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Knowledge of diffuse solar radiation is required for the estimation of global irradiation on inclined sur-
faces or for estimating DNI for CSP applications. Since diffuse irradiance data is comparatively scarce rel-
ative to global horizontal irradiance (GHI) data, several methods are used to estimate the diffuse
component of GHI. These methods have a local component and most of them have been developed using
data recorded in the northern hemisphere, where long-term reliable measurements of diffuse irradiance
are available. This work considers ten models for hourly diffuse irradiation and evaluates their perfor-
mance, both in their original and locally adjusted versions, against data recorded at five sites from a
subtropical-temperate zone in the southern part of South America (latitudes between 30�S and 35�S).
The raw data has been quality-assessed by using a set of seven sequential filters which preserve the nat-
ural spread of the data while removing unphysical data points. The local adjustment and performance
evaluation are done using random-sampling cross-validation techniques on an ensemble. The best esti-
mates result from locally adjusted multiple-predictor models, some of which can estimate hourly diffuse
fraction with uncertainty of 18% of the mean.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The diffuse component (DHI) of the solar radiation reaching the
ground is the result of several interactions between the incident
solar (beam) radiation and the atmosphere. These processes can
be described by physical models provided enough information on
the current composition of the local atmosphere (i.e. aerosol type
and density, water vapor column, Ozone column, among others)
are available (Gueymard, 2007). This detailed information is
recorded at a few specialized ground measuring sites, such as those
from Aeronet (http://aeronet.gsfc.nasa.gov/).

The separation of the beam and diffuse components of GHI is
required before estimating direct normal irradiance (DNI) or global
irradiance on inclined surfaces. Recent efforts in solar resource
assessment in Uruguay have emphasized the characterization
and modeling of GHI on several time scales (Abal, 2010; Alonso
Suárez et al., 2011, 2012), but there is little information available
on diffuse radiation for this region. DHI is comparatively hard to
measure accurately over long periods of time, so most available
data sets include only GHI. A simple way to do this separation is
to use phenomenological approaches, based on estimating DHI
from a small set of easily measured or calculated predictor vari-
ables. These models refer to a definite time scale (typically an hour,
a day or a month) and usually relate the diffuse fraction (the frac-
tion of global horizontal irradiance (GHI) which is diffuse) to the
clearness index and eventually other variables. They are not uni-
versal and several comparisons of their performance at different
locations have been reported (Gueymard and Ruiz-Arias, 2016;
Dervishi and Mahdavi, 2012; Li, 2011; Tapakis et al., 2014;
Jacovides, 2006; Raichijk and Taddei, 2012).

Since the final uncertainties in solar resource estimation corre-
late with financial risks in utility-scale projects, a reasonable
knowledge of the uncertainties in each step of the calculations is
important for the assessment of the performance of solar energy
conversion technologies (Gueymard, 2009). The uncertainty of a
diffuse-fraction model will depend on the degree of climatic simi-
larity between the data sets used to develop the model and the cli-
mate in which it is being evaluated. Localized assessments are
necessary both to select the best model and to characterize its
uncertainty.

The diffuse fraction is not a function of clearness index alone.
Proposals with additional variables (Li, 2011; Reindl et al., 1990,
2010; Ruiz-Arias, 2010; Skartveit et al., 1998) may have lower
uncertainties in diffuse fraction estimates at the expense of higher
complexity. Gueymard and Ruiz-Arias have recently compared the
performance of 140 diffuse fraction models published in the
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Nomenclature

Symbol
GHI global horizontal irradiance (Wm�2)
DHI diffuse horizontal irradiance (Wm�2)
DNI beam or direct normal irradiance (Wm�2)
Ih global horizontal hourly irradiation (Wh m�2)
Idh diffuse horizontal hourly irradiation (Wh m�2)
Ibh beam horizontal hourly irradiation (Wh m�2)
f d hourly diffuse fraction ¼ Idh=Ih
I0h extraterrestrial hourly horizontal irradiation (Wh m�2)
kt hourly clearness index ¼ Ih=I0h
hz solar zenith angle (rad)
as solar altitude angle (rad)
d solar declination angle (rad)
/ latitude (rad)
Idc clear-sky diffuse hourly horizontal irradiation (Wh m�2)
Ibc clear-sky beam hourly irradiation (Wh m�2)
Ic clear-sky global horizontal irradiation (Wh m�2)
Isc hourly solar constant = 1367 (Wh m�2)
� eccentricity of the earth’s orbit

m air mass
TL Linke Turbidity at m ¼ 2
dR Rayleigh optical thickness
Trd diffuse transmittance function
Fda diffuse angular function
H0h extraterrestrial daily irradiation ¼ P

dayI0h (MJ m�2)
Hh global daily horizontal irradiation ¼ P

dayIh (MJ m�2)
KT daily clearness index ¼ Hh=H0h
xs sunset hour angle (rad)
Hdh diffuse daily horizontal irradiation ¼ P

dayIdh (MJ m�2)
Fd daily diffuse fraction
H0h monthly mean extraterrestrial daily irradiation

(MJ m�2)
Hh monthly mean global daily horizontal irradiation

(MJ m�2)
KT monthly mean clearness index ¼ Hh=H0h
Hdh monthly mean diffuse daily horizontal irradiation

(MJ m�2)
�Fd monthly mean diffuse fraction ¼ Hdh=Hh

Fig. 1. Location of the measuring stations considered in this work. Other details are
provided in Table 1.
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literature (Gueymard and Ruiz-Arias, 2016). They used minute-
based data from 54 research-class stations distributed over four
climatic regions of the globe (only one of them is located less than
1000 km from the area of interest in this paper) and characterized
the regional performance of each model. An important conclusion
is that no current separation model is truly ‘‘universal”, in the
sense to have consistent accuracy over large climatic zones. In fact,
the diffuse fraction reflects the typical composition of the local
atmosphere, which may be influenced by (natural or man-made)
phenomena affecting the water content or aerosol type and density
at a specific region. Thus, diffuse fraction estimation is a problem
with an important local component.

Phenomenological separation models should be adjusted to
local data to remove most of their bias and significantly reduce
related uncertainties. However, these models are frequently used
as universal due to the absence of reliable local information on
their performance. Many models for diffuse fraction have been
derived from DHI data taken at locations in the northern hemi-
sphere, some of them at locations near densely populated areas,
where these kind of measurements first became available. These
models may not perform as well in locations with different charac-
teristics, as previously noted for Australia by Boland et al. (2008).

In this work, controlled-quality local diffuse irradiation data
from five low-altitude sites with southern latitudes (between
30�S and 35�S) is used to evaluate the performance of ten well-
known hourly diffuse-fraction models. A strong filtering procedure
is applied to the hourly data. For each model, both the original ver-
sion and a locally adjusted version are evaluated against indepen-
dent data using a standard cross-validation technique. Two
frequently used models for daily and monthly average diffuse frac-
tion are also evaluated and locally adjusted. Information is pro-
vided on the best way to estimate diffuse fraction for this and
similar geographical regions on an hourly, daily and monthly basis.
More importantly, the uncertainty associated to each estimation
procedure is characterized, so that it may be accounted for in engi-
neering calculations for solar energy projects.

The paper is organized as follows. In Section 2, the solar radia-
tion database, the typical uncertainty for each site and the filters
applied on the raw data are discussed. In Section 3, hourly diffuse
fraction models are briefly described and evaluated against local
data. In Section 4, all hourly models are adjusted to local data
and re-evaluated on a per-site basis using several common statis-
tical indicators. A global adjusted version of each model is defined
and evaluated. In Section 5, the data is reduced to daily totals and
two daily and monthly average models for diffuse fraction are
implemented, locally adjusted and evaluated. Finally, In Section 6
our conclusions are summarized.

2. Ground data

The data used in this work consists of simultaneous data sets for
hourly global and diffuse horizontal irradiation from five sites
located in a sub-tropical temperate zone of the south-eastern part
of South America with homogeneous climatic characteristics
shown in Fig. 1. The area has a marked seasonality, no significant
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volcanic activity, low population density (except for the Buenos
Aires metropolitan area) and it is not heavily industrialized.

2.1. Description of data sets

The location, instruments and number of hourly records (simul-
taneous global and diffuse irradiance) for each site are listed in
Table 1. All sites are at low altitudes, with the highest (AR) at
136 m above sea level. Except for AZ, all sites had a daily cleaning
routine by local staff. For AZ, the cleaning routine was performed
on a weekly basis. No ventilation devices where used.

The AZ site is located at the roof-top of the School of Engineer-
ing at Montevideo, an urban coastal location. GHI and DHI were
measured and recorded at one-minute intervals between 2011
and 2013 using a new Delta-T SPN1 pyranometer. The data was
recorded at 1-min intervals using a Fisher-Scientific DT80 datalog-
ger connected by cable to the internal network.

The SM site was at a supervised meteorological station run by
the National Meteorological Service (INUMET), located close to
the Salto air field in a semi-rural location. GHI and DHI were mea-
sured and recorded at 15 min intervals, during six years using two
CM11 (Secondary Standard) Kipp & Zonen (KZ) pyranometers. The
raw data was recorded with a Campbell Scientific CR1000 datalog-
ger and it was provided to us without any processing. DHI was
measured with a manually adjusted shadow-band, also from KZ.
The DHI data was corrected using the isotropic correction factor
(Drummond, 1956) as provided by the band manufacturer,

f ¼ ð1� SÞ�1, with

S ¼ 2h0
p

cos d xs sin/ sin dþ sinxs cos/ cos dð Þ ð1Þ

where h0 ¼ 0:185 rad is the view angle of the shadow ring, d the
solar declination angle, xs the sunset hour angle (in radians) and
/ the site latitude. This factor, which at the relevant latitudes varies
yearly between 1.05 and 1.14, accounts for the portion of hemi-
spherical sky radiation blocked by the shadow band under the
assumption of an isotropic distribution of diffuse irradiance.
According to the manufacturer, the correction from Eq. (1) is accu-
rate to ±0.5%. A comparison of several correction methods for dif-
fuse irradiance measurements based on shadow rings (Sánchez,
2012), suggests a typical uncertainty of 4% with respect to a
shading-ball assembly measurement, provided secondary-
standard class pyranometers are used in both cases. Based on these
considerations and on our own verifications, we estimate a typical
uncertainty of 3% for GHI and 4% for DHI hourly data from this site,
relative to the overall mean values.

The LU site is at a specialized research laboratory (GERSOLAR)
of the National University at Luján (Argentina) located in a semi-
rural area 50 km from the city of Buenos Aires. Three independent
measurements (GHI, DHI and DNI) were recorded at 1-min inter-
vals between 2011 and 2012. Global irradiance was measured with
a KZ CMP11 pyranometer, diffuse irradiance with a Black and
Table 1
Location of the measurement sites considered in this work (see Fig. 1 for the geographica
model and estimated uncertainty for hourly averages. The method used for DHI measureme
ball assembly (s-ball) based on a SOLYS2 tracking system. The last column indicates the vali
And the last column is the overall estimated uncertainty for the normalized data from ea

Location Time perio

Site Code LAT (�) LON (�) ALT (m) Owner Start – en

Montevideo AZ �34.92 �56.17 58 LES 03/2014–08/
Salto SM �31.27 �57.89 41 INUMET 06/1998–12/
Luján LU �34.58 �59.05 20 GERSolar 01/2011–06/
Artigas AR �30.40 �56.51 136 LES 02/2014–12/
Treinta y Tres TT �33.27 �54.17 20 LES 02/2014–12/
White Eppley 8-48 pyranometer using a shade-ball assembly and
the beam component was measured with an Eppley NIP pyrhe-
liometer. These instruments were mounted on a new SOLYS2
tracking system from KZ. The calibration of pyrheliometers and
pyranometers was done by periodic comparisons against a Kendall
Absolute Cavity radiometer used as secondary standard. Further
details on this data set can be found in Raichijk (2012). The esti-
mated uncertainty for data from this site is 3% and 5% for hourly
measurements of GHI and DHI respectively, relative to the overall
mean values. Although the shading-ball assembly method for dif-
fuse measurements is potentially more accurate than a shadow-
ring measurement, the Eppley 8-48 pyranometer used for diffuse
measurements has a typical uncertainty of 5%, as declared by the
manufacturer.

The TT site is part of an experimental station managed by the
National Institute of Agronomical Studies (INIA) located in a rural
area, about 50 km from the nearest populated areas. The AR site
is at a meteorological station run by the National Meteorological
Service (INUMET) located in a semi-rural area, 15 km from the
town of Artigas. Two new Delta-T SPN1 pyranometers were
installed by our laboratory at these sites in February 2014, and data
was recorded at 1-min intervals and sent on a daily basis to a ded-
icated server via the cellular (GSM) network. Data from these sites
recorded between 2014 and 2015 has been used in this work. At
both sites, redundant GHI measurement using KZ CMP11 and
CMP6 pyranometers were installed and all the instruments
received daily maintenance from the local staff. The sites AZ, TT
and AR are part of a continuous solar radiation measurement net-
work maintained by our laboratory since 2010. The pyranometers
in this network are calibrated at our laboratory at two-year inter-
vals, following ISO 9847:1992(E) norm procedures (ISO, 1992). The
Secondary Standard used as a reference is a KZ CMP22 pyranome-
ter calibrated against the World Radiometric Reference (WRR) at
the World Radiation Center (WRC) at Davos in August 2014.

The SPN1 pyranometer has no moving parts and can operate
over long periods of time without human intervention other than
the cleaning procedures required by all hemispherical instruments.
These radiometers are robust and allow continuous measurement
of global and diffuse irradiance at remote locations in a cost-
effective way as compared to other alternatives, such as rotating
shadowband radiometers or tracker-based measurements. DHI
data from SPN1 instruments account for about 46% of the data used
in this work (Table 1) so we shall briefly discuss the accuracy of
these instruments.

This pyranometer uses an array of seven thermopile sensors,
each of them calibrated to consistently measure solar irradiance.
A special mask under its dome shades at least one of the sensors
from direct sunlight while leaving at least one of them exposed
to direct sunlight, at all times and locations. This mask blocks
approximately half of the hemisphere and the instrument com-
putes individual values for GHI and DHI using a simple algorithm
based on the maximum and minimum irradiance it measures in
l distribution of the sites). Time period (month/year) and pyranometer manufacturer,
nt at SM was a Kipp & Zonen (KZ) CM-121 shadow-ring (s-ring). At LU it was a shading
d daytime hours (F0 level, see Table 2) with simultaneous GHI and DHI measurements.
ch site.

d Instruments & method for DHI

d GHI DHI Hours Uncertainty

2013 Delta-T SPN1 [4%] Delta-T SPN1 [7%] 7961 9%
2003 KZ CM11 [3%] KZ CM11 + s-ring [4%] 20594 6%
2012 KZ CMP11 [3%] Eppley 8-48 + s-ball [5%] 5934 7%
2015 Delta-T SPN1 [4%] Delta-T SPN1 [7%] 7613 9%
2015 Delta-T SPN1 [4%] Delta-T SPN1 [7%] 6634 9%



Fig. 2. Hourly diffuse fraction, f d , vs. clearness index, kt , for all sites filtered to F7-
level are shown in black. Unfiltered (F0-level) data for all sites is shown in the
background (gray).
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its seven sensors at a given time. The uncertainty stated by its
manufacturer for individual measurements is ±8% (±10 W/m2),
both for GHI and DHI at 95% confidence level (Wood, 2015). Several
studies (Myers and Wilcox, 2009; Psiloglou et al., 2012; Badosa,
2014) have shown that these instruments easily comply with the
stated uncertainty for GHI, but their DHI uncertainty can be higher.
In a comparison made at NREL in 2009, Myers and Wilcox (2009)
reported for this instrument uncertainties between 4% to 7% for
GHI and 7% to 11% for DHI. Another study (Psiloglou et al., 2012)
compared SPN1 measurements against KZ CM11 pyranometers
(one of them equipped with a shadow band) and reported uncer-
tainties of approximately 3% for GHI and 14% for DHI at the 1-
min time scale. More recently, a detailed study by Badosa (2014)
has compared SPN1 measurements against high quality (sun
tracker based) data and found similar uncertainties of approxi-
mately 5% for GHI and 12% for DHI. A negative mean bias of
approximately 5% was also reported for DHI measurements when
compared to measurements from a shade-ball assembly. Based
on these results, the application of a 1.05 correction factor to the
DHI output of this instrument has been recommended (Badosa,
2014; Wood, 2015). In this work, this correction has been applied
to the DHI data from the AR, AZ and TT sites before filtering.

Furthermore, we have recently recalled the three SPN1 instru-
ments used in this work and calibrated them at our laboratory
against two CMP-22 pyranometers (Secondary standards), one of
them equipped with a shadowring. Additionally, a simultaneous
measurement of GHI, DHI and DNI based on two new CMP10 pyra-
nometers and two CHP1 pyrheliometers mounted on a SOLYS2
tracking system where available for consistency checks. As a result,
we have determined that the GHI uncertainty of the three SPN1
instruments is between 3% and 4% and their DHI uncertainty,
between 9% and 10%, without correction factor. When this factor
is included, we have verified that the DHI measurement is essen-
tially unbiased and the uncertainty in DHI from the SPN1 instru-
ments is between 6% and 7%, in agreement with Badosa (2014).
On this basis, we estimate the SPN1 uncertainty for GHI at 3%
and for (corrected) DHI at 7%.

Based on the uncertainty estimate for each measurement, one
can assign combined uncertainties to the diffuse fraction data for
each site, as indicated in the last column of Table 1.
Fig. 3. Distributions of (a) hourly kt values and (b) hourly f d values, both filtered to
F7-level. Data from all sites is shown, since similar distributions are found on a per-
site basis.
2.2. Filtering criteria

GHI data separates into its beam ðIbhÞ and diffuse ðIdhÞ compo-
nents, Ih ¼ Ibh þ Idh. As a first step, the data is normalized in order
to remove most trends due to the apparent solar motion. The
hourly clearness index, kt , is defined as kt ¼ Ih=I0h, where I0h is
the hourly solar irradiation on a horizontal surface at the top of
the atmosphere. The hourly diffuse fraction, f d, is the ratio
f d ¼ Idh=Ih. For cloudy conditions, kt ! 0 and f d ! 1. For clear-sky
conditions, kt � 0:80 and f d takes low values (� 0:10) which
depend on the composition of the local atmosphere, as shown in
Figs. 2 and 3.

When working with diffuse (or beam) solar irradiation, quality
assessment of the data is specially relevant (Journée and Bertrand,
2011; Younes et al., 2005). A filtering procedure is implemented,
based on the sequential application of seven filters to the normal-
ized hourly data records, as summarized in Table 2. The process
starts with the set (F0) of daytime hours with positive global and
diffuse hourly irradiation records for each site. F1 eliminates hours
with low solar altitude ðas < 7�Þ, for which the measurements
become unreliable. F2 uses the ESRA clear-sky model (Muneer,
2004; Rigollier et al., 2000) with Linke turbidity parameter
TL ¼ 2, to provide an upper bound Ihc for GHI. For the hours that
pass this filter the hourly clearness index, kt ¼ Ih=I0h, is calculated.
Unless for very dark conditions, diffuse irradiation should be larger
than the clear-sky estimate Idc. Filter F3 uses the same clear-sky
model with TL ¼ 1:5 to apply a lower bound on diffuse irradiation
when kt > 0:1. F4 places an upper bound on diffuse irradiation,
Id 6 ð600 W=m2Þas, (solar altitude expressed in radians), based in
Page’s estimate for overcast irradiance (Muneer, 2004). For
instance, for as � 80� this limit is 843W/m2. For the hours that
pass this filter, the diffuse fraction f d ¼ Id=Ih is calculated. At over-
cast sky conditions the diffuse fraction should be high. F5 removes
low diffuse fractions found at overcast conditions with the require-
ment that if kt 6 0:10 then f d P 0:85. On physical grounds, one
would expect 0 6 f d 6 1, but these limits are relaxed to account
for measurement error. F6 places boundaries on the normalized
data by requiring 0:05 6 f d 6 1:03 and kt 6 0:85. The last filter,
F7, is of a statistical nature and aimed to remove the few remaining
outliers. A simple polynomial fit (P5) to the F6-level data is used to



Table 2
Sequence of filters applied to the hourly irradiation data from each station. For each site, the number of hours that pass each filter and the percentage of records discarded are
indicated. A total of 40995 valid daytime hourly records were used and 15.9% of the daytime hours were discarded.

AZ SM LU AR TT All sites

Filter Conditions Hours % Hours % Hours % Hours % Hours % Hours %

F0 cos hz P 0 & Ih > 0 & Idh > 0 7961 20594 5934 7613 6634 48736
F1 cos hz P 0:1219 ðas P 7�Þ 7062 11.3 18483 10.3 5372 9.5 6974 8.4 5987 9.8 43878 10.0
F2 Ih 6 Ihc ðTL ¼ 2Þ 6863 2.8 18348 0.7 5315 1.1 6909 0.9 5890 1.6 43325 1.3
F3 kt > 0:1 & Id P Idc ðTL ¼ 1:5Þ 6796 1.0 18327 0.1 5300 0.3 6909 0.0 5890 0.0 43222 0.2
F4 Id 6 ð600 W=m2Þas 6773 0.3 18091 1.3 5142 3.0 6903 0.1 5875 0.3 42784 1.0
F5 kt 6 0:10 & f d P 0:85 6601 2.5 18045 0.3 5132 0.2 6786 1.7 5853 0.4 42417 0.9
F6 kt 6 0:85 & 0:05 6 f d 6 1:03 6559 0.6 17895 1.0 4920 4.1 6558 3.4 5576 4.7 41472 2.2
F7 jtj ¼ f̂ d � f d

��� ���=r < 3 6491 1.0 17616 1.4 4868 1.1 6486 1.1 5534 0.8 40995 1.2

All % discarded 18.5 14.5 18.0 14.8 16.6 15.9
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compute normalized residuals t ¼ ðf̂ d � f dÞ=r, where r is the sam-
ple RMSD. Since the residuals are (almost) normally distributed, an
hour is considered an outlier (and discarded with 99.7% confidence
level) if jtj > 3. Approximately 41,000 hourly ðkt; f dÞ records result
from this procedure, as summarized in Table 2.

The thresholds for all filters have been selected on physical
grounds after visual inspection of their effects on the data cloud.
It is important to emphasize that the quality of the raw data and
the specific choices made in the filtering procedure affect quantita-
tively the results. The hourly data set filtered to F7-level is shown
in Fig. 2 against the background of F0-level data. The distributions
for (filtered) kt and f d are shown in Fig. 3(a) and (b) respectively.
Note that in (a) the right peak in kt is associated to clear days while
in (b) the right peak in f d is associated to overcast conditions and
the left peak to clear-sky conditions. These distributions are similar
to those reported in the literature (Gueymard and Ruiz-Arias,
2016; Tovar-Pescador, 2008; Ianetz and Kudish, 2008). Both vari-
ables have a bi-modal distribution, although bimodality is weak-
ened at the hourly timescale in kt .

3. Phenomenological models for hourly diffuse fraction

Phenomenological models attempt to capture the general trend
of the diffuse fraction in terms of a set of readily available variables
together with basic time and site information. These models are
usually adjusted from a limited amount of data for a few locations.
Even though such models are not universal (Gueymard and Ruiz-
Arias, 2016), they are often used, at least for engineering purposes
(Duffie and Beckman, 2006), over a wide range of locations and
atmospheric conditions without information about the associated
uncertainties. In this Section, ten well-known hourly diffuse frac-
tion models are introduced. They have been selected with special
attention to simplicity and usability and are locally adjusted and
evaluated in Section 4. In order to easily refer to them, a short code
is assigned to each model as indicated in Table 3. For each model,
there is an original version and two locally adjusted versions (per
site and global) as described in Section 4.

3.1. Simple polynomial model (P5)

A simple polynomial model (P5) for diffuse fraction results from
a polynomial function of kt ,

f d ¼
1 kt < 0:20
a0 þ a1 kt þ a2 k

2
t þ a3 k

3
t þ a4 k

4
t þ a5 k

5
t 0:20 6 kt 6 0:85

c0 kt > 0:85:

8><
>:

ð2Þ
subject to continuity constrains for f d and its derivative f 0d at the
endpoints of the central interval. The resulting model has three
independent parameters and it serves as a benchmark to evaluate
more sophisticated approaches obtained from the literature. This
model, see Fig. 4, adjusted to F6-level data, has been used to com-
pute the residuals for discarding outliers in filter F7, as explained
in Section 2.2. The values of the coefficients adjusted to F7-level
data, for each site and globally as detailed in Section 4, are listed
in Table 4.

3.2. Models OH and EKD

Among the most well-known models are those by Orgill and
Hollands (1977) (OH) and Erbs et al. (1982) (EKD). Both models
have been evaluated by several authors previously (Jacovides,
2010; Dervishi and Mahdavi, 2012; Gueymard and Ruiz-Arias,
2016) and can be expressed as

f d ¼
1þ a1 kt kt < ka
b0 þ b1 kt þ b2 k

2
t þ b3 k

3
t þ b4 k

4
t ka 6 kt 6 kb

c0 kt > kb:

8><
>: ð3Þ

These models differ mainly in their functional form in the central
interval, where OH uses a linear expression ðb2 ¼ b3 ¼ b4 ¼ 0Þ.
Two continuity constrains at ka ¼ 0:35 and kb ¼ 0:75 reduce the
number of free parameters in this model to just two. Orgill and Hol-
lands used four years of hourly data from a single site (Toronto,
Canada) to obtain the coefficients shown in the first column of
Table 5. Emphasizing the local nature of the model, they recom-
mended the use of these parameters for latitudes between 43�N
to 54�N (Orgill and Hollands, 1977).

For the EKD model uses ka ¼ 0:22 and kb ¼ 0:80 in Eq. (3). The
original coefficients for this model, listed in Table 6, were obtained
using data from five U.S. sites with latitudes between 31�N and
42�N with altitudes from 62 m to 1620 m above sea level (Erbs
et al., 1982). Continuity constrains at ka and kb and a continuous
derivative at kb are assumed, so there are four independent param-
eters. The authors compared this correlation to 3 years of data from
Highett, Australia (latitude 38�S) to evaluate its usefulness in a dif-
ferent climate at a similar latitude. Since then, the EKD model has
been used and evaluated world-wide (Jacovides, 2010; Dervishi
and Mahdavi, 2012; Duffie and Beckman, 2006; Perez, 1992) and
it has been recommended for universal use in engineering text-
books (Duffie and Beckman, 2006). Both models (OH and EKD)
are shown in the top panels of Fig. 5, in their original and locally
adjusted versions, against F7 data.

3.3. Model RBD

The model by Reindl et al. (1990) is an example of a simple,
piecewise, multi-predictor model. These authors used 22,000 h of
data from five sites in the U.S. and Europe, with latitudes ranging
from 28�N to 56�N. An additional set of 3000 h measured at Oslo,



Table 3
Models for hourly diffuse fraction considered in this work. NA indicates unknown metadata. ‘‘Length” indicates the size of the data set used to train the original model (years or
hours); ‘‘Param.” is the number of adjustable parameters in our implementation and ‘‘Pred.” is the number of predictor variables.

Model Year Refs. Sites Length Param. Pred.

P5 2015 – 5 40995 h 3 1
OH 1977 Orgill and Hollands (1977) 1 4 y 2 1
EKD 1982 Erbs et al. (1982) 5 5 y 4 1
RBD 1990 Reindl et al. (1990) 5 22000 h 9 2
SO2 1987 Skartveit and Olseth (1987) 1 44687 h 6 2
BSL 2001 Boland et al. (2001) and Boland et al. (2008) 7 NA 2 1
RBL 2010 Ridley et al. (2010) 7 NA 6 5
RA1 2010 Ruiz-Arias (2010) 21 �23 y 4 1
RA2s 2010 Ruiz-Arias (2010) 21 �23 y 5 2
RA2 2010 Ruiz-Arias (2010) 21 �23 y 7 2

Fig. 4. Global polynomial model, Eq. (2) against F7-level data. The coefficients are
listed in the rightmost column of Table 4.
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Norway (latitude 60�N) were used for evaluation purposes. Reindl
et al. considered a large set of 28 candidate predictor variables,
including those commonly measured at meteorological stations,
and used a piecewise linear model to fit the data. They concluded
that, on an hourly basis, the best predictor variables were kt and
sinas, the sine of the solar altitude. Other relevant predictors might
be ambient temperature and relative humidity, but they found this
four-predictor model to perform only marginally better than the
two-predictor one. Keeping in mind simplicity and usability, we
shall consider only the two-predictor version (RBD) defined by,

f d ¼
a0 þ a1 kt þ a2 sinas f d 6 1 kt < ka
b0 þ b1 kt þ b2 sinas 0:1 6 f d 6 0:97 ka 6 kt 6 kb
c0 þ c1 kt þ c2 sinas f d P 0:1 kt > kb;

8><
>: ð4Þ

where ka ¼ 0:30 and kb ¼ 0:78 are fixed. The constrains within each
interval are required to avoid unphysical values for possible combi-
Table 4
Parameter sets for model P5, Eq. (2). See Section 4 for details.

P5 AZ SM LU

a0 0.50 0.72 0.80
a1 5.92 2.80 1.97
a2 �22.22 �6.62 �3.93
a3 29.51 �4.66 �5.97
a4 �19.54 14.13 10.96
a5 6.09 �6.20 �3.56
c0 0.10 0.09 0.11
nations of the predictors. No continuity constrains are applied. The
values of the parameters, as given in Ref. Reindl et al. (1990), are
listed in the first column of Table 7. An evaluation of this model
against modern data can be found in Refs. Dervishi and Mahdavi
(2012), Jacovides (2010), and Gueymard and Ruiz-Arias (2016).

3.4. Model SO2

Skartveit and Olseth (1987) proposed a piecewise non-linear
diffuse fraction model [SO2] with the solar altitude as as an addi-
tional predictor. In particular, one of the interval boundaries
depends on as. The diffuse fraction is parametrized as

f dðkt;asÞ ¼
1 kt 6 ka
f ðkt;asÞ ka 6 kt 6 akbðasÞ
f ðakb;asÞ kt P akbðasÞ

8><
>: ð5Þ

where a ¼ 1:09; kbðasÞ ¼ r þ s expð�as=a0Þ and a0 ¼ 0:291 rad. The
non-linear functions are

f ðkt ;asÞ ¼ 1� ð1� d1Þ a
ffiffiffiffi
K

p
þ ð1� aÞK2

h i
;

Kðkt ;asÞ ¼ 1
2

1þ sin p kt � ka
kb � ka

� 1
2

� �� �� 	
;

d1ðasÞ ¼ r0 þ s0 expð�as=a0Þ:

ð6Þ

In Ref. Skartveit and Olseth (1987), six parameters ða; r; s; r0; s0; kaÞ
are obtained from the data. These values, reproduced in the first col-
umn of Table 8, are valid for altitudes close to sea level at average
snow-free conditions in Norway. This model is continuous at both
interval boundaries where it also has an (approximately) continu-
ous partial derivative @f d=@kt at kt ¼ askb. In spite of its apparent
complexity, it has only six adjustable parameters and two predic-
tors. The same authors have proposed a more complex model
(Skartveit et al., 1998), which includes persistence and ground
albedo among other effects, and shall not be considered here.

3.5. Logistic models (BSL, RBL)

In 2001 Boland et al. (2001) proposed and later evaluated
(Boland et al., 2008) a single predictor model (BSL) using a simple
AR TT Global

0.86 1.04 0.77
0.87 �1.45 2.16
3.53 13.21 �3.91

�28.43 �43.80 �9.02
39.51 48.79 17.00

�16.21 �17.60 �6.79
0.11 0.12 0.10



Table 5
Parameters for model OH, Eq. (3) with b2 ¼ b3 ¼ b4 ¼ 0.

OH Original AZ SM LU AR TT Global

a1 �0.25 �0.40 �0.29 �0.24 �0.33 �0.19 �0.28
b0 1.56 1.51 1.60 1.60 1.56 1.63 1.59
b1 �1.84 �1.86 �2.00 �1.95 �1.93 �1.99 �1.96
c0 0.18 0.12 0.10 0.14 0.11 0.14 0.12

Table 6
Parameter sets for model EKD, Eq. (3).

EKD Original AZ SM LU AR TT Global

a1 �0.09 �0.24 0.00 �0.06 �0.15 �0.10 �0.09
b0 0.95 0.70 0.38 0.62 0.68 0.85 0.60
b1 �0.16 2.63 6.54 3.70 2.91 0.98 3.97
b2 4.39 �7.38 �21.25 �10.83 �7.75 �0.06 �11.74
b3 �16.64 1.86 21.37 7.00 1.47 �9.75 7.76
b4 12.34 2.67 �6.99 �0.30 3.24 8.62 �0.28
c0 0.17 0.13 0.09 0.12 0.13 0.13 0.11

Fig. 5. Four single-predictor models. For each case, the original model (dashed line) and the locally adjusted global model (full line) are shown with the data filtered at level
F7 in the background.
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logistic function, with just two parameters derived from data from
8 sites over four continents. More recently Ridley et al. (2010) have
proposed a multiple-predictor version,

f d ¼ 1þ exp a0 þ a1 kt þ a2 ts þ a3as þ a4Kt þ a5wð Þ½ ��1
: ð7Þ

The two-parameter, single-predictor logistic model (BSL) can be
obtained from Eq. (7) by setting a2 ¼ a3 ¼ a4 ¼ a5 ¼ 0 and its orig-
inal parameters from Ref. Boland et al. (2008) are reproduced in
Table 9.
The extended model (RBL) considers four predictors aside from
kt : ts is the apparent solar time (in hours) at the mid-hour point, as

is the solar altitude angle in degrees, Kt is the daily clearness index
and w is a persistence parameter defined as the average of the lag
and lead hourly clearness index, i.e. for the jth hour,
wðjÞ ¼ 1

2 ðktðj� 1Þ þ ktðjþ 1Þ½ �, unless for sunrise or sunset hours
where wðjÞ ¼ ktðj� 1Þ, respectively. Using a persistence and a daily
variable in an hourly model implies that it cannot be used in real
time or for days with incomplete hourly information. However, it



Table 7
Parameters for RBD model, Eq. (4).

RBD Original AZ SM LU AR TT Global

a0 1.02 0.88 1.00 0.97 0.96 0.96 0.96
a1 �0.25 �0.04 �0.09 �0.07 0.12 0.20 �0.01
a2 0.01 0.14 0.01 0.02 �0.06 �0.07 0.01
b0 1.40 1.39 1.44 1.49 1.42 1.50 1.45
b1 �1.75 �1.94 �1.97 �1.96 �2.01 �2.01 �1.98
b2 0.18 0.31 0.24 0.22 0.32 0.27 0.26
c0 0 0.56 �0.34 �0.15 0.02 �0.38 �0.12
c1 0.49 �0.51 0.69 0.43 0.13 0.73 0.38
c2 �0.18 �0.03 �0.12 �0.09 �0.01 �0.10 �0.08

Table 8
Parameters for model SO2, Eqs. (5) and (6). The second column is from Ref. Skartveit and Olseth (1987) and the rest of the columns correspond are fits to the ground data
considered in this work.

SO2 Original AZ SM LU AR TT Global

a 0.27 0.06 0.44 0.11 0.10 0.12 0.21
r 0.15 0.01 0.05 0.03 0.04 0.06 0.04
s 0.43 0.64 0.43 0.58 0.42 0.27 0.47
r0 0.87 0.92 0.87 0.91 0.89 0.90 0.90
s0 �0.56 �0.68 �0.53 �0.56 �0.55 �0.43 �0.55
ka 0.20 0.05 0.24 0.13 0.11 0.14 0.15

Table 9
Parameters for the logistic models BSL and RBL, Eq. (7). For BSL all parameters aj with j > 1 are zero. The original values are from Refs. Boland et al. (2008) and Ridley et al. (2010).

BSL Original AZ SM LU AR TT Global

a0 �5.00 �4.50 �5.03 �4.98 �4.78 �5.23 �4.94
a1 8.60 8.37 9.26 8.83 8.81 9.18 8.95

RBL
a0 �5.38 �5.07 �5.50 �6.02 �5.31 �5.85 �5.60
a1 6.63 7.29 7.75 7.34 7.94 7.94 7.63
a2 0.01 �0.03 0.02 0.03 0.00 0.00 0.01
a3 �0.01 �0.02 �0.01 �0.01 �0.02 �0.02 �0.01
a4 1.75 1.12 0.88 1.75 0.68 0.93 1.12
a5 1.31 1.92 2.12 1.92 2.08 2.29 2.06
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can capture daily trends in the data and offer an improved perfor-
mance. The original values for these parameters have been
obtained in Ridley et al. (2010), from data for seven locations
worldwide. The coefficients obtained from the data considered in
this paper are also shown in Table 9.

3.6. Double exponential models (RA1, RA2s, RA2)

Ruiz-Arias (2010) have proposed the use of a Gompertz (or dou-
ble exponential) function for diffuse fraction estimation. These
functions have previously been used in this context to discard out-
liers in the ðkt ; f dÞ plane (Raichijk, 2012; Younes et al., 2005) as
they can represent the general trend shown in Fig. 2. In this work,
we consider one (RA1) and two-predictor (RA2s, RA2) models with
the general form

f d ¼ a0 þ a1 e� exp a2þa3 ktþa4 k2t þa5 mþa6 m2ð Þ ð8Þ
where m stands for the height-corrected relative air mass (Kasten
and Young, 1989) evaluated at the midpoint of the hour. Models
RBL, SO2 and RA2 are shown in Fig. 6. The single-predictor model
(RA1) is obtained by setting a4 ¼ a5 ¼ a6 ¼ 0 in this expression
and a simplified two-predictor model (RA2s) is obtained by setting
a4 ¼ a6 ¼ 0. In Ref. Ruiz-Arias (2010) the parameters for each of
these models are determined from a large set of high quality data
from 21 sites worldwide. These sites range in latitude from 30�N
to 65�N and in altitude from sea level to almost 2000 m. The dataset
covers a range of climates but all sites are located in the northern
hemisphere.
The site-independent set of coefficients recommended for each
model in Ref. Ruiz-Arias (2010) are shown in the first column of
Table 10 under ‘‘Original”, together with the corresponding coeffi-
cients determined from the data considered in this work.

3.7. Evaluation of original models

In Table 3 the ten hourly diffuse fraction models and the length
and scope of the data used to train the original version of each
model are listed. These original models are evaluated against the
F7-level set of ground measurements (described in Section 2.2)
and three performance indicators are calculated. For n data points
ðxi; yiÞ and corresponding estimates ŷi, the Mean Bias Deviation
(MBD) is defined as

MBD ¼ 1
n

Xn
i¼1

ðŷi � yiÞ; rMBD ¼ 100�MBD
hyi ð9Þ

where hyi is the mean of the observations. It should be noted that
this indicator has been defined in both ways (estimate – measure-
ment or viceversa) in the literature. Eq. (9) implies that a positive
bias is associated to overestimation by a given model, in accordance
with standard usage (Gueymard, 2014).

The Root Mean Square Deviation (RMSD) quantifies the disper-
sion of the residuals,

RMSD ¼ 1
n

Xn
i¼1

ðŷi � yiÞ2
" #1

2

; rRMSD ¼ 100� RMSD
hyi : ð10Þ



Fig. 6. Best models (locally adjusted) with multiple predictors. Upper panel: model
RBL, Eq. (7); center panel: model SO2, Eq. (5); Bottom panel: model RA2, Eq. (8). In
the background, the data filtered to F7-level is shown. See Section 4 for details on
the local adjustment and evaluation of these models.
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For hourly models, the relative forms are scaled using the average of
F7-level hourly data, hf di ¼ 0:47. In Section 5, hFdi ¼ 0:46 and
h�Fdi ¼ 0:36 are used to scale the daily and monthly average indica-
tors, respectively. The rRMSD indicator characterizes the uncer-
tainty introduced by the use of a given model to estimate the
diffuse component of GHI. Thus, it is relevant to rank the adjusted
models according to their capacity to describe the data. The rMBD
gives information about systematic tendencies in the models to
overestimate or underestimate the data. Combinations of these
two indicators, such as Student’s t parameter (Stone, 1993) or the
l1�a indicator (de Simón-Martín et al., 2016) may be used to rank
these original models, with some emphasis on the mean bias indi-
cator. However, since the locally adjusted (essentially unbiased)
versions of the models perform significantly better, we make no
attempt to rank the original versions.

A Kolmogorov-Smirnov Index (KSI) is defined (Alonso Suárez,
2012; Espinar, 2009; Gueymard, 2014) using the cumulative distri-

bution functions FðYÞ and F̂ðYÞ estimated from the f d measure-
ments and the corresponding model estimates respectively. KSI
quantifies the distance between these distributions,

KSI ¼
Z 1

0
DðYÞdY; with DðYÞ ¼ F̂ðYÞ � FðYÞ

��� ���: ð11Þ

The function D helps visualize for which range of f d the model esti-
mates differ significantly from the data. As an example, in Fig. 8 we
show this function for the RBL model. Other models have a similar
form for Dðf dÞ suggesting that their performance under clear sky
conditions (low f d) might be improved, for instance by using an
accurate clear-sky model. Thus, KSI gives information about the
similarity between the distributions of the measured and modeled
diffuse fractions and discriminates well between different models.

These three basic indicators, MBD, RMSD and KSI, are combined
into a single one which takes into account dispersion, absolute bias
and likeness of distributions

CPI ¼ 1
3
ðjrMBDj þ rRMSDþ 100� KSIÞ: ð12Þ

This overall indicator is similar to the combined index proposed by
Gueymard (2014).

Meaningful comparisons based on relative indicators calculated
by different authors using different data sets are not always
straightforward. Even when the same data set is used, differences
in the filtering procedure may affect the performance indicators
obtained for the same model. With this in mind, we note that some
of the models considered here have been previously evaluated
elsewhere. Jacovides (2006) evaluated the single variable models
OH, EKD, RBD and BSL (among others) using 5-years of hourly data
for a semi-rural site in Cyprus. They reported positive biases
between 3% and 7% and rRMSD in a narrow range about 30% for
all of them. Tapakis et al. (2015) used data from the same site in
Cyprus (but for a 13-year period) to evaluate models OH, EKD,
RBD and RA1 and obtained rMBD in a narrow range around 5%
and rRMSD around 24%.

These relative indicators are calculated for each original model,
on a per-site basis, in columns 3–8 of Table 13. Note that most
models show positive biases (over-estimation of diffuse fraction)
in the range 3–12%. As mentioned, similar results have been
reported previously for Cyprus (Jacovides, 2006) and also in a com-
parison between several separation models with data from sites
closer than 1000 km from our region of interest (Raichijk and
Fasulo, 2009). The exceptions to positive biases are the models
based on Gompertz or double exponential functions (RA1, RA2s,
RA2), which show negative biases (under 10%) for all our sites. In
Ref. Ruiz-Arias (2010) these models are also reported with mostly
negative biases (between �5% and �12%) when compared to inde-
pendent data from 14 sites in the northern hemisphere. Many of
the models considered here (including RA1 and RA2) have been
recently compared (at the 1-min time scale) against data from a
BSRN site (SMS-São Martino da Serra), located about 500 km to
the north of the area of interest of this work (Gueymard and
Ruiz-Arias, 2016). In this comparison, rRMSD between 24% and
29% and rMBD between 3% and 7% were found, with the biases
from RA1 and RA2 having a different sign than those of the other
models. These results are consistent with the left part of Table 13,
with rRMSD’s in the range 19–28%, depending on model and site.
The AZ site, located at the most southern latitude and being the
only coastal site in our analysis, has a higher dispersion (rRMSD’s)



Table 10
Parameters for the double exponential single-predictor model RA1, based on Eq. (8) with a4 ¼ a5 ¼ a6 ¼ 0. The first column is from Ref. Ruiz-Arias (2010).

RA1 Original AZ SM LU AR TT Global

a0 0.95 0.95 1.00 0.98 0.95 0.96 0.97
a1 �1.04 �0.97 �1.07 �1.05 �0.92 �0.97 �1.01
a2 2.30 2.96 2.82 2.96 3.57 3.46 3.07
a3 �4.70 �6.07 �5.82 �5.75 �7.32 �6.68 �6.17

RA2s
a0 0.98 0.96 1.00 0.97 0.94 0.96 0.97
a1 �1.02 �1.06 �1.17 �1.15 �1.01 �1.08 �1.11
a2 2.88 3.36 3.05 3.32 3.94 3.75 3.38
a3 �5.59 �5.87 �5.44 �5.56 �6.79 �6.25 �5.84
a5 �0.11 �0.15 �0.11 �0.12 �0.17 �0.14 �0.13

RA2
a0 0.94 0.97 1.00 0.97 0.94 0.96 0.98
a1 �1.54 �0.94 �1.40 �1.18 �1.11 �1.43 �1.24
a2 2.81 2.72 3.25 3.36 4.30 4.10 3.47
a3 �5.76 �1.01 �6.19 �5.49 �7.58 �7.85 �5.71
a4 2.28 �5.78 1.62 0.10 1.37 2.80 0.32
a5 �0.13 �0.45 �0.19 �0.19 �0.36 �0.22 �0.25
a6 0.01 0.04 0.01 0.01 0.03 0.02 0.02

Table 11
Weights wi are based on the estimated uncertainty for the data from each site,
indicated in Table 1. The second row shows the fraction f i of data points from each
site at F7-level (Table 2).

AZ SM LU AR TT

wi 0.14 0.32 0.26 0.14 0.14
f i 0.16 0.43 0.12 0.16 0.13
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than the rest. This site is representative of a special climatic regime
with higher variability, humidity and cloudiness than inland sites.

In terms of global rRMSD, the best original models are RBL and
RA2s with 20.7% and 21.0% respectively, with the last having a
lower bias. They are followed by RA2 and SO2 with rRMSD of
21.8% and 22.9%, respectively. Independent work performed in
Argentina (Raichijk and Taddei (2012)) used 4320 h of data from
one site in a similar climatic region and also found RBL and SO2
(in their original forms) as the two best models in terms of rRMSD.
However, this work did not consider Gompertz-based models such
as RA2s and RA2. Models RBL and SO2 have also been ranked
among the best for Temperate Zones in Ref. Gueymard and Ruiz-
Arias (2016).

The tendency for overestimation the diffuse fraction found in
most models may be due to a clearer atmosphere with fewer aero-
sols on average, since most sites considered in this work are at
semi-rural grasslands with low population density. However, this
may also result from imperfect measurements. For instance, no
ventilated pyranometers where used, so water droplets on the
domes may affect measurements even at high solar altitudes. The
use of the isotropic correction for the shadow-ring diffuse mea-
surements (which affects more than 40% of the data) may produce
some underestimation (of the order of 1%) in the diffuse fraction
(Sánchez, 2012). The exact choices made in the filtering procedure
(Table 2) may also affect the mean bias results of the original mod-
els. Specifically, if a higher lower limit (i.e. 0.95 instead of 0.85) is
chosen for diffuse fraction under cloudy conditions (F5) a slightly
smaller bias would be obtained.

The models considered here have been originally adjusted to
data mostly from the northern hemisphere and, in some cases,
using small data sets. Since they have significant biases, it is worth
deriving locally adjusted versions of these models, specifically
adapted for this region of the world.

4. Locally adjusted models

Each model has been trained and evaluated on a per-site basis,
using a standard cross-validation procedure. At each site, the F7-
dataset is randomly divided into a training set (80%) and a testing
set (20%) and the optimal set of coefficients for each model is
obtained using standard regression techniques. The final coeffi-
cients and indicators result from averaging over an ensemble of
1000 elements, each sampling random 80-20 portions of the data-
sets. The size of the ensemble has been chosen as to warrant the
repeatability of the procedure. The results of this procedure are
shown in Table 12.

In addition to the locally adjusted version of each model for
each site, global models are constructed from the locally adjusted
models using the weighted average of the adjusted coefficients
from each site as the global model coefficients. The weights wi

are determined from the estimated uncertainty for each site, ri,
as indicated in the last column of Table 1. Thus, wi ¼ C=r2

i with
C ¼ P

i1=r2
i (the sum runs over all sites). The resulting weight fac-

tors, listed in Table 11, give priority to higher quality data from the
SM and LU sites. The coefficients for the globally fitted versions of
each model are listed in the last column (under Global) of Tables 4–
10.

Performance indicators for these globally adjusted versions are
shown in the rightmost columns of Table 13. The per-site indica-
tors are averaged (weighted using the fractions f i of data points
from each site) to obtain the global indicators for each adjusted
model, listed under the ‘‘All” header in Table 13.

As expected, the adjusted versions have significantly lower
biases than the original ones and the global adjusted versions have
biases within ±2%. Original models have rRMSD indicators in the
range 18–28% and locally fitted models in the range 16–26%, so
the improvement in dispersion is not as significant as with bias.
In Table 14, all models are listed as ordered by increasing CPI,
defined in Eq. (12). Ties in CPI are resolved by KSI or rRMSD (both
yield the same result). The procedure is fairly robust: the first two
models have the lowest KSI and rRMSD and any single variable
model performs worst than any multi-variable model also in terms
of KSI or rRMSD.

The best performing global model for this region is clearly RBL
with CPI of 7.2 and rRMSD of 18.1%. It is followed by SO2 (19.2%)
and RA2s tied with CPI = 7.4 (RA2s has higher rRMSD 19.5% and
lower bias than SO2), however RA2s is simpler to implement.
RA2 and RBD follow tied with CPI = 7.8, the first has lower rRMSD
and KSI.



Table 12
Per-site performance indicators for the locally adjusted models as compared to the F7-dataset on a per-site basis. Note that the local Gompertz models (RA1, RA2s and RA2) and
the local RBD model are essentially unbiased at all sites. The best local model performance is from RBL at SM, with rRMSD below 16%.

Adjusted local models

Model Indicator AZ SM LU AR TT

P5 rMBD (%) 1.9 0.0 0.6 2.0 1.5
rRMSD (%) 25.8 19.2 22.5 22.1 22.9
KSI (�100) 2.3 1.4 1.9 2.2 2.0

OH rMBD (%) 0.0 �0.8 �0.1 0.4 0.6
rRMSD (%) 25.8 20.1 22.6 22.2 22.9
KSI (�100) 2.6 2.3 2.1 2.3 1.9

EKD rMBD (%) 0.4 0.1 0.3 0.8 0.7
rRMSD (%) 25.5 19.2 22.5 22.0 22.9
KSI (�100) 2.2 1.4 1.9 1.9 1.8

RBD rMBD (%) 0.0 0.0 0.0 0.0 0.0
rRMSD (%) 23.3 17.3 20.8 18.4 20.5
KSI (�100) 2.3 1.3 2.0 1.8 1.9

SO2 rMBD (%) 0.9 0.0 0.4 1.5 1.3
rRMSD (%) 22.9 16.6 20.1 18.2 20.2
KSI (�100) 1.9 1.2 1.6 1.4 1.6

BSL rMBD (%) �0.2 �1.5 �0.6 �0.2 �0.1
rRMSD (%) 25.6 19.6 22.6 22.1 23.0
KSI (�100) 2.2 1.6 2.0 1.6 1.6

RBL rMBD (%) 0.6 �0.8 �0.2 0.7 0.6
rRMSD (%) 21.2 15.7 17.7 17.4 19.0
KSI (�100) 1.5 1.2 1.5 1.0 1.3

RA1 rMBD (%) 0.0 0.0 0.0 0.0 0.0
rRMSD (%) 25.5 19.2 22.4 21.5 22.6
KSI (�100) 2.5 1.3 2.0 2.1 2.1

RA2s rMBD (%) �0.1 0.0 0.0 0.0 0.0
rRMSD (%) 23.2 16.9 20.3 18.3 20.3
KSI (�100) 2.3 1.1 1.8 1.8 1.9

RA2 rMBD (%) 0.0 0.0 0.0 0.0 0.0
rRMSD (%) 22.8 16.6 20.2 17.7 19.9
KSI (�100) 2.2 1.0 1.8 1.6 1.9
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As noted, all multiple-predictor models perform better than any
single-predictor model based on kt alone, so it is worth including
air mass m and other additional variables as predictors for describ-
ing diffuse fraction in this region. All local single-predictor models
have rRMSD indicators around 22%, implying that the details of
these models are not very relevant, as long as they are limited to
kt as the only predictor. In order to emphasize this point, we have
introduced a simple fifth degree polynomial model with natural
constrains (P5) which is ranked worst in terms of CPI but in terms
of rRMSD and rMBD actually performs almost as well as the best
adjusted single-predictor model (RA1).

Scatter plots for the original and globally adjusted versions of
the RBL model are shown in Fig. 7 and the difference function D
used to calculate the distance between the distributions from the
data and the RBL model estimates (for the original and globally
adjusted versions) is shown in Fig. 8. The effect of the local adjust-
ment is seen in the reduction of the area under the difference func-
tion. Similar results are obtained for other models. The peak at low
f d values (clear sky conditions) suggests that some improvement in
the model’s performance may result if the low-end f d estimation is
done by using a locally tuned clear-sky model for diffuse radiation,
such as Rigollier et al. (2000). Fig. 8 also shows a peak in D when
f d ! 1, so there is room for improvement at overcast conditions
too. This potential for improvement should be considered when
addressing the subject of improved physical models for diffuse
fraction.

The RBL model, Eq. (7), stands out in its use of the daily clear-
ness index ðKTÞ and a persistence parameter (which depends on
the previous and the next hour) as predictors. This particular
parametrization is probably related to its good performance. How-
ever, the use of a daily variable makes it inadequate for real-time
(on-the-fly) estimation of hourly diffuse irradiation or for short-
term forecasting applications. The second-best models are SO2
and RA2s with similar indicators. The adjusted RA2s model is
almost unbiased and has a simpler parametrization than SO2. Thus,
for the average user, the locally fitted RA2s model, Eq. (8), which
can estimate hourly f d with an uncertainty under 20%, may repre-
sent the best compromise between performance and simplicity.
5. Daily and monthly-mean diffuse fraction

In real applications, daily data for GHI may be the only informa-
tion available near the required location. In order to estimate the
daily solar resource on an inclined surface, a separation into daily
diffuse and direct irradiation is previously required. In this Section,
two models which have been widely used to obtain this separation
are evaluated, in their original and locally adjusted versions. The
case of monthly means of daily irradiation is also discussed.

In terms of the daily global and diffuse horizontal irradiation
ðHh;HdhÞ and the daily horizontal irradiation at the top of the atmo-
sphere (H0h), the daily clearness index and the daily diffuse fraction
are defined as,

KT ¼ Hh=H0h and Fd ¼ Hdh=Hh: ð13Þ
The monthly-averaged versions of these quantities are

KT 	 Hh=H0h and �Fd 	 Hdh=Hh; ð14Þ
where the averages are over daily data within each month.

For daily and monthly averaged daily data, the specific site-
dependence is weaker than for hourly data. For simplicity and
brevity, daily data from all sites is aggregated and a single locally



Table 13
Performance indicators for the original and globally adjusted versions of the hourly models. The indicators listed under the columns labelled ‘‘All”, are the average of the per-site
indicators, weighted by the fraction of data points at each site (see Table 2).

Original models Adjusted global models

Model Indicator AZ SM LU AR TT All AZ SM LU AR TT All

P5 rMBD (%) 4.5 2.8 �2.9 3.6 �3.1 1.7
rRMSD (%) 26.1 19.5 22.9 22.2 23.6 21.9
KSI (�100) 2.3 2.1 2.3 2.5 2.8 2.3

OH rMBD (%) 10.7 8.7 4.2 9.6 3.0 7.9 3.8 1.6 �3.7 2.5 �4.0 0.7
rRMSD (%) 28.1 22.9 23.2 24.4 23.4 24.1 26.2 20.3 22.9 22.4 23.4 22.3
KSI (�100) 5.9 6.0 3.8 5.2 3.6 5.3 2.7 2.9 2.2 2.3 2.2 2.6

EKD rMBD (%) 10.8 8.8 3.8 9.8 3.3 7.9 4.0 2.2 �3.4 3.0 �3.7 1.2
rRMSD (%) 28.0 22.2 22.9 24.1 23.1 23.6 25.9 19.6 22.8 22.1 23.5 21.9
KSI (�100) 5.4 5.0 2.5 4.9 2.3 4.4 2.1 2.4 2.3 2.4 2.7 2.4

RBD rMBD (%) 11.2 10.6 5.2 11.0 3.8 9.2 3.3 2.3 �3.8 2.6 �4.4 0.9
rRMSD (%) 26.6 21.9 22.5 22.9 22.7 23.0 23.8 17.9 21.3 18.9 21.4 19.8
KSI (�100) 5.6 6.0 4.5 6.0 4.2 5.5 2.4 2.7 2.2 2.5 2.5 2.5

SO2 rMBD (%) 13.4 12.2 7.0 12.6 6.2 11.0 3.8 2.3 �4.0 2.5 �3.8 1.0
rRMSD (%) 26.7 22.1 22.0 22.4 21.9 22.9 23.4 16.9 20.7 18.3 21.1 19.2
KSI (�100) 6.6 6.6 4.3 6.2 3.7 5.8 1.9 2.2 2.5 1.5 2.3 2.1

BSL rMBD (%) 11.5 9.3 4.7 10.2 3.6 8.5 3.0 1.1 �4.3 1.9 �4.7 0.1
rRMSD (%) 28.6 23.3 23.3 24.9 23.5 24.4 25.9 19.9 23.0 22.2 23.6 22.1
KSI (�100) 6.0 6.2 3.7 5.2 3.3 5.3 2.2 2.7 2.4 1.8 2.6 2.4

RBL rMBD (%) 10.3 8.7 2.5 8.9 3.0 7.6 3.8 2.7 �4.7 2.4 �3.4 1.3
rRMSD (%) 25.0 19.8 18.7 20.9 20.4 20.7 22.2 16.3 18.8 17.8 19.5 18.1
KSI (�100) 5.3 5.6 3.2 4.6 3.2 4.9 2.0 2.4 2.6 1.4 1.9 2.1

RA1 rMBD (%) 0.0 �1.1 �5.8 �0.4 �7.6 �2.2 3.4 1.5 �3.8 2.4 �4.3 0.5
rRMSD (%) 26.0 21.3 24.3 22.8 25.6 23.2 25.8 19.6 22.8 21.8 23.3 21.8
KSI (�100) 4.4 5.2 5.0 4.4 5.6 5.0 2.1 2.3 2.5 2.1 2.8 2.3

RA2s rMBD (%) �1.2 �1.8 �7.5 �1.5 �8.5 �3.2 3.8 1.7 �4.0 2.2 �4.1 0.7
rRMSD (%) 23.9 18.5 23.3 20.2 24.5 21.0 23.7 17.4 20.8 18.5 21.0 19.5
KSI (�100) 3.7 4.3 5.3 3.6 5.6 4.4 2.3 2.2 2.3 1.7 2.4 2.2

RA2 rMBD (%) �2.5 �3.1 �8.4 �2.7 �10.1 �4.5 0.9 �0.9 �7.4 �0.6 �7.0 �2.2
rRMSD (%) 24.6 19.7 23.8 20.9 24.8 21.8 23.5 17.0 21.9 18.3 21.8 19.5
KSI (�100) 4.0 4.5 5.3 3.7 5.9 4.6 2.3 2.1 2.3 2.5 2.8 2.3

Table 14
Overall performance indicators for the ten hourly models considered in this work in their original and adjusted versions. The ‘‘Rank” column orders the adjusted models using a
combined performance indicator defined in Eq. (12). The horizontal line separates multiple-predictor models from single-predictor models.

rMBD (%) rRMSD (%) KSI (x100) CPI Rank

Model Original Adjusted Original Adjusted Original Adjusted Adjusted

RBL 7.6 1.3 20.7 18.1 4.9 2.1 7.2 1
SO2 11.0 1.0 22.9 19.2 5.8 2.1 7.4 2
RA2s �3.2 0.7 21.0 19.5 4.4 2.2 7.4 2
RA2 �4.5 �2.2 21.8 19.5 4.6 2.3 7.8 3
RBD 9.2 0.9 23.0 19.8 5.5 2.5 7.8 3

RA1 �2.2 0.5 23.2 21.8 5.0 2.3 8.2 4
BSL 8.5 0.1 24.4 22.1 5.3 2.4 8.2 4
EKD 7.9 1.2 23.6 21.9 4.4 2.4 8.5 5
OH 7.9 0.7 24.1 22.3 5.3 2.6 8.5 5
P5 � 1.7 � 21.9 � 2.3 8.7 6
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adjusted version of each model is considered. Our objective is to
assess the typical uncertainty associated to the diffuse-direct sep-
aration procedure at the daily and monthly time scales.

5.1. Data base

Daily data is obtained from hourly data as follows. For a given
day, the subset of hours that pass F0, F1, F2 and F6 are considered.
For days with complete hours, hourly data is accumulated to gen-
erate daily irradiation in the usual form, i.e. Hh ¼ P

jIhðjÞ and
Hdh ¼

P
jIdhðjÞ, where j is an hour index and the sums run over all

daylight hours. Days with one or more missing hours are discarded.
If a given month has at least 20 days with daily data, the monthly
averages, KT and �Fd, are computed otherwise the month is dis-
carded. The results of this selection process are summarized in
Table 15.

5.2. Models

Two frequently used models are considered in their daily and
monthly averaged versions. The daily model by Collares-Pereira
and Rabl (1979) (CPR-d), is defined in four intervals in KT ,

Fd ¼

1 KT 6 0:17
A0 þ A1 KT þ A2 K

2
T þ A3K

3
T þ A4K

4
T 0:17 < Kt 6 0:75

B0 þ B1KT 0:75 < KT < 0:80
C0 KT P 0:80:

8>>><
>>>:

ð15Þ



Fig. 7. Scatter plot for the diffuse fraction from the RBL model: (a) model with
original coefficients and (b) global model with adjusted coefficients. A line with
slope 1 is drawn to guide the eye.

Fig. 8. Difference between cumulative distribution functions, D, from Eq. (11), for
the original (dashed line) and the adjusted global (full line) versions of the RBL
model.

Table 15
Summary of the filtered daily data for each station and valid months for calculating
monthly-averages.

Site Code Valid days Valid months

AZ 549 16
SM 1538 53
LU 375 12
AR 506 18
TT 417 13

All sites 3385 112
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where the original and locally adjusted values of the coefficients are
listed in Table 16. The daily model from Erbs et al. (1982) (EKD-d) is
also considered,

Fd ¼ 1þ A1 KT þ A2K
2
T þ A3K

3
T þ A4K

4
T KT < 0:715

B0 KT P 0:715:

(
ð16Þ

with coefficients listed in Table 16. Note that it includes a seasonal
dependence through xs, the sunset hour angle: its coefficients have
different values for xs below (i.e. winter) or above (rest of the year)
a threshold of 81.4�.

The monthly-average model proposed by Collares-Pereira and
Rabl (1979) (CPR-m) uses the monthly averaged hour angle �xs

(in rads) to introduce seasonal dependence,

�Fd ¼ A� B cos A2 þ A3KT

 � ð17Þ

where A ¼ A0 þ A1 �xs � p
2


 �
and B ¼ B0 þ B1 �xs � p

2


 �
. The monthly

mean sunset angle, �xs, can be approximated by its value for the typ-
ical day of each month (Klein, 1977) with negligible error. The orig-
inal and adjusted values for these coefficients are listed in Table 16.

Finally, the model for monthly-averaged diffuse fraction (EKD-
m) by Erbs et al. (1982) is also considered. It is defined by

�Fd ¼ A0 þ A1KT þ A2KT
2 þ A3KT

3; ð18Þ
with two sets of coefficients according to the value of �xs. The
monthly averaged clearness index is restricted to the interval
0:3 6 KT 6 0:8 and the coefficients are listed in Table 16. The locally
adjusted EKD-m model for xs 6 81:4 has some instabilities. On the
other hand, inspection of Fig. 11 shows that the Fd data considered
in this work has only weak seasonal dependence. Ignoring this
dependence results in a stable locally adjusted model with similar
performance indicators as those obtained by preserving the xs

dependence. Thus, the locally adjusted EKD-m version does not
include the xs dependence and a single set of local coefficients
are listed in the last row of Table 16.

5.3. Evaluation

After a cross-validation procedure similar to the one used for
the hourly models, performance indicators are obtained for the
adjusted models. The performance indicators for the original and
adjusted daily models are shown in Table 17. As expected, large
bias indicators (between 5% and 10%) are obtained and at the daily
timescale the original models also overestimate daily diffuse frac-
tion in the region of interest. For both models, the local fit reduces
the mean bias (below 1%) and leads to lower Fd estimates, as
shown in Figs. 9 and 10. The locally fitted versions of both daily
models perform similarly, with a small edge for EKD-d, estimating
daily diffuse irradiance with rRMSD under 20% and the same KSI.

The monthly-averaged data, together with the estimates from
the two models considered, are shown in Fig. 11. Due to the small



Table 16
Original and locally adjusted parameters for daily and monthly-average models for diffuse fraction.

Model Restriction A0 A1 A2 A3 A4 B0 B1 C0

Original models
CPR-d 1.19 �2.27 9.47 �21.87 14.65 0.63 �0.54 0.20
EKD-d xs 6 81:4� 1 �0.27 2.45 �11.95 9.39 0.14

xs > 81:4� 1 0.28 �2.56 0.85 0 0.18

CPR-m 0.78 0.35 2.00 �1.80 ⁄ 0.51 0.26 ⁄
EKD-m xs 6 81:4� 1.39 �3.56 4.19 �2.14

xs > 81:4� 1.31 �3.02 3.43 �1.82

Adjusted models
CPR-d 1.49 �5.05 16.89 �29.15 16.52 0.79 �0.89 0.08
EKD-d xs 6 81:4� 1 0 �0.46 �4.50 3.89 0.13
EKD-d xs > 81:4� 1 0 �1.88 0.34 0 0.15

CPR-m 6.21 0.56 0.93 �0.67 ⁄ 5.95 0.57 ⁄
EKD-m 1.58 �3.67 2.68 �0.19

Table 17
Statistical indicators for the daily and monthly mean diffuse fraction models considered in this work. For each model, the indicators with the original and the locally fitted
coefficients are shown. The average daily diffuse fraction is Fd ¼ 0:46 and the monthly average diffuse fraction is �Fd ¼ 0:36.

rMBD (%) rRMSD (%) KSI (x100) CPI

Model Orig. Adj. Orig. Adj. Orig. Adj. Orig. Adj.

EKD (d) 5.5 0.4 20.6 19.7 2.7 1.0 9.6 7.0
CPR (d) 10.2 0.7 22.8 19.9 4.9 1.0 12.6 7.2

EKD (m) 7.0 0.0 16.1 12.8 3.4 1.1 8.8 4.6
CPR (m) 9.8 0.0 20.2 12.8 4.8 1.1 11.6 4.6

Fig. 9. CPR-d model for daily data, Eq. (15), (original and adjusted) against the
background of the daily data.

Fig. 10. EKD-d model for daily data (original and adjusted), Eq. (16), with Top
panel: xs 6 81:4� (winter). Bottom panel: xs > 81:4� .
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size of the monthly dataset, all of it was used to fit and evaluate the
monthly mean models. Even though this leads to artificially lower
performance indicators, they are useful to compare the adjusted
model to its original version and to compare monthly models
between themselves.

Again, both original models tend to overestimate monthly-
mean diffuse irradiation, as they do at the daily and hourly time
scales and have large rRMSD (for averaged quantities) between
16% and 20%, with EKD-m outperforming CPR-m. The locally
adjusted versions of both models are essentially unbiased and their
rRMSD are significantly lower (under 13%) as indicated in Table 17.
As in the daily case, both adjusted models perform equally well.

It is worth using local adjusted models at the daily and
monthly-average scales in order to reduce bias. The minimum
uncertainties introduced when using the unbiased versions are
20% (daily) and 13% (monthly), respectively.



Fig. 11. CPR model for monthly-averaged data, Eq. (17). Monthly averaged values
are indicated within brackets h
i . EKD model for monthly-averaged data, Eq. (18).
Data for �xs 6 81:4� is shown with blue circles and with �xs > 81:4� with yellow
circles. For each case, the original EKD monthly model, Eq. (16), is shown with
dotted lines. The locally fitted model (with no dependence withxs) is shown with a
full line. Monthly averaged values are indicated within brackets.
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6. Conclusions

The uncertainty introduced by phenomenological models for
diffuse fraction separation has been well characterized for a
temperate region located in the southern part of South America.
The daytime hourly data was quality assessed and almost
41,000 h of valid data from five sites (most of them in semi-rural
areas) are the basis for this work. Ten models for hourly diffuse
fraction have been implemented and evaluated in their original
and locally adjusted forms. Half of the models considered use the
clearness index as their single variable and the other half includes
other variables as predictors.

The five multi-variable models outperform, in terms of disper-
sion, any of the single variable models considered, so the best orig-
inal models are the multi-variable models with uncertainties of at
least 21%. Most original models over-estimate the diffuse fraction
with biases in the range 3–12%, depending on the site. Gompertz
based (double exponential) models are the exception and have
small negative biases. These results are dependent on the quality
of the experimental data. This may be a true effect due to a clearer
atmosphere, which is plausible given the geographical characteris-
tics and the relatively low industrialization and human density of
the area under consideration. But the possibility that it is due to
some residual bias present in the data after the filtering process
cannot be ruled out at present. Further work is required, based
on higher quality data for the area, before this overestimation
can be confirmed.

A locally adjusted and a global version of each model where
obtained and evaluated per-site using cross validation procedures.
Our results clearly show that multiple-predictor models perform
consistently better that any single-predictor ones, both in their
original and local versions. The adjusted models do not show the
overestimation tendency present in the original models. Mean
biases are within ±5% and within ±2% for the global versions. The
adjusted versions span a range of rRMSD between 16% and 26%,
depending on site and model.

Using a combined performance indicator which takes into
account bias, dispersion and similarity between the data and the
modeled distributions, the ten adjusted hourly models have been
ranked according to their overall performance in the region under
consideration. The best of them, RBL (Ridley et al., 2010), can esti-
mate hourly diffuse fraction in the region of interest with a typical
uncertainty of 18% and 1% bias. However, this model uses daily
irradiation as an input and can’t be used for real-time (on demand)
separation or for predictive purposes. On a second level, are the
SO2 and RA2s models (Skartveit et al., 1998; Ruiz-Arias, 2010) with
typical uncertainty under 20% and negligible bias. These models do
not share the limitation of the RBL in regard to real-time use. The
adjusted RA2s (double exponential) model has a simpler
parametrization than the SO2 and, for the average user, RA2s
may represent the best compromise between performance and
simplicity.

At the daily and monthly mean timescale, two models (CP and
EKD) were evaluated before and after adjusting them to local data.
In their original forms both tend to overestimate diffuse irradia-
tion. In their adjusted versions, both daily models are essentially
unbiased and perform similarly with typical uncertainty under
20%. In the monthly average case, both adjusted models are indis-
tinguishable, with typical dispersion of about 13%.

In engineering applications, the overall uncertainty introduced
by the diffuse radiation estimation should be carefully included
in the calculations. The rather high biases found in some original
models imply that caution is required before using phenomenolog-
ical diffuse fraction models outside the regions for which their
coefficients where estimated, even at similar latitudes or at a priori
similar climates, since average atmospheric composition may be
different due to natural or human-related causes. Ideally, a local
assessment of a proposed model against good quality local diffuse
irradiation data should be considered.
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