
1

High Performance
Computing in
Bioinformatics

Thomas Ludwig (t.ludwig@computer.org)
Ruprecht-Karls-Universität Heidelberg

Computer Science Department

Alexandros Stamatakis (stamatak@cs.tum.edu)
Technische Universität München
Computer Science Department

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 2

Tutorial Outline
� PART I: High Performance Computing

Thomas Ludwig

� PART II: HPC Computing in Bioinformatics
Alexandros Stamatakis
� Grand Challenges for HPC Bioinformatics
� HPC Bioinformatics by Example of Phylogenetic

Inference

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 3

PART I
High Performance Computing

� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 4

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 5

Introduction
Why High Performance Computing?

� Situation in science and engineering
� Replace complicated physical experiments by

computer simulations
� Evaluate more fine-grained models

� User requirements
� Compute masses of individual tasks
� Compute complicated single tasks

� Available computational power
� Single workstation is not sufficient

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 6

What Is It?

� High Performace Computing (HPC),
Networking and Storage
Deals with high and highest performance

computers, with high speed networks, and
powerful disk and tape storage systems

� Performance improvement
� Compared to personal computers and small

workstations:
Factor 100...10.000

2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 7

What Do I Need?

� Small scale high performance computing
� Cheapest version: use what you have

Workstations with disks and network

� A bit more expensive: buy PCs
� E.g. 16 personal computers with disks and gigabit

ethernet

� It´s mainly a human ressources problem
� Network of workstations is time consuming to

maintain
� Software comes for free

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 8

What Do I Need...?

� Large scale high performance computing
� Buy 10.000 PCs or a dedicated

supercomputer
� Buy special hardware for networking and

storage
� Add a special building
� Add an electric power station

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 9

How Much Do I Have to Pay?
� Small scale (<64 nodes)

� 1000€/node
� Medium scale (64-1024 nodes)

� 2000€/node (multiprocessor, 64-bit)
� 1500€/node for high speed network
� 500€/node for high performance I/O

� Large scale (>1024 nodes)
� Money for building
� Money for power plant
� Current costs range between 20...400 million

Euros

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 10

Application Fields
� Numerical calculations and simulations

� Particle physics
� Computational fluid dynamics
� Car crash simulations
� Weather forecast
� ...

� Non-numerical computations
� Chess playing, theorem proving
� Commercial database applications

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 11

Application Fields...
� All fields of Bioinformatics

� Computational genomics
� Computational proteomics
� Computational evolutionary biology
� …

� In general
� Everything that runs beween 1 and 10.000 days
� Everything that uses high volumes of data

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 12

Measures
Mega (220≅106) – Giga (230≅109) – Tera (240≅1012)

Peta (250≅1015) – Exa (260≅1018)

� Computational Performance (Flop/s)
Flop/s = floating point operations per second
� Modern processor: 3 GFlop/s
� Nr. 1 supercomputer: 35 TFlop/s (factor 10.000)

� Network performance (Byte/s)
� Personal computer: 10/100 MByte/s
� Supercomputer networks: gigabytes/s

3

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 13

Measures...
� Main memory (Byte)

� Personal computer: 1 GByte
� Nr. 1 supercomputer: 10 TByte (factor 10.000)

� Disk space (Byte)
� Single disk 2004: 200 GByte
� Nr. 1 supercomputer: 700 TByte (factor 3.500)

� Tape storage (Byte)
� Personal computer: 200 GByte
� Nr. 1 supercomputer: 1.6 Pbyte (factor 8.000)

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 14

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 15

Architecture

� Basic classification concept:
How is the main memory organized?
� Distributed memory architecture
� Shared memory architecture

� Available systems
� Dedicated supercomputers
� Cluster systems

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 16

Distributed Memory Architecture
� Autonomous computers

connected via network
� Processes on each compute

node have access to local
memory only

� Parallel program spawns
processes over a set of
processors

� Communication between
computers (processes) via
message passing

� Called: multi computer system

processor processor

local
memory

local
memory

interconncetion network

recv() send()

computer 1 computer 2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 17

Distributed Memory Architecture...
� Advantages

� Good scalability: just buy new nodes
� Concept scales up to 10.000+ nodes

� You can use what you already have
� Extend the system when you have money and

need for more power
� Disadvantages

� Complicated programming: parallelization of
formerly sequential programs
(including complicated debugging, performance
tuning, load blancing, etc.)

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 18

Shared Memory Architecture
� Several processors in one box

(e.g. multiprocessor mother-
board)

� Each process on a processor
sees complete address space

� Communication between
processes via shared
variables

� Called: multiprocessor
system, symmetric multi-
processing system (SMP)

processor processor

Interconnection network

shared memory

computer

4

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 19

Shared Memory Architecture...

� Advantages
� Much easier programming

� Disadvantages
� Limited scalability: up to 64 processors

Reason: interconnection network becomes
bottleneck

� Limited extensibility
� Very expensive due to high performance

interconnection network

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 20

Hybrid Architectures

� Use several SMP systems
� Combination of shared memory systems and

distributed memory system
� The good thing: scalable performance

according to your financial budget
� The bad thing: programming gets even

more complicated (hybrid programming)
� The reality: vendors like to sell these

systems, because they are easier to build

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 21

Supercomputers vs. Clusters

� Supercomputers
(Distributed/shared memory)
� Constructed by a major vendor (IBM, HP, ...)
� Use custom components (processor, network,

...)
� Custom (Unix-like) operating systems

� Clusters (Network of workstations, NOWs)
� Assembled by vendor or users
� Commodity-of-the-shelf components (COTS)
� Linux operating system

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 22

Supercomputers vs. Clusters...

� Supercomputers
� Very expensive to buy
� Usually high availability and scalability

� Clusters
� Factor 10 cheaper to buy, but:
� Very expensive to own
� Lower overall availability and scalability

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 23

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 24

TOP500-List

� Lists world 500 most powerful systems
www.top500.org

� Update in June and November
� Ranking based on numerical algorithm
� In 6 months almost half of the systems

fall off the list
� The majority of systems now are clusters

5

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 25

TOP500 Rank 1-10

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 26

TOP500 Rank 11-20

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 27

TOP500 Performance Statistics
factor 1000 in 11 years

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 28

TOP500 Performance Trends

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 29

☺

my notebook

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 30

EarthSimulator / NEC

earth quake
protection

air cooling

compute node
cabinets (320)

data archive / tape robots disks

networking
cabinets (65)

cables

power supply

6

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 31

EarthSimulator / NEC
� 640 nodes x 8 processors

= 5120 processors

� 200MioUSD for computer
� 200MioUSD for building

and electric power station

� Building: 3250m2

earth quake protected
� Power: 7MW

� 10TByte main memory
� 700TByte disk
� 1.6PBytes tapes

� 83.000 copper cables
� 2.800km / 220t of

cabeling

� Application field: climate
simulations

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 32

BlueGene / IBM

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 33

BlueGene / IBM
� IBM intends to break the

1PFlop/s barrier by end of
2006

� Power consumption and
floor space problems
solved by new packing
technology
(less than 30 Earth-
Simulators! ☺)

� Application fields:
bioinformatics
� Ab initio protein folding
� Molecular dynamics on a

millisecond to second
time scale

� Protein structure
prediction

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 34

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 35

Programming
Parallelization Paradigms

� What do we have?
� Many processors, one program, much data

� How do we proceed?
� Start one instance of the program on each

processor (called process)
� Give it one part of the data
� Collect the result

� Is this all?
� Well, sometimes yes ☺, sometimes no /

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 36

Parallelization Paradigms...
� Remember the two categories

1. Compute masses of individual tasks
2. Compute complicated single taks

� Category 1: embarrassingly parallel
� Master/worker concept:

Start master on one processor
Start workers on all other processors
Master sends data to workers
Master collects results from workers

� Example: Analysis of different molecules

7

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 37

Parallelization Paradigms...

� Category 2: non-trivial parallelism
� Usually: data partitioning

Data is partitioned amongst the processes
Each process computes results
During computation processes have to coordinate

with each other: done by communication
A selected process organizes input/output

� Example: Molecular dynamics simulations
� Only for experienced programmers

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 38

Parallelization Support
� Parallelization via automatically parallelizing compilers

� Complicated, seldom, inefficient, not scalable

� Parallelization for shared memory architectures
� Language support via OpenMP
� Only for small node numbers

� Parallelization for distributed memory architectures
� Done manually
� Decorate program with message passing calls

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 39

Message Passing

� Basic principle: use send and receive
library calls to transfer data

start:
computeData();
send(proc2,data);
recv(proc2,data);
goto start;

process proc1
start:

computeData();
send(proc1,data);
recv(proc1,data);
goto start;

process proc2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 40

Message Passing...
� Message passing standard:

MPI (Message Passing Interface)
� Conceived in the mid 90s

� Language bindings: C, C++, Fortran (others available)
� Divided into two parts

� MPI: just message passing
� MPI-2: process management, input/output, ...

� Available implementations
� Vendor versions on all major supercomputers
� Open source versions MPICH and LAME for

workstations clusters

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 41

Message Passing...
� How big is MPI/MPI-2?

� Several hundreds of library calls!
� Don´t worry: half a dozen is enough

to start with
� What makes MPI so copious?

� All sorts of library calls to just have
more comfort with programming:
� Collective calls: e.g. compute a global sum over all processes

and distribute it to all of them
� Special communication calls: e.g. non-blocking calls provide

means to overlap computation and communication
© Thomas Ludwig, Alexandros Stamatakis, GCB’04 42

Message Passing... The Dark Side
� Parallel programming in general introduces new

error category: Time dependent errors
� The reason for this

� Processes run in parallel but are not synchronized;
timing depends on concrete acitivites on the nodes

� The consequences!
� An erroneous program crashes only sometimes
� When you slow it down to observe it, it does not crash
� The precondition for the crash cannot be reproduced

(nondeterminism)

� The solution? Well, next question /

8

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 43

Performance Limitations:
Amdahl´s Law

� How to evaluate parallel performance
� Run with 1 and with n processors
� Speedup: S(n) = t(1) / t(n)
� Efficiency: E(n) = S(n) / n

� Theoretical maximum: Smax=n
� Practical maximum by Amdahl´s Law

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 44

Performance Limitations:
Amdahl´s Law...

� Every parallal program has a non-parallel
part (input/output, initialization, etc.)

� Fraction of non-parallel part is f
� Maximum speedup with Amdahl

SAmdahl = 1 / (f + (1-f)/p)
Examples:

� F=0.01 ⇒ SAmdahl=100
� F=0.001 ⇒ SAmdahl=1000

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 45

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 46

Problems
Fault Tolerance

� What happens when during runtime a node
crashes? (probability increases with number of
components and execution time)

� Today
� The program just crashes
� The program crashes but can be restarted from a

checkpoint

� In the future
� The program continues with execution and uses a

different set of nodes

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 47

High Performance Input/Output

� How can we handle terabytes and
petabytes of input/output data?

� Today
� Not yet too efficiently; often a master

process handles all I/O

� In the future
� All processes perform I/O-calls (parallel I/O)
� All nodes have efficient access to high

performance I/O hardware

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 48

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

9

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 49

Own Research
High Performance Parallel I/O

� High performance I/O is a major challenge
today

� Research activities
� Investigate load balancing mechanisms for

parallel I/O systems (i.e. distribute data to disks
according to load)

� Provide performance measurement tools to see
the influence of I/O library calls in the source
code

� Adapt parallel programs to parallel I/O concepts

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 50

Outline
� Introduction
� Architecture
� Top Systems
� Programming
� Problems
� Own Research
� The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 51

The Future
Petaflops and Petabytes

� The new borders of supercomputing
� Petaflops: maybe by end of 2006?
� Petabytes: next year
� Number of processors: 10.000 and more

� However: do we have the right
algorithms and programs for that?

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 52

Gridcomputing

� The new hype of supercomputing
� Idea: as with the power grid

� Computational performance should be available
everywhere

� Computational performance can be produced at
various places

� Concept
� Join parallel computers, cluster, compute centers
� Offer their aggregate compute performance

� Problems
� Programming, management, security, ...

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 53

Limitations of High Performance
Computing

� Reconsider: „everything that runs between
1 and 10000 days“
� Current supercomputers can reduce the

program runtime by a maximum factor of 5
orders of magnitude

� What to do, if you want to compute e.g.
billions of molecular variations?

� There is only one answer:
First: Improve the algorithm!
Second: Use supercomputers

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 54

PART II: HPC in
Bioinformatics

� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

10

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 55

Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 56

The Classic Slide:
GenBank Data Growth

Number of
Base Pairs

Years1980 2004

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 57

Increase in Nucleotide
Substitution Model Complexity

Amount of
arithmetic
operations

Years1969 2004

F81JC69 HKY85 GTR GTR + Γ

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 58

Grand Challenges
� Protein folding & structure prediction
� Homology search
� Multiple alignment
� Genomic sequence analysis
� Gene finding
� Gene expression data analysis
� Drug discovery
� Phylogenetic inference

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 60

Grand Challenges
� Protein folding & structure prediction
� Homology search
� Multiple alignment
� Genomic sequence analysis
� Gene finding
� Gene expression data analysis
� Drug discovery
� Phylogeny construction

Main focus
of this talk!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 62

Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially

in time and space with standard dynamic
programming approach and Sum-of-Pairs
score →

Which is the
adequate score

function?

11

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 63

Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially

in time and space with standard dynamic
programming approach and Sum-of-Pairs
score →
� Good heuristics
� Parallel algorithms

� Fine-grained, e.g. on alignment matrix level
� FPGA implementations for pairwise alignment

� Heuristics & parallel algorithm
� coarse-grained divide-and-conquer

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 64

Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially

in time and space with standard dynamic
programming approach and Sum-of-Pairs
score →
� Good heuristics
� Parallel algorithms

� Fine-grained, e.g. on alignment matrix level
� FPGA implementations for pairwise alignment

� Heuristics & parallel algorithm
� coarse-grained divide-and-conquer

Type of reverse
engineering: How
can I change the

algorithm to be able
to parallelize it with

MPI?

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 65

An example: DCA
� Stoye et al (1997) Divide-and-Conquer

Alignment Algorithm (DCA)
1. Divide sequences into smaller subsequence-sets
2. If length of multiple subsequence-set <

predifined threshold value L compute optimal
subalignments in parallel

3. Concatenate subalignments to whole alignment

� The Art consists in the design of intelligent
decomposition heuristics to obtain near
optimal concatenated alignment → non-
trivial problem

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 70

DCA
S1

S2

S3

S1

S2

S3

S1

S2

S3

Divide

S2

S3

S1 S1

S2

S3

Align

S2

S3

S1

Concatenate

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 71

Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 72

Phylogenetic Analysis
� Motivation

� Tree-of-life
� New insights in medical & biological research
� CIPRES: NSF-funded 11.6 million $ tree-of-life

project (www.phylo.org)

� Applications of phylogenetic trees
� Bader et al (2001) Industrial applications of high-

performance computing for phylogeny reconstruction.
� Baker et al (1994) Which whales are hunted? A

molecular genetic approach to whaling.

12

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 74

Phylogenetic Methods
� Input: “good” multiple Alignment
� Output: unrooted binary tree
� Various models for phylogenetic inference

� Models differ in computational complexity &
accuracy of final trees

� Fast & simple models
� Neighbor Joining
� Parsimony (MP)

� Slow & complex models
� Maximum Likelihood (ML)
� Bayesian Methods

We focus on
ML &

Bayesian
Methods

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 75

Remember !
� Input need not be DNA or protein sequence

data → gene order data
� Moret et al (2001) GRAPPA: a high performance

computational tool for phylogeny reconstruction from
gene-order data.

� Model need not be a tree → networks
� Gusfield et al (2003) Efficient reconstruction of

phylogenetic networks with constrained
recombination.

� Output need not be a strictly bifurcating tree
→ multifurcating tree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 76

Remember !
� Input need not be DNA or protein sequence

data → gene order data
� Moret et al (2001) GRAPPA: a high performance

computational tool for phylogeny reconstruction from
gene-order data.

� Model need not be a tree → networks
� Gusfield et al (2003) Efficient reconstruction of

phylogenetic networks with constrained
recombination.

� Output need not be a strictly bifurcating tree
→ multifurcating tree

We focus on computation of
strictly bifurcating phylogenetic
trees with maximum likelihood
for DNA and Protein sequence

data !

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 77

Example: Phylogeny of great
Apes

Orangutan Gorilla Chimpanzee Human

common ancestor time

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 82

The number of trees explodes!

BANG !

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 84

The Algorithmic Problem
� Number of potential trees grows

exponentially

2.84 * 10^7650

7.905.853.580.62515

2.027.02510

155

Trees# Taxa
This is ≈ the
number of

atoms in the
universe
10^80

13

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 86

Maximum Likelihood
Maximum Likelihood calculates:

1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n

Problem II: Computation of likelihood function is expensive

Solution: algorithmic optimizations + new heuristics + HPC

S1

S2

S3v1

v2 v3 v4

v5

v6

v7

S5

S4

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 87

Maximum Likelihood
Maximum Likelihood calculates:

1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n

Problem II: Computation of likelihood function is expensive

Solution: algorithmic optimizations + new heuristics + HPC

S1

S2

S3v1

v2 v3 v4

v5

v6

v7

S5

S4

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 89

Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d)

Likelihood of the tree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 90

Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d)

prior probability of the tree:
must be assumed; all possible
trees are usually considered to

be equally probable

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 91

Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d)

problematic term: P(d) equals the
sum of the likelihood x prior probability
of the tree + model for all possible
trees.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 92

Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d)

problematic term: P(d) equals the
sum of the likelihood x prior probability
of the tree + model for all possible
trees.

impossible to
calculate!

14

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 93

Bayesian Inference
� Solution: Metropolis-Coupled Markov Chain

Monte Carlo Simulation (MC³)
� Advantages compared to ML:

� straightforward statistical measure of phylogeny
� Avoids bootstrapping & provides straightforward

support values

� Disadvantages compared to ML:
� Requires prior probabilities for tree & model
� MC³ convergence problem
� More difficult to parallelize: Feng et al (2003) Parallel

algorithms for bayesian phylogenetic inference.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 95

MC³ Algorithm

random starting tree

t_1_1 t_2_1

heated chain cold chain

Tree proposal mechanism

The art in the design of bayesian phylogenetic
analysis lies in the tree proposal mechanism.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 96

MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

R = L(t_2_2)/L(t_2_1)
R > 1→ accept tree

R = L(t_1_2)/L(t_1_1)
R < 1 → accept tree
if random(0,1) < R

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 97

MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

t_1_2 t_2_3if L(t_1_2) > L(t_2_3)
→ swap chain states

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 98

MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

t_1_2 t_2_3

t_1_3 t_2_4

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 99

ML vs. Bayes

Model parameter x (transition/transversion ratio)

Likelihood
value

ML

Bayes

15

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 100

MC³ convergence problem

Log Likelihood

Time

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 101

MC³ convergence problem

Log Likelihood

Time

Area of apparent stationarity

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 102

MC³ convergence problem

Log Likelihood

Time

ML analysis reference

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 103

Real-world example

ML starting
tree

random
starting tree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 104

Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 106

ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Phylogenetics are an
algorithmic discipline

16

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 108

ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Parallel program

Iterate

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 109

Basic Algorithms
� Two basic classes of algorithms

I. Progressive algorithms: progressive
insertion of sequences into the tree e.g.
stepwise addition

II. Global algorithms:
� use NJ or parsimony starting tree
� optimize tree by application of standard

topological alterations
� NNI: Nearest Neighbor Interchange
� TBR: Tree Bisection Reconnection
� Subtree Rearrangements

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 110

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 111

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 112

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 113

NNI

17

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 114

TBR

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 115

TBR

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 116

TBR

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 117

TBR

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 118

TBR

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 119

TBR

18

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 120

Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 121

Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 122

Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1

+1

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 123

Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1

+1

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 124

Subtree Rearrangements

ST5

ST2ST6

ST4

ST3

ST1

+1

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 125

Subtree Rearrangements

ST5

ST2ST6

ST4

ST3

ST1

+1

19

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 126

Subtree Rearrangements

ST5

ST2

ST6 ST4

ST3

ST1

+2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 127

Subtree Rearrangements

ST5

ST2

ST6 ST4

ST3

ST1

+2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 128

State-of-the-Art sequential
phylogeny programs I

� PHYML: fast & accurate on simulated data
� Guindon et al (2003) A simple, fast, and accurate

algorithm to estimate large phylogenies by maximum
likelihood.

� RAxML-III: fast & accurate on real data
� Stamatakis et al (2004) RAxML-III: A fast program for

maximum likelihood-based inference of large
phylogenetic trees.

� MetaPigA: fastest genetic search algorithm
� Lemmon et al (2002) The metapopulation genetic

algorithm: An efficient solution for the problem of
large phylogeny estimation.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 129

State-of-the-Art sequential
phylogeny programs II

� IQPNNI: accurate on real & simulated data;
slower than PHYML/RAxML
� Vinh et al (2004) IQPNNI: Moving fast through tree

space and stopping in time.

� PAUP*: Many options for MP & ML searches; very
slow on ML, not available free of charge
� Swofford (1998) PAUP* 4.0 - Phylogenetic Analysis

Using Parsimony (*and Other Methods).

� MrBayes: fast bayesian inference
� Huelsenbeck (2001) MrBayes: Bayesian inference of

phylogenetic trees.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 130

Performance of Phylogeny
Programs

� Quantitative Measures
� Accuracy
� Time consumption
� Memory requirements

� Qualitative Measures
� Number of implemented evolutionary models
� Ability to optimize evol. model parameters
� Availability: negative examples TNT, DCM
� Code for various platforms

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 131

Performance of Phylogeny
Programs

� Quantitative Measures
� Accuracy
� Time consumption
� Memory requirements

� Qualitative Measures
� Number of implemented evolutionary models
� Ability to optimize evol. model parameters
� Availability: negative examples TNT, DCM
� Code for various platforms

Memory consumption is an
important

—often underestimated—
problem !

20

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 132

Performance of Phylogeny
Programs

� Simulated data
� generate simulated “true” tree

� Standard program: r8s

� generate simulated alignment for the tree
� Standard program: Seq-Gen

� compute tree with phylogeny program
� measure topological distance to true tree

� Standard measure: Robinson-Foulds distance

� Problems
� perfect world: no gaps, no sequencing errors
� evolutionary model known a priori

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 133

Performance of Phylogeny
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model not known
� application to one class of model (ML, MP) only

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 134

Performance of Phylogeny
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model not known
� application to one class of model (ML, MP) only

The optimization of trees
for real data is generally

significantly harder than for
simulated data!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 135

Performance of Phylogeny
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model not known
� application to one class of model (ML, MP) only

Current research issue:
When to stop the analysis?

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 136

Performance of Phylogeny
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model not known
� application to one class of model (ML, MP) only

Current issue: Standard
real-data benchmark set

required!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 137

When to stop the analysis?

21

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 138

When to stop the analysis?

Is this improvement
worth the extra time?

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 139

Survey of sequential Programs
� Comparison on small simulated alignemnts

� Williams et al (2003) An investigation of phylogenetic
likelihood methods.

� Evaluated RAxML, PHYML, MrBayes on 50
simulated alignments with 100 taxa

� Used 9 real-world alignments with 101-1000
taxa

� Results:
� RAxML best & fastest on real data
� MrBayes best on simulated data
� MrBayes significantly slower than PHYML, RAxML

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 140

Sequential Results: Simulated
Data

PHYML: 0.0796 / 35.21 secs
MrBayes: 0.0741 / 945.32 secs

RAxML: 0.0808 / 131.05 secs
RAxML: 0.0818 / 29.27 secs

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 141

Sequential Results: Real Data

n/an/a2446774-157526.0 138453-158911.6 403 -157923.1 218_RDPII

9898-402282.1189350729-400925.3 509148 -459392.4 16594 -402215.01000_ARB

7372-252588.149326124 -252499.4 366496-263217.8 2235-253354.2500_ARB

1947-131469.02491067-131468.0158418 -133238.3787-131560.3250_ARB

775-104743.399272-104742.6156419-104856.4 477-104826.5200_ARB

300-77189.867 178-77189.7 29383 -77196.7313-77219.7150_ARB

164-44146.933390-44142.649427-52028.4158-44298.1150_SC

47-73975.931617-73919.340527-77191.5153-74097.6101_SC

hrsPAXMLR > PHY
secs

secsRAxMLsecsMrBayessecsPHYMLdata

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 142

n/an/a2446774-157526.0 138453-158911.6 403 -157923.1 218_RDPII

9898-402282.1189350729-400925.3 509148 -459392.4 16594 -402215.01000_ARB

7372-252588.149326124 -252499.4 366496-263217.8 2235-253354.2500_ARB

1947-131469.02491067-131468.0158418 -133238.3787-131560.3250_ARB

775-104743.399272-104742.6156419-104856.4 477-104826.5200_ARB

300-77189.867 178-77189.7 29383 -77196.7313-77219.7150_ARB

164-44146.933390-44142.649427-52028.4158-44298.1150_SC

47-73975.931617-73919.340527-77191.5153-74097.6101_SC

hrsPAXMLR > PHY
secs

secsRAxMLsecsMrBayessecsPHYMLdata

Sequential Results: Real Data

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 143

Sequential Results: Real Data

22

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 144

Sequential Results: Real Data

State-of-the-Art parallel
program in 2002 !

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 145

Sequential Results: Real Data

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 146

Sequential Results: Real Data

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 147

Memory requirements

not
available

1150MBMrBayes

8.8GB900MBPHYML

750MB200MBRAxML

10000 taxa1000 taxa

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 149

Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Advantage of RAxML:
search starts from distinct

points in search space

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 150

Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

RAxML performs fast lazy
rearrangements

23

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 151

Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

Iterate while tree improves

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 152

Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

Iterate while tree improves

RAxML uses Subtree Equality Vectors: Stamatakis et al
(2002) Accelerating Parallel Maximum Likelihood-based
Phylogenetic Tree Calculations using Subtree Equality
Vectors.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 153

Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 154

Parallel & Distributed RAxML
� Design goals

- minimize communication overhead
- attain good speedup

� Master-Worker architecture
� 2 computational phases

I. Computation of # workers parsimony trees
II. Rearrangement of subtrees at each worker

� Program is non-deterministic → every run
yields distinct result, even with fixed
starting tree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 155

Parallel RAxML: Phase I
Distribute alignment file &
compute parsimony trees

Master
Process

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 156

Parallel RAxML: Phase I
Receive parsimony trees &
select best as starting tree

Master
Process

24

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 157

Parallel RAxML: Phase II
Distribute currently best tree

Master
Process

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 158

Parallel RAxML: Phase II
Workers issue work requests

Master
Process

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 159

Parallel RAxML: Phase II
Distribute subtree IDs

Master
Process

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 160

Parallel RAxML: Phase II
Distribute subtree IDs

Master
Process

Only one integer must be
sent to each node!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 161

Parallel RAxML: Phase II

ST1 ST2

ST4ST3
© Thomas Ludwig, Alexandros Stamatakis, GCB’04 162

Parallel RAxML: Phase II

ST1 ST2

ST4ST3

25

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 163

Parallel RAxML: Phase II
Receive result trees and
continue with best tree

Master
Process

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 164

Speedup

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 165

Speedup
Slightly superlinear

speedup due to non-
determinism!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 166

RAxML: Biological Research
1. Parallel inference of 5 10.000 taxon trees

containing Bacteria, Eukarya, Archaea on a
Linux PC Cluster

� Accumulated CPU hours per tree ≈ 3200
� Largest ML-analysis to date
� Major clades correctly identified

2. Sequential analysis of 2415 mammals
(cytochrome-b sequences)

� “Traditional” reference tree available
� Error about 10-13%

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 167

Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 168

Future Developments
� Visualization

26

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 169 © Thomas Ludwig, Alexandros Stamatakis, GCB’04 170

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 171

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

Problem 1: Currently only 2
methods available for
alignment division:
RAxML & DCM

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 172

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

Problem 2:Resolving
multifurcations is hard
optimization of the entire
tree required

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 173

Distributed D & C
Construct Guide Tree & perform

tree-based alignment divison

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 174

Distributed D & C

Compute Subtrees

27

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 175

Distributed D & C

Merge into Guide Tree &
Re-Divide Alignment

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 176

Distributed D & C

Compute Subtrees

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 177

Recent Work on D & C

� Rec-I-DCM3: Very fast on parsimony
� Roshan (2004) Rec-I-DCM3: A fast algorithmic

technique for reconstructing large phylogenetic trees.

� PhyNav: Zoom-in zoom-out technique
� Vinh et al (2004) PhyNav: A novel approach to

reconstruct large phylogenies.

� BWD: New supertree reconstruction
method using distances

� Stephen J. Willson (2004) Constructing rooted
supertrees using distances.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 178

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 179

Shared Memory Parallelism

P

Q
R

P[i] = f(g(Q[i]) , g(R[i]))

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 180

Shared Memory Parallelism

P

Q
R

P[i] = f(g(Q[i]) , g(R[i]))

virtual root

This operation uses ≈ 90%
of total execution time !

28

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 181

Shared Memory Parallelism

P

Q
R

P[i] = f(g(Q[i]) , g(R[i]))

virtual root

This operation uses ≈ 90%
of total execution time !
→ simple fine-grained
parallelisation

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 182

Shared Memory Parallelism

P

Q
R

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 183

Shared Memory Parallelism

P

Q
R

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 184

Shared Memory Parallelism

P

Q
R

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 185

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors
� Combination of ML hill-climbing and MC³-

like sampling algorithms

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 186

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors
� Combination of ML hill-climbing and MC³-

like sampling algorithms

Potential Advantages:
1. Large number of

sampled trees to build
consensus tree

2. Faster convergence to
best-known likelihood?

29

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 187

Combined method

Start sampling?

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 188

Recent HW-specific
optimization

� Like every ML program RAxML makes
many calls to exp() and log() in vectors
→ expensive

� Utilisation of Intel™ MKL (Math Kernel
Library) on a Xeon 2.4GHz CPU

� Performance boost of over 30% …
� … in half a day of work

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 189

On-Line Resources
HPC Resources
� TOP500 List

www.top500.org

� BlueGene
www.research.ibm.com/bluegene/

� EarthSimulator
www.es.jamstec.go.jp

� MPI-Forum
www.mpi-forum.org

� Global Grid Form
www.gridforum.org

� MPICH
www-unix.mcs.anl.gov/mpi/mpich/

� OpenMP
www.openmp.org

Bioinformatics Resources
� CIPRES project

www.phylo.org

� Felsenatein’s phylogeny page
evolution.genetics.washington.edu/
phylip/software.html

� PHYML download
www.lirmm.fr/~guindon/phyml.html

� RAxML download
wwwbode.cs.tum.edu/~stamatak/
research.html

� IQPNNI & PhyNav download
www.bi.uni-duesseldorf.de/software

