High Performance Computing in Bioinformatics

Thomas Ludwig (t.ludwig@computer.org)

Ruprecht-Karls-Universität Heidelberg Computer Science Department

Alexandros Stamatakis (stamatak@cs.tum.edu)

Technische Universität München Computer Science Department

Tutorial Outline

- PART I: High Performance Computing Thomas Ludwig
- PART II: HPC Computing in Bioinformatics
 Alexandros Stamatakis
 - Grand Challenges for HPC Bioinformatics
 - HPC Bioinformatics by Example of Phylogenetic Inference

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

What Do I Need?

- Small scale high performance computing
 - Cheapest version: use what you have Workstations with disks and network
 - A bit more expensive: buy PCs
 - E.g. 16 personal computers with disks and gigabit ethernet
 - It's mainly a human ressources problem
 - Network of workstations is time consuming to maintain
 - Software comes for free

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

What Do I Need ...?

- Large scale high performance computing
 - Buy 10.000 PCs or a dedicated supercomputer
 - Buy special hardware for networking and storage
 - Add a special building
 - Add an electric power station

- Main memory (Byte)
 - Personal computer: 1 GByte
 - Nr. 1 supercomputer: 10 TByte (factor 10.000)
- Disk space (Byte)
 - Single disk 2004: 200 GByte
 - Nr. 1 supercomputer: 700 TByte (factor 3.500)
- Tape storage (Byte)
 - Personal computer: 200 GByte
 - Nr. 1 supercomputer: 1.6 Pbyte (factor 8.000)

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Outline

- Introduction
- Architecture
- Top Systems
- Programming
- Problems
- Own Research
- The Future

Shared Memory Architecture...

- Advantages
 - Much easier programming
- Disadvantages
 - Limited scalability: up to 64 processors Reason: interconnection network becomes bottleneck
 - Limited extensibility
 - Very expensive due to high performance interconnection network

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Hybrid Architectures

Use several SMP systems

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

- Combination of shared memory systems and distributed memory system
- The good thing: scalable performance according to your financial budget
- The bad thing: programming gets even more complicated (hybrid programming)
- The reality: vendors like to sell these systems, because they are easier to build

Supercomputers vs. Clusters Supercomputers vs. Clusters... Supercomputers Supercomputers (Distributed/shared memory) Very expensive to buy Constructed by a major vendor (IBM, HP, ...) Usually high availability and scalability Use custom components (processor, network, ...) Custom (Unix-like) operating systems Clusters Clusters (Network of workstations, NOWs) Factor 10 cheaper to buy, but: Assembled by vendor or users Very expensive to own Commodity-of-the-shelf components (COTS) Lower overall availability and scalability Linux operating system © Thomas Ludwig, Alexandros Stamatakis, GCB'04 as Ludwig, Alexandros Stamatakis, GCB'04

Rank	Site Country/Year	Computer / Processors Manufacturer	Computer Family Model	Inst. type Installation Area	Rmax Rpeak	Nmax nhalf
1	Earth Simulator Center Japan/2002	Earth-Simulator / 5120	NEC Vector SX6	Research	35860 40960	1.0752e+06 266240
2	Lawrence Livermore National Laboratory United States/2004	Thunder Intel Itanium2 Tiger4 1.4GHz - Quadrics / 4096 California Digital Corporation	NOW - Intel Itanium Itanium2 Tiger4 Cluster - Quadrics	Research	19940 22938	975000 110000
3	Los Alamos National Laboratory United States/2002	ASCI Q - AlphaServer SC45, 1.25 GHz / 8192 HP	HP AlphaServer Alpha-Server-Cluster	Research	13880 20480	633000 225000
4	IBM - Rochester United States/2004	BlueGene/L DD1 Prototype (0.5GHz PowerPC 440 w/Custom) / 8192 IBM/ LLNL	IBM BlueGene/L BlueGene/L	Vendor	11680 16384	331775
5	NCSA United States/2003	Tungsten PowerEdge 1750, P4 Xeon 3.06 GHz, Myrinet / 2500 Dell	Dell Cluster PoverEdge 1750, Myrinet	Academic	9819 15300	630000
6	ECMWF United Kingdom/2004	e Server pSeries 690 (1.9 GHz Power4+) / 2112 IBM	IBM SP SP Power4+, Federation	Research Weather and Climate Research	8955 16051	350000
7	Institute of Physical and Chemical Res. (RIKEN) Japan/2004	RIKEN Super Combined Cluster / 2048 Fujitsu	Fujitsu Cluster Fujitsu Cluster	Research	8728 12534	474200 120000
8	IBM - Thomas Watson Research Center United States/2004	BlueGene/L DD2 Prototype (0.7 GHz PowerPC 440) / 4096 IBM/ LLNL	IBM BlueGene/L BlueGene/L	Research	8655 11469	294911
9	Pacific Northwest National Laboratory United States/2003	Mpp2 Integrity rx2600 Itanium2 1.5 GHz, Quadrics / 1936 HP	HP Cluster Integrity rx2600 Itanium2 Cluster	Research	8633 11616	835000 140000
10	Shanghai Supercomputer Center China/2004	Dawning 4000A, Opteron 2.2 GHz, Myrinet / 2560 Dawning	NOW - AMD NOW Cluster - AMD -	Research	8061 11264	728400 180000

1	Los Alamos National Laboratory United States/2003	Lightning Opteron 2 GHz, Myrinet / 2816 Linux Networx	NOW - AMD NOW Cluster - AMD - Myrinet	Research	8051 11264	761160 109208
2	Lawrence Livermore National Laboratory United States/2002	MCR Linux Cluster Xeon 2.4 GHz - Quadrics / 2304 Linux Networx/Quadrics	NOW - Intel Pentium NOW Cluster - Intel Pentium - Quadrics	Research	7634 11060	350000 75000
3	Lawrence Livermore National Laboratory United States/2000	ASCI White, SP Power3 375 MHz / 8192 IBM	IBM SP SP Pover3 375 MHz high node	Research	7304 12288	640000
4	NERSC/LBNL United States/2002	Seaborg SP Power3 375 MHz 16 way / 6656 IBM	IBM SP SP Pover3 375 MHz high node	Research	7304 9984	640000
5	NCSA United States/2004	TeraGrid, Itanium2 1.3/1.5 GHZ, Myrinet / 1776 IBM	NOW - Intel Itanium Titan Cluster Itanium2 - Myrinet	Academic	7215 10259	540000
6	Lawrence Livermore National Laboratory United States/2003	xSeries Cluster Xeon 2.4 GHz - Quadrics / 1920 IBM/Quadrics	IBM Cluster ×Series Cluster Xeon - Quadrics	Research	6586 9216	425000 90000
7	Lawrence Livermore National Laboratory United States/2004	Lilac xSeries Xeon 3.06 GHz, Quadrics / 1540 IBM	IBM Cluster ×Series Cluster Xeon - Quadrics	Research	6232 9425	
в	HPCx United Kingdom/2004	eServer pSeries 690 (1.7 GHz Power4+) / 1600 IBM	IBM SP SP Pover4+, Federation	Academic	6188 10880	355000
9	<u>Grid Technology Research</u> <u>Center, AIST</u> Japan/2004	AIST Super Cluster P-32 AIST Super Cluster P-32, Opteron 2.0 GHz, Myrinet / 2200 IBM	IBM Cluster eServer Cluster Opteron - Myrinet	Research	6155 8800	
D	Oak Ridge National Laboratory	Cray X1 / 504	Cray X1	Research	5895	494592

Parallelization Paradigms...

- Category 2: non-trivial parallelism
- Usually: data partitioning
 Data is partitioned amongst the processes
 Each process computes results
 During computation processes have to coordinate with each other: done by communication
 A selected process organizes input/output
- Example: Molecular dynamics simulations
- Only for experienced programmers

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Parallelization Support

- Parallelization via automatically parallelizing compilers
 Complicated, seldom, inefficient, not scalable
- Parallelization for shared memory architectures
 Language support via OpenMP
 - Only for small node numbers
- Parallelization for distributed memory architectures
 - Done manually
 - Decorate program with message passing calls

Adapt parallel programs to parallel I/O concepts

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

PART II: HPC in Bioinformatics Grand Challenges in HPC Bioinformatics

- HPC Bioinformatics by Example of Phylogenetic Inference
 - phylogenetic analysis
 - maximum likelihood
 - bayesian inference
 - sequential codes
 - parallel & distributed RAxML
 - future developments

- The prerequisite for phylogenetic analysis
- Computational effort increases exponentially in time **and** space with standard dynamic programming approach and Sum-of-Pairs score \rightarrow
 - Good heuristics
 - Parallel algorithms
 - Fine-grained, e.g. on alignment matrix level
 - FPGA implementations for pairwise alignment
 - Heuristics & parallel algorithm
 - coarse-grained divide-and-conquer

Performance of Phylogeny Programs

Simulated data

generate simulated "true" tree
 Standard program: r8s

- generate simulated alignment for the tree
 Standard program: Seq-Gen
- compute tree with phylogeny program
- measure topological distance to true tree
 - Standard measure: Robinson-Foulds distance

Problems

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

- perfect world: no gaps, no sequencing errors
- evolutionary model known a priori

Performance of Phylogeny Programs

- Real data alignments
 - compute tree with phylogeny programs
 - compare final tree scores
 - significance of small δ between final ML scores
 apply likelihood ratio tests
 - apply likelihood ratio tests
 - remember that programs return log-likelihood values
 - High score-accuracy required: 99.99%

Problems

- real tree not known
- evolutionary model not known
- application to one class of model (ML, MP) only

data	PHYML	secs	MrBayes	secs	RAxML	secs	R > PHY secs	PAXML	hrs
101_SC	-74097.6	153	-77191.5	40527	-73919.3	617	31	-73975.9	47
150_SC	-44298.1	158	-52028.4	49427	-44142.6	390	33	-44146.9	164
150_ARB	-77219.7	313	-77196.7	29383	-77189.7	178	67	-77189.8	300
200_ARB	-104826.5	477	-104856.4	156419	-104742.6	272	99	-104743.3	775
250_ARB	-131560.3	787	-133238.3	158418	-131468.0	1067	249	-131469.0	1947
500_ARB	-253354.2	2235	-263217.8	366496	-252499.4	26124	493	-252588.1	7372
1000_ARB	-402215.0	16594	-459392.4	509148	-400925.3	50729	1893	-402282.1	9898
218_RDPII	-157923.1	403	-158911.6	138453	-157526.0	6774	244	n/a	n/a

S	equ	ent	tial I	Res	ults	: R	eal	Data	Э
data	PHYML	secs	MrBayes	secs	RAxML	secs	R > PHY secs	PAXML	hrs
101_SC	-74097.6	153	-77191.5	40527	-73919.3	617	31	-73975.9	47
150_SC	-44298.1	158	-52028.4	49427	-44142.6	390	33	-44146.9	164
150_ARB	-77219.7	313	-77196.7	29383	-77189.7	178	67	-77189.8	300
200_ARB	-104826.5	477	-104856.4	156419	-104742.6	272	99	-104743.3	775
250_ARB	-131560.3	787	-133238.3	158418	-131468.0	1067	249	-131469.0	1947
500_ARB	-253354.2	2235	-263217.8	366496	-252499.4	26124	493	-252588.1	7372
1000_ARB	-402215.0	16594	-459392.4	509148	-400925.3	50729	1893	-402282.1	9898
218_RDPII	-157923.1	403	-158911.6	138453	-157526.0	6774	244	n/a	n/a
© Thomas	Ludwig, Alexa	andros St	amatakis, GCE	104					. 1

	Mei	mory rea	quiremen	ts
Γ		1000 taxa	10000 taxa	
F	RAxML	200MB	750MB	
F	PHYML	900MB	8.8GB	
١	MrBayes	1150MB	not available	

Recent HW-specific optimization

- Like every ML program RAxML makes many calls to exp() and log() in vectors → expensive
- Utilisation of Intel[™] MKL (Math Kernel Library) on a Xeon 2.4GHz CPU
- Performance boost of over 30% ...
- ... in half a day of work

