ALGORITMOS BASEADOS NO MÉTODO DE NEWTON PARA PROBLEMAS DE OTIMIZAÇÃO NÃO LINEARES

Alfredo Canelas José Herskovits Sandro R. Mazorche

Departamento de Engenharia Mecânica COPPE – UFRJ

CILAMCE, 2008

Conteúdo

Preliminares

Problema de Otimização Não Linear

Objetivo

Algoritmo FDIPA

Estudo da direção de Newton

Direção de Newton

Teoremas

Algoritmo

Matriz \mathbf{M}_k

Algoritmo de Otimização

Problema de Otimização Não Linear

Conteúdo

Preliminares

Problema de Otimização Não Linear

Objetivo

Algoritmo FDIPA

Estudo da direção de Newton

Direção de Newton

Teoremas

Algoritmo

Matriz M_k

Algoritmo de Otimização

Problema de Otimização Não Linear

Problema de Otimização Não Linear

Encontrar **x** tal que:

minimize
$$f(\mathbf{x})$$

sujeito a:
$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\mathbf{h}(\mathbf{x}) = 0$$

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) = 0 \}$$

▶ \mathbf{x}^* é mínimo local se existe \mathcal{N} tal que $\forall \mathbf{x} \in \Omega \cap \mathcal{N}$

$$f(\mathbf{x}) \geq f(\mathbf{x}^*)$$

Problema de Otimização Não Linear

Encontrar **x** tal que:

minimize
$$f(\mathbf{x})$$

sujeito a:
$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\mathbf{h}(\mathbf{x}) = 0$$

Região viável:

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) = 0 \}$$

▶ \mathbf{x}^* é mínimo local se existe \mathcal{N} tal que $\forall \mathbf{x} \in \Omega \cap \mathcal{N}$

$$f(\mathbf{x}) \geq f(\mathbf{x}^*)$$

Problema de Otimização Não Linear

Problema de Otimização Não Linear

Encontrar **x** tal que:

minimize
$$f(\mathbf{x})$$

sujeito a:
$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\boldsymbol{h}(\boldsymbol{x})=0$$

Região viável:

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) = 0 \}$$

▶ \mathbf{x}^* é mínimo local se existe \mathcal{N} tal que $\forall \mathbf{x} \in \Omega \cap \mathcal{N}$

$$f(\mathbf{x}) \geq f(\mathbf{x}^*)$$

Problema de Otimização Não Linear

Regularidade: para os pontos x:

$$\{\nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1,..,p\}\}$$
 é l.i.

$$\nabla f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \nabla \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \nabla \mathbf{h}_i(\mathbf{x}) = 0$$

$$\mathbf{g}_i(\mathbf{x}) \lambda_i = 0$$

$$\mathbf{h}(\mathbf{x}) = 0$$

$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\lambda \geq 0$$

Problema de Otimização Não Linear

Problema de Otimização Não Linear

Regularidade: para os pontos x:

$$\{\nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\}\}$$
 é l.i.

TEOREMA: Condições de Karush-Kuhn-Tucker:

$$\nabla f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \nabla \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \nabla \mathbf{h}_i(\mathbf{x}) = 0$$

$$\mathbf{g}_i(\mathbf{x}) \lambda_i = 0$$

$$\mathbf{h}(\mathbf{x}) = 0$$

$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\lambda \geq 0$$

Problema de Otimização Não Linear

Problema de Otimização Não Linear

► Regularidade: para os pontos x:

$$\{\nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\}\}$$
 é l.i.

TEOREMA: Condições de Karush-Kuhn-Tucker:

$$\nabla f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \nabla \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \nabla \mathbf{h}_i(\mathbf{x}) = 0$$

$$\mathbf{g}_i(\mathbf{x}) \lambda_i = 0$$

$$\mathbf{h}(\mathbf{x}) = 0$$

$$\mathbf{g}(\mathbf{x}) \geq 0$$

$$\lambda > 0$$

Sistema de Equações (Newton)

Problema de Otimização Não Linear

Direção de Newton

► Função lagrangiana:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \mathbf{h}_i(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}, \lambda, \mu) = \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^p \mu_i \nabla^2 \mathbf{h}_i(\mathbf{x})$$

lteração de Newton: $(\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (\mathbf{x}_k, \lambda_k, \mu_k) + (\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\lambda}, \mathbf{d}_{\mu})$:

$$\begin{pmatrix} \mathbf{H}_k & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ \mathbf{\Lambda}_k \nabla \mathbf{g}_k & \mathbf{G}_k & 0 \\ \nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}} \\ \mathbf{d}_{\boldsymbol{\lambda}} \\ \mathbf{d}_{\boldsymbol{\mu}} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{x}} L_k^T \\ -\mathbf{G}_k \lambda_k \\ -\mathbf{h}_k \end{pmatrix}$$

► NÃO FUNCIONA

Direção de Newton

Função lagrangiana:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \mathbf{h}_i(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}, \lambda, \mu) = \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^p \mu_i \nabla^2 \mathbf{h}_i(\mathbf{x})$$

lteração de Newton: $(\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (\mathbf{x}_k, \lambda_k, \mu_k) + (\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\lambda}, \mathbf{d}_{\mu})$:

$$\begin{pmatrix} \mathbf{H}_k & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ \mathbf{\Lambda}_k \nabla \mathbf{g}_k & \mathbf{G}_k & 0 \\ \nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}} \\ \mathbf{d}_{\lambda} \\ \mathbf{d}_{\mu} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{x}} \mathcal{L}_k^T \\ -\mathbf{G}_k \lambda_k \\ -\mathbf{h}_k \end{pmatrix}$$

Direção de Newton

Função lagrangiana:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \mathbf{h}_i(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}, \lambda, \mu) = \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^p \mu_i \nabla^2 \mathbf{h}_i(\mathbf{x})$$

lteração de Newton: $(\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (\mathbf{x}_k, \lambda_k, \mu_k) + (\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\lambda}, \mathbf{d}_{\mu})$:

$$\begin{pmatrix} \boldsymbol{H}_k & -\nabla \boldsymbol{g}_k^T & -\nabla \boldsymbol{h}_k^T \\ \boldsymbol{\Lambda}_k \nabla \boldsymbol{g}_k & \boldsymbol{G}_k & 0 \\ \nabla \boldsymbol{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{d}_{\boldsymbol{x}} \\ \boldsymbol{d}_{\boldsymbol{\lambda}} \\ \boldsymbol{d}_{\boldsymbol{\mu}} \end{pmatrix} = \begin{pmatrix} -\nabla_{\boldsymbol{x}} \boldsymbol{L}_k^T \\ -\boldsymbol{G}_k \boldsymbol{\lambda}_k \\ -\boldsymbol{h}_k \end{pmatrix}$$

NÃO FUNCIONA

Direção de Newton

Função lagrangiana:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \mathbf{h}_i(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}, \lambda, \mu) = \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^p \mu_i \nabla^2 \mathbf{h}_i(\mathbf{x})$$

Iteração de Newton: $(\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (\mathbf{x}_k, \lambda_k, \mu_k) + (\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\lambda}, \mathbf{d}_{\mu})$:

Sistema singular
$$\begin{pmatrix} \mathbf{H}_k & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ \mathbf{\Lambda}_k \nabla \mathbf{g}_k & \mathbf{G}_k & 0 \\ \nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}} \\ \mathbf{d}_{\lambda} \\ \mathbf{d}_{\mu} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{x}} \mathcal{L}_k^T \\ -\mathbf{G}_k \lambda_k \\ -\mathbf{h}_k \end{pmatrix}$$

NÃO FUNCIONA

Direção de Newton

Função lagrangiana:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_i \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^{p} \mu_i \mathbf{h}_i(\mathbf{x})$$

$$\mathbf{H}(\mathbf{x}, \lambda, \mu) = \nabla_{\mathbf{x}\mathbf{x}}^2 L(\mathbf{x}, \lambda, \mu) = \nabla^2 f(\mathbf{x}) - \sum_{i=1}^m \lambda_i \nabla^2 \mathbf{g}_i(\mathbf{x}) - \sum_{i=1}^p \mu_i \nabla^2 \mathbf{h}_i(\mathbf{x})$$

Iteração de Newton: $(\mathbf{x}_{k+1}, \lambda_{k+1}, \mu_{k+1}) = (\mathbf{x}_k, \lambda_k, \mu_k) + (\mathbf{d}_{\mathbf{x}}, \mathbf{d}_{\lambda}, \mathbf{d}_{\mu})$:

Sistema singular
$$\begin{pmatrix} \mathbf{H}_k & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ \mathbf{\Lambda}_k \nabla \mathbf{g}_k & \mathbf{G}_k & 0 \\ \nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}} \\ \mathbf{d}_{\boldsymbol{\lambda}} \\ \mathbf{d}_{\boldsymbol{\mu}} \end{pmatrix} = \begin{pmatrix} -\nabla_{\mathbf{x}} L_k^T \\ -\mathbf{G}_k \lambda_k \\ -\mathbf{h}_k \end{pmatrix}$$

NÃO FUNCIONA $g(x) < 0, \lambda < 0$

Conteúdo

Preliminares

Problema de Otimização Não Linear

Objetivo

Algoritmo FDIPA

Estudo da direção de Newton

Direção de Newton

Teoremas

Algoritmo

Matriz M_k

Algoritmo de Otimização

Objetivo e Motivação

- Objetivo:
 - Definir um algoritmo de otimização baseado na direção da iteração de Newton.
- Motivação:
 - Existem problemas onde H pode ser calculada com um custo pequeno.
 - Maior velocidade de convergência.

Objetivo e Motivação

- Objetivo:
 - Definir um algoritmo de otimização baseado na direção da iteração de Newton.
- Motivação:
 - Existem problemas onde H pode ser calculada com um custo pequeno.
 - Maior velocidade de convergência.

Algoritmo FDIPA

Conteúdo

Preliminares

Problema de Otimização Não Linear Objetivo

Algoritmo FDIPA

Estudo da direção de Newton Direção de Newton

Teoremas

Algoritmo

Matriz **M**_k Algoritmo de Otimização

0000

Algoritmo FDIPA

▶ FDIPA gera seqüência $\{\mathbf{x}_k\}_{k\in\mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A sequência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{\rho} \mathbf{c}_i |\mathbf{h}_i(\mathbf{x})|$$

- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$:

$$\begin{pmatrix} \mathbf{B}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} & 0 \\ 0 & -\mathbf{\Lambda}_{k} \boldsymbol{\omega}^{I} \\ \mathbf{h}_{k} & -\boldsymbol{\omega}^{E} \end{pmatrix}$$

Algoritmo FDIPA

▶ FDIPA gera seqüência $\{\mathbf{x}_k\}_{k\in\mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A sequência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$

- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$:

$$\begin{pmatrix} \mathbf{B}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} & 0 \\ 0 & -\mathbf{\Lambda}_{k} \boldsymbol{\omega}^{I} \\ \mathbf{h}_{k} & -\boldsymbol{\omega}^{E} \end{pmatrix}$$

Algoritmo FDIPA

Algoritmo FDIPA

FDIPA gera seqüência {x_k}_{k∈ℕ} ⊂ Δ:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A sequência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$

- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d_x} = \mathbf{d_x}^{\alpha} + \rho \mathbf{d_x}^{\beta}$:

$$\begin{pmatrix} \mathbf{B}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} & 0 \\ 0 & -\mathbf{\Lambda}_{k} \boldsymbol{\omega}^{I} \\ \mathbf{h}_{k} & -\boldsymbol{\omega}^{E} \end{pmatrix}$$

Algoritmo FDIPA

▶ FDIPA gera seqüência $\{\mathbf{x}_k\}_{k\in\mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A seqüência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$

- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$:

$$\begin{pmatrix} \mathbf{B}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} & 0 \\ 0 & -\mathbf{\Lambda}_{k} \boldsymbol{\omega}^{I} \\ \mathbf{h}_{k} & -\boldsymbol{\omega}^{E} \end{pmatrix}$$

Algoritmo FDIPA

▶ FDIPA gera seqüência $\{\mathbf{x}_k\}_{k\in\mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A sequência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$

- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d_x} = \mathbf{d_x}^{\alpha} + \rho \mathbf{d_x}^{\beta}$:

$$\begin{pmatrix} \mathbf{B}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} & 0 \\ 0 & -\mathbf{\Lambda}_{k} \boldsymbol{\omega}^{I} \\ \mathbf{h}_{k} & -\boldsymbol{\omega}^{E} \end{pmatrix}$$

B_k positiva definida em vez da Hessiana

Algoritmo FDIPA

▶ FDIPA gera seqüência $\{\mathbf{x}_k\}_{k\in\mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$

A seqüência reduz em cada iteração o valor da função potencial $\phi_c(\mathbf{x})$:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$

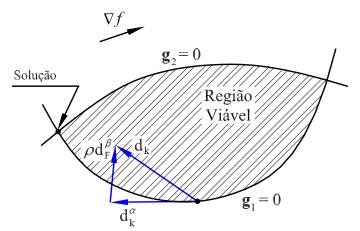
- Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}}$:
- A direção $\mathbf{d}_{\mathbf{x}} = \mathbf{d}_{\mathbf{x}}^{\alpha} + \rho \mathbf{d}_{\mathbf{x}}^{\beta}$:

$$\begin{pmatrix} \mathbf{B}_k & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \omega^t \\ \mathbf{h}_k & -\omega^E \end{pmatrix}$$

 \mathbf{B}_k positiva definida em vez da Hessiana

 $\mathbf{d}_{\mathbf{x}}^{\beta}$: direção de restauração

Direção de restauração



Convergência global do FDIPA

- ▶ Regularidade + \mathbf{B}_k positiva definida + $\lambda > 0 + \mathbf{g}(\mathbf{x}_x) \ge 0$:
 - → Sistema não singular
- **x** não é ponto estacionário: $\rightarrow \|\mathbf{d_x}\| > 0$
- ▶ Viabilidade uniforme: Existe $\theta_1 > 0$ tal que $\forall t \in [0, \theta_1]$

$$ightarrow \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}} \in \Delta$$

▶ Descida uniforme: Existe $\theta_2 > 0$ tal que $\forall t \in [0, \theta_2]$

$$\phi_{\mathtt{c}_k}(\mathtt{x}_k + t_k \, \mathsf{d}_{\mathtt{x}}) \leq \phi_{\mathtt{c}_k}(\mathtt{x}_k) + t_k \eta \, \nabla \phi_{\mathtt{c}_k} \, \mathsf{d}_{\mathtt{x}}$$

Convergência global do FDIPA

- ▶ Regularidade + \mathbf{B}_k positiva definida + $\lambda > 0 + \mathbf{g}(\mathbf{x}_x) \ge 0$:
 - → Sistema não singular
- x não é ponto estacionário: → ||d_x|| > 0
- ▶ Viabilidade uniforme: Existe $\theta_1 > 0$ tal que $\forall t \in [0, \theta_1]$

$$ightarrow \mathbf{x}_k + t \, \mathbf{d}_{\mathbf{x}} \in \Delta$$

▶ Descida uniforme: Existe $\theta_2 > 0$ tal que $\forall t \in [0, \theta_2]$

$$\phi_{\mathbf{c}_k}(\mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}) \leq \phi_{\mathbf{c}_k}(\mathbf{x}_k) + t_k \eta \, \nabla \phi_{\mathbf{c}_k} \, \mathbf{d}_{\mathbf{x}}$$

- ▶ Regularidade + \mathbf{B}_k positiva definida + $\lambda > 0 + \mathbf{g}(\mathbf{x}_x) \ge 0$:
 - → Sistema não singular
- x não é ponto estacionário: → ||d_x|| > 0
- ▶ Viabilidade uniforme: Existe $\theta_1 > 0$ tal que $\forall t \in [0, \theta_1]$

$$ightarrow \mathbf{x}_k + t \, \mathbf{d_x} \in \Delta$$

▶ Descida uniforme: Existe $\theta_2 > 0$ tal que $\forall t \in [0, \theta_2]$

$$\phi_{\mathbf{c}_k}(\mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}) \leq \phi_{\mathbf{c}_k}(\mathbf{x}_k) + t_k \eta \, \nabla \phi_{\mathbf{c}_k} \, \mathbf{d}_{\mathbf{x}}$$

Convergência global do FDIPA

- ▶ Regularidade + \mathbf{B}_k positiva definida + $\lambda > 0 + \mathbf{g}(\mathbf{x}_x) \ge 0$:
 - → Sistema não singular
- x não é ponto estacionário: → ||d_x|| > 0
- ▶ Viabilidade uniforme: Existe $\theta_1 > 0$ tal que $\forall t \in [0, \theta_1]$

$$ightarrow \mathbf{x}_k + t \, \mathbf{d_x} \in \Delta$$

▶ Descida uniforme: Existe $\theta_2 > 0$ tal que $\forall t \in [0, \theta_2]$

$$\phi_{\mathbf{c}_k}(\mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}) \leq \phi_{\mathbf{c}_k}(\mathbf{x}_k) + t_k \eta \, \nabla \phi_{\mathbf{c}_k} \, \mathbf{d}_{\mathbf{x}}$$

Convergência global do FDIPA

- ▶ Regularidade + \mathbf{B}_k positiva definida + $\lambda > 0 + \mathbf{g}(\mathbf{x}_x) \ge 0$:
 - → Sistema não singular
- x não é ponto estacionário: → ||d_x|| > 0
- ▶ Viabilidade uniforme: Existe $\theta_1 > 0$ tal que $\forall t \in [0, \theta_1]$

$$ightarrow \mathbf{x}_k + t \, \mathbf{d_x} \in \Delta$$

▶ Descida uniforme: Existe $\theta_2 > 0$ tal que $\forall t \in [0, \theta_2]$

$$\phi_{\mathbf{c}_k}(\mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}) \leq \phi_{\mathbf{c}_k}(\mathbf{x}_k) + t_k \eta \, \nabla \phi_{\mathbf{c}_k} \, \mathbf{d}_{\mathbf{x}}$$

Direção de Newton

Conteúdo

Preliminares

Problema de Otimização Não Linear Objetivo Algoritmo FDIPA

Estudo da direção de Newton Direção de Newton

Teoremas

Algoritmo

Matriz **M**_k
Algoritmo de Otimização

Direção de Newton

Manter a hessiana H_k no FDIPA:

$$\begin{pmatrix} \mathbf{H}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} \\ \boldsymbol{\lambda}^{\alpha} \\ \boldsymbol{\mu}^{\alpha} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} \\ 0 \\ \mathbf{h}_{k} \end{pmatrix}$$

Espaço tangente:

$$\mathcal{T} = \{ \mathbf{v} \mid \mathbf{v} \perp \{ \nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\} \} \}$$

Matriz M

$$\mathbf{M}(\mathbf{x}, \lambda, \mu) = \mathbf{H}(\mathbf{x}, \lambda, \mu) + \nabla \mathbf{g}^{\prime T}(\mathbf{x}) \mathbf{G}^{\prime}(\mathbf{x})^{-1} \mathbf{\Lambda}^{\prime} \nabla \mathbf{g}^{\prime}(\mathbf{x})$$

$$\phi_c(\mathbf{x}) = f(\mathbf{x}) + c \Psi(\mathbf{h}(\mathbf{x}))$$

Direção de Newton

Manter a hessiana H_k no FDIPA:

$$\begin{pmatrix} \mathbf{H}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & \mathbf{0} \\ -\nabla \mathbf{h}_{k} & \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} \\ \boldsymbol{\lambda}^{\alpha} \\ \boldsymbol{\mu}^{\alpha} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} \\ \mathbf{0} \\ \mathbf{h}_{k} \end{pmatrix}$$

Espaço tangente:

$$\mathcal{T} = \{ \mathbf{v} \mid \mathbf{v} \perp \{ \nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\} \} \}$$

► Matriz M:

$$\mathbf{M}(\mathbf{x}, \lambda, \mu) = \mathbf{H}(\mathbf{x}, \lambda, \mu) + \nabla \mathbf{g}^{\prime T}(\mathbf{x}) \mathbf{G}^{\prime}(\mathbf{x})^{-1} \mathbf{\Lambda}^{\prime} \nabla \mathbf{g}^{\prime}(\mathbf{x})$$

$$\phi_c(\mathbf{x}) = f(\mathbf{x}) + c \Psi(\mathbf{h}(\mathbf{x}))$$

Direção de Newton

Manter a hessiana H_k no FDIPA:

$$\begin{pmatrix} \mathbf{H}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} \\ \boldsymbol{\lambda}^{\alpha} \\ \boldsymbol{\mu}^{\alpha} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} \\ 0 \\ \mathbf{h}_{k} \end{pmatrix}$$

Espaço tangente:

$$\mathcal{T} = \{ \mathbf{v} \mid \mathbf{v} \perp \{ \nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\} \} \}$$

Matriz M:

$$\mathbf{M}(\mathbf{x}, \lambda, \mu) = \mathbf{H}(\mathbf{x}, \lambda, \mu) + \nabla \mathbf{g}^{\prime T}(\mathbf{x}) \mathbf{G}^{\prime}(\mathbf{x})^{-1} \mathbf{\Lambda}^{\prime} \nabla \mathbf{g}^{\prime}(\mathbf{x})$$

$$\phi_c(\mathbf{x}) = f(\mathbf{x}) + c \Psi(\mathbf{h}(\mathbf{x}))$$

Direção de Newton

Direção de Newton

Manter a hessiana H_k no FDIPA:

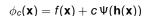
$$\begin{pmatrix} \mathbf{H}_{k} & -\nabla \mathbf{g}_{k}^{T} & -\nabla \mathbf{h}_{k}^{T} \\ -\mathbf{\Lambda}_{k}\nabla \mathbf{g}_{k} & -\mathbf{G}_{k} & 0 \\ -\nabla \mathbf{h}_{k} & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} \\ \boldsymbol{\lambda}^{\alpha} \\ \boldsymbol{\mu}^{\alpha} \end{pmatrix} = \begin{pmatrix} -\nabla f_{k}^{T} \\ 0 \\ \mathbf{h}_{k} \end{pmatrix}$$

Espaço tangente:

$$\mathcal{T} = \{ \mathbf{v} \mid \mathbf{v} \perp \{ \nabla \mathbf{g}_i(\mathbf{x}) \mid g_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\} \} \}$$

Matriz M:

$$\mathbf{M}(\mathbf{x}, \lambda, \mu) = \mathbf{H}(\mathbf{x}, \lambda, \mu) + \nabla \mathbf{g}^{\prime T}(\mathbf{x}) \mathbf{G}^{\prime}(\mathbf{x})^{-1} \mathbf{\Lambda}^{\prime} \nabla \mathbf{g}^{\prime}(\mathbf{x})$$



Conteúdo

Preliminares

Problema de Otimização Não Linear Objetivo Algoritmo FDIPA

Estudo da direção de Newton

Direção de Newton

Teoremas

Algoritmo

Matriz **M**_k Algoritmo de Otimização

- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- ► TEOREMA: $\mathbf{d}_{\mathbf{x}}^{\alpha} = \mathbf{d}_{\mathbf{x}}^{1} + \mathbf{d}_{\mathbf{x}}^{2}$
 - $\mathbf{d}_{\mathbf{x}}^{1}$ é de descida para a função f (direção de otimalidade)
 - d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}_{\mathbf{x}}^{\alpha}$ é de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$

- **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $+ \lambda > 0 + q(x_k) > 0$:
- LEMA: → Sistema não singular
- **LEMA**: x não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- ightharpoonup TEOREMA: $d_{\varphi}^{\alpha} = d_{\varphi}^{1} + d_{\varphi}^{2}$
 - $ightharpoonup d_v^1$ é de descida para a função f (direção de otimalidade)
 - d² é de descida para a função Ψ(h(x)) (direção de
 - potencial $\phi(\mathbf{x}) = c \Psi(\mathbf{h}(\mathbf{x}))$

- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- ► TEOREMA: $\mathbf{d}_{\mathbf{x}}^{\alpha} = \mathbf{d}_{\mathbf{x}}^{1} + \mathbf{d}_{\mathbf{x}}^{2}$
 - $\mathbf{d}_{\mathbf{x}}^{1}$ é de descida para a função f (direção de otimalidade)
 - d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}_{\mathbf{x}}^{\alpha}$ é de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$

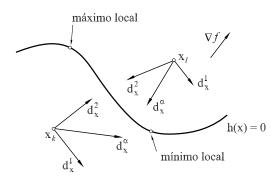
- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- ► TEOREMA: $\mathbf{d}_{\mathbf{x}}^{\alpha} = \mathbf{d}_{\mathbf{x}}^{1} + \mathbf{d}_{\mathbf{x}}^{2}$
 - $\mathbf{d}_{\mathbf{x}}^{1}$ é de descida para a função f (direção de otimalidade)
 - ▶ d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}_{\mathbf{x}}^{\alpha}$ e de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$

Teoremas

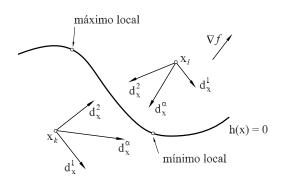
- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- $\blacktriangleright \mathsf{TEOREMA} : \mathsf{d}_{\mathbf{x}}^{\alpha} = \mathsf{d}_{\mathbf{x}}^{1} + \mathsf{d}_{\mathbf{x}}^{2}$
 - d_x¹ é de descida para a função f (direção de otimalidade)
 - d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}_{\mathbf{x}}^{\alpha}$ e de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$

- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- $\blacktriangleright \mathsf{TEOREMA} : \mathsf{d}_{\mathbf{x}}^{\alpha} = \mathsf{d}_{\mathbf{x}}^{1} + \mathsf{d}_{\mathbf{x}}^{2}$
 - d_x¹ é de descida para a função f (direção de otimalidade)
 - d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}_{\mathbf{x}}^{\alpha}$ é de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$

- ▶ **Assumindo**: Regularidade + \mathbf{M}_k positiva definida no espaço \mathcal{T} + $\lambda > 0 + \mathbf{g}(\mathbf{x}_k) \ge 0$:
- ▶ LEMA: → Sistema não singular
- ▶ **LEMA**: **x** não é ponto estacionário: $\rightarrow \|\mathbf{d}_{\mathbf{x}}^{\alpha}\| > 0$
- $\blacktriangleright \mathsf{TEOREMA} : \mathsf{d}_{\mathsf{x}}^{\alpha} = \mathsf{d}_{\mathsf{x}}^{1} + \mathsf{d}_{\mathsf{x}}^{2}$
 - ▶ d¹_x é de descida para a função f (direção de otimalidade)
 - d_x² é de descida para a função Ψ(h(x)) (direção de viabilidade)
 - Existe c_0 tal que $\forall c \geq c_0$, $\mathbf{d}^{\alpha}_{\mathbf{x}}$ é de descida para a função potencial $\phi(\mathbf{x}) = c \, \Psi(\mathbf{h}(\mathbf{x}))$



 $ightharpoonup M_k$ deve ser positiva definida no espaço T



 $ightharpoonup \mathbf{M}_k$ deve ser positiva definida no espaço \mathcal{T}

Conteúdo

Preliminares

Problema de Otimização Não Linear Objetivo

Estudo da direção de Newton

Direção de Newton

Algoritmo

Matriz \mathbf{M}_k

Algoritmo de Otimização

Algoritmo 0000

Preliminares

Duas perguntas:

- ▶ Como saber se M_k positiva definida no espaço T ?
- O que fazer se não é ?
- **TEOREMA**: M_k é positiva definida no espaço tangente $T \Leftrightarrow$ a matriz A do sistema linear tem inércia $\{n, m + p, 0\}$

 - \rightarrow m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ightharpoonup inércia(**A**) = { i_+ , i_- , i_0 }
 - ▶ i₊ é o número de valores próprios positivos

0000

\mathbf{M}_{k} ?

Preliminares

- Duas perguntas:
 - ▶ Como saber se M_k positiva definida no espaço T ?
- **TEOREMA**: M_k é positiva definida no espaço tangente $T \Leftrightarrow$ a matriz A do sistema linear tem inércia $\{n, m + p, 0\}$

 - \rightarrow m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ightharpoonup inércia(**A**) = { i_+ , i_- , i_0 }
 - ▶ i₊ é o número de valores próprios positivos

M_k ?

Preliminares

- Duas perguntas:
 - ▶ Como saber se M_k positiva definida no espaço T ?
 - O que fazer se não é?
- **TEOREMA**: M_k é positiva definida no espaço tangente $T \Leftrightarrow$ a matriz A do sistema linear tem inércia $\{n, m + p, 0\}$

 - \rightarrow m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ightharpoonup inércia(**A**) = { i_+ , i_- , i_0 }
 - ▶ i₊ é o número de valores próprios positivos

Algoritmo 0000

Preliminares

\mathbf{M}_{k} ?

- Duas perguntas:
 - ▶ Como saber se M_k positiva definida no espaço T ?
 - O que fazer se não é ?
- ► TEOREMA: M_k é positiva definida no espaço tangente T ⇔ a matriz **A** do sistema linear tem inércia $\{n, m + p, 0\}$
 - n é a dimensão de x
 - \rightarrow m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ightharpoonup inércia(**A**) = { i_+ , i_- , i_0 }
 - ▶ i₊ é o número de valores próprios positivos
 - ▶ i é o número de valores próprios negativos

0000

\mathbf{M}_{k} ?

Preliminares

- Duas perguntas:
 - ▶ Como saber se \mathbf{M}_k positiva definida no espaço \mathcal{T} ?
 - O que fazer se não é ?
- ► TEOREMA: M_k é positiva definida no espaço tangente T ⇔ a matriz **A** do sistema linear tem inércia $\{n, m + p, 0\}$
 - n é a dimensão de x
 - m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ightharpoonup inércia(**A**) = { i_+ , i_- , i_0 }
 - ▶ i₊ é o número de valores próprios positivos
 - ▶ i é o número de valores próprios negativos

Algoritmo 0000

Preliminares

- Duas perguntas:
 - ▶ Como saber se M_k positiva definida no espaço T ?
 - O que fazer se não é ?
- ► TEOREMA: M_k é positiva definida no espaço tangente T ⇔ a matriz **A** do sistema linear tem inércia $\{n, m + p, 0\}$
 - n é a dimensão de x
 - m é a dimensão de g(x)
 - p é a dimensão de h(x)
- ▶ inércia(**A**) = $\{i_+, i_-, i_0\}$
 - ▶ i₊ é o número de valores próprios positivos
 - ▶ i é o número de valores próprios negativos
 - i₀ é o número de valores próprios nulos

Matriz M_k

Preliminares

Decomposição LDL^T

Para saber a inércia ou resolver o sistema linear usamos a decomposição LDL^T:

$$\mathbf{PAP}^T = \mathbf{LDL}^T$$

Algoritmo 0000

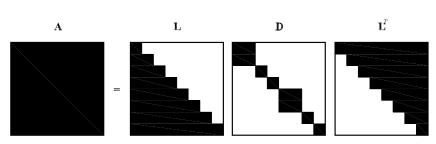
Matriz M_k

Preliminares

Decomposição LDL^T

Para saber a inércia ou resolver o sistema linear usamos a decomposição **LDL**^T:

$$PAP^T = LDL^T$$

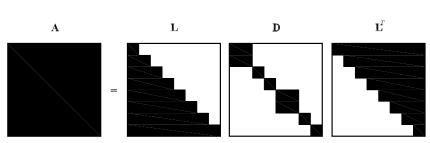


► TEOREMA (Sylvester): inércia(A) = inércia(D)

Decomposição **LDL**^T

Para saber a inércia ou resolver o sistema linear usamos a decomposição LDL^T:

$$PAP^T = LDL^T$$



► **TEOREMA** (Sylvester): inércia(**A**) = inércia(**D**)

M_k não é positiva definida em T

- ► Substituir \mathbf{H}_k por $\mathbf{H}_k + \gamma \mathbf{I}$
 - Sempre existe γ conveniente
 - Preserva esparsidade de H_k
- **Exemplo:** utilizar $\mathbf{H}_k + \gamma \mathbf{I}$ positiva definida:

$$\gamma_k = \max_{1 \le i \le n} \left\{ \max \left\{ (\mathbf{H}_k)_{ii}, 1.2 \sum_{j \ne i} |(\mathbf{H}_k)_{ij}| \right\} \right\}$$

\mathbf{M}_k não é positiva definida em T

- Substituir \mathbf{H}_k por $\mathbf{H}_k + \gamma \mathbf{I}$
 - Sempre existe γ conveniente
 - Preserva esparsidade de H_k
- **Exemplo:** utilizar $\mathbf{H}_k + \gamma \mathbf{I}$ positiva definida:

$$\gamma_k = \max_{1 \le i \le n} \left\{ \max \left\{ (\mathbf{H}_k)_{ii}, 1.2 \sum_{j \ne i} |(\mathbf{H}_k)_{ij}| \right\} \right\}$$

\mathbf{M}_k não é positiva definida em T

- Substituir \mathbf{H}_k por $\mathbf{H}_k + \gamma \mathbf{I}$
 - Sempre existe γ conveniente
 - Preserva esparsidade de H_k
- **Exemplo:** utilizar $\mathbf{H}_k + \gamma \mathbf{I}$ positiva definida:

$$\gamma_k = \max_{1 \le i \le n} \left\{ \max \left\{ (\mathbf{H}_k)_{ii}, 1.2 \sum_{j \ne i} |(\mathbf{H}_k)_{ij}| \right\} \right\}$$

\mathbf{M}_k não é positiva definida em T

- Substituir \mathbf{H}_k por $\mathbf{H}_k + \gamma \mathbf{I}$
 - Sempre existe γ conveniente
 - Preserva esparsidade de H_k
- **Exemplo:** utilizar $\mathbf{H}_k + \gamma \mathbf{I}$ positiva definida:

$$\gamma_k = \max_{1 \le i \le n} \left\{ \max \left\{ (\mathbf{H}_k)_{ii}, 1.2 \sum_{j \ne i} |(\mathbf{H}_k)_{ij}| \right\} \right\}$$

Conteúdo

Preliminares

Problema de Otimização Não Linear Objetivo Algoritmo FDIPA

Estudo da direção de Newton

Direção de Newton

Teoremas

Algoritmo

Matriz \mathbf{M}_k

Algoritmo de Otimização

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^l \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo

Passo 1: Teste de convergência

Passo 2: Cálculo da direção de busca

2.1 Escolha o parâmetro γ_k e solução do sistema

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \, \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

- 2.2 Se $d_{x}^{\alpha} = 0$ pare
- 2.4 Atualize c
- 2.5 Calcule ρ e a direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$

Passo 3: Busca linear

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}$

4.2 Retorne ao Passo 1.

Algoritmo

Preliminares

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^I \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo.

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \, \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_{\mathbf{x}}$

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^I \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo.

Passo 1: Teste de convergência

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \, \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_{\mathbf{x}}$

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^I \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo.

Passo 1: Teste de convergência

Passo 2: Cálculo da direção de busca

2.1 Escolha o parâmetro γ_k e solução do sistema:

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

- 2.2 Se $\mathbf{d}_{\mathbf{x}}^{\alpha} = 0$ pare
- 2.4 Atualize c_k
- 2.5 Calcule ρ e a direção $\mathbf{d_x} = \mathbf{d_x}^{\alpha} + \rho \mathbf{d_x}^{\beta}$

Passo 3: Busca linear

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}$

4.2 Retorne ao Passo 1.

Algoritmo

Preliminares

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^I \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo.

Passo 1: Teste de convergência

Passo 2: Cálculo da direção de busca

2.1 Escolha o parâmetro γ_k e solução do sistema:

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \, \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

- 2.2 Se $\mathbf{d}_{\mathbf{x}}^{\alpha} = 0$ pare
- 2.4 Atualize ck
- 2.5 Calcule ρ e a direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$

Passo 3: Busca linear

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_{\mathbf{x}}$

Algoritmo de Otimização

Dados: $\mathbf{x}_0 \in \Delta^0$, $\lambda_0 \in \mathbb{R}^m$ positivo, $\mu_0 \in \mathbb{R}^p$ $\omega^I \in \mathbb{R}^m$ positivo, $\omega^E \in \mathbb{R}^p$ positivo e c_0 positivo.

Passo 1: Teste de convergência

Passo 2: Cálculo da direção de busca

2.1 Escolha o parâmetro γ_k e solução do sistema:

$$\begin{pmatrix} \mathbf{H}_k + \gamma_k \mathbf{I} & -\nabla \mathbf{g}_k^T & -\nabla \mathbf{h}_k^T \\ -\mathbf{\Lambda}_k \nabla \mathbf{g}_k & -\mathbf{G}_k & 0 \\ -\nabla \mathbf{h}_k & 0 & 0 \end{pmatrix} \begin{pmatrix} \mathbf{d}_{\mathbf{x}}^{\alpha} & \mathbf{d}_{\mathbf{x}}^{\beta} \\ \boldsymbol{\lambda}^{\alpha} & \boldsymbol{\lambda}^{\beta} \\ \boldsymbol{\mu}^{\alpha} & \boldsymbol{\mu}^{\beta} \end{pmatrix} = \begin{pmatrix} -\nabla f_k^T & 0 \\ 0 & -\mathbf{\Lambda}_k \boldsymbol{\omega}^I \\ \mathbf{h}_k & -\boldsymbol{\omega}^E \end{pmatrix}.$$

- 2.2 Se $\mathbf{d}_{\mathbf{x}}^{\alpha} = 0$ pare
- 2.4 Atualize Ck
- 2.5 Calcule ρ e a direção $\mathbf{d_x} = \mathbf{d_x^{\alpha}} + \rho \mathbf{d_x^{\beta}}$

Passo 3: Busca linear

Passo 4: Atualização: $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \, \mathbf{d}_{\mathbf{x}}$

4.2 Retorne ao Passo 1.

- Se M positiva definida em T
- M positiva definida em T \Leftrightarrow inércia(**A**) = {n, m + p, 0}.
- Um algoritmo de otimização que utiliza H foi apresentado.

- Trabalhos futuros
 - Provar convergência global.

- Se M positiva definida em T
 - → direção de Newton é de descida.
- M positiva definida em T \Leftrightarrow inércia(**A**) = {n, m + p, 0}.
- Um algoritmo de otimização que utiliza H foi apresentado.
- Trabalhos futuros
 - Provar convergência global.

- Se M positiva definida em T → direção de Newton é de descida.
- M positiva definida em T \Leftrightarrow inércia(**A**) = {n, m + p, 0 }.
- Um algoritmo de otimização que utiliza H foi apresentado.

- Trabalhos futuros

- Se M positiva definida em T → direção de Newton é de descida.
- M positiva definida em T \Leftrightarrow inércia(**A**) = {n, m + p, 0 }.
- Um algoritmo de otimização que utiliza H foi apresentado.
- Trabalhos futuros
 - Provar convergência global.
 - Ver eficiência na solução de exemplos.

- ▶ Se M positiva definida em T
 - → direção de Newton é de descida.
- M positiva definida em T
 - \Leftrightarrow inércia(**A**) = {n, m + p, 0 }.
- Um algoritmo de otimização que utiliza H foi apresentado.

- Trabalhos futuros
 - Provar convergência global.
 - Ver eficiência na solução de exemplos.

