Inductor design in electromagnetic casting

Alfredo Canelas*, Jean R. Roche**, José Herskovits***

* IET – Facultad de Ingeniería, UDELAR, Montevideo. ** IECN, Nancy-Université, CNRS, INRIA, Nancy *** Mechanical Engineering Program, COPPE / UFRJ, Rio de Janeiro.

IFIP 2009

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Solution of the discretized Inverse Problem

Conclusions 00 00

Outline

Electromagnetic Casting Problem Introduction

Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions

Conclusions Further works

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

→ E → < E</p>

Electromagnetic Casting Problem	
•• ••••••••• •••••••••••••••••••••••••	

Introduction

Outline

Electromagnetic Casting Problem Introduction

Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions

Conclusions Further works

- * ロ * * @ * * 目 * * 目 * の < ?

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem ⊙● ○○○○○○○○○○○○ ○○○○○○○○○	Solution of the discretized Inverse Problem	Conclusions oo oo
Introduction		

Introduction

- The Electromagnetic Casting (EMC) is an important technology in the metallurgical industry.
- It is based on the repulsive forces that an alternating electromagnetic field produces on the surface of diamagnetic liquid metals.
- It makes use of the electromagnetic field for contactless heating, shaping and control of solidification of hot melts.

Aim:

 Define a numerical method based on nonlinear optimization to design suitable inductors.

Electromagnetic Casting Problem	
00 •000000000000 000000000	

Direct Problem

Outline

Electromagnetic Casting Problem

Introduction Direct Problem

Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions

Conclusions Further works

- < ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Solution of the discretized Inverse Problem

Conclusions

Direct Problem

Electromagnetic Casting Problem

- The EMC problem studied here concerns the case of a vertical column of liquid metal falling down into an electromagnetic field created by vertical inductors.
- We consider an alternating electric current of high frequency, so that the magnetic field penetrate a negligible distance into the liquid metal.

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Alfredo Canelas, Jean R. Roche, José Herskovits

Solution of the discretized Inverse Problem

Conclusions

Direct Problem

Electromagnetic Casting Problem

- The EMC problem studied here concerns the case of a vertical column of liquid metal falling down into an electromagnetic field created by vertical inductors.
- We consider an alternating electric current of high frequency, so that the magnetic field penetrate a negligible distance into the liquid metal.

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Alfredo Canelas, Jean R. Roche, José Herskovits

Solution of the discretized Inverse Problem

Conclusions 00 00

Direct Problem

Photograph of a liquid metal drop

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem ○○ ○○○●○○○○○○○○○○	Solution of the discretized Inverse Problem	Conclusio
00000000	000	
Direct Problem		

Magnetic field Equations

Michel Pierre, Jean R. Roche (1991)

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j}_0 \qquad \text{ in } \Omega \tag{1}$$

$$abla \cdot \mathbf{B} = 0 \qquad \text{in } \Omega \tag{2}$$

$$\mathbf{B} \cdot \boldsymbol{\nu} = 0 \qquad \text{on } \boldsymbol{\Gamma} \tag{3}$$

$$\|\mathbf{B}\| = O(\|\mathbf{x}\|^{-1}) \text{ as } \|\mathbf{x}\| \to \infty \text{ in } \Omega$$
(4)

 ω : closed domain occupied by the liquid metal.

Γ: boundary of ω.

 $\Omega = \mathbb{R} \setminus \omega$ exterior of the liquid metal.

 $\mathbf{j}_0 = (0, 0, j_0)$ electric current density vector.

 $\mathbf{B} = (B_1, B_2, 0)$ magnetic field.

 μ_0 : magnetic permeability of the vacuum.

 ν : outward unit normal vector.

Electromagnetic Casting Problem
000000000000

Direct Problem

Equilibrium and constraints

We also have the equilibrium equation on the boundary:

$$\frac{1}{2\mu_0} \|\mathbf{B}\|^2 + \sigma \mathcal{C} = \bar{p} \quad \text{constant in } \Gamma \tag{5}$$

The volume constraint:

$$\int_{\omega} d\Omega = S_0 \tag{6}$$

and we assume that the current j_0 has a compact support and satisfies:

$$\int_{\Omega} j_0 \, \mathrm{d}\Omega = 0 \tag{7}$$

< □ > < ঐ > < ≧ > < ≧ > ≧ < ⊃ <
 UDELAR ; COPPE – UFRJ ; IECN – Nancy-Université

Alfredo Canelas, Jean R. Roche, José Herskovits

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 0000000000000 000000000		00 00
Direct Problem		

Magnetic Flux function

Given (1)-(7), we can prove that exists the Magnetic Flux function $\varphi : \Omega \to \mathbb{R}$ such that:

$$\mathbf{B} = \left(\frac{\partial\varphi}{\partial x_2}, -\frac{\partial\varphi}{\partial x_1}, \mathbf{0}\right) \tag{8}$$

Thus, φ is the solution of the state equations:

$$-\Delta \varphi = \mu_0 j_0 \quad \text{ in } \Omega \tag{9}$$

$$\varphi = 0$$
 in Γ (10)

$$\varphi(\mathbf{x}) = \mathsf{O}(1) \quad \text{as } \|\mathbf{x}\| \to \infty$$
 (11)

The equilibrium equation on the boundary takes the form:

$$\frac{1}{2\mu_0} \|\nabla \varphi\|^2 + \sigma \mathcal{C} = \bar{p} \quad \text{constant on } \Gamma \tag{12}$$

Alfredo Canelas, Jean R. Roche, José Herskovits

Electromagnetic Casting Problem
0000000000000

Direct Problem

Solution of the discretized Inverse Problem

Variational formulation of the EMC Problem

The variational formulation of the Direct EMC Problem consists in finding ω as a stationary point of the Total Energy:

$$E(\omega) = -\frac{1}{2\mu_0} \int_{\Omega} \|\nabla \varphi_{\omega}\|^2 \, \mathrm{d}\Omega + \sigma \int_{\Gamma} \, \mathrm{d}\Gamma \,, \tag{13}$$

subject to the area constraint:

$$S(\omega) = \int_{\omega} d\Omega = S_0.$$
 (14)

where φ_{ω} satisfies:

$$-\Delta\varphi_{\omega} = \mu_0 j_0 \quad \text{in } \Omega \tag{15}$$

$$\varphi_{\omega} = 0$$
 on Γ (16)

$$\varphi_{\omega}(\mathbf{x}) = \mathsf{O}(1) \quad \text{as } \|\mathbf{x}\| \to \infty$$
 (17)

- * ロト * @ ト * ヨト * ヨト * ヨ * のへ()

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Cor
00 0000000000000 0000000000		00

Differentiation w.r.t. the shape

To characterize the stationary points, i.e., the equilibrium configurations, we use the concept of shape derivatives:

Given a reference domain Ω_0 , we consider the transformations:

 $T = Id + V, \quad \text{with} \quad V \in W^{1,\infty}(\mathbb{R}^2, \mathbb{R}^2), \quad \|V\|_{W^{1,\infty}(\mathbb{R}^2, \mathbb{R}^2)} < 1, \quad (18)$

Domain transformed by the vector field V.

Alfredo Canelas, Jean R. Roche, José Herskovits

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 00000000000000 000000000	000 00 000	00 00
Direct Problem		

Equilibrium Condition

The lagrangian function is:

$$L(\omega, \bar{p}) = E(\omega) - \bar{p}(S(\omega) - S_0), \qquad (19)$$

where \bar{p} is the Lagrangian multiplier associated to the area constraint.

The stationary points satisfy:

$$L'(\omega,\bar{\rho})(V) = 0, \quad \forall V \in W^{1,\infty}(\mathbb{R}^2,\mathbb{R}^2).$$
(20)

Theorem:

The equilibrium condition of the Variational Problem is:

$$\int_{\Gamma} \left(\frac{1}{2\mu_0} \|\nabla \varphi\|^2 + \sigma \mathcal{C} - \bar{\rho} \right) (V \cdot \nu) \, \mathrm{d}\Gamma = 0 \quad \forall V \text{ in } W^{1,\infty}(\mathbb{R}^2, \mathbb{R}^2) \,.$$
(21)

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

・ロト ・回ト ・ヨト ・ヨト

Electromagnetic Casting Problem
0000000000000

Solution of the discretized Inverse Problem

Conclusions 00 00

Direct Problem

Solution of the state equation

For the state equation we use the particular solution φ_1 :

$$\varphi_1(\mathbf{x}) = -\frac{\mu_0}{2\pi} \int_{\mathbb{R}^2} \ln \|\mathbf{x} - \mathbf{y}\| j_0(\mathbf{y}) \,\mathrm{d}\Omega \tag{22}$$

Then, the magnetic flux φ can be computed as:

$$\varphi(\mathbf{x}) = \mathbf{v}(\mathbf{x}) + \varphi_1(\mathbf{x}) \tag{23}$$

where the function v is the solution of:

$$-\Delta v(x) = 0$$
 in Ω (24)

$$v(x) = -\varphi_1(x)$$
 on Γ (25)

$$v(x) = O(1)$$
 as $||x|| \to \infty$ (26)

- * ロ > * @ > * 差 > * 差 * の < (

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Alfredo Canelas, Jean R. Roche, José Herskovits

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 00000000000000000000000000000000000	000	00 00
	000	

Solution of the homogeneous equation

An integral representation of v is given by:

$$v(x) = -\frac{1}{2\pi} \int_{\Gamma} q(y) \ln ||x - y|| \, \mathrm{d}\Gamma + c \tag{27}$$

where *c* is the value at the infinity, and $q \in H^{-1/2}(\Gamma)$ must satisfy:

$$\int_{\Gamma} q(x) \,\mathrm{d}\Gamma = 0 \tag{28}$$

the boundary conditions on Γ are imposed weakly:

$$-\frac{1}{2\pi}\int_{\Gamma}g(x)\int_{\Gamma}q(y)\ln\|x-y\|\,\mathrm{d}\Gamma\,\mathrm{d}\Gamma+c\int_{\Gamma}g(x)\,\mathrm{d}\Gamma$$
$$=-\int_{\Gamma}\varphi_{1}(x)g(x)\,\mathrm{d}\Gamma\quad\forall\,g\in H^{-1/2}(\Gamma)$$
(29)

Alfredo Canelas, Jean R. Roche, José Herskovits

《□》《圖》《臺》《臺》 臺 少९(UDELAR ; COPPE – UFRJ ; IECN – Nancy-Université

Direct Problem

Summary of the equations of the Direct Problem

1) State equations:

$$-\frac{1}{2\pi} \int_{\Gamma} g(x) \int_{\Gamma} q(y) \ln ||x - y|| \, \mathrm{d}\Gamma \, \mathrm{d}\Gamma + + c \int_{\Gamma} g(x) \, \mathrm{d}\Gamma = -\int_{\Gamma} \varphi_1(x) g(x) \, \mathrm{d}\Gamma \quad \forall \, g \in H^{-1/2}(\Gamma) \quad (30) \int_{\Gamma} q(x) \, \mathrm{d}\Gamma = 0 \qquad (31)$$

2) Equality constraint regarding the area of ω :

$$\int_{\omega} d\Omega = S_0 \tag{32}$$

3) Equilibrium equation on the boundary:

$$\int_{\Gamma} \left(\frac{1}{2\mu_0} \| \nabla \varphi \|^2 + \sigma \mathcal{C} - \bar{\rho} \right) (\mathbf{V} \cdot \nu) \, \mathrm{d}\Gamma = 0 \quad \forall \mathbf{V} \text{ in } \mathcal{W}^{1,\infty}(\mathbb{R}^n, \mathbb{R}^n) \quad (33)$$

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Solution of the discretized Inverse Problem

Conclusions

Direct Problem

Discretization of the boundary

The parametric transformation T_u is defined as:

$$T_{\rm u}(x) = x + V_{\rm u}(x) \tag{34}$$

$$V_{u}(x) = \sum_{i=1}^{n} u_{i} V^{i}(x)$$
(35)

where $\mathbf{u}^{T} = (u_1, \ldots, u_n) \in \mathbb{R}^n$ is the vector of shape parameters. Then, the updated boundary $\Gamma_{\mathbf{u}}$ is given by:

$$\Gamma_{\mathbf{u}} = \left\{ X \mid X = x + V_{\mathbf{u}}(x); \ x \in \Gamma^h \right\}$$
(36)

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 000000000000 000000000	000 00 000	00 00
Direct Problem		

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

★ E > < E</p>

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 000000000000 000000000	000 00 000	00
Direct Problem		

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

★ E > < E</p>

Electromagnetic Casting Problem	
00 000000000000 000000000	

Solution of the discretized Inverse Problem

Conclusions 00 00

Direct Problem

Alfredo Canelas, Jean R. Roche, José Herskovits

Electromagnetic Casting Problem ○○ ○○○○○○○○○○○ ○○○○○○○○○	Solution of the discretized Inverse Problem	Conclusions
Direct Problem		

Iter 29

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

< ∃ > < ∃ >

Solution of the discretized Inverse Probler ০০০ ০০০

Direct Problem

Example

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem 000 00 000	Conclusions 00 00
Inverse Problem		

Outline

Electromagnetic Casting Problem

Introduction Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions

Conclusions Further works

- * ロ * * @ * * 目 * * 目 * うへの

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions oo oo
Inverse Problem		

Inverse Problem

- ► In the Inverse Problem we have to find the configuration of inductors to have ω approximately equal to a target shape ω^* .
- We propose to formulate the Inverse Problem as a nonlinear optimization problem:
 - Minimize a "distance" between the equilibrium shape and the target one.
- ► For this purpose we consider the shape optimization of the inductors.

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 0000000000000 000000000	000 00 000	00 00
Inverse Problem		

Inverse Problem

The proposed formulation considers a deformation of the target shape ω^* defined by the following mapping:

$$T_{Z}(x) = (Id + Z)(x), \quad \forall x \in \mathbb{R}^{2}$$
(37)

where Z is smooth and has a compact support in \mathbb{R}^2 . Defining:

$$\omega_Z = T_Z(\omega^*) \tag{38}$$

$$\Gamma_Z = T_Z(\Gamma^*) \tag{39}$$

The Inverse Problem is formulated as:

$$\min_{j_0, Z} ||Z||^2_{L^2(\Gamma^*)}$$
subject to: (40)

 ω_Z is equilibrated under J

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

イロト イポト イヨト イヨト

Solution of the discretized Inverse Problem

Conclusions

Inverse Problem

Shape optimization of the inductors

We assume that the current density is uniform on some domains Θ_p . This hypothesis is valid for inductors composed of multiple insulated strands, twisted or woven together (Litz-Wire).

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Inverse Problem

Conclusions 00 00

Shape optimization of the inductors

The electric current density j_0 is:

$$j_0 = I \sum_{i=1}^{n_c} \alpha_i \chi_{\Theta_i} , \qquad (41)$$

In this case the particular solution φ_1 is:

$$\varphi_1(\mathbf{x}) = -\frac{\mu_0 I}{2\pi} \sum_{i=1}^{n_c} \alpha_i \int_{\Theta_i} \ln \|\mathbf{x} - \mathbf{y}\| \,\mathrm{d}\Omega_y \,. \tag{42}$$

Let $w : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$ be $w(x, y) = (1/4)(1 - 2 \ln ||x - y||)(x - y)$. Then, φ_1 can be computed as:

$$\varphi_1(\mathbf{x}) = -\frac{\mu_0 I}{2\pi} \sum_{i=1}^{n_c} \alpha_i \int_{\Gamma_i} \mathbf{w}(\mathbf{x}, \mathbf{y}) \cdot \nu \, \mathrm{d}\Gamma_{\mathbf{y}} \,. \tag{43}$$

Alfredo Canelas, Jean R. Roche, José Herskovits

< □ > < @ > < ≧ > < ≧ > ≧ < ੭ <
 UDELAR ; COPPE – UFRJ ; IECN – Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 000000000000 0000000000	000 00 000	00
Inverse Problem		

Inductors

We consider the parametric shapes that are shown by the figure:

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem
00 0000000000000 000000000
Inverse Problem

Geometric Constraints

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 0000000000000 000000000	000 00 000	00 00
Inverse Problem		

Geometric Constraints

The proposed function ψ is defined as the solution of:

$$\begin{array}{rcl} \Delta\psi(\mathbf{x}) &= 0 & \text{in } \Omega^* \,, \\ \psi(\mathbf{x}) &= 0 & \text{on } \Gamma^* \,, \\ \int_{\Gamma^*} \nabla\psi(\mathbf{x}) \cdot \nu \, \mathrm{d}\Gamma &= -1 \,. \end{array} \tag{44}$$

Choosing a real negative value ψ_0 , the geometric constraints are:

$$\psi(\mathbf{x}_j(\mathbf{u}_c)) - \psi_0 \le 0 \quad \forall j.$$
(45)

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

・ロト ・回ト ・ヨト ・ヨト

Alfredo Canelas, Jean R. Roche, José Herskovits

Inverse Problem

Solution of the discretized Inverse Problem

Conclusions 00 00

Geometric Constraints

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

イロン イヨン イヨン イヨン

Solution of the discretized Inverse Problem

Conclusions

Nonlinear Optimization Problem

Outline

Electromagnetic Casting Problem Introduction Direct Problem Inverse Problem

Solution of the discretized Inverse Problem Nonlinear Optimization Problem

FDIPA Algorithm Examples

Conclusions

Conclusions Further works

- ・ロト・雪・・雪・・雪・ うんの

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Nonlinear Optimization Problem

Conclusions

Nonlinear Optimization Problem

To solve the discretized Inverse Problem we use the FDIPA algorithm. Given the following nonlinear optimization problem:

▶ find $\mathbf{x} \in \mathbb{R}^n$ such that:

$$\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to:} & \mathbf{g}(\mathbf{x}) \geq 0 \\ & \mathbf{h}(\mathbf{x}) = 0 \end{array} \tag{46}$$

Feasible region:

$$\Omega = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) = 0 \}$$
(47)

• \mathbf{x}^* is a local minimum if exist $\mathcal{N}(\mathbf{x}^*)$ such that:

$$f(\mathbf{x}) \ge f(\mathbf{x}^*), \quad \forall \mathbf{x} \in \Omega \cap \mathcal{N}(\mathbf{x}^*)$$
 (48)

Alfredo Canelas, Jean R. Roche, José Herskovits

≺ □ > < ঐ > < ই > < ই > ই ত ৭.৫ UDELAR ; COPPE – UFRJ ; IECN – Nancy-Université

Electromagnetic Casting Problem	
0000000000000	
00000000	

Nonlinear Optimization Problem

Karush-Kuhn-Tucker

• we assume the LICQ: for all $\mathbf{x} \in \Omega$:

$$\{\nabla \mathbf{g}_i(\mathbf{x}) \mid \mathbf{g}_i(\mathbf{x}) = 0, \nabla \mathbf{h}_i(\mathbf{x}) \mid i \in \{1, .., p\}\}$$
 is l.i.

Karush-Kuhn-Tucker theorem:

$$\nabla f(\mathbf{x}^*) - \sum_{i=1}^m \lambda_i \nabla \mathbf{g}_i(\mathbf{x}^*) - \sum_{i=1}^p \mu_i \nabla \mathbf{h}_i(\mathbf{x}^*) = 0 \quad (49)$$

$$\mathbf{g}_i(\mathbf{x}^*)\boldsymbol{\lambda}_i = \mathbf{0} \qquad (50)$$

$$\mathbf{h}(\mathbf{x}^*) = \mathbf{0} \tag{51}$$

$$\mathbf{g}(\mathbf{x}^*) \geq 0$$
 (52)

$$\lambda \geq 0$$
 (53)

- ・ロト・日本・モト・ヨー かん()

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Alfredo Canelas, Jean R. Roche, José Herskovits

Solution of the discretized Inverse Problem

Conclusions 00 00

FDIPA Algorithm

Electromagnetic Casting Problem Introduction Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm

Examples

Conclusions

Conclusions Further works

- ▲日 > ▲園 > ▲目 > ▲目 > ④ ● ④

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem
0000000000000

FDIPA Algorithm

FDIPA Algorithm

Herskovits (1998).

► FDIPA generates a sequence $\{\mathbf{x}_k\}_{k \in \mathbb{N}} \subset \Delta$:

$$\Delta = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \ge 0, \ \mathbf{h}(\mathbf{x}) \ge 0 \}$$
(54)

• The value of the potential function $\phi_{c}(\mathbf{x})$ is reduced at each iteration:

$$\phi_{\mathbf{c}}(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{p} \mathbf{c}_{i} |\mathbf{h}_{i}(\mathbf{x})|$$
(55)

 THEOREM: FDIPA has global convergence to KKT points of the optimization problem (Herskovits, 1998).

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	
00 0000000000000 00000000	

Examples

Electromagnetic Casting Problem Introduction Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm

Examples

Conclusions

Conclusions Further works

- ◆ロ > ◆聞 > ◆臣 > ◆臣 > 善臣 - 釣�?

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 0000000000000 000000000	000 00 0●0	00 00
Examples		

Initial Configuration

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

ъ

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 00000000000000 000000000	000 00 00	00 00
Examples		

Result

・ロ・・ 自・・ 言・・ 言・ うへの

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
0000000000000 000000000	00 0●0	
Examples		

Flux lines of the Magnetic field

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 00000000000000 000000000		00 00
Examples		

Initial Configuration

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

코 🕨 🖈 표

Electromagnetic Casting Problem	Solution of the discretized Inverse Problem	Conclusions
00 00000000000000 000000000	000 00 00●	00 00
Examples		

Result

- ▲ ロ ト ▲ 国 ト ▲ 国 ト → 国 - りへの

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem	
0000000000000	
00000000	

Examples

Examples

Flux lines of the Magnetic field

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

프 🖌 🛪 프

Image: A matrix

Electromagnetic Casting Problem	
00 0000000000000 00000000	

Conclusions

Outline

Electromagnetic Casting Problem

Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions Conclusions Further works

Alfredo Canelas, Jean R. Roche, José Herskovits

э

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

イロト イポト イヨト イヨト

Electromagnetic Casting Problem
0000000000000

Conclusions

- A numerical method for designing suitable inductors for Electromagnetic Casting was proposed.
- We also have shown how to consider geometric constraints that prevent the inductors from penetrating the liquid metal.
- Some presented examples show that the proposed technique is effective to design suitable inductors.

Liectionagrietic Casting Froblem	
00 0000000000000 00000000	

Further works

Outline

Electromagnetic Casting Problem

Direct Problem Inverse Problem

Solution of the discretized Inverse Problem

Nonlinear Optimization Problem FDIPA Algorithm Examples

Conclusions

Conclusions Further works

- * ロ * * @ * * 注 * * 注 * りへの

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

Electromagnetic Casting Problem
0000000000000

Further works

Further works:

- Consider a solution method for finding good initial configurations by means of topology optimization techniques.
- Consider the case of low frequencies of the electric current.

Thank You !

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université

→ 프 → < 프 →</p>

Electromagnetic Casting Problem
0000000000000

Further works

Further works:

- Consider a solution method for finding good initial configurations by means of topology optimization techniques.
- Consider the case of low frequencies of the electric current.

Thank You !

Alfredo Canelas, Jean R. Roche, José Herskovits

UDELAR ; COPPE - UFRJ ; IECN - Nancy-Université