EXAMEN PRÁCTICO DE PROBABILIDAD Y ESTADÍSTICA

Ejercicio 1)

Parte a)

Una urna A contiene 6 bolas blancas y 4 negras. Otra urna B tiene 5 blancasy 9 negras. Elegimos una urna al azar y extraemos dos bolas, que resultan ser blancas. Halla la probabilidad de que la urna elegida haya sido la A.

Solución:

La probabilidad de que ambas bolas sean blancas está dada por ser 2 blancas de la urna A o ser 2 blancas de la urna B, ambos sucesos son excluyentes por lo que la probabilidad de la unión está dada por la suma.P("2b y de A") = $P(A).P("2b de A") = \frac{1}{2}P("2b de A")$, análogamente con B, entonces:

P(2b) = P("2b y de A" U "2b y de B") = P("2b y de A") + P("2b y de B") =
$$\frac{1}{2} \frac{C_2^6}{C_2^{10}} + \frac{1}{2} \frac{C_2^5}{C_2^{14}} = \frac{1}{6} + \frac{5}{91} = 0.22$$

Luego P(A|2b) =
$$\frac{P("2bydeA")}{P(2b)} = \frac{\frac{1}{6}}{0.22} = 0.752$$

Parte b)

1) Calcula el valor de *k* para que la función sea una función de densidad.

$$f(x) = \begin{cases} 1) & 0 \iff x < 1 \\ 2) & k \iff 1 \le x \le 5 \\ 3) & 4k \iff 5 < x \le 7 \\ 4) & 0 \iff x > 7 \end{cases}$$

2) Halla las probabilidades:

3) Obtén la expresión de la función de distribución.

Solución:

1) Para que sea de densidad la integral de f(x) debe ser igual a 1 en todo el dominio, o sea:

$$4k + 8k = 12k = 1$$
 entonces $k = 1/12$.

2)
$$P(2 < x < 5) = \int_{2}^{5} f(x)dx = (5-2).1/12 = 0.25$$
; $P(4 < x < 6) = 1/12 + 4/12 = 5/12 = 0.417$

3) Si $x \le 1$ entonces F(x) = 0

Si
$$1 \le x \le 5$$
 entonces $F(x) = (x - 1)1/12$

Si
$$5 < x \le 7$$
 entonces $F(x) = (1/3) + (x - 5).1/3 = \frac{(x - 4)}{3}$

Si
$$x > 7$$
 entonces $F(x) = 1$

Parte c)

Dos ajedrecistas de igual maestría juegan al ajedrez. ¿Qué es más probable:ganar dos de cuatro partidas o tres de seis partidas? (Los empates no se toman en consideración.)

Solución:

2 de 4: B(4,
$$\frac{1}{2}$$
) Entonces se trata de P(X=2) = $C_2^4 (1/2)^2 \cdot (1/2)^2 = 6/16 = 0.374$

3 de 6: B(6, ½) Entonces se trata de P(X=3) =
$$C_3^6 (1/2)^3 \cdot (1/2)^3 = 5/16 = 0.3125$$

Es más probable ganar 2 de 4 qu3 3 de 6.

Ejercicio 2)

Parte a)

Sea la variable X con función de densidad $f(x) = k.x^{-3}$ y $x \ge 5$. Determínese si existen su valor medio y varianza.

Solución:

Primero debemos determinar el valor de k: $\int_{-\infty}^{+\infty} f(x) dx = 1$, por lo tanto k. $\left[\frac{x^{-2}}{-2}\right]_{5}^{+\infty} = \frac{k}{50}$, por lo tanto k = 50.

Para el valor medio:
$$\int_{-\infty}^{+\infty} x f(x) dx = 50. \left[\frac{x^{-1}}{-1} \right]_{5}^{+\infty} = 10.$$

Para la varianza: $\int_{-\infty}^{+\infty} x^2 . f(x) dx$, resulta ser una integral divergente por lo cual no existe varianza.

Parte b)

Las notas de una asignatura, en un curso de están distribuidas según una N(6,3; 2,5). Hállese:

- 1) Probabilidad de que un alumno repruebe la asignatura. (Se reprueba con menos de 5 puntos)
- 2) El número de alumnos que, en un grupo de 100, obtiene 9 o más de 9 puntos.
- 3) Nota a partir de la cual se aprueba, si reprueba el 20% de los alumnos.

Solución:

1) Sea Y la variable de la N(6,3; 2,5) y X la de su N(0; 1) asociada, es decir su tipificación.

Entonces
$$P(Y < 5) = P(X < -0.52) = P(X \ge 0.52) = 0.3015$$
.

2) Ahora es : $P(Y \ge 9) = P(X \ge 1.08) = 0.1401$, o sea que si n es el número buscado entonces la probabilidad hallada será n/100, de donde n = 14 alumnos.

3) Se trata de hallar una nota a tal que P(Y < a) = 0.2, entonces P(X < $\frac{a-6.3}{2.5}$) = 0.2, con lo que $\frac{a-6.3}{2.5}$ = -0.84 y de aquí: a = 4.2, por tanto si reprueba el 20 % entonces la calificación de reprobación es 4.2.

Parte c)

El dueño de un criadero de árboles está especializado en la producción de abetos de Navidad. Estoscrecen en filas de 300. Se sabe que por término medio 6 árboles no son aptos para su venta. Asume que la cantidad de árboles aptos para la venta por fila plantada sigue una distribución de Poisson.

- a) Calcula la probabilidad de encontrar 2 árboles no vendibles en una fila de árboles.
- b) Calcula la probabilidad de encontrar 2 árboles no vendibles en media fila de árboles.

Solución:

Sea X el número de árboles no vendibles en una fila, tenemos que $X \sim P$ ($\lambda = 6$). Sea Y el número de árboles no vendibles en media fila. El número medio de árboles no vendibles en media fila es 3. Si suponemos que siguen igual distribución, tenemos que $Y \sim P$ ($\lambda = 3$).

a)
$$P(X = 2) = \frac{6^2 \cdot e^{-6}}{2!} = 0.0446$$

b)
$$P(Y=2) = \frac{3^2 \cdot e^{-3}}{2!} = 0.224$$