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Introduction

We consider the nonlinear constrained optimization program:
minimize  f(x), xOR
X

subjectto g(X)<0; gl R'; (1)

and h(X)=0, hOR
where: J
X=X}, %, ..., X] IS the vector of unknowns,

f(x) Is the objective function,
g(x) and h(x) are the inequality and equality constraints.

A Partial Differential Equation must be solved to compute
the objective function and/or the constraints.



Introduction

PDE Constrained Optimization appears in:
Optimal Design
Optimal Control
Parameters Estimation
of systems governed by Partial Differential Equations

The size and complexity of the discretized PDE often pose
significant challenges for optimization methods.

Real applications generally require a large number of
variables and constraints.



Introduction

As an example we consider an engineering model for
Topology Structural Optimization with Finite Elements:

Design variables:
Elements thickness
Minimize an objective:
Weight, cost,...
With mechanical constraints:
Local stress at each finite element
Nodal displacements
Natural frequencies, etc.

We have a very large number of variables and constraints.
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Introduction

To solve the optimization problems we use FAIPA, the
Feasible Arc Interior Point Algorithm for Nonlinear
Constrained Optimization.

We will show that including some new or existing numerical
tools in FAIPA, we can solve efficiently a class of real life
PDE Optimization problems.

The computer memory requirement of the present
technique is very small.



FAIPA
Feasible Arc Interior Point Algorithm

FAIPA is a general technique to solve nonlinear
constrained optimization problems.

It requires an Initial point at the interior of the inequality
constraints and generates a sequence of interior points.

When the problem has only inequality constraints the
objective function is reduced at each iteration.

Iterating In the primal variables (x) and in the dual
variables (Lagrange multipliers), FAIPA finds a local
minimum characterized by the Karush-Kuhn-Tucker
conditions



FDIPA
Feasible Direction Interior Point Algorithm

We consider first FDIPA and discuss the ideas involved In
this approach in the framework of the inequality constrained
problem:

minimize f(X) ,
submittedto g(x<0[ ?

Let the feasible set be: QE{ xORN/ >9so}



Basic Ideas

Karush-Kuhn-Tucker optimality conditions:
If X isalocal minimum, then

Lf (¥ +09(X¥A=0,
G(X)A =0, (3)
g(¥X<O0and
A=0.

where A 0 R™are the dual variables and G(X)
a diagonal matrix with G, (X) = g( X.



Basic Ideas

In the present approach, we look for (X, A) that satisfies
the KKT conditions

We propose a Newton - like iteration to solve the equalities
In the KKT conditions:

f (x)+0g(XA=0
G(XA=0

In such a way that each iterate satisfies the inequalities

g9(X¥<0
A1>0.



Basic Ideas

The Newton lteration in (X, A) for the KKT equality

conditions Is:
{ B Dg(¥
NG (% 3

|

X

A=A

|

Of(y+0g M} %)
G 3

where (X A) is the present point, (%, 4,) is the new

estimate

N\ is a diagonal matrix such that A, = A.
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Basic Ideas

We can take:

B=02f(9+Y /LA “g3: Newton's Method

B= quase-Newton approx.:

B=1I:

Quasi-Newton

First order method
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Basic Ideas

We define now the vector do In the primal space, as

d, =% — X (5)

Then, we have:
Ba, +0g( XA, =-U1( ¥

t (6)
ALg (X)a, + X ¥4, =0
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Basic Ideas

We prove that, if;
- B is Positive Definite
- A>0
and
- 9(¥) =0,
then:
- The linear system has an unique solution

d, is a descent direction for f ()

However, do IS not always a feasible direction .
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Basic Ideas

In fact, AOg (X d, + G YA, =0

IS equivalent to:
A0g (X d, + g( R4, =0; i= L., m (6)

Thus, dO IS not always feasible since it is tangent to the
active constraints.
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Basic Ideas

Then, to obtain a feasible direction, a negative number is
added to the right hand side:

A0g (0 d+ g( Rt =-pAw | i=L..,m

and we get a new perturbed system:

Bd +0g( YA = -0 f( X

_ (7)
AOg' (XY d+ Q34 =-pA

where © >0
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Basic Ideas

The negative number In the right hand side produces the
effect of bending do to the interior of the feasible region,

being the deflection relative to each constraint
proportional to 0.
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Basic Ideas

As the deflection Is proportional to © and do IS descent, by
establishing upper bounds on QO , it is possible to ensure
that d is also a descent direction.

Since d;0f (X) <0, (7)
we can obtain these bounds by imposing
d'Of (X) < adOf( X, (8)

which implies d'Of (X) <O.
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Basic Ideas

et us consider

Bd, +Ug( ¥4, =-0U (%
AOg' (¥ d,+ (34, =0

And the auxiliary system of linear equations

9)

Bd, +00g(XA =0

(10)
AOg' (¥ d, + G( R4, =-A
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Basic Ideas

We have that the solution of

Bd+0g( XA =-0f( X
AOg' (¥ d+ G( Y1 =-p),

IS

d=d,+0d

and

A=+ A,

(11)

(12)
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Basic Ideas

By substitution of d =d, + 0d

f(X) < adOf(X,

In dt

we get

p<(a-1d,
d,

INn the case when

f(x)/ dOf(x,
f(x) > 0.

Otherwise, any © >0 holds.

(13)

(14)
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Basic Ideas

To find a new primal point, an inaccurate line search is done
in the direction of d .

We look for a new interior point with a satisfactory decrease
of the objective function.

Different updating rules can be employed to define a new
positive A.
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FDIPA
Feasible Direction Interior Point Algorithm

Search Direction

Xy } g,x)=0

V4, )
f{x)=const.
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FAIPA
Feasible Arc Interior Point Algorithm

Several practical applications and test problems were
solved very efficiently with FDIPA.

However for some problems with highly nonlinear
constraints the unitary step length is not obtained and the
rate of convergence is worst than superlinear.

This effect is similar to the Maratos’ effect and occurs when
the feasible direction supports a too short feasible segment.

The Feasible Arc technique avoids this effect.
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FAIPA
Feasible Arc Interior Point Algorithm

The basic idea Is to adjust better the constraints.

We compute the search direction d of
FDIPA, and:

d =g (x+d)-g(¥-0g(¥d (15
Then: », =%dtD2gi(x) d

IS a 2nd order approximation of the constrains along d.
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FAIPA
Feasible Arc Interior Point Algorithm

To obtain a feasible arc, we:

1) Compute the search direction d of FDIPA:

) Solve: ~ -
Bd+Lg( XA =0;

] ] | (16)
A0g' (X d+ g(R =-Ad, i=L..m

i) Define the feasible arc as:

X< = X+ td+ £ d (17)
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FAIPA
Feasible Arc Interior Point Algorithm

Feasible Descent Arc:
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FAIPA
Feasible Arc Interior Point Algorithm

When there are inequality constraints only, we solve:

The Primal-Dual System

B Og(0]d, d d]|_[OF() 0 0O
AT G |4, A A 0 -4 -aw| {8

Or the Dual System
09! (0B 0g(x) -A'GMX)||A, A A]=[-0g'(B™0f (%) (19)

which is symmetric and positive definite
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FAIPA
Feasible Arc Interior Point Algorithm

To solve the Dual System:
0g' (0B 0g(x) -A'G)|4, A A|=[-0g'(x)B™0f (%))
We have to compute and store:

- The constraints derivative matrix [1g(Xx)
- The quasi-Newton matrix B

- The dual system matrix [Og'(x)B™*Og(x) - A'G(X)

In structural optimization, these matrices are generally dense.
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Numerical Techniques

To solve the Dual System with low memory requirements we
use:

Limited-Memory Quasi-Newton Method
(storing s few vectors to represent the quasi-Newton matrix)

Gradient Conjugate Method
(avoiding system matrix storage)

Product of the constraint gradient matrix times a vector
(avoiding the storage of constraint gradient matrix)
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BFGS QUASI-NEWTON UPDATING RULE

Let be:
m P
(A1) = F(0)+DAg(0+Y uh()  @6)
i=1 i=1
S( :Xk+1_xk (17)

Yie = L (Xei0s Ay 44) —OH(X Ay 14)

BFGS updating rule:

B.ssB t
Bk+1 — Bk _ kﬁ(ﬁ( k + yl: yk
SBS YK

(18)
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LIMITED-MEMORY
QUASI-NEWTON METHOD

The BFGS updating rule can be written as follows:

'S.B,S,

B, =B, _[BOS< Yk]

Where:

S =[S S &Y =[Vgreeenr Vi

Sy, fori>])
Ofori < |

(Lk)ij =

Dy = diag[S;Yo,-s et Yie]

L,

L,

_Dk_

-1

_SEBO_

Y

(18)

are (n x k) matrices

Is a triangular (k x k)

matrix

Is a diagonal (k x k)

mautrix
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LIMITED-MEMORY
QUASI-NEWTON METHOD

Instead of considering the k pairs of vectors {s, }}, Bis
updated taking only the last g pairs. Assuming that B, =I:

'S.S.

Bkzl_[SK Yk] Lt

Now:

L,

_Dk_

-1

_gkat(_

Y

(19)

S =[ScqrrScal & Y =[Vieqre1 Yial  are (nx g)

matrices,

(Lk)ij — Si—q—lﬂ yk—q._1+j .fOr | > J
Ofori < |

IS a triangular (q X g) matrix

D, =diag[s_q Vi g1 Sc1Yia] s adiagonal (gx q)

matrixX.
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LIMITED-MEMORY
QUASI-NEWTON METHOD

In practice, we always take g < 10.

For VOR" given, itis very easy to compute
S L | &S

Bv=v-[S, Y,
kV vV [SK k]_ Ltk _Dk_ _th )

Vo (20

without need of computing and storing the gquasi-Newton
matrix.

A similar expression is also obtained for H =B
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SOLVING LINEAR SYSTEMS OF EQUATIONS

Consider the linear system of equations:
AX=Db

The Conjugate Gradient algorithm is a well known
iterative method to solve linear systems with a positive
definite coefficient matrix.
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CONJUGATE GRADIENT METHOD
PRECONDITIONED
BY THE LIMITED-MEMORY MATRIX

The proposed algorithm solves this problem:

HLALy = HL ™ (21)

_ -t
where: X=LYy
L is a triangular preconditioning matrix.

H is the Limited-Memory Quasi-Newton matrix, to
solve the unconstrained minimization problem:

min% VLAl 'y - y'Lb (22)
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CONJUGATE GRADIENT ALGORITHM
PRECONDITIONED BY THE
LIMITED-MEMORY MATRIX

Given X,
Compute:
o =L (b= Ax), Zo =Hrg, p =17z

For i = 1 until convergence do:

a, =1z /(AF%)t P;

X =% T4 P
=T —a L Ap
Z,y = Hry

B =ri+1tzi+1/ritzi

end. Pu=L"z,+8p

Note that:
-The system matrix A only appears multiplied by vectors

- When multiplying H by a vector, limited memory
formulation is employed
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Solving the Dual System of FAIPA

To solve the Dual System at each iteration of the PCG
method, we must compute:

(Dgt(x)B‘ng(x) —A‘lG(x)) z; zOR"
Where:
Vv =[1g(X) z is the gradient of an auxiliary constraint gt (X) Z

w=B"v is obtained with limited memory formulation

t
Dg (X) W IS a directional derivative of the constraints

Instead of storing the whole derivative matrix,

we just compute and store the products [1g(X) z

37

and [gi(x) w.




Computing 0g(x) z and gt (X) w

[lg(X)Z : Can be computed with the adjoint
variables method.

For linear elastic structures, one system with the
stiffness matrix must be solved.

(g'(X)w : Directional derivatives of displacements
In linear elastic structures follows from directional

derivation of the equilibrium equation.

THEN: two linear systems with the stiffness matrix are

solved at each iteration of the CG.

38



A structural optimization example:

——
= The optimization problem we are dealing with is the structural

volume minimization with Von-Misses stress constraints.

» The structures are rectangular plates submitted to in-plane
distributed loadings and supports.

= Structure responses are computed by FEA simulations using a
mesh of quadrilateral bilinear plane stress elements.

The thickness of an element is a design variable.
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A structural optimization example:

Structural Optimization Problem
2D plates submitted to in-plane distributed loadings.

Quadrilateral bilinear plane stress elements with Young’s
module of 210GPa and Poisson’s coefficient of 0.3 are
assumed for each element.

Design Variables: Thickness of each element
Objective Function: Structural volume
Constraints, for each element:

Von-Mises stress less than g,,,,=250MPa.

Thickness between 0.1 and 1.0 centimeter.
Number of LM pairs:

g,=8 (preconditioner of dual system, A)

0g=10 (quasi-Newton matrix, B)
Resources:

Memory: 1 Gb

Processor. AMD Athlon with 64 bits and 1.8 GHz



Example 1

1.2m 0.6 m

8000 N/cm?2

1m

| 0.6m | | 1.4m | | 0.6m |
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Example 1

£ N

300 elements

6075 elements

1200 elements
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Example 1

volume (cms)

—— 300 elementos
—&— 1200 elementos
—%— 6075 elementos

10

20 30 40 50 60
iteracao

lteration history
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Example 2

Im

8000 N/cm?2

il

|0.4m ‘

0.9m

‘O.4m |

0.9m
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Example 2

n

300 elements

" d

6075 elements

1200 elements

N
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Example 2

volume (cm3)

60

x10
25
;g: —+— 300 elementos
—8— 1200 elementos
—— 6075 elementos
2 H
15
1
0.5
0 | | | | | |
0 10 20 30 40 50
iteragdes

lteration history
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Example 3

16875, 67500 and 270000 elements
Initial thickness 0.95 cm

Lower bound of thickness t_. =1 mm

1m

Upper bound of thickness t. =1 cm gocm

all elements with isotropic material
Young module: 210 GPa
Poisson: 0.3

Stress constraint
Mises stress in center of element
less than 2.5x104 Pa

8000
N/cm

SN NN NN NN NN NN NN NN NN RN NN NSNS

3m




Example 3

16875

67500

270000

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1



Volume, cm?2

Example 3

Volume reduction

20000

15000

® 1 =16875
% n=67500
V' n=270000
10000
5000
0
2 4 6 810121416182022 242628 303234 363840424446 485052545658 606264 666870 727476 7880
1 35 7 911131517192123252729313335373941434547 495153555759616365676971 737577 7981
iteration
49

lterations history



lterations of Conjugate Gradient Method

Example 3

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Iteration of Conjugate Gradient Method

A4

Al 4 A " - MM
0200000 & e
T {4 S S S RS IR SR NN S KRN SN AN

2 4 6 8 10121416 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74
1 3 5 7 9 111315171921 232527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Iteration of FDIPA

% 5is2,16875
A 5is2,67500
< sis2,270000
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Conclusions

The present technique requires modest computational
resources due to Limited Memory and Conjugate Gradient
Methods:

Storage of quasi-Newton and pre-conditioner matrices are
not needed. Those matrices are represented using a few
LM pairs;

Constrained derivatives matrices are not stored. When
CG iterations number I1s small, less derivatives are
computed.

Dual system matrix is not allocated and sensitivity matrix
IS not computed, reducing the number of structural
analysis per iteration of FAIPA.
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