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Governing equation of
viscoelasticity problems

ca () *VVu(x,) = 5 (6,) ¥V x Vxu(x,) +b(x, 1) = ii(x, 1) (1)

Where ' represents the viscoelastic operator:

fe)*g()=] f(t,r)—gg ()dz (2)
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|. R, : Relaxation function of the material.




Governing equation of
viscoelasticity problems

Applying the Fourier transform, we obtain the governing equation for harmonic
problems. For b=0 it is:

c2(@)VVA(x, ) -2 (0)V x V xU(x, ) + 0 u(x,0) = 0 (1)
G- Fe)  d@-————E@ (2
: _(1+V)(1—2v),0 > _2(1+V),O ( )

E"(®): Complex Modulus.

We can consider Kelvin or Boltzmann fractional models.
In this work we use:

E'(@)=(1+2iB)E (3)
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Boundary Knot Method

For each node in the boundary we define a radial function: u(x, xj,a))

For N nodes in the boundary, the numerical approximation to the solution is:

N
u, (x,) =Y i(x,x, o),
Jj=1

The radial function is smooth and satisfies the governing equation




Boundary Knot Method

Example: Helmholtz problem
CAu+o'u=0 (1)
Radial Trefftz solution:

i(x,x,,0) = Jykr)) con k=clw, yr=[r-x|] (2)

N
uy(x, )= J,(kr)a,
j=1

Boundary conditions by collocation:

uy(x,0)=u(x,w), Vx o) ﬁ:K.a-=b,~ < Ka=b (3)

y-J
pyv(x,0)=p(x,0), Vx €, j=!
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Radial Trefftz function

Canelas and Sensale (2010):

1 or or
[ e (1)
* 4npe? {W . Z@xg 8xk}
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w(r) =17 | kprcos(k,r) —sin(k,r) - krcos(kgr) +sin(kgr) — kgr’ sin(kgr) | (3)

7(r)=17"| 3k,rcos(k,r) - 3sin(k,r) + kyr’ sin(k,r)

=3k cos(kgr) + 3sin(ksr) - kgr” sin(kgr) | (4)
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Objective

= Improve the Boundary Knot Method for viscoelasticity problems
presented by Canelas and Sensale (2010) by modifying the
radial Trefftz basis.
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New Radial Trefttz function

Using the Cauchy-Kovalevski-Somigliana solution:

co (@)VV- g(x,0)—Ch(0)V XV xg(x,w)+@’g(x,w) =u(x,w)

(c(w)VV +°)C, (@)VV + 0’ )g(x,w)=0
N N
gy(x,0)= Z(Ps(x:xj:a)) a; +Z(Pp(x:xjaa)) Bj
J=1 j=1
with: @ (r,@)=J,(ksr,0) 1, @,(r,0)=J,(k,r,0) 1

N N
u, (x,w) =Zﬁs(x,xj,a)) 0, +Zﬁp(x,xj,a)) B,
J=1 j=1

(1)
(2)

(3)

(4)
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Circle: condition number
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Scuare: condition number

20

10 . . .
A 4 | ——BKM-N1
E j —%— BKM-N2
s —8— BKM-01
10+ —+— BKM-02[1

Condition number
H
o
5

LD
3 ”

NravTR—2 =)




Contents

m |ntroduction
= Governing equation of viscoelasticity problems

m Boundary Knot Method
= Radial Trefftz function
= QObijective
= New Radial Trefftz function

m Results

= Examples
= Conclusions




Conclusions

® A new radial Trefftz function for the BKM representation of the
solution was obtained by means of the Cauchy-Kovalevski-
Somigliana solution of the displacements.

The new basis can represent exactly any solution obtained by
the BKM using the old basis.

It was observed that the new basis leads to worse conditioned
linear systems. Thus, for practical applications the old basis
presented in (Canelas and Sensale, 2010) is recommended.

The ill-conditioning should be addressed using other techniques:
— Extended precision.
— Regularization techniques.




