Large Scale PDE Optimization with FAIPA,

the Feasible Arc Interior Point Algorithm

José Herskovits (*)
José Miguel Aroztegui (*) Alfredo Canelas (**)

${ }^{(*)}$ OptimizE - Engineering Optimization Lab Mechanical Eng. Program, COPPE Federal University of Rio de Janeiro
${ }^{(* *)}$ Instituto de Estructuras y Transporte
Facultad de Ingeniería - Uruguay

Introduction

We consider the nonlinear constrained optimization program:
$\left.\begin{array}{lll} & \underset{x}{\operatorname{minimize}} & f(x), x \in R^{n} \\ \text { subject to } & g(x) \leq 0 ; g \in R^{m} \\ \text { where: } & \text { and } & h(x)=0 ; h \in R^{p}\end{array}\right\}$
$x \equiv\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is the vector of unknowns,
$f(x)$ is the objective function,
$g(x)$ and $h(x)$ are the inequality and equality constraints.

- A Partial Differential Equation must be solved to compute the objective function and/or the constraints.

Introduction

- PDE Constrained Optimization appears in:
- Optimal Design
- Optimal Control
- Parameters Estimation
of systems governed by Partial Differential Equations
- The size and complexity of the discretized PDE often pose significant challenges for optimization methods.
- Real applications generally require a large number of variables and constraints.

Introduction

- As an example we consider an engineering model for Topology Structural Optimization with Finite Elements:
- Design variables:
- Elements thickness
- Minimize an objective:
- Weight, cost,...
- With mechanical constraints:
- Local stress at each finite element
- Nodal displacements
- Natural frequencies, etc.
- We have a very large number of variables and constraints.

Introduction

- To solve the optimization problems we use FAIPA, the Feasible Arc Interior Point Algorithm for Nonlinear Constrained Optimization.
- We will show that including some new or existing numerical tools in FAIPA, we can solve efficiently a class of real life PDE Optimization problems.
- The computer memory requirement of the present technique is very small.

FAIPA

Feasible Arc Interior Point Algorithm

- FAIPA is a general technique to solve nonlinear constrained optimization problems.
- It requires an initial point at the interior of the inequality constraints and generates a sequence of interior points.
- When the problem has only inequality constraints the objective function is reduced at each iteration.
- Iterating in the primal variables (x) and in the dual variables (Lagrange multipliers), FAIPA finds a local minimum characterized by the Karush-Kuhn-Tucker conditions

FDIPA

Feasible Direction Interior Point Algorithm

- We consider first FDIPA and discuss the ideas involved in this approach in the framework of the inequality constrained problem:

$$
\left.\begin{array}{rl}
\text { minimize } & f(x) \tag{2}\\
\text { submitted to } & g(x) \leq 0
\end{array}\right\}
$$

Let the feasible set be: $\Omega \equiv\left\{x \in R^{n} / g(x) \leq 0\right\}$

Basic Ideas

Karush-Kuhn-Tucker optimality conditions:

- If x is a local minimum, then

$$
\begin{gather*}
\nabla f(x)+\nabla g(x) \lambda=0, \\
G(x) \lambda=0, \tag{3}\\
g(x) \leq 0 \text { and } \\
\lambda \geq 0 .
\end{gather*}
$$

where $\lambda \in R^{m}$ are the dual variables and $G(x)$
a diagonal matrix with $G_{i i}(x)=g_{i}(x)$.

Basic Ideas

- In the present approach, we look for (x, λ) that satisfies the KKT conditions
- We propose a Newton - like iteration to solve the equalities in the KKT conditions:

$$
\begin{gathered}
\nabla f(x)+\nabla g(x) \lambda=0 \\
G(x) \lambda=0
\end{gathered}
$$

in such a way that each iterate satisfies the inequalities:

$$
\begin{gathered}
g(x) \leq 0 \\
\lambda \geq 0 .
\end{gathered}
$$

Basic Ideas

- The Newton Iteration in (x, λ) for the KKT equality conditions is:

$$
\left[\begin{array}{cc}
B & \nabla g(x) \tag{4}\\
\Lambda \nabla g^{t}(x) & G(x)
\end{array}\right]\left[\begin{array}{l}
x_{0}-x \\
\lambda_{0}-\lambda
\end{array}\right]=-\left[\begin{array}{c}
\nabla f(x)+\nabla g(x) \lambda \\
G(x) \lambda
\end{array}\right]
$$

where (x, λ) is the present point, $\left(x_{0}, \lambda_{0}\right)$ is the new estimate
Λ is a diagonal matrix such that $\Lambda_{i i}=\lambda_{i}$.

Basic Ideas

- We can take:

$$
B=\nabla^{2} f(x)+\sum_{i=1}^{m} \lambda_{i} \nabla^{2} g(x): \text { Newton's Method }
$$

$B=$ quase-Newton approx.: Quasi-Newton
$B=I:$
First order method

Basic Ideas

We define now the vector d_{0} in the primal space, as

$$
\begin{equation*}
d_{0}=x_{0}-x \tag{5}
\end{equation*}
$$

Then, we have:

$$
\begin{gather*}
B d_{0}+\nabla g(x) \lambda_{0}=-\nabla f(x) \\
\Lambda \nabla g^{\mathrm{t}}(x) d_{0}+G(x) \lambda_{0}=0 \tag{6}
\end{gather*}
$$

Basic Ideas

- We prove that, if;
- B is Positive Definite,
- $\lambda>0$
and
- $g(x) \leq 0$, then:
- The linear system has an unique solution
- d_{0} is a descent direction for $f(x)$

However, d_{0} is not always a feasible direction.

Basic Ideas

In fact,

$$
\Lambda \nabla g^{t}(x) d_{0}+G(x) \lambda_{0}=0
$$

is equivalent to:

$$
\begin{equation*}
\lambda_{i} \nabla g_{i}^{t}(x) d_{0}+g_{i}(x) \lambda_{0 i}=0 ; \quad i=1, \ldots, m \tag{6}
\end{equation*}
$$

Thus, d_{0} is not always feasible since it is tangent to the active constraints.

Basic Ideas

Then, to obtain a feasible direction, a negative number is added to the right hand side:

$$
\lambda_{i} \nabla g_{i}^{t}(x) d+g_{i}(x) \bar{\lambda}_{i}=-\rho \lambda_{i} \omega_{i} \quad i=1, \ldots, m
$$

and we get a new perturbed system:

$$
\begin{gather*}
B d+\nabla g(x) \bar{\lambda}=-\nabla f(x) \\
\Lambda \nabla g^{t}(x) d+G(x) \bar{\lambda}=-\rho \lambda \tag{7}
\end{gather*}
$$

where $\rho>0$

Basic Ideas

The negative number in the right hand side produces the effect of bending d_{0} to the interior of the feasible region, being the deflection relative to each constraint proportional to ρ.

Basic Ideas

As the deflection is proportional to ρ and d_{0} is descent, by establishing upper bounds on ρ, it is possible to ensure that d is also a descent direction.

Since $d_{0}^{t} \nabla f(x)<0$,
we can obtain these bounds by imposing

$$
\begin{equation*}
d^{t} \nabla f(x) \leq \alpha d_{0}^{t} \nabla f(x) \tag{8}
\end{equation*}
$$

which implies $\quad d^{t} \nabla f(x)<0$.

Basic Ideas

Let us consider

$$
\begin{align*}
& B d_{0}+\nabla g(x) \lambda_{0}=-\nabla f(x) \tag{9}\\
& \Lambda \nabla g^{t}(x) d_{0}+G(x) \lambda_{0}=0
\end{align*}
$$

And the auxiliary system of linear equations

$$
\begin{gathered}
B d_{1}+\nabla g(x) \lambda_{1}=0 \\
\Lambda \nabla g^{t}(x) d_{1}+G(x) \lambda_{1}=-\lambda
\end{gathered}
$$

(10)

Basic Ideas

We have that the solution of

$$
\begin{gathered}
B d+\nabla g(x) \bar{\lambda}=-\nabla f(x) \\
\Lambda \nabla g^{t}(x) d+G(x) \bar{\lambda}=-\rho \lambda,
\end{gathered}
$$

is

$$
\begin{equation*}
d=d_{0}+\rho d_{1} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\lambda}=\lambda_{0}+\rho \lambda_{1} \tag{12}
\end{equation*}
$$

Basic Ideas

By substitution of $\quad d=d_{0}+\rho d_{1}$
In

$$
\begin{equation*}
d^{t} \nabla f(x) \leq \alpha d_{0}^{t} \nabla f(x) \tag{13}
\end{equation*}
$$

we get

$$
\begin{equation*}
\rho \leq(\alpha-1) d_{0}^{1} \nabla f(x) / d_{1}^{t} \nabla f(x) \tag{14}
\end{equation*}
$$

in the case when $\quad d_{1}^{t} \nabla f(x)>0$.
Otherwise, any $\rho>0$ holds.

Basic Ideas

- To find a new primal point, an inaccurate line search is done in the direction of d.
- We look for a new interior point with a satisfactory decrease of the objective function.
- Different updating rules can be employed to define a new positive λ.

FDIPA

Feasible Direction Interior Point Algorithm

Search Direction

FAIPA

Feasible Arc Interior Point Algorithm

- Several practical applications and test problems were solved very efficiently with FDIPA.
- However for some problems with highly nonlinear constraints the unitary step length is not obtained and the rate of convergence is worst than superlinear.
- This effect is similar to the Maratos' effect and occurs when the feasible direction supports a too short feasible segment.
- The Feasible Arc technique avoids this effect.

FAIPA

Feasible Arc Interior Point Algorithm

The basic idea is to adjust better the constraints.
We compute the search direction d of FDIPA, and:

$$
\begin{equation*}
\tilde{\omega}^{i}=g_{i}(x+d)-g_{i}(x)-\nabla g_{i}(x) d ; \tag{15}
\end{equation*}
$$

Then: $\quad \tilde{\omega}^{i} \approx \frac{1}{2} d^{t} \nabla^{2} g_{i}(x) d ;$
is a $2 n d$ order approximation of the constrains along d .

FAIPA

Feasible Arc Interior Point Algorithm

To obtain a feasible arc, we:
i) Compute the search direction d of FDIPA:
ii) Solve:

$$
\begin{gather*}
B \tilde{d}+\nabla g(x) \tilde{\lambda}=0 ; \tag{16}\\
\lambda_{i} \nabla g^{t}(x) \tilde{d}+g_{i}(x) \tilde{\lambda}_{i}=-\lambda_{i} \tilde{\omega}^{i}, \quad i=1, \ldots, m .
\end{gather*}
$$

iii) Define the feasible arc as:

$$
\begin{equation*}
x^{k+1}=x^{k}+t d+t^{2} \tilde{d} \tag{17}
\end{equation*}
$$

FAIPA

Feasible Arc Interior Point Algorithm

Feasible Descent Arc:

FAIPA

Feasible Arc Interior Point Algorithm

- When there are inequality constraints only, we solve:
- The Primal-Dual System

$$
\left[\begin{array}{cc}
B & \nabla g(x) \tag{18}\\
\Lambda \nabla g(x) & G(x)
\end{array}\right]\left[\begin{array}{lll}
d_{0} & d_{1} & \tilde{d} \\
\lambda_{0} & \lambda_{1} & \tilde{\lambda}
\end{array}\right]=-\left[\begin{array}{ccc}
\nabla f(x) & 0 & 0 \\
0 & -\lambda & -\lambda \tilde{w}^{I}
\end{array}\right]
$$

- Or the Dual System

$$
\left[\nabla g^{t}(x) B^{-1} \nabla g(x)-\Lambda^{-1} G(x)\right]\left[\begin{array}{lll}
\lambda_{0} & \lambda_{1} & \tilde{\lambda} \tag{19}
\end{array}\right]=\left[-\nabla g^{t}(x) B^{-1} \nabla f(x)\right]
$$

which is symmetric and positive definite

FAIPA

Feasible Arc Interior Point Algorithm

To solve the Dual System:
$\left[\nabla g^{t}(x) B^{-1} \nabla g(x)-\Lambda^{-1} G(x)\right]\left[\begin{array}{lll}\lambda_{0} & \lambda_{1} & \tilde{\lambda}]=\left[-\nabla g^{t}(x) B^{-1} \nabla f(x)\right.\end{array}\right]$
We have to compute and store:

- The constraints derivative matrix $\nabla g(x)$
- The quasi-Newton matrix B
- The dual system matrix $\nabla g^{t}(x) B^{-1} \nabla g(x)-\Lambda^{-1} G(x)$

In structural optimization, these matrices are generally dense.

Numerical Techniques

To solve the Dual System with low memory requirements we use:

- Limited-Memory Quasi-Newton Method (storing s few vectors to represent the quasi-Newton matrix)
- Gradient Conjugate Method (avoiding system matrix storage)
- Product of the constraint gradient matrix times a vector (avoiding the storage of constraint gradient matrix)

BFGS QUASI-NEWTON UPDATING RULE

Let be:

$$
\begin{align*}
& l(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} g_{i}(x)+\sum_{i=1}^{p} \mu_{i} h_{i}(x) \tag{16}\\
& s_{k}=x_{k+1}-x_{k} \tag{17}\\
& y_{k}=\nabla l\left(x_{k+1}, \lambda_{k}, \mu_{k}\right)-\nabla l\left(x_{k}, \lambda_{k}, \mu_{k}\right)
\end{align*}
$$

BFGS updating rule:

$$
\begin{equation*}
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k}^{t} B_{k}}{s_{k}^{t} B_{k} s_{k}}+\frac{y_{k} y_{k}^{t}}{y_{k}^{t} s_{k}} \tag{18}
\end{equation*}
$$

LIMITED-MEMORY QUASI-NEWTON METHOD

The BFGS updating rule can be written as follows:

$$
B_{k}=B_{0}-\left[\begin{array}{ll}
B_{0} S_{k} & Y_{k}
\end{array}\right]\left[\begin{array}{cc}
S_{k}^{t} B_{0} S_{k} & L_{k} \tag{18}\\
L_{k}^{t} & -D_{k}
\end{array}\right]^{-1}\left[\begin{array}{c}
S_{k}^{t} B_{0} \\
Y_{k}^{t}
\end{array}\right]
$$

Where:

$$
S_{k}=\left[s_{0}, \ldots, s_{k}\right] \& Y_{k}=\left[y_{0}, \ldots ., y_{k}\right] \quad \text { are }(n x k) \text { matrices }
$$

$$
\begin{gathered}
\left(L_{k}\right)_{i j}=\left\{\begin{array}{cc}
s_{i-1}^{t} y_{j-1} \text { for } i>j & \text { is a triangular }(k \times k) \\
0 \text { for } i \leq j & \text { matrix }
\end{array}\right. \\
D_{k}=\operatorname{diag}\left[s_{0}^{t} y_{0}, \ldots, s_{k-1}^{t} y_{k-1}\right] \quad \text { is a diagonal }(k \times k)
\end{gathered}
$$

LIMITED-MEMORY QUASI-NEWTON METHOD

Instead of considering the k pairs of vectors $\{s, y\}, B$ is updated taking only the last q pairs. Assuming that $B_{k-q}=I$:

Now:

$$
B_{k}=I-\left[\begin{array}{ll}
S_{k} & Y_{k}
\end{array}\right]\left[\begin{array}{cc}
S_{k}^{t} S_{k} & L_{k} \tag{19}\\
L_{k}^{t} & -D_{k}
\end{array}\right]^{-1}\left[\begin{array}{c}
\varepsilon_{k} S_{k}^{t} \\
Y_{k}^{t}
\end{array}\right]
$$

$$
S_{k}=\left[s_{k-q}, \ldots, s_{k-1}\right] \& Y_{k}=\left[y_{k-q}, \ldots, y_{k-1}\right] \underset{\text { matrices },}{\text { are }(n \times q)} \text {. }
$$

$\left(L_{k}\right)_{i j}=\left\{\begin{array}{c}s_{k-q-1+i}^{t} y_{k-q-1+j} \text { for } i>j \\ 0 \text { for } i \leq j\end{array} \quad\right.$ is a triangular $(q \times q)$ matrix
$D_{k}=\operatorname{diag}\left[s_{k-q}^{t} y_{k-q}, \ldots, s_{k-1}^{t} y_{k-1}\right]$ is a diagonal $(q \times q)$ matrix.

LIMITED-MEMORY QUASI-NEWTON METHOD

In practice, we always take $q<10$.
For $v \in R^{n} \quad$ given, it is very easy to compute

$$
B_{k} v=v-\left[\begin{array}{ll}
S_{k} & Y_{k}
\end{array}\right]\left[\begin{array}{cc}
S_{k}^{t} S_{k} & L_{k} \tag{20}\\
L_{k}^{t} & -D_{k}
\end{array}\right]^{-1}\left[\begin{array}{c}
\varepsilon_{k} S_{k}^{t} \\
Y_{k}^{t}
\end{array}\right] v
$$

without need of computing and storing the quasi-Newton matrix.

A similar expression is also obtained for $\boldsymbol{H}=\boldsymbol{B}^{-1}$

SOLVING LINEAR SYSTEMS OF EQUATIONS

Consider the linear system of equations:

$$
A x=b
$$

The Conjugate Gradient algorithm is a well known iterative method to solve linear systems with a positive definite coefficient matrix.

CONJUGATE GRADIENT METHOD PRECONDITIONED By THE LIMITED-MEMORY MATRIX

The proposed algorithm solves this problem:

$$
\begin{array}{lc}
& H L^{-1} A L^{-t} y=H L^{-1} b \tag{21}\\
\text { where: } \quad x=L^{-t} y
\end{array}
$$

- L is a triangular preconditioning matrix.
- H is the Limited-Memory Quasi-Newton matrix, to solve the unconstrained minimization problem:

$$
\begin{equation*}
\min \frac{1}{2} y^{t} L^{-1} A L^{-t} y-y^{t} L^{-1} b \tag{22}
\end{equation*}
$$

CONJUGATE GRADIENT ALGORITHM PRECONDITIONED BY THE LIMITED-MEMORY MATRIX

Given x_{0},
Compute:

$$
r_{0}=L^{-1}\left(b-A x_{0}\right), \quad z_{0}=H r_{0}, \quad p_{0}=L^{-t} z_{0}
$$

For $i=1$ until convergence do:

$$
\begin{gathered}
\alpha_{i}=r_{i}^{t} z_{i} /\left(A p_{i}\right)^{t} p_{i} \\
x_{i+1}=x_{i}+\alpha_{i} p_{i} \\
r_{i+1}=r_{i}-\alpha_{i} L^{-1} A p_{i} \\
z_{i+1}=H r_{i+1} \\
\beta_{i}=r_{i+1}^{t} z_{i+1} / r_{i}^{t} z_{i} \\
p_{i+1}=L^{-1} z_{i+1}+\beta_{i} p_{i}
\end{gathered}
$$

end.

Note that:

-The system matrix \boldsymbol{A} only appears multiplied by vectors

- When multiplying \boldsymbol{H} by a vector, limited memory formulation is employed

Solving the Dual System of FAIPA

To solve the Dual System at each iteration of the PCG method, we must compute:

$$
\left(\nabla g^{t}(x) B^{-1} \nabla g(x)-\Lambda^{-1} G(x)\right) z ; \quad z \in R^{m}
$$

Where:
$v=\nabla g(x) z$ is the gradient of an auxiliary constraint $g^{t}(x) z$
$w=B^{-1} v \quad$ is obtained with limited memory formulation
$\nabla g^{t}(x) w \quad$ is a directional derivative of the constraints

Instead of storing the whole derivative matrix, we just compute and store the products $\nabla g(x) z$ and $\nabla g^{t}(x) w$.

Computing $\nabla \boldsymbol{g}(x) z$ and $\nabla g^{t}(x) w$

$\nabla g(x) z \quad$: Can be computed with the adjoint variables method.

For linear elastic structures, one system with the stiffness matrix must be solved.
$\nabla g^{t}(x) w$: Directional derivatives of displacements
in linear elastic structures follows from directional derivation of the equilibrium equation.

THEN: two linear systems with the stiffness matrix are solved at each iteration of the CG.

A structural optimization example:

- The optimization problem we are dealing with is the structural volume minimization with Von-Misses stress constraints.
- The structures are rectangular plates submitted to in-plane distributed loadings and supports.
- Structure responses are computed by FEA simulations using a mesh of quadrilateral bilinear plane stress elements.
- The thickness of an element is a design variable.

A structural optimization example:

- Structural Optimization Problem
- 2D plates submitted to in-plane distributed loadings.
- Quadrilateral bilinear plane stress elements with Young's module of 210GPa and Poisson's coefficient of 0.3 are assumed for each element.
- Design Variables: Thickness of each element
- Objective Function: Structural volume
- Constraints, for each element:
- Von-Mises stress less than $\sigma_{\text {adm }}=250 \mathrm{MPa}$.
- Thickness between 0.1 and 1.0 centimeter.
- Number of LM pairs:
- $q_{A}=8$ (preconditioner of dual system, A)
- $q_{B}=10$ (quasi-Newton matrix, B)
- Resources:
- Memory: 1 Gb
- Processor: AMD Athlon with 64 bits and 1.8 GHz

Example 1

Example 1

Example 1

Iteration history

Example 2

Example 2

1200 elements

6075 elements

Example 2

Iteration history

Example 3

- 16875, 67500 and 270000 elements
- Initial thickness 0.95 cm
- Lower bound of thickness $t_{\min }=1 \mathrm{~mm}$
- Upper bound of thickness $t_{\max }=1 \mathrm{~cm}$
- all elements with isotropic material - Young module: 210 GPa
- Poisson: 0.3

- Stress constraint
- Mises stress in center of element
- less than $2.5 \times 10^{4} \mathrm{~Pa}$

Example 3

Example 3

Example 3

Iteration of Conjugate Gradient Method

24668101214161820222426283032343638404244464850525456586062646668707274 135579111315171921232527293133353739414345474951535557596163656769717375

Iteration of FDIPA

Conclusions

The present technique requires modest computational resources due to Limited Memory and Conjugate Gradient Methods:

- Storage of quasi-Newton and pre-conditioner matrices are not needed. Those matrices are represented using a few LM pairs;
- Constrained derivatives matrices are not stored. When CG iterations number is small, less derivatives are computed.
- Dual system matrix is not allocated and sensitivity matrix is not computed, reducing the number of structural analysis per iteration of FAIPA.

