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� We consider the nonlinear constrained optimization program:

(1)

where: 
x ≡ [x1, x2, …, xn] is the vector of unknowns, 
f(x) is the objective function, 

g(x) and h(x) are the inequality and equality constraints.

� A Partial Differential Equation must be solved to compute
the objective function and/or the constraints.

minimize        ( ),   

subject to      ( ) 0;   
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� PDE Constrained Optimization appears in:
� Optimal Design
� Optimal Control
� Parameters Estimation

of systems governed by Partial Differential Equations

� The size and complexity of the discretized PDE often pose 
significant challenges for optimization methods. 

� Real applications generally require a large number of 
variables and constraints.

Introduction
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� As an example we consider an engineering model for 
Topology Structural Optimization with Finite Elements:
� Design variables:

� Elements thickness
� Minimize an objective:

� Weight, cost,…
� With mechanical constraints:

� Local stress at each finite element
� Nodal displacements
� Natural frequencies, etc.

� We have a very large number of variables and constraints.

Introduction
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Introduction

� To solve the optimization problems we use FAIPA , the 
Feasible Arc Interior Point Algorithm for Nonlinear 
Constrained Optimization.

� We will show that including some new or existing numerical 
tools in FAIPA, we can solve efficiently a class of real life 
PDE Optimization problems. 

� The computer memory requirement of the present 
technique is very small. 
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� FAIPA is a general technique to solve nonlinear 
constrained optimization problems.

� It requires an initial point at the interior of the inequality 
constraints and generates a sequence of interior points.

� When the problem has only inequality constraints the 
objective function is reduced at each iteration.

� Iterating in the primal variables (x) and in the dual 
variables (Lagrange multipliers), FAIPA finds a local 
minimum characterized by the Karush-Kuhn-Tucker 
conditions

FAIPA 

Feasible Arc Interior Point Algorithm
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FDIPA 
Feasible Direction Interior Point Algorithm

� We consider first FDIPA and discuss the ideas involved in 
this approach in the framework of the inequality constrained 
problem:

(2)

Let the feasible set be: { } / ( ) 0nx R g xΩ≡ ∈ ≤

   

    minimize    ( )
submitted to   ( ) 0

f x
g x





≤
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� Karush-Kuhn-Tucker optimality conditions:
� If x is a local minimum, then

(3)

where             are the dual variables and          
a diagonal matrix with 

( ) ( ) 0,
( ) 0,

( ) 0 and
0.

f x g x
G x

g x

λ
λ

λ

∇ +∇ =
=

≤
≥

mRλ ∈ ( )G x
( ) ( ).ii iG x g x=

Basic Ideas 
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� In the present approach, we look for             that satisfies 
the KKT conditions

� We propose a Newton - like iteration to solve the equalities
in the KKT conditions:

in such a way that each iterate satisfies the inequalities : 

( , )x λ

( ) ( ) 0
( ) 0

f x g x
G x

λ
λ

∇ +∇ =
=

( ) 0
0.

g x
λ

≤
≥

Basic Ideas 
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� The Newton Iteration in           for the KKT equality 
conditions is:

(4)

where is the present point,            is the new 
estimate

is a diagonal matrix such that

( , )x λ

0

0

( ) ( ) ( )

( ) ( ) ( )t

x xB g x f x g x

g x G x G x

λ
λ λ λ

−∇ ∇ +∇    
= −    −Λ∇    

( , ) x λ 0 0( , )x λ

Λ .ii iλΛ =

Basic Ideas 
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� We can take:

Newton’s Method

quase-Newton approx.:    Quasi-Newton

First order method

 
 2  2( ) ( ):1 i

mB f x g xi λ=∇ + ∇=∑

B=

:B I=

Basic Ideas 
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� We define now the vector         in the primal space, as        

(5)

� Then, we have: 

(6)

0d

0 0d x x= −

0 0

t
0 0

( ) ( ) 

g ( ) ( ) 0

Bd g x f x

x d G x

λ
λ

+∇ = −∇

Λ∇ + =

Basic Ideas 
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� We prove that, if;
- is Positive Definite ,
-
and
-
then:
- The linear system has an unique solution

- is a descent direction for        

However,         is not always a feasible direction .

B
0λ >

( ) 0,g x ≤

0d ( )f x

0d

Basic Ideas 
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In fact,

is equivalent to:

(6)

Thus,        is not always feasible since it is tangent to the 
active constraints.

 
0 0( ) ( ) 0tg x d G xλΛ∇ + =

 
0 0( ) ( ) 0;     1,...,t

i i i ig x d g x i mλ λ∇ + = =

0d

Basic Ideas 
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Then, to obtain a feasible direction, a negative number is 
added to the right hand side:

and we get a new perturbed system:

(7)

where               

( ) ( )       1,..., ,t
ii i i i ig x d g x i mλ λ ρλ ω∇ + = − =

( ) ( )

( ) ( )t

Bd g x f x

g x d G x

λ
λ ρλ

+ ∇ = −∇

Λ∇ + = −

0ρ >

Basic Ideas 
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� The  negative number in the right hand side produces the 
effect of bending        to the interior of the feasible region,
being the deflection relative to each constraint 
proportional to

0d

.ρ

Basic Ideas 
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As the deflection is proportional to        and         is descent, by 
establishing upper bounds on       , it is possible to ensure 
that        is also a descent direction.

ρ 0d
ρ

d

Since                     (7)

we can obtain these bounds by imposing 

(8)

which implies

0 ( ) 0,td f x∇ <

0( ) ( ),t td f x d f xα∇ ≤ ∇

( ) 0.td f x∇ <

Basic Ideas 
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Let us consider

(9)

And the auxiliary system of linear equations

(10)

0 0

0 0

( ) ( )

( ) ( ) 0t

Bd g x f x

g x d G x

λ
λ

+ ∇ = −∇

Λ∇ + =

1 1

1 1

( ) 0

( ) ( )t

Bd g x
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λ
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+ ∇ =
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Basic Ideas 
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We have that the solution of

is
(11)

and
(12)

( ) ( )

( ) ( ) ,t

Bd g x f x

g x d G x

λ
λ ρλ

+ ∇ = −∇

Λ∇ + = −

0 1d d dρ= +

0 1λ λ ρλ= +

Basic Ideas 
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By substitution of

In (13)

we get
(14)

in the case when                            

Otherwise, any              holds.

1
0 1( 1) ( ) / ( ),td f x d f xρ α≤ − ∇ ∇

1 ( ) 0.td f x∇ >

0ρ >

0 1d d dρ= +

0( ) ( ),t td f x d f xα∇ ≤ ∇

Basic Ideas 
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� To find a new primal point, an inaccurate line search is done 
in the direction of       . 

� We look for a new interior point with a satisfactory decrease 
of the objective function.

� Different updating rules can be employed to define a new      
positive     .

d

λ

Basic Ideas 
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FDIPA 
Feasible Direction Interior Point Algorithm

Search Direction
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� Several practical applications and test problems were 
solved very efficiently with FDIPA.

� However for some problems with highly nonlinear 
constraints the unitary step length is not obtained and the 
rate of convergence is worst than superlinear.

� This effect is similar to the Maratos’ effect and occurs when 
the feasible direction supports a too short  feasible segment.

� The Feasible Arc technique avoids this effect.

FAIPA 

Feasible Arc Interior Point Algorithm
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The basic idea is to adjust better the constraints.

We compute the search direction        of 
FDIPA, and:

(15)

Then:

is a 2nd order approximation of the constrains along d.

d

     ( ) ( ) ( ) ;i
i i ig x d g x g x dω = + − − ∇%

21
( ) ;

2
i t

id g x dω ≈ ∇%

FAIPA 

Feasible Arc Interior Point Algorithm
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To obtain a feasible arc, we:

i) Compute the search direction         of FDIPA:

ii) Solve:
(16)

iii) Define the feasible arc as:

(17)

d

( ) 0;

( ) ( ) ,       1,..., .t i
i i i i

Bd g x

g x d g x i m

λ
λ λ λ ω

+ ∇ =

∇ + = − =

% %

% % %

1 2k kx x td t d+ = + + %

FAIPA 

Feasible Arc Interior Point Algorithm
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Feasible Descent Arc:

FAIPA 

Feasible Arc Interior Point Algorithm



27

� When there are inequality constraints only, we solve:

� The Primal-Dual System

(18)

� Or the Dual System

(19)

which is symmetric and positive definite
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Feasible Arc Interior Point Algorithm
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To solve the Dual System:

We have to compute and store:

�- The constraints derivative matrix
�- The quasi-Newton matrix B
�- The dual system matrix

In structural optimization, these matrices are generally dense.

[ ][ ] [ ])()(
~

)()()( 1
10

11 xfBxgxGxgBxg tt ∇∇−=Λ−∇∇ −−− λλλ

)(xg∇

)()()( 11 xGxgBxgt −− Λ−∇∇

FAIPA 

Feasible Arc Interior Point Algorithm
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To solve the Dual System with low memory requirements we 
use:

� Limited-Memory Quasi-Newton Method
�(storing s few vectors to represent the quasi-Newton matrix)

� Gradient Conjugate Method
�(avoiding system matrix storage)

� Product of the constraint gradient matrix times a vector
�(avoiding the storage of constraint gradient matrix)

Numerical Techniques
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� Let be:

(16)

(17)

� BFGS updating rule:

(18)
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The BFGS updating rule can be written as follows:

(18)

Where:                                           

are (n x k ) matrices

is a triangular (k x k)                         
matrix

is a diagonal (k x k)
matrix
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Instead of considering the k pairs of vectors {s, y}, B is 
updated taking only the last q pairs. Assuming that Bk-q=I :

(19)

Now:

are (n x q) 
matrices,

is a triangular (q x q) matrix

is a diagonal (q x q) 
matrix.
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In practice, we always take q < 10.

For                  given, it is very easy to compute

(20)

without need of computing and storing the quasi-Newton 
matrix.

A similar expression is also obtained for  H = B-1
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SOLVING LINEAR SYSTEMS OF EQUATIONS

Consider the linear system of equations:

bAx=
The Conjugate Gradient algorithm is a well known 
iterative method to solve linear systems with a positive 
definite coefficient matrix.
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CONJUGATE GRADIENT METHOD 
PRECONDITIONED 

BY THE  LIMITED-MEMORY MATRIX

The proposed algorithm solves this problem:

(21)bHLyALHL t 11 −−− =

where:

� L is a triangular preconditioning matrix.

� H is the Limited-Memory Quasi-Newton matrix, to 
solve the unconstrained minimization problem:  

(22)

yLx t−=

bLyyALLy ttt 11

2

1
min −−− −
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),( 0
1

0 AxbLr −= − ,00 Hrz =
00 zLp t−=

i
t
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t
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iiii pxx α+=+1
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1

−
+ −= α

11 ++ = ii Hrz

i
t

ii
t

ii zrzr 11 ++=β

iiii pzLp β+= +
−

+ 1
1

1end.

CONJUGATE GRADIENT ALGORITHM 
PRECONDITIONED BY THE 
LIMITED-MEMORY MATRIX

Given x0,
Compute:

For i = 1 until convergence do:

Note that:
-The system matrix A only appears multiplied by vectors
- When multiplying H by a vector, limited memory 
formulation is employed 
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Solving the Dual System of FAIPA

( ) mt RzzxGxgBxg ∈Λ−∇∇ −−   ;)()()( 11

To solve the Dual System at each iteration of the PCG 
method, we must compute:

Where:
is the gradient of an auxiliary constraint                   

is obtained with limited memory formulation

is a directional derivative of the constraints

zxgv )(∇= zxgt )(

vBw 1−=
wxgt )(∇

Instead of storing the whole derivative matrix, 

we just compute and store the products ∇g(x) z

and ∇gt(x) w.
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:  Can be computed with the adjoint 
variables method.

For linear elastic structures, one system with the 
stiffness matrix must be solved. 

: Directional derivatives of displacements 

in linear elastic structures follows from directional 

derivation of the equilibrium equation.

THEN: two linear systems with the stiffness matrix are 

solved at each iteration of the CG.

Computing ∇∇∇∇g(x) z and∇∇∇∇gt (x) w

wxgt )(∇

zxg )(∇
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A structural optimization example:

� The optimization problem we are dealing with is the structural 
volume minimization with Von-Misses stress constraints.

� The structures are rectangular plates submitted to in-plane 
distributed loadings and supports.

� Structure responses are computed by FEA simulations using a 
mesh of quadrilateral bilinear plane stress elements.

� The thickness of an element is a design variable. 
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� Structural Optimization Problem
� 2D plates submitted to in-plane distributed loadings.
� Quadrilateral bilinear plane stress elements with Young’s 

module of 210GPa and Poisson’s coefficient of 0.3 are 
assumed for each element.

� Design Variables: Thickness of each element
� Objective Function: Structural volume
� Constraints, for each element:

� Von-Mises stress less than σadm=250MPa.
� Thickness between 0.1 and 1.0 centimeter.

� Number of LM pairs:
� qA=8 (preconditioner of dual system, A)
� qB=10 (quasi-Newton matrix, B)

� Resources:
� Memory: 1 Gb
� Processor: AMD Athlon with 64 bits and 1.8 GHz

A structural optimization example:
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Example 1

1 m

1.2 m 0.6 m

8000 N/cm2

0.6 m

0.2 m

1.4 m

0.2 m

0.6 m
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Example 1

300 elements 1200 elements

6075 elements
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Example 1

Iteration history
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Example 2

1 m

0.4 m 0.4 m

8000 N/cm2

0.9 m 0.9 m 0.4 m
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Example 2

300 elements 1200 elements

6075 elements
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Example 2

Iteration history
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Example 3

� 16875, 67500 and 270000 elements

� Initial thickness 0.95 cm

� Lower bound of thickness tmin=1 mm

� Upper bound of thickness tmax=1 cm

� all elements with isotropic material
� Young module: 210 GPa
� Poisson: 0.3

� Stress constraint
� Mises stress in center of element
� less than 2.5x104 Pa

3 m

1 m

60 cm
8000
N/cm
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Example 3
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Example 3

Iterations history
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Example 3

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Iteration of Conjugate Gradient Method

sis2,16875

sis2,67500

sis2,270000

Iteration of FDIPA

Ite
ra

tio
n

s
 o

f C
o

n
ju

g
a

te
 G

ra
d

ie
n

t M
e

th
o

d



51

Conclusions

� The present technique requires modest computational 
resources due to Limited Memory and Conjugate Gradient 
Methods:

� Storage of quasi-Newton and pre-conditioner matrices are 
not needed. Those matrices are represented using a few 
LM pairs;

� Constrained derivatives matrices are not stored. When 
CG iterations number is small, less derivatives are 
computed.

� Dual system matrix is not allocated and sensitivity matrix 
is not computed, reducing the number of structural 
analysis per iteration of FAIPA.


