is maintained as well as the relation between net profits of agri-
culture and cattle, then a tendency to expand Investment Fund Managers’ lands will occur.
We conclude that the newly arrived Investment Fund Managers tend to induce a rent activity
in traditional producers as well as a substantial increase in agricultural activities (decreasing
cattle activities). The historical cattle-agricultural model well known in Uruguay and Argen-
tina has been challenged by market-imposed conditions.The simulation shows that social
effects should also be foreseen.

Keywords: land use change; simulation models (modelling); farm(farmers) strategy(ies).

264 265

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

Introduction

Recently observed changes in agrarian systems of the Rio de la Plata Basin (MERCO-
SUR, South America), with important similarities between the different regions, should be
given some thought in the sense of possible economical, ecological and social consequences,
which could be anticipated from these changes in the farming sector due to the explosive
introduction of soybean crops and a new push of the forest industry. The increase in the
soybean production is common to all countries in Rio de la Plata Basin since it is mainly
produced by large companies and had the effect of increasing the rent value, and therefore
the values of properties that could put pressure on traditional cattle producers to incorporate
more intensive practices. The evolution in the structure of farms has lead to a new kind of
actor (agricultural investment fund managers -IFM from now on- that rent land) which to-
gether with all these changes raise questions about which could be the positive and negative
aspects, what kind of actors will still be present in the near future and if it possible to state
if agriculture is going through a concentration process similar to those observed in other
sectors of the economy? This soybean expansion process takes over new lands now devoted
to agriculture or leaving behind traditional activities. For example, in Uruguay between 2000
and 2006 the total agricultural area increased in 17% due to the expansion of soybean crops
which have multiplied by 25 (in area) in just 5 years. Among soybean producers, 6% have
control of 40% of the sowed area; while among the whole agricultural area, 1% of the pro-
ducers have control of 45% of the sowed area.

This expansion in the production takes place in an agrarian structure characterized by an
increasingly economic concentration, which affects thousands of producers, especially small
ones since in just 5 years 45% of them were no longer agricultural producers. (Arbeletche
et al, 2006) This expansion process is also characterized by the denationalization of the ag-
ricultural production, the coming of a soybean complex related to a monopolistic offer of
inputs (especially seeds and machinery), an almost monopolistic export demand, and a set of
technologies driven by a few foreign companies.

As in Argentina, Brazil and Paraguay, this expansion is not the result of a planned pro-
ductive one, based on social and economic development objectives. Instead it is the result of
capital advance (mainly financial capital) due to: new conditions result of the disappearance
of legal regulations that existed until the 90’s; technological changes related with direct sow-
ing and transgenic crops; and finally the increasing demand of agricultural products by the
international market.

Also, aspects such as biodiversity, soil fertility conservation and, in general, the capacity
of ecosystems to satisfy human needs are all related to land use, and therefore, related to
economic or socio-political disturbances (Paruelo et al. 2006).

In order to understand and predict land use change effects historical reconstructions
should be made that identify the essential factors and develop models that help us explore
future scenarios. These models should show these dynamics at different levels, including the
global scale (Lambin et al. 2006).

The current agricultural situation with these unprecedented changes requires us to imag-
ine and examine actions that could leverage the positive aspects and mitigate the negative
ones. In this context, this work refers to a Uruguayan region and can be seen as a case study

with relatively abundant information, where a methodology can be adjusted and later be
used in similar circumstances, or in comparison to other regions of the Rio de la Plata Basin.
Displace

Objectives

The objectives of this work are:
•	Identify and model the strategies followed by the different kinds of farm producers

present in Uruguay, in order to analyze and understand their long term consequences.
•	Develop a model to allow the simulation of the evolution of the different kinds of

producers and land uses.
•	Perform these exploratory and prospective simulations using a Multi-Agent System

constructed by our multidisciplinary team over the Cormas simulation platform (Cormas
2006).

This first approach focuses on analyzing possible evolutions in land use (on lands per-
fectly suitable for crops) as well as the evolution in the different kinds of producers. This
approach is supported by various ongoing works from different team members, such as the
construction of a typology of producers’ behavior and their corresponding organization of
production activities, among others.

This work is part of the TRANS programme (Transformation de l’élevage et dynamiques
des espaces de la Agence Nationale de Recherche - France).

Methods and materials

The general characterization of the agrarian dynamics was created from secondary infor-
mation, national and international statistics and from other documents that allow a compari-
son with other regions as well as with other historical information.

The typology used was developed from the General Farming Census (year 2000) and the
farming polls (years 2002 to 2005) of the Economic Research head office of the Livestock,
Agriculture and Fishing Ministry of Uruguay (Arbeletche et al. 2006). The classification was
done using the Cluster Analysis methods from the (Sparks) algorithms contained in the SPSS
software (version 10).

The methodology that was followed consists of three stages:
Stage I: A multidisciplinary team was formed with researchers, teachers and extensionists

from Uruguay and Argentina that complement their competences in understanding a phe-
nomenon that is present in various areas of the Rio de la Plata Basin, with their similarities
and differences.

Stage II: In order to make the model (understood as the construction of an image that
highlights those aspects of interest for the modeler, ruling out others) we used UML (Unified
Modeling Language, Fowler 2003). The use of a common modeling language (such as UML)
enables many people to communicate with each other with little ambiguities (Krutchen 2003)
and allows us to understand, analyze, communicate and improve a given situation or reality.
UML defines a model as a set of diagrams, accepting from the beginning that no single dia-
gram can represent an entire system. UML proposes 13 different kinds of diagrams: six of

266 267

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

these are for describing the structure of a system (being the Class Diagram the most
widely used) and seven are for describing the dynamic of a system (being the Activity Dia-
gram and the Sequence Diagram the most widely used) (Fowler 2003).

Stage III: We define simulation as the computer implementation of a model that allows
for exploring its evolution as well as proving the coherence and consistency of its construc-
tion. In order to simulate a model where bio-physical and social subsystems interact, the
model should:

1.	 Take into account the dynamic present in decision-making. For that it should incorpo-
rate qualitative information in the form of decision rules;

2.	 Show the dynamic of this interaction, and
3.	 Include heterogeneous components with quantitative and qualitative dynamics.
This simulation, using Multi-Agent Systems (MAS from now on) is supported by object

oriented programming and it is getting more and more attention as a tool, especially adapted
for these kind of analysis. MAS appears as a tool especially adapted when trying to simulate
the functioning and evolution of systems composed by heterogeneous agents interacting
among themselves that are influenced by their location in space, in situations that can or can-
not be of equilibrium (Bonabeau, 2002; Weiss, 1999; Bousquet, 2006; Janssen 2002). When
trying to study systems that include human behavior, prospective simulation take distance
from the normative approach that has been common in many sciences, and this difference is
important enough as to classify it as a “new kind of science” (Bradbury 2006).

Axelrod (1997) proposes that agent-based simulation constitutes a third way of acquir-
ing knowledge, different from the usual deduction and induction methods. The potential of
MAS to study the dynamics of natural resources that interact with society has been identified
more than a decade ago (Bousquet, 2006; Janssen 2002). Their capacity to simulate social sys-
tems (Gilbert & Terna 1999) and its interaction with heterogeneous elements such as those
that dynamically characterize ecological systems, place them as an adequate tool for such
situations (Parker et al. 2002; Moran & Orstrom 2005).

The actual way of modeling depends on the right judgment of the team that is involved
(Ericsson & Penker 2000), and the task of defining the level of abstraction is quite sensi-
tive since the main capacity of the modeler consists of choosing what to include and what
to exclude from the model, keeping in mind the objectives (Schmuller 2004, Holland 1998).

According to Le Page & Bommel (2006), a MAS is a set of agents with the ability to
act and communicate; with perception, communication, production, consumption and data
transformation within an environment; a topological space; a whole that contains agents and
objects; a resource for communication and action; passive objects such as resources, organi-
zation plans, or ways coordinate represented by the set of rules and relations.

Each agent presents a collective behavior, consequence of its perceptions, representa-
tions and interactions with the environment and with other agents, and it communicates
with these, it has a perception of them as well as of the environment, and it perceives and
acts over objects (Janssen 2002; Weiss 1999). In equation-based models, agents are frequently
(and sometimes even implicitly) assumed as representing an average behavior, so these ap-
proaches cannot take into account the interactions between agents or their heterogeneity.

Results

The different kinds of producers

Beginning from the typology created by Arbeletche and Carballo (2006) two subsets of
producers were identified: first, traditional producers that integrate into their production
system crop and pasture rotations, as well as cattle production; and second, newly arrived
farmers (IFMs) that base their productive systems in continuous crops over rented land.
Within the first subset of traditional producers, a second classification was done identifying
three kinds of traditional producers according to their amount and combination of farm
resources (land, work and capital): family producers (also called “small producers”), medium
size entrepreneurs (also called “medium producers”) and full size entrepreneurs (also called
“big producers”).

Description of the simulation model

The model shows the interactions generated through the use of the land (agriculture and
cattle) and the ownership of the land (rented or owned). The model looks forward to gener-
ate knowledge about these aspects and understand the relation among traditional producers
and IFMs. The strategy of the latter consists of renting land (plots) in order to intensively
and continuously produce soy bean crops. The model also considers that traditional produc-
ers (including small, medium and big) who have a history of combining cattle and crops, are
profit-sensitive, meaning that they will try to practice whatever activity is more profitable.

The model simulates the behavior of both, traditional producers and IFMs and assumes
that the three kinds of traditional producers behave in the same way (that means that their
rules are the same) but they differentiate in the amount of resources they manage (that
means the number of plots they own and/or operate). Therefore traditional producers risk
their properties, while IFMs manage capital (other people’s money).

In our model, IFMs rent (and eventually release) plots as long as traditional producers are
willing to put some of their plots to rent (and eventually recover them). This means that the
initiative of whether to rent or not is taken by the traditional producers according to their
decision rules, represented by a UML Activity Diagram (which will be later presented).

The main assumptions of the model are the following:
•	Traditional producers can give up for rent one or more of their plots,
•	They can only give their plots for rent to the IFM,
•	The rented plots are always used for continuous crops (the only activity of IFMs) at the

very moment they are rented, and it can or cannot coincide with its previous use,
•	Traditional producers can buy and sell plots between themselves, as well as give

up for rent to the IFMs, which can only rent plots to traditional producers (therefore IFMs
cannot buy land).

Model’s structure

Figure 1 presents the UML Class Diagram (Fowler 2003) with the (simplified) structure
of the model. Class Diagrams graphically show the main components of the model (classes)

268 269

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

and their associations (relations between classes). Each component (class) contains its
name (first section), its attributes (second section) and its operations (third section) and dur-
ing the simulation run, each individual element will be an instance of some class (for exam-
ple, producers A, B and C will all be instances of the class Traditional). The relations among
classes are typically an association (represented by an open-ended arrow) or a specification
(represented by a close-ended arrow).

The right-hand side of the diagram represents the resources (the Plot class) and their use
(classes LandUse, Cattle, SoyBean and Empty). Each plot (land unit) has just one use at a
time. Each plot (100 hectares) can be either rented (to the IFM) or sold (to other traditional
producers). When they are not exploited their state is empty. Exploitation then consists of
choosing between cattle and soybean. Each productive activity has its own cost and price that
evolve according to the market (this evolution will be discussed later).

The left-hand side of the diagram represents the agents present in the model: the classes
InvestmentFundManager and Traditional, both subclasses of Producer. Any producer can
manage a set of N plots (represented by the relation Producer –manages Plot) but only tra-

ditional producers can own a set of N plots (represented by the relation Traditional –owns
Plot). According to the number of plots owned by a traditional producer we further classify
them in “small”, “medium” and “big” producers (represented by the attribute type of the
Traditional class). Only traditional producers can buy and sell land (represented by the opera-
tions buyPlot() and sellPlot()) since this is a strategy that IFMs do not have (they systemati-
cally choose to sow continuous crops –soybean– over rented plots using high technology
which gives them a productivity 30% higher than traditional producers).

Traditional producers can use their plots in the following ways (represented by the relation
Plot has LandUse):
•	continuous crops (every year with double crop, covering 100% of the surface with a

winter crop and 80% with a second summer crop),
•	cattle fattening,
•	 rent the plot to the IFM, or
•	 leave it empty.
The decision of what activity to perform depends on which activity is the most profitable

(gross margin) for the traditional producer. The current version of the model assumes that
all three kinds of traditional producers are in the same conditions to perform any of these
activities.

Models rules

Figure 2 presents the UML Activity Diagram (Fowler 2003) with the (simplified) strategy
of traditional producers (remember that only these kinds of producers are proactive, while
IFMs react to the actions of these). The Activity Diagram graphically shows the activities
that a traditional producer can perform during a certain year. The diagram has a beginning
(represented as a solid circle) and an end (represented as a circle & dot) and in between there
are tasks or individual activities (represented as rounded rectangles). These tasks or activities
are connected with arrows that represent the flow within the diagram and this flow can be
controlled by decisions (represented as rhombus). Each decision has a set of outgoing flows,
each one with a guard (represented as a boolean yes/no expression within) and only one of
these guards can be true at a time (therefore choosing that outgoing flow).

The diagram could be divided in three sections: left, center and right. The left-hand side
corresponds to the situation in which the traditional producer presents good levels of ac-
cumulated profit that year (remember that the diagram shows the decision rules for one year
and is “executed” each year of the simulation period). These “good levels” are defined as
having enough accumulated profit for (at least) the next two years (that means that he/she
can produce and consume for at least two more years). Under this situation the traditional
producer could try to regain its rented plots (if this activity is not more profitable than cattle
or soybean). Eventually the traditional producer could even buy one (or more) plots. The
right-hand side of the diagram corresponds to the opposite situation: the accumulated profit
is not enough for the next year, so the traditional producer is faced to, firstly, try to give up
plots for rent, and secondly, try to sell one by one their plots, until either of two things hap-
pen: they can upfront the next year, or declare bankruptcy (and leave the simulation). The
center part of the diagram corresponds to the intermediate situation: the traditional produc-
er has enough money to face only the next year. In all cases (except of course when declaring
bankruptcy) the traditional producer plans the activities for next year (considering renting an
activity) and according to market prices (which can evolve and will be discussed later) they
will produce (or rent) up to 25% of their plots. This percentage (which can actually change,
but for clarity reasons was fixed in 25% in the diagram) is represented as the predisposition-
ToChange attribute of the Traditional class. This attribute is necessary since if not present,
traditional producers could change 100% of their managed plots from one year to the other.

IFMs’ activities and rules are much simpler, since each year they produce soybean crops
over all the plots they have rent. Even though these kind of producers are not proactive
(meaning that traditional producers are the ones that offer their plots for rent) they can
decline a rent offering if the price of the rent is too high (meaning that they would have no
profit with such high rents). They can also return rented plots in that situation. The simula-
tion model also allows IFMs to determine the price of rent (this is a parameter that can be
turned on or off and it will be discussed later when showing the simulation results for dif-
ferent input parameters).

270 271

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

Simulation initialization

The simulation assigns to each kind of traditional producer (small, medium & big) a cer-
tain amount of land units (plots) with a randomly selected land use that can be cattle faten-
ing or continuous crop. Each plot (according to its use) has a certain production level that
corresponds to average values of Uruguay. Each plot can be bought, sell or rented at market
values. All values of products have been average market values for the last five years, and are
the same for all producers. Rent and property values are the same as market values.

All plot yields are the same for all traditional producers.
At the beginning of the simulation (time step zero) each traditional producer is given a

randomly selected activity, and while the simulation runs, they change this activity according
to their decision rules (that is, according to that activity that is most profitable) due to the
evolution of prices. Giving up for rent one or more plots is also considered an activity. The
initial distribution of the number of each kind of traditional producers was taken from the
results of the typology performed over traditional farmers corresponding to the year 2005.
The capital of each traditional producer is initiated in zero and increases with each randomly
assigned plot. When the simulation runs, each time the traditional producer buys, sells, rents
or recovers a rented plot, this capital is updated. This capital is also updated when calculating
the profits for each year due to the activity of each managed plot.

The current version of the model assumes that all traditional producers have the same
annual cost of living (consumption) which is subtracted from the profits for that year.

4.2.4 Simulation

344’¡which are a subset of the combination of three parameters: the way the rent value is
determined (this value can be: a) determined by the IFM as 1 $ higher than the best alterna-
tive –crop or cattle- or b) defined as 35% of the value earned by producing soybean); the
evolution of soybean price (this evolution can be: a) sinusoidal or b) increasing sinusoidal,
which starts with very low prices for soybean and ends with very high soybean prices) and
the presence of the IFM which can be present or not in the simulation. If it is not present,

there won’t be rented plots, therefore, they won’t be able to determine the rent value. The
reason that makes the situation where the IFM determines the rent value is supported on the
idea that they can pay traditional producers more (for their rented land) than if the traditional
producer produces cattle or soybean by himself in his plots (evidently as long as the IFM
continues to earn a positive net profit from his activity).

272 273

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Integeración de equipos m
ultidisciplinarios: A

grotecnologías
ÍNDICE

Cattle profit is always considered as evolving with a sinusoidal function with historical
minimum and maximum values (normal distribution).

The results achieved so far are limited since the model is still under construction. We
will extend it introducing variability in traditional producers’ productivity, including lands of
lower quality and less productive potential.

Conclusions

From the analysis and synthesis of all available data we can conclude that new ways of
land use appeared in the Rio de la Plata Basin region, with a steady increase of continuous
crops that was not present at the end of the past century. From the modeling and simulation
we conclude that:

If the decisions of traditional producers are supported by the expected profit and with a
normal price distribution (Case 1):

When soybean prices are good, the IFM rents all plots for agriculture. There are no
changes in land property. There is no concentration of land concerning property, but there
will be a concentration of land use. Traditional producers do not sell their plots, and they will
tend to rent all of them.

If the IFM is willing to pay a fixed rent value in tones of product (Case 2):
It could be the case that for traditional producers is more profitable to produce soybean

by themselves (if rent is less profitable) so no rent will occur.
In this case, the simulation showed that big traditional producers would buy land in order

to grow more soybean crops, so land property as well as land use concentration would occur.
Small traditional producers would tend to extinction (see Figures 7 and 8).

If the price of soybean increases (Case 3):
Even in the case that IFMs do not exist there still is a continuous crop usage. Also, a land

property concentration will occur where at first small and medium producers would disap-
pear.

In any case, cattle is moved out to non-farming areas of lower quality lands.
The preliminary simulations using MAS that we have done showed us that this tool has a

good potential for exploring the evolution of these kinds of systems.
It should be considered that the results obtained are limited since we deal with a model

under construction. However, the model suggests that changes on international prices and

policies in countries like Uruguay and Argentina greatly determine that the best quality lands
are mainly used for agriculture.

It would be of major importance to reevaluate land use dynamics and its causes, since the
survival of small producers is in stake (which represents a large part of total producers and
support the existence of multiple rural populations in the Rio de la Plata Basin region). On
the other hand, these models allows us to anticipate and act in prevention, facing potential
land use changes associated to economical, ecological and social changes.

References

Arbeletche, P., Carballo, C., 2006 Crecimiento agrícola y exclusión: el caso de la agricultura
de secano en Uruguay in Proceedings VII Congreso de Alasru, Quito, Ecuador, november
6-10.

Arbeletche, P, Carballo, C., 2006 Sojización y concentración de la agricultura uruguaya in
Proceedings del XXXIV Congreso de la Asociación Argentina de Economía Agrícola Cór-
doba, Argentina, october 18-20.

Bonabeau E., 2002 Agent-Based modeling: Methods and techniques for simulating hu-
man systems in Proceedings of the National Academy of Sciences of the USA 99: 7280-87.

Bousquet F., 2006 Multi-agent systems, companion modeling and land use change in Lam-
bin E.F. & Geist H. (eds): Land-Use and Land-Cover Change. Local Processes and Global
Impacts. Springer. Berlin Germany.

Bradbury R., 2006 Towards a new ontology of complexity science in Perez P. Batten D.
(eds) Complex Science for a Complex World. ANU E Press. Camberra Australia.

Cormas, 2006 Ressources naturelles et simulations multi-agents. CIRAD. URL: http://
cormas.cirad.fr

Ericsson H. E., Penker M., 2000 Business Modeling with UML. Business Patterns at
Work. OMG Press. John Wiley & Sons, Inc. USA.

Fowler M., 2003. UML Distilled, Third Edition. A Brief Guide to the Standard Object
Modeling Language. Addison Wesley. USA.

Gilbert N., Terna P., 1999, How to build and use agent-based models in social science,
URL: http://web.econ.unito.it/terna/deposito/gil_ter.pdf/

Holland J.H. 1998. Emergence. From Chaos to Order. Basic Books.
Janssen M. (Ed.), 2002 Complexity and Ecosystem Management: The Theory and Prac-

tice of Multi-agent Approaches, Edward Elgar Publishers.
Kruchten P. (2003) The Rational Unified Process: An Introduction, Third edition. Ad-

dison Wesley. 302 pp.
Lambin E. F., Geist H., Rindfuss R. R., 2006, Introduction: local processes with global im-

pacts, in Lambin E.F. & Geist H. (eds) Land-Use and Land-Cover Change. Local Processes
and Global Impacts. Springer. Berlin Germany.

Lambin E. F.; Geist H. J.; Lepers E., 2003, Dynamics of land-use and land-cover change
in Tropical Regions, Annu. Rev. Environ. Resour. 20:205-41.

Le Page C., Bommel P. 2006, A methodology to building agent-based simulations of
common pool resources management: from a conceptual model designed with UML to its
implementation in Cormas.

CORMAS, in Bousquet F.; Trébuil G.; Hardy B. (eds) Companion Modeling and Multi-

274

In
te

ge
ra

ci
ón

 d
e

eq
ui

po
s

m
ul

tid
is

ci
pl

in
ar

io
s:

 A
gr

ot
ec

no
lo

gí
as

Agent Systems for Integrated Resource Management in Asia. Los Baños (Philippines):
International Rice Research Institute. 327-350.

MGAP-DIEA, 2001, Censo General Agropecuario 2000, Montevideo, Uruguay.
Moran E. F., Orstrom E (eds), 2005), Seeing the forest and the trees: Human-environ-

ment interactions in forest ecosystems, MIT Press, Cambridge London.
Parker D.C. Berger Th. Manson M., 2001, Agent-Based Models of Land-Use and Land-

Cover Change, Report and Review of an International Workshop October 4–7, 2001 Irvine,
California, USA Edited by: Parker D.C., Berger T., Manson S.M. URL: http://www.indiana.
edu/%7Eact/focus1/ABM_Report6.pdf

Paruelo J.M, Guerschman, J.P.; Piñeiro, G.; Jobbágy, E.G, Verón, S.R.; Baldi, G. y Baeza,
S., 2006, Cambios en el uso de la tierra en Argentina y Uruguay: Marcos Conceptuales para
su análisis, Agrociencia. Vol. X N° 2 pp. 47 – 61.

Schmuller J. 2004, Sams Teach Yourself UML in 24 hours, SAMS Publishing USA.
Weiss G. (ed), 1999, Multiagent Systems. A Modern Approach to Distributed Artificial

Intelligence, MIT. USA.
Web pages consulted: URL: http://www.mgap.gub.uy/diea and URL http://www.mgap.

gub.uy/opypa

ÍNDICE

277

Ingeniería de Softw
are

ÍNDICE

Ingeniería de software:
un enfoque en ingeniería

 de requerimientos

Introducción

La ingeniería de software es una disciplina que estudia la aplicación de la teoría, el cono-
cimiento y la práctica de la construcción eficaz y eficiente de sistemas de software que satis-
facen las necesidades de usuarios y clientes.

Un proyecto de ingeniería de software requiere desarrollar algunas competencias como
ser: identificar los interesados en un proyecto, determinar sus necesidades, negociar un con-
junto de especificaciones, planes y, fundamentalmente, establecer el alcance del proyecto y
responder a los distintos cambios en el transcurso del mismo.

El objetivo del curso es brindar los conceptos teóricos y prácticos que permitan compren-
der y ejecutar los distintos procesos involucrados en el desarrollo de software e implementar
una aplicación en el contexto de un proyecto de ingeniería. Si bien el área de ingeniería de
software es muy amplia, y las metodologías y herramientas muy variadas, nos enfocaremos
en la metodología tradicional.

En el contenido del curso se incluyen los siguientes temas: Introducción a la Ingeniería de
Software, Procesos de Software, Gestión de Proyectos, Requerimientos de Software (donde
se realiza un enfoque exhaustivo), Pruebas, Gestión de la Calidad (SQA) y Gestión de la
Configuración (SCM).

Marco Teórico

A continuación se realizará una síntesis de una de las áreas más relevantes de la ingeniería
de software que será tratada en el curso: la ingeniería de requerimientos.

Según el Software Engineering Body of Knowledge (Swebok), el área de conocimientos
de requerimientos de software refiere al análisis, la especificación y la validación de los requi-
sitos del software. Sommerville [2] expone que en el proceso de ingeniería de requerimientos
se establecen: la obtención, análisis, validación y gestión de requerimientos. A su vez, refiere
que la obtención y análisis de requerimientos es un proceso iterativo que puede ser represen-
tado como una espiral de actividades (Boehm [1]), las cuales incluyen actividades de elicita-
ción, clasificación, negociación y documentación de requerimientos. Sommerville [2] explica
que el proceso de gestión de requerimientos incluye la gestión de la planificación donde se
analizan, a su vez, los posibles cambios de requerimientos y su impacto en el proyecto.

Es importante tener en cuenta la problemática de este proceso: el 45% de los errores de-
tectados en los proyectos son por mala o poca especificación. Dichos errores, descubiertos
en etapas tardías, son muy costosos (Boehm [1]).

A su vez, ciertos proyectos que se entregan fuera de tiempo con menor calidad son conse-
cuencia de un input insuficiente por parte de los usuarios o por requerimientos incompletos
o cambiantes (Standish Group).

14. Ingeniería de Software

Ing. Alejandro Adorjan

278 279

In
ge

ni
er

ía
 d

e
So

ftw
ar

e
Ingeniería de Softw

are
ÍNDICE

Una referencia para la especificación de requerimientos está dada por la Asociación de Es-
tándares de la IEEE, en su documento 830-1998 [5], el cual establece un formato estándar de
la especificación de requerimientos. En este documento, conocido como ESRE (Documento
de especificación de requerimientos), se deben establecer: el propósito, el alcance del sistema,
las definiciones, acrónimos y abreviaciones que correspondan, las referencias y una visión
del documento. A su vez, se describe la perspectiva del producto, las funciones del mismo,
los requerimientos funcionales y no funcionales. En otra sección del mismo se establecen
las características de los usuarios, las restricciones, suposiciones y dependencias del sistema;
se documentan, si corresponden, las interfaces externas, los requisitos de rendimiento y las
restricciones de diseño.

En el proceso de captura de requerimientos existen distintas fuentes de requerimientos y,
a su vez, distintas técnicas de captura de los mismos. Algunas de las características que son
deseables en la especificación de un requerimiento son: correctitud, no ambigüedad, comple-
titud, consistencia y verificabilidad.

Es importante recordar que el principal objetivo de la ingeniería de requerimientos es
comprender el problema, especificarlo adecuadamente definiendo una solución y validarlo
con el cliente.

Ejemplo de Aplicación

A continuación se muestra un bosquejo de la documentación de especificación de requeri-
mientos de software realizada por uno de los grupos del curso, siguiendo el formato sugerido
por el estándar IEEE Std 830-1998 [5].

1.	 Introducción
El presente documento provee una descripción general del producto:
1.1 Propósito
Se pretende orientar el desarrollo de un producto de software…
1.2 Alcance
El desarrollo del producto permitirá registrar…
1.3 Definiciones, Acrónimos y Abreviaciones
Insumo: Conjunto de bienes empleados en…
1.4 Referencias
IEEE. IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications. IEEE Computer Society, 1998.
2.	 Descripción General
2.1	 Actores
Administrativo: Es la persona encargada de realizar los registros.
Director: Es el usuario que tendrá el perfil para obtener los informes brindados por el

sistema.
2.2 Funciones del producto
Las principales funciones del producto son:
Administración de usuarios.
Registro de alumnos.
Registro de alumnos para el servicio…

Registro de…
2.1.1	 Requerimientos funcionales
RF1 Administración de Usuarios.
Descripción: El administrador del sistema podrá gestionar los usuarios (agregar, modifi-

car, eliminar, buscar, listar).
Especificación: Caso de uso 3.1.
Prioridad: 1
RF2: Registro de Alumnos.
Descripción: El sistema deberá registrar los alumnos, ingresando los datos correspon-

dientes a los mismos.
Especificación: Caso de uso 3.2
Prioridad: 1
2.1.2 Requerimientos no funcionales
RNF1 El sistema deberá ser codificado en… versión…
Descripción: El sistema deberá codificarse según la versión…
Prioridad: 1
3. Especificación de Casos de Uso
Caso de Uso 3.3: Registro de inscripción en el servicio
Actores: Usuario.
Precondición: El usuario debe estar registrado…
Sinopsis: El caso uso comienza cuando…
Referencia: RF3.

Caso de Uso 3.3
Nombre Registro de inscripción en el servicio.
Descripción Descripción del requerimiento funcional.
Prioridad 1
Estado Codificado.
Actores Usuario.
Precondiciones El usuario deberá...
Entradas
Flujo de Eventos

Curso Normal

1.	 El usuario selecciona opción cambiar contraseña.
2.	 El sistema muestra en pantalla el ingreso de la actual con-

traseña y la nueva.
3.	 El usuario ingresa contraseña actual y nueva.
4.	 El sistema…

Curso Alternativo
3.1 Si la contraseña actual no coincide, muestra un mensaje de
error.
Se enumera la acción / acciones que aplican al no cumplirse el curso nor-
mal.

Post Condiciones Lista el estado posterior a la ejecución del caso de uso.
Salidas

Restricciones Lista de las restricciones del sistema, generalmente asociadas a los requerim-
ientos no funcionales.

280 281

In
ge

ni
er

ía
 d

e
So

ftw
ar

e
Ingeniería de Softw

are
ÍNDICE

Casos de uso rela-
cionados

Interfaz de Usuario Es una buena práctica establecer la interfaz de usuario asociada al caso de
uso.

4. Contexto de presentación del curso

El curso se dicta en modalidad semipresencial con tres instancias presenciales y activi-
dades semanales orientadas al estudio guiado sobre las temáticas del curso en la plataforma
educativa de UTU, a través del Campus Virtual.

 Los libros de Sommerville [2] y Pressman [3] son parte de la bibliografía sugerida del
curso. Si bien el enfoque es tradicional se recomiendan artículos y libros de las metodologías
ágiles. Se realizan cuestionarios de los distintos temas planteados y se propone un trabajo
final donde el tema es de libre elección de los alumnos, planteándose el desafío de la resolu-
ción de un producto de software y la gestión del mismo desde el análisis hasta su implemen-
tación.	

5. Algunas preguntas planteadas a los participantes

A continuación se exponen algunas de las preguntas que pueden plantearse a los partici-
pantes del curso en los cuestionarios de evaluación:

¿Cuál fue la crisis del software?
¿Cuáles son los dos tipos fundamentales de producto de software?
¿Qué es la ingeniería de software?
¿Cuáles son las actividades fundamentales en los procesos de software?
¿Cuáles son los tres paradigmas en el desarrollo de software (en estas metodologías tra-

dicionales)?
¿Por qué es importante el mantenimiento de software?
¿Cuáles son las actividades fundamentales que son comunes a todos los procesos de soft-

ware?
¿Cuáles son las ventajas de utilizar el desarrollo incremental?
¿Cuáles son las principales actividades de ingeniería de requerimientos?
¿Cuáles son las etapas importantes en el proceso de pruebas?
¿Cuáles son las principales diferencias entre la gestión de proyectos de software y otros

tipos de gestión de proyectos?
¿Cuál es la diferencia entre un hito y una entrega?
¿Qué se incluye en un plan de calidad y en un plan de validación?
¿Qué son los requisitos de un sistema?
¿Qué son los requisitos del usuario y los requisitos del sistema?
¿Cuál es la diferencia entre los requerimientos funcionales y los no funcionales?
¿Qué problemas pueden surgir cuando los requisitos están escritos en lenguaje natural?
¿Cuáles son las principales ventajas de utilizar un formato estándar para especificar los

requerimientos?

¿Qué es un documento de especificación de requerimientos?
¿Qué es un caso de uso?
¿Cuáles son los dos objetivos complementarios del proceso de pruebas?
¿Qué herramientas de gestión de la configuración conoce?
¿Cuándo una prueba de defectos es exitosa?
¿Qué tipos de pruebas conoce?
¿Qué enfoques pueden ser utilizados en el diseño de casos de prueba?
¿Qué es una partición de equivalencia?
¿Qué se entiende por gestión de la configuración?

6. Conclusión

En este curso se presentan algunos de los temas más relevantes del área de ingeniería de
software a partir de una especificación de requerimientos formal. Se enfatizan los conceptos
teóricos y prácticos que permiten comprender y ejecutar los distintos procesos involucrados
en el desarrollo de software.

7. Bibliografía

Boehm B, (1986). “A Spiral Model of Software Development and Enhancement”, ACM
SIGSOFT Software Engineering Notes”, “ACM”, 11(4):14-24,

Sommerville, I. (2010). Software Engineering, (9th ed.) Addison-Wesley.
Pressman, Roger. (2010). Software Engineering: A Practitioner’s Approach, (7th ed.).

NY: McGraw-Hill.
Kotonya Gerald, Sommerville Ian. Requirements Engineering Processes and Techniques.

John Wiley & Sons Ltd. ISBN 0-471-97208-8
IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements Specifica-

tions –Description.

8. Referencias Web

Se aconseja, para ampliar los conocimientos sobre este tema, visitar el sitio web de Ian
Sommerville, autor de uno de los libros de referencia del curso:

http://www.softwareengineering-9.com/

Recomendamos, asimismo, el estudio del mismo autor para el tema Enfoque de requeri-
mientos:

Procesos y Técnicas de requerimientos:
www.comp.lancs.ac.uk/computing/resources/re/
http://www.comp.lancs.ac.uk/computing/resources/re-gpg/

