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PART I
High Performance Computing
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� Top Systems
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� Problems
� Own Research
� The Future
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Introduction
Why High Performance Computing?

� Situation in science and engineering
� Replace complicated physical experiments by 

computer simulations
� Evaluate more fine-grained models

� User requirements
� Compute masses of individual tasks
� Compute complicated single tasks

� Available computational power
� Single workstation is not sufficient
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What Is It?

� High Performace Computing (HPC), 
Networking and Storage
Deals with high and highest performance 

computers, with high speed networks, and 
powerful disk and tape storage systems

� Performance improvement
� Compared to personal computers and small 

workstations:
Factor 100...10.000
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What Do I Need?

� Small scale high performance computing
� Cheapest version: use what you have

Workstations with disks and network

� A bit more expensive: buy PCs
� E.g. 16 personal computers with disks and gigabit 

ethernet

� It´s mainly a human ressources problem
� Network of workstations is time consuming to 

maintain
� Software comes for free
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What Do I Need...?

� Large scale high performance computing
� Buy 10.000 PCs or a dedicated 

supercomputer
� Buy special hardware for networking and 

storage
� Add a special building
� Add an electric power station
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How Much Do I Have to Pay?
� Small scale   (<64 nodes)

� 1000€/node
� Medium scale    (64-1024 nodes)

� 2000€/node  (multiprocessor, 64-bit)
� 1500€/node for high speed network
� 500€/node for high performance I/O

� Large scale   (>1024 nodes)
� Money for building
� Money for power plant
� Current costs range between 20...400 million 

Euros
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Application Fields
� Numerical calculations and simulations

� Particle physics
� Computational fluid dynamics
� Car crash simulations
� Weather forecast
� ...

� Non-numerical computations
� Chess playing, theorem proving
� Commercial database applications
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Application Fields...
� All fields of Bioinformatics

� Computational genomics
� Computational proteomics
� Computational evolutionary biology
� …

� In general
� Everything that runs beween 1 and 10.000 days
� Everything that uses high volumes of data
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Measures
Mega (220≅106) – Giga (230≅109) – Tera (240≅1012)

Peta (250≅1015) – Exa (260≅1018)

� Computational Performance  (Flop/s)
Flop/s = floating point operations per second
� Modern processor: 3 GFlop/s
� Nr. 1 supercomputer: 35 TFlop/s  (factor 10.000)

� Network performance  (Byte/s)
� Personal computer: 10/100 MByte/s
� Supercomputer networks: gigabytes/s



3

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 13

Measures...
� Main memory  (Byte)

� Personal computer: 1 GByte
� Nr. 1 supercomputer: 10 TByte  (factor 10.000)

� Disk space  (Byte)
� Single disk 2004: 200 GByte
� Nr. 1 supercomputer: 700 TByte  (factor 3.500)

� Tape storage  (Byte)
� Personal computer: 200 GByte
� Nr. 1 supercomputer: 1.6 Pbyte  (factor 8.000)
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Architecture

� Basic classification concept:
How is the main memory organized?
� Distributed memory architecture
� Shared memory architecture

� Available systems
� Dedicated supercomputers
� Cluster systems
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Distributed Memory Architecture
� Autonomous computers 

connected via network
� Processes on each compute 

node have access to local 
memory only

� Parallel program spawns 
processes over a set of 
processors

� Communication between 
computers (processes) via 
message passing

� Called: multi computer system

processor processor

local
memory

local
memory

interconncetion network

recv() send()

computer 1 computer 2
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Distributed Memory Architecture...
� Advantages

� Good scalability: just buy new nodes
� Concept scales up to 10.000+ nodes

� You can use what you already have
� Extend the system when you have money and 

need for more power
� Disadvantages

� Complicated programming: parallelization of 
formerly sequential programs
(including complicated debugging, performance 
tuning, load blancing, etc.)
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Shared Memory Architecture
� Several processors in one box 

(e.g. multiprocessor mother-
board)

� Each process on a processor 
sees complete address space

� Communication between 
processes via shared 
variables

� Called: multiprocessor 
system, symmetric multi-
processing system (SMP)

processor processor

Interconnection network

shared memory

computer
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Shared Memory Architecture...

� Advantages
� Much easier programming

� Disadvantages
� Limited scalability: up to 64 processors

Reason: interconnection network becomes 
bottleneck

� Limited extensibility
� Very expensive due to high performance 

interconnection network
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Hybrid Architectures

� Use several SMP systems
� Combination of shared memory systems and 

distributed memory system
� The good thing: scalable performance 

according to your financial budget
� The bad thing: programming gets even 

more complicated (hybrid programming)
� The reality: vendors like to sell these 

systems, because they are easier to build
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Supercomputers vs. Clusters

� Supercomputers                     
(Distributed/shared memory)
� Constructed by a major vendor (IBM, HP, ...)
� Use custom components (processor, network, 

...)
� Custom (Unix-like) operating systems

� Clusters  (Network of workstations, NOWs)
� Assembled by vendor or users
� Commodity-of-the-shelf components (COTS)
� Linux operating system
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Supercomputers vs. Clusters...

� Supercomputers
� Very expensive to buy
� Usually high availability and scalability

� Clusters
� Factor 10 cheaper to buy, but:
� Very expensive to own
� Lower overall availability and scalability
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TOP500-List

� Lists world 500 most powerful systems
www.top500.org

� Update in June and November
� Ranking based on numerical algorithm
� In 6 months almost half of the systems 

fall off the list
� The majority of systems now are clusters
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TOP500 Rank 1-10

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 26

TOP500 Rank 11-20
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TOP500 Performance Statistics
factor 1000 in 11 years
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TOP500 Performance Trends
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☺

my notebook

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 30

EarthSimulator / NEC

earth quake
protection

air cooling

compute node
cabinets (320)

data archive / tape robots disks

networking
cabinets (65)

cables

power supply
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EarthSimulator / NEC
� 640 nodes x 8 processors

= 5120 processors

� 200MioUSD for computer
� 200MioUSD for building 

and electric power station

� Building: 3250m2

earth quake protected
� Power: 7MW

� 10TByte main memory
� 700TByte disk
� 1.6PBytes tapes

� 83.000 copper cables
� 2.800km / 220t of 

cabeling

� Application field: climate 
simulations
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BlueGene / IBM

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 33

BlueGene / IBM
� IBM intends to break the 

1PFlop/s barrier by end of 
2006

� Power consumption and 
floor space problems 
solved by new packing 
technology
( less than 30 Earth-
Simulators! ☺ )

� Application fields: 
bioinformatics
� Ab initio protein folding
� Molecular dynamics on a 

millisecond to second 
time scale

� Protein structure 
prediction
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Programming
Parallelization Paradigms

� What do we have?
� Many processors, one program, much data

� How do we proceed?
� Start one instance of the program on each 

processor  (called process)
� Give it one part of the data
� Collect the result

� Is this all?
� Well, sometimes yes ☺, sometimes no /
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Parallelization Paradigms...
� Remember the two categories

1. Compute masses of individual tasks
2. Compute complicated single taks

� Category 1: embarrassingly parallel
� Master/worker concept:

Start master on one processor
Start workers on all other processors
Master sends data to workers
Master collects results from workers

� Example: Analysis of different molecules
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Parallelization Paradigms...

� Category 2: non-trivial parallelism
� Usually: data partitioning

Data is partitioned amongst the processes
Each process computes results
During computation processes have to coordinate 

with each other: done by communication
A selected process organizes input/output

� Example: Molecular dynamics simulations
� Only for experienced programmers
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Parallelization Support
� Parallelization via automatically parallelizing compilers

� Complicated, seldom, inefficient, not scalable

� Parallelization for shared memory architectures
� Language support via OpenMP
� Only for small node numbers

� Parallelization for distributed memory architectures
� Done manually
� Decorate program with message passing calls

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 39

Message Passing

� Basic principle: use send and receive 
library calls to transfer data

start:
computeData();
send(proc2,data);
recv(proc2,data);
goto start;

process proc1
start:

computeData();
send(proc1,data);
recv(proc1,data);
goto start;

process proc2
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Message Passing...
� Message passing standard:

MPI (Message Passing Interface)
� Conceived in the mid 90s

� Language bindings: C, C++, Fortran  (others available)
� Divided into two parts

� MPI: just message passing
� MPI-2: process management, input/output, ...

� Available implementations
� Vendor versions on all major supercomputers
� Open source versions MPICH and LAME for 

workstations clusters
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Message Passing...
� How big is MPI/MPI-2?

� Several hundreds of library calls!
� Don´t worry: half a dozen is enough 

to start with
� What makes MPI so copious?

� All sorts of library calls to just have 
more comfort with programming:
� Collective calls: e.g. compute a global sum over all processes 

and distribute it to all of them
� Special communication calls: e.g. non-blocking calls provide 

means to overlap computation and communication
© Thomas Ludwig, Alexandros Stamatakis, GCB’04 42

Message Passing... The Dark Side
� Parallel programming in general introduces new 

error category: Time dependent errors
� The reason for this

� Processes run in parallel but are not synchronized; 
timing depends on concrete acitivites on the nodes

� The consequences!
� An erroneous program crashes only sometimes
� When you slow it down to observe it, it does not crash
� The precondition for the crash cannot be reproduced 

(nondeterminism)

� The solution?  Well, next question /
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Performance Limitations: 
Amdahl´s Law

� How to evaluate parallel performance
� Run with 1 and with n processors
� Speedup:   S(n) = t(1) / t(n)
� Efficiency:  E(n) = S(n) / n

� Theoretical maximum: Smax=n
� Practical maximum by Amdahl´s Law
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Performance Limitations: 
Amdahl´s Law...

� Every parallal program has a non-parallel 
part (input/output, initialization, etc.)

� Fraction of non-parallel part is f
� Maximum speedup with Amdahl

SAmdahl = 1 / (f + (1-f)/p)
Examples:

� F=0.01   ⇒ SAmdahl=100
� F=0.001 ⇒ SAmdahl=1000
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Problems
Fault Tolerance

� What happens when during runtime a node 
crashes?  (probability increases with number of 
components and execution time)

� Today
� The program just crashes
� The program crashes but can be restarted from a 

checkpoint

� In the future
� The program continues with execution and uses a 

different set of nodes
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High Performance Input/Output

� How can we handle terabytes and 
petabytes of input/output data?

� Today
� Not yet too efficiently; often a master 

process handles all I/O

� In the future
� All processes perform I/O-calls (parallel I/O)
� All nodes have efficient access to high 

performance I/O hardware
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Own Research
High Performance Parallel I/O

� High performance I/O is a major challenge 
today

� Research activities
� Investigate load balancing mechanisms for 

parallel I/O systems (i.e. distribute data to disks 
according to load)

� Provide performance measurement tools to see
the influence of I/O library calls in the source 
code

� Adapt parallel programs to parallel I/O concepts
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The Future
Petaflops and Petabytes

� The new borders of supercomputing
� Petaflops:   maybe by end of 2006?
� Petabytes:  next year
� Number of processors: 10.000 and more

� However: do we have the right 
algorithms and programs for that?
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Gridcomputing

� The new hype of supercomputing
� Idea: as with the power grid

� Computational performance should be available 
everywhere

� Computational performance can be produced at 
various places

� Concept
� Join parallel computers, cluster, compute centers
� Offer their aggregate compute performance

� Problems
� Programming, management, security, ...

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 53

Limitations of High Performance 
Computing

� Reconsider: „everything that runs between 
1 and 10000 days“
� Current supercomputers can reduce the 

program runtime by a maximum factor of 5 
orders of magnitude

� What to do, if you want to compute e.g. 
billions of molecular variations?

� There is only one answer:
First: Improve the algorithm!
Second: Use supercomputers
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PART II: HPC in 
Bioinformatics

� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of 

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments 
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� maximum likelihood
� bayesian inference
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� parallel & distributed RAxML
� future developments
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The Classic Slide: 
GenBank Data Growth

Number of 
Base Pairs

Years1980 2004
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Increase in Nucleotide 
Substitution Model Complexity

Amount of
arithmetic 
operations

Years1969 2004

F81JC69 HKY85 GTR GTR + Γ
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Grand Challenges
� Protein folding & structure prediction
� Homology search
� Multiple alignment 
� Genomic sequence analysis 
� Gene finding
� Gene expression data analysis
� Drug discovery
� Phylogenetic inference
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Grand Challenges
� Protein folding & structure prediction
� Homology search
� Multiple alignment
� Genomic sequence analysis 
� Gene finding
� Gene expression data analysis
� Drug discovery
� Phylogeny construction

Main focus 
of this talk!

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 62

Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially 

in time and space with standard dynamic 
programming approach and Sum-of-Pairs 
score →

Which is the 
adequate score 

function?



11

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 63

Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially 

in time and space with standard dynamic 
programming approach and Sum-of-Pairs 
score →
� Good heuristics
� Parallel algorithms

� Fine-grained, e.g. on alignment matrix level
� FPGA implementations for pairwise alignment

� Heuristics & parallel algorithm
� coarse-grained divide-and-conquer
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Multiple Alignment
� The prerequisite for phylogenetic analysis
� Computational effort increases exponentially 

in time and space with standard dynamic 
programming approach and Sum-of-Pairs 
score →
� Good heuristics
� Parallel algorithms

� Fine-grained, e.g. on alignment matrix level
� FPGA implementations for pairwise alignment

� Heuristics & parallel algorithm
� coarse-grained divide-and-conquer

Type of reverse 
engineering: How 
can I change the 

algorithm to be able 
to parallelize it with 

MPI?
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An example: DCA
� Stoye et al (1997) Divide-and-Conquer 

Alignment Algorithm (DCA)
1. Divide sequences into smaller subsequence-sets
2. If length of multiple subsequence-set < 

predifined threshold value L compute optimal 
subalignments in parallel 

3. Concatenate subalignments to whole alignment

� The Art consists in the design of intelligent 
decomposition heuristics to obtain near 
optimal concatenated alignment → non-
trivial problem
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DCA
S1

S2

S3

S1

S2

S3

S1

S2

S3

Divide

S2

S3

S1 S1

S2

S3

Align

S2

S3

S1

Concatenate
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� future developments
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Phylogenetic Analysis
� Motivation

� Tree-of-life
� New insights in medical & biological research
� CIPRES: NSF-funded 11.6 million $ tree-of-life 

project (www.phylo.org)

� Applications of phylogenetic trees
� Bader et al (2001) Industrial applications of high-

performance computing for phylogeny reconstruction.
� Baker et al (1994) Which whales are hunted? A 

molecular genetic approach to whaling.
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Phylogenetic Methods
� Input: “good” multiple Alignment
� Output: unrooted binary tree
� Various models for phylogenetic inference

� Models differ in computational complexity & 
accuracy of final trees

� Fast & simple models
� Neighbor Joining
� Parsimony (MP)

� Slow & complex models
� Maximum Likelihood (ML)
� Bayesian Methods

We focus on 
ML &

Bayesian 
Methods
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Remember !
� Input need not be DNA or protein sequence 

data → gene order data
� Moret et al (2001) GRAPPA: a high performance 

computational tool for phylogeny reconstruction from 
gene-order data.

� Model need not be a tree → networks
� Gusfield et al (2003) Efficient reconstruction of 

phylogenetic networks with constrained 
recombination.

� Output need not be a strictly bifurcating tree 
→ multifurcating tree
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Remember !
� Input need not be DNA or protein sequence 

data → gene order data
� Moret et al (2001) GRAPPA: a high performance 

computational tool for phylogeny reconstruction from 
gene-order data.

� Model need not be a tree → networks
� Gusfield et al (2003) Efficient reconstruction of 

phylogenetic networks with constrained 
recombination.

� Output need not be a strictly bifurcating tree 
→ multifurcating tree

We focus on computation of 
strictly bifurcating phylogenetic 
trees with maximum likelihood 
for DNA and Protein sequence 

data !
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Example: Phylogeny of great 
Apes

Orangutan Gorilla Chimpanzee Human

common ancestor time
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The number of trees explodes!

BANG !
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The Algorithmic Problem
� Number of potential trees grows 

exponentially

2.84  * 10^7650

7.905.853.580.62515

2.027.02510

155

# Trees# Taxa
This is ≈ the 
number of 

atoms in the 
universe 
10^80
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Maximum Likelihood
Maximum Likelihood calculates:

1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n 

Problem II: Computation of likelihood function is expensive 

Solution: algorithmic optimizations + new heuristics + HPC

S1

S2

S3v1

v2 v3 v4

v5

v6

v7

S5

S4
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Maximum Likelihood
Maximum Likelihood calculates:

1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value

Problem I: Number of possible topologies is exponential in n 

Problem II: Computation of likelihood function is expensive 

Solution: algorithmic optimizations + new heuristics + HPC

S1

S2

S3v1

v2 v3 v4

v5

v6

v7

S5

S4
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Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d) 

Likelihood of the tree
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Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d) 

prior probability of the tree: 
must be assumed; all possible 
trees are usually considered to 

be equally probable
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Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d) 

problematic term: P(d) equals the 
sum of the likelihood x prior probability 
of the tree + model for all possible 
trees.
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Bayesian Inference
� Uses bayesian statistics
� P (t + m|d) = P (d|t + m) x P (t + m) / P (d) 

problematic term: P(d) equals the 
sum of the likelihood x prior probability 
of the tree + model for all possible 
trees.

impossible to 
calculate!
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Bayesian Inference
� Solution: Metropolis-Coupled Markov Chain 

Monte Carlo Simulation (MC³) 
� Advantages compared to ML:

� straightforward statistical measure of phylogeny
� Avoids bootstrapping & provides straightforward 

support values

� Disadvantages compared to ML:
� Requires prior probabilities for tree & model 
� MC³ convergence problem
� More difficult to parallelize: Feng et al (2003) Parallel 

algorithms for bayesian phylogenetic inference.
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MC³ Algorithm

random starting tree

t_1_1 t_2_1

heated chain cold chain

Tree proposal mechanism

The art in the design of bayesian phylogenetic 
analysis lies in the tree proposal mechanism.
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MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

R = L(t_2_2)/L(t_2_1)
R > 1→ accept tree

R = L(t_1_2)/L(t_1_1) 
R < 1 → accept tree
if random(0,1) < R
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MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

t_1_2 t_2_3if L(t_1_2) > L(t_2_3) 
→ swap chain states
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MC³ Algorithm

random starting tree

t_1_1 t_2_1

t_1_1 t_2_2

t_1_2 t_2_3

t_1_3 t_2_4
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ML vs. Bayes

Model parameter x (transition/transversion ratio)

Likelihood
value

ML

Bayes
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MC³ convergence problem

Log Likelihood

Time
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MC³ convergence problem

Log Likelihood

Time

Area of apparent stationarity
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MC³ convergence problem

Log Likelihood

Time

ML analysis reference
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Real-world example

ML starting
tree

random
starting tree
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Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of 

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments
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ML Phylogeny Program 
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Phylogenetics are an 
algorithmic discipline
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ML Phylogeny Program 
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Parallel program

Iterate
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Basic Algorithms
� Two basic classes of algorithms

I. Progressive algorithms: progressive 
insertion of sequences into the tree e.g. 
stepwise addition

II. Global algorithms: 
� use NJ or parsimony starting tree 
� optimize tree by application of standard 

topological alterations
� NNI: Nearest Neighbor Interchange
� TBR: Tree Bisection Reconnection
� Subtree Rearrangements

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 110

NNI
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NNI
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NNI
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NNI
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TBR
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TBR
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TBR
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TBR
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TBR
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TBR
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Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1
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Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1
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Subtree Rearrangements

ST5

ST2

ST6

ST4

ST3

ST1

+1
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Subtree Rearrangements
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Subtree Rearrangements

ST5

ST2

ST6 ST4

ST3

ST1

+2

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 127

Subtree Rearrangements

ST5

ST2

ST6 ST4

ST3

ST1

+2
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State-of-the-Art sequential 
phylogeny programs I

� PHYML: fast & accurate on simulated data
� Guindon et al (2003) A simple, fast, and accurate 

algorithm to estimate large phylogenies by maximum 
likelihood.

� RAxML-III: fast & accurate on real data
� Stamatakis et al (2004) RAxML-III: A fast program for 

maximum likelihood-based inference of large 
phylogenetic trees.

� MetaPigA: fastest genetic search algorithm
� Lemmon et al (2002) The metapopulation genetic 

algorithm: An efficient solution for the problem of 
large phylogeny estimation.
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State-of-the-Art sequential 
phylogeny programs II

� IQPNNI: accurate on real & simulated data; 
slower than PHYML/RAxML
� Vinh et al (2004) IQPNNI: Moving fast through tree 

space and stopping in time.

� PAUP*: Many options for MP & ML searches; very 
slow on ML, not available free of charge
� Swofford (1998) PAUP* 4.0 - Phylogenetic Analysis 

Using Parsimony (*and Other Methods). 

� MrBayes: fast bayesian inference
� Huelsenbeck (2001) MrBayes: Bayesian inference of 

phylogenetic trees.
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Performance of Phylogeny 
Programs

� Quantitative Measures
� Accuracy 
� Time consumption
� Memory requirements

� Qualitative Measures
� Number of implemented evolutionary models 
� Ability to optimize evol. model parameters
� Availability: negative examples TNT, DCM
� Code for various platforms
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Performance of Phylogeny 
Programs

� Quantitative Measures
� Accuracy 
� Time consumption
� Memory requirements

� Qualitative Measures
� Number of implemented evolutionary models 
� Ability to optimize evol. model parameters
� Availability: negative examples TNT, DCM
� Code for various platforms

Memory consumption is an 
important

—often underestimated—
problem !
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Performance of Phylogeny 
Programs

� Simulated data
� generate simulated “true” tree 

� Standard program: r8s

� generate simulated alignment for the tree
� Standard program: Seq-Gen

� compute tree with phylogeny program
� measure topological distance to true tree

� Standard measure: Robinson-Foulds distance 

� Problems
� perfect world: no gaps, no sequencing errors
� evolutionary model known a priori
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Performance of Phylogeny 
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model  not known
� application to one class of model (ML, MP) only 
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Performance of Phylogeny 
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model  not known
� application to one class of model (ML, MP) only 

The optimization of trees 
for real data is generally 

significantly harder than for 
simulated data!
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Performance of Phylogeny 
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model  not known
� application to one class of model (ML, MP) only 

Current research issue: 
When to stop the analysis?
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Performance of Phylogeny 
Programs

� Real data alignments
� compute tree with phylogeny programs
� compare final tree scores
� significance of small δ between final ML scores

� apply likelihood ratio tests
� remember that programs return log-likelihood values
� High score-accuracy required: 99.99%

� Problems
� real tree not known
� evolutionary model  not known
� application to one class of model (ML, MP) only 

Current issue: Standard 
real-data benchmark set 

required!
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When to stop the analysis?
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When to stop the analysis?

Is this improvement 
worth the extra time?
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Survey of sequential Programs
� Comparison on small simulated alignemnts

� Williams et al (2003) An investigation of phylogenetic 
likelihood methods.

� Evaluated RAxML, PHYML, MrBayes on 50 
simulated alignments with 100 taxa

� Used 9 real-world alignments with 101-1000 
taxa

� Results:
� RAxML best & fastest on real data
� MrBayes best on simulated data 
� MrBayes significantly slower than PHYML, RAxML
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Sequential Results: Simulated 
Data

PHYML: 0.0796 / 35.21 secs
MrBayes: 0.0741 / 945.32 secs

RAxML: 0.0808 / 131.05 secs
RAxML: 0.0818 / 29.27 secs
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Sequential Results: Real Data

n/an/a2446774-157526.0 138453-158911.6 403 -157923.1 218_RDPII

9898-402282.1189350729-400925.3 509148 -459392.4 16594 -402215.01000_ARB

7372-252588.149326124 -252499.4 366496-263217.8 2235-253354.2500_ARB

1947-131469.02491067-131468.0158418 -133238.3787-131560.3250_ARB

775-104743.399272-104742.6156419-104856.4 477-104826.5200_ARB

300-77189.867 178-77189.7 29383  -77196.7313-77219.7150_ARB

164-44146.933390-44142.649427-52028.4158-44298.1150_SC

47-73975.931617-73919.340527-77191.5153-74097.6101_SC

hrsPAXMLR > PHY
secs

secsRAxMLsecsMrBayessecsPHYMLdata
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775-104743.399272-104742.6156419-104856.4 477-104826.5200_ARB

300-77189.867 178-77189.7 29383  -77196.7313-77219.7150_ARB

164-44146.933390-44142.649427-52028.4158-44298.1150_SC

47-73975.931617-73919.340527-77191.5153-74097.6101_SC

hrsPAXMLR > PHY
secs

secsRAxMLsecsMrBayessecsPHYMLdata

Sequential Results: Real Data
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Sequential Results: Real Data
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Sequential Results: Real Data

State-of-the-Art parallel 
program in 2002 !
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Sequential Results: Real Data
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Sequential Results: Real Data
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Memory requirements

not 
available

1150MBMrBayes

8.8GB900MBPHYML

750MB200MBRAxML

10000 taxa1000 taxa
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Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Advantage of RAxML: 
search starts from distinct 

points in search space
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Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

RAxML performs fast lazy 
rearrangements
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Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

Iterate while tree improves

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 152

Sequential RAxML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

Apply exhaustive subtree rearrangements

Iterate while tree improves

RAxML uses Subtree Equality Vectors: Stamatakis et al 
(2002) Accelerating Parallel Maximum Likelihood-based 
Phylogenetic Tree Calculations using Subtree Equality 
Vectors.
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Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of 

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments
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Parallel & Distributed RAxML
� Design goals

- minimize communication overhead
- attain good speedup

� Master-Worker architecture
� 2 computational phases

I. Computation of # workers parsimony trees
II. Rearrangement of subtrees at each worker

� Program is non-deterministic → every run 
yields distinct result, even with fixed 
starting tree

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 155

Parallel RAxML: Phase I
Distribute alignment file &
compute parsimony trees

Master
Process
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Parallel RAxML: Phase I
Receive parsimony trees &
select best as starting tree

Master
Process
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Parallel RAxML: Phase II
Distribute currently best tree

Master
Process
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Parallel RAxML: Phase II
Workers issue work requests

Master
Process
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Parallel RAxML: Phase II
Distribute subtree IDs

Master
Process
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Parallel RAxML: Phase II
Distribute subtree IDs

Master
Process

Only one integer must be 
sent to each node!
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Parallel RAxML: Phase II

ST1 ST2

ST4ST3
© Thomas Ludwig, Alexandros Stamatakis, GCB’04 162

Parallel RAxML: Phase II

ST1 ST2

ST4ST3
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Parallel RAxML: Phase II
Receive result trees and
continue with best tree

Master
Process
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Speedup
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Speedup
Slightly superlinear 

speedup due to non-
determinism!
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RAxML: Biological Research
1. Parallel inference of 5 10.000 taxon trees 

containing Bacteria, Eukarya, Archaea on a 
Linux PC Cluster

� Accumulated CPU hours per tree ≈ 3200
� Largest ML-analysis to date
� Major clades correctly identified

2. Sequential analysis of 2415 mammals 
(cytochrome-b sequences)

� “Traditional” reference tree available
� Error about 10-13%
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Outline
� Grand Challenges in HPC Bioinformatics
� HPC Bioinformatics by Example of 

Phylogenetic Inference
� phylogenetic analysis
� maximum likelihood
� bayesian inference
� sequential codes
� parallel & distributed RAxML
� future developments
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Future Developments
� Visualization
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Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree
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Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree

Problem 1: Currently only 2 
methods available for 
alignment division:
RAxML & DCM 
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Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree

Problem 2:Resolving 
multifurcations is hard
optimization of the entire 
tree required
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Distributed D & C
Construct Guide Tree & perform 

tree-based alignment divison

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 174

Distributed D & C

Compute Subtrees
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Distributed D & C

Merge into Guide Tree &
Re-Divide Alignment
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Distributed D & C

Compute Subtrees

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 177

Recent Work on D & C

� Rec-I-DCM3: Very fast on parsimony
� Roshan (2004) Rec-I-DCM3: A fast algorithmic 

technique for reconstructing large phylogenetic trees.

� PhyNav: Zoom-in zoom-out technique
� Vinh et al (2004) PhyNav: A novel approach to 

reconstruct large phylogenies.

� BWD: New supertree reconstruction 
method using distances

� Stephen J. Willson (2004) Constructing rooted 
supertrees using distances.

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 178

Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 179

Shared Memory Parallelism

P

Q
R

P[i] = f( g(Q[i]) , g(R[i]) )

virtual root
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Shared Memory Parallelism

P

Q
R

P[i] = f( g(Q[i]) , g(R[i]) )

virtual root

This operation uses ≈ 90% 
of total execution time !
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Shared Memory Parallelism

P

Q
R

P[i] = f( g(Q[i]) , g(R[i]) )

virtual root

This operation uses ≈ 90% 
of total execution time !
→ simple fine-grained 
parallelisation
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Shared Memory Parallelism

P

Q
R

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB’04 183

Shared Memory Parallelism

P

Q
R

virtual root
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Shared Memory Parallelism

P

Q
R

virtual root
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Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors
� Combination of ML hill-climbing and MC³-

like sampling algorithms
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Future Developments
� Visualization
� Divide-and-conquer algorithms

I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments
III. Merge subtrees into comprehensive tree by 

application of supertree methods
IV. Resolve multifurcations & optimize supertree

� Shared memory or vector processors
� Combination of ML hill-climbing and MC³-

like sampling algorithms

Potential Advantages:
1. Large number of 

sampled trees to build 
consensus tree

2. Faster convergence to 
best-known likelihood?
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Combined method

Start sampling?
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Recent HW-specific 
optimization

� Like every ML program RAxML makes 
many calls to exp() and log() in vectors 
→ expensive

� Utilisation of Intel™ MKL (Math Kernel 
Library)  on a Xeon 2.4GHz CPU

� Performance boost of over 30% …
� … in half a day of work
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On-Line Resources
HPC Resources
� TOP500 List

www.top500.org 

� BlueGene
www.research.ibm.com/bluegene/

� EarthSimulator
www.es.jamstec.go.jp

� MPI-Forum
www.mpi-forum.org

� Global Grid Form
www.gridforum.org

� MPICH
www-unix.mcs.anl.gov/mpi/mpich/

� OpenMP
www.openmp.org

Bioinformatics Resources
� CIPRES project

www.phylo.org

� Felsenatein’s phylogeny page 
evolution.genetics.washington.edu/
phylip/software.html

� PHYML download
www.lirmm.fr/~guindon/phyml.html

� RAxML download
wwwbode.cs.tum.edu/~stamatak/
research.html

� IQPNNI & PhyNav download
www.bi.uni-duesseldorf.de/software


