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Electromagnetic Casting Problem

We assume that the electric
current frequency is so high
that the magnetic field pen-
etrates a negligible distance
into the liquid metal (skin ef-
fect).
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Magnetic Field Equations

Michel Pierre, Jean R. Roche (1991)
∇×B = µ0j0 in Ω

∇ · B = 0 in Ω

B·n = 0 on Γ

‖B‖ = O(‖x‖−1) as ‖x‖ → ∞ in Ω

(1)

ω: domain occupied by the liquid metal.
Γ: boundary of ω.
Ω = R \ ω is the exterior of the liquid metal.
j0 = (0, 0, j0) is the electric current density.
B = (B1,B2, 0) is the magnetic field vector.
µ0: magnetic permeability of the vacuum.
n: outward-pointing unit normal vector of Γ.
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Direct Problem

Equilibrium and constraints

In addition to the field equations we have the equilibrium equation:

1
2µ0
‖B‖2 + σ C = p0 constant on Γ (1)

And the volume constraint: ∫
ω

dΩ = S0 (2)

We also assume that j0 has a compact support in Ω and satisfies:∫
Ω

j0 dΩ = 0 (3)
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Magnetic flux function

There exists the magnetic flux funtion ϕ : Ω→ R such that B = ( ∂ϕ
∂x2
,− ∂ϕ

∂x1
, 0)

where ϕ is solution to the state equation:
−∆ϕ = µ0j0 in Ω

ϕ = 0 on Γ
ϕ(x) = c + o(1) as ‖x‖ → ∞

(1)

ϕ has a unique solution in W 1
0 (Ω) = {u : ρ u ∈ L2(Ω) and ∇u ∈ L2(Ω)} with

ρ(x) = [
√

1 + ‖x‖2 log(2 + ‖x‖2)]−1. c is unique in R.

The equilibrium in terms of the flux function ϕ becomes:

1
2µ0

∣∣∣∣∂ϕ∂n

∣∣∣∣2 + σC = p0 constant on Γ (2)
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Design of inductors

Design of inductors

I Find the configuration of inductors to have the liquid metal in equilibrium
occupying certain known target domain ω.

I Find j0 and c such that
∫

Ω
j0 dx = 0 and that for the target domain ω the

solution ϕ of the state equation
−∆ϕ = µ0j0 in Ω

ϕ = 0 on Γ
ϕ(x) = c + o(1) as ‖x‖ → ∞

(1)

satisfies the equilibrium equation:

1
2µ0

∣∣∣∣∂ϕ∂n

∣∣∣∣2 + σC = p0 constant on Γ (2)
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Design of inductors

1
2µ0

∣∣∣∣∂ϕ∂n

∣∣∣∣2 + σC = p0 constant on Γ (1)

Then:
∂ϕ

∂n
= κ

√
2µ0(p0 − σC) with κ = ±1 . (2)

Therefore p0 ≥ maxΓ σC. However, ∂ϕ
∂n is zero at some points, therefore:

p0 = max
Γ
σC . (3)

Calling p̄ =
√

2µ0(p0 − σC) we have:

∂ϕ

∂n
= κ p̄ on Γ , (4)

with the sign changes of κ at the zeros of (p0 − σC), that is at the points of
maximum curvature.
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Design of inductors - formulation
We can formulate the problem as: find j0 and c such that the overdetermined
problem 

−∆ϕ = µ0j0 in Ω ,
ϕ = 0 on Γ ,

∂ϕ

∂n
= κ p̄ on Γ ,

ϕ(x) = c + o(1) as ‖x‖ → ∞ ,

(1)

has a solution ϕ ∈ W 1
0 (Ω).

We known that for a simply connected ω, with Γ an analitic Jordan curve
satisfying a compatibility condition, and p0 = maxΓ σC (the maximum must be
attained at an even number of points) then (Henrot and Pierre 1989):

(i) there exists a solution for the design problem,
(ii) the solution j0 is not unique.
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Design Problem - formulation
We propose to minimize the Kohn–Vogelius functional:

J(φ) =
1
2
‖φ‖2

L2(Γ) =
1
2

∫
Γ

|φ|2 ds , (1)

where the auxiliary function φ depends implicitly on j0 and c through the
solution of the problem:

−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄ on Γ ,

φ(x) = c + o(1) as ‖x‖ → ∞ .

(2)

There is a compatibility condition:∫
Γ

κ p̄ ds = 0 , (3)
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Design Problem - possible formulation

SAND formulation of the design problem:

min
j0,φ,c

J(φ) ,

s.t.


−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄ on Γ ,

φ(x) = c + o(1) as ‖x‖ → ∞ ,∫
Ω

j0 dx = 0 ,

j0(x) ∈ {−I, 0,+I} ∀x ∈ Ω ,

(1)

where I is a given constant value for the electric current density.
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Design Problem - proposed formulation

We propose the following penalized SAND formulation of the design problem:

min
j0,φ,c

J(φ) + ρψ(j0) ,

s.t.


−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄ on Γ ,

φ(x) = c + o(1) as ‖x‖ → ∞ ,∫
Ω

j0 dx = 0 ,

j0(x) ∈ [−I,+I]

(1)

We relax the last constraint, now I is a given bound for the electric current
density, and ρψ(j0) acts as a penalty term ψ(j0) =

∫
Ω
|j0| dx .
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Discretization

j0 = I
m∑

p=1

αpχΘp , Θ = ∪m
p=1Θp ⊂ Ω . (2)

αp ∈ [−1, 1]: dimensionless coefficients (continuous project variables).

c(ξ)φ(ξ) +

∫
Γ

q∗φ ds −
∫

Γ

u∗κp̄ ds = c +

∫
Ω

u∗µ0j0(x) dx , (3)

where u∗ is the fundamental solution of the problem,
u∗(ξ, x) = − log ‖ξ − x‖/(2π), q∗ is the normal derivative of u∗.

After application of the BEM:

Hφ−Gp̄ = cd + Aα , (4)
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Discretization

Discretization

J(φ) =
1
2

∫
Γ

φ2 ds =
1
2
φT Mφ , (1)∫

Ω

j0 ds = eTα , (2)

ψ(j0) =

∫
Ω

|j0| ds = eT |α| , (3)

Where M is obtained by integrating the interpolation functions and ep = I|Θp|.

To address the absolute value we use the positive and negative parts:
α+

p = max{0,αp} and α−
p = max{0,−αp} so that

α = α+ −α−, and |α| = α+ + α−. (4)
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Quadratic programming formulation

min
α+,α−,φ,c

1
2φ

T Mφ + ρeT (α+ + α−) ,
s.t. Hφ−Gp̄ = cd + A

(
α+ −α−) ,

eT (α+ −α−) = 0 ,
0 ≤ α+ ≤ 1 ,
0 ≤ α− ≤ 1 .

(1)

The boundary element matrices H, G and A are full. However if the number
of cells is much larger than the number of boundary elements, then
Problem (1) is sparse.

We have implemented a simple variable mesh approach: After solving
Problem (1), we subdivide the cells whose dimensionless electric current
density αp differs more than a specified tolerance of the corresponding value
of any of the adjacent cells.
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Quadratic programming formulation

Quadratic programming formulation

We have formulated the Design of inductors problem in Electromagnetic
Casting as a Convex quadratic programming problem:

I There are efficient interior-point techniques of solution.
I The problem is sparse.
I A variable mesh approach was developed.
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Examples

Example 1

(a) (b)

Figure : Example 1 – (a) initial configuration of the direct free-surface
problem, (b) target shape of area S0 = π.
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Examples

Example 1

(a) (b)

Figure : Example 1 – contour plot of I−1j0, (a) ρ = 0, (b) ρ = 1× 10−7.
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Examples

Example 1

(a) (b)

Figure : Example 1 – contour plot of I−1j0, (a) penalizing ‖j0‖L1(Ω), (b)
penalizing ‖j0‖2

L2(Ω).
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Examples

Example 2

(a) (b)

Figure : Example 2 – (a) initial configuration of the direct free-surface
problem, (b) target shape of area S0 = π.
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Examples

Example 2

(a) (b)

Figure : Example 2 – contour plot of I−1j0, (a) solution obtained using a fixed
mesh of 75433 cells, 15.5 minutes, (b) detail of the solution obtained using a
variable mesh of 5728 cells (the finest), 1.5 minutes.
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Examples

Example 3 – Interior problem

(a) (b)

Figure : Example 3 – (a) initial configuration of the direct free-surface
problem, (b) target shape of area S0 = 1.
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Examples

Example 3 – Interior problem

(a) (b)

Figure : Example 3 – contour plot of I−1j0.
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Examples

Example 4

(a) (b)

Figure : Example 4 – (a) description of the problem geometry, (b)
target shape.
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Example 4

(a) (b)

Figure : Example 4 – contour plot of I−1j0.
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Examples

Example 5

(a) (b)

Figure : Example 5 – (a) description of the problem geometry, (b)
target shape.
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Example 5

(a) (b)

Figure : Example 5 – contour plot of I−1j0.
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Conclusions

Conclusions
I A convex quadratic programming formulation was stated

for solving the design of inductors problem in
Electromagnetic Casting.

I The problem can be solved efficiently using interior-point
optimization algorithms (we have used quadprog of
MATLAB). In addition, the problem is sparse and a variable
mesh approach was developed.

I Some examples were solved successfully.
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Conclusions

Thank you!
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