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Introduction

Why High Performance Computing?
I

= Situation in science and engineering

= Replace complicated physical experiments by
computer simulations

= Evaluate more fine-grained models
= User requirements

= Compute masses of individual tasks

= Compute complicated single tasks
= Available computational power

= Single workstation is not sufficient
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What Is It?

= High Performace Computing (HPC),
Networking and Storage
Deals with high and highest performance
computers, with high speed networks, and
powerful disk and tape storage systems
= Performance improvement

= Compared to personal computers and small
workstations:

Factor 100...10.000
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What Do I Need?

[
= Small scale high performance computing
= Cheapest version: use what you have
Workstations with disks and network
= A bit more expensive: buy PCs

= E.g. 16 personal computers with disks and gigabit
ethernet

= It’s mainly a human ressources problem

= Network of workstations is time consuming to
maintain
» Software comes for free
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What Do I Need...?

|
= Large scale high performance computing

= Buy 10.000 PCs or a dedicated
supercomputer

= Buy special hardware for networking and
storage

= Add a special building
= Add an electric power station
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How Much Do I Have to Pay?

= Small scale (<64 nodes)
= 1000€/node
= Medium scale (64-1024 nodes)
= 2000€/node (multiprocessor, 64-bit)
= 1500€/node for high speed network
= 500€/node for high performance I/O
= Large scale (>1024 nodes)
= Money for building
= Money for power plant
= Current costs range between 20...400 million
Euros
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Application Fields

|
= Numerical calculations and simulations

= Particle physics
= Computational fluid dynamics
= Car crash simulations
= Weather forecast
= Non-numerical computations
= Chess playing, theorem proving
= Commercial database applications
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Application Fields...

= All fields of Bioinformatics
= Computational genomics
= Computational proteomics
= Computational evolutionary biology

= In general
= Everything that runs beween 1 and 10.000 days
= Everything that uses high volumes of data

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Measures

Mega (22°=106) — Giga (239=10°) — Tera (24=1012)
Peta (250=1015) — Exa (260=1018)

= Computational Performance (Flop/s)

Flop/s = floating point operations per second

= Modern processor: 3 GFlop/s

= Nr. 1 supercomputer: 35 TFlop/s (factor 10.000)
= Network performance (Byte/s)

= Personal computer: 10/100 MByte/s

= Supercomputer networks: gigabytes/s
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Measures...

= Main memory (Byte)

= Personal computer: 1 GByte

= Nr. 1 supercomputer: 10 TByte (factor 10.000)
= Disk space (Byte)

= Single disk 2004: 200 GByte

= Nr. 1 supercomputer: 700 TByte (factor 3.500)
= Tape storage (Byte)

= Personal computer: 200 GByte

= Nr. 1 supercomputer: 1.6 Pbyte (factor 8.000)
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Architecture

|
= Basic classification concept:

How is the main memory organized?
= Distributed memory architecture
= Shared memory architecture

= Available systems
= Dedicated supercomputers
= Cluster systems
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Distributed Memory Architecture

= Autonomous computers
connected via network

= Processes on each compute
node have access to local
memory only

= Parallel program spawns
processes over a set of
processors

= Communication between
computers (processes) via
message passing

= Called: multi computer system

computer 1 computer 2

recv()g send()g
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Distributed Memory Architecture...

= Advantages
= Good scalability: just buy new nodes
= Concept scales up to 10.000+ nodes
= You can use what you already have

= Extend the system when you have money and
need for more power

= Disadvantages

= Complicated programming: parallelization of
formerly sequential programs

(including complicated debugging, performance
tuning, load blancing, etc.)
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Shared Memory Architecture

computer = Several processors in one box
(e.g. multiprocessor mother-
board)

= Each process on a processor
sees complete address space

=« Communication between
processes via shared
variables

= Called: multiprocessor
system, symmetric multi-
processing system (SMP)
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Shared Memory Architecture...

|
= Advantages

= Much easier programming
= Disadvantages
= Limited scalability: up to 64 processors

Reason: interconnection network becomes
bottleneck

= Limited extensibility

= Very expensive due to high performance
interconnection network
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Hybrid Architectures

I
= Use several SMP systems

= Combination of shared memory systems and
distributed memory system

= The good thing: scalable performance
according to your financial budget

= The bad thing: programming gets even
more complicated (hybrid programming)

= The reality: vendors like to sell these
systems, because they are easier to build
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Supercomputers vs. Clusters

|
= Supercomputers

(Distributed/shared memory)
= Constructed by a major vendor (IBM, HP, ...)
= Use custom components (processor, network,

o)
= Custom (Unix-like) operating systems
= Clusters (Network of workstations, NOWs)
= Assembled by vendor or users
= Commodity-of-the-shelf components (COTS)
= Linux operating system
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Supercomputers vs. Clusters...

|
= Supercomputers

= Very expensive to buy
= Usually high availability and scalability

= Clusters
= Factor 10 cheaper to buy, but:
= Very expensive to own
= Lower overall availability and scalability
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TOP500-List

= Lists world 500 most powerful systems
www.top500.org

= Update in June and November

= Ranking based on numerical algorithm

= In 6 months almost half of the systems
fall off the list

= The majority of systems now are clusters
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1 |Los Alamos National Tightming NOV - AMD: Research BOSL 761160
ry Opteron 2 GHz, Myrinet | NOW Cluster - AMD - 11264 109208
United States/2003 2816 Myrinet
1 Earth Simulator Center Earth-Simulator / 5120 NEC Vector Research 3560 [1.0752e+08 RSt o
Japan/2002 HEC 5K 40360 |2e6240
T = —— T Y e Py TR [T 12 Lawrence Livermore Nai MCR Linux Cluster Keon 2.4 NOW - Intel Pentium | Research 7634 350000
Leboratory  Intel [tanium? Tigerd. Itanium3 Tigerd 22935 |t1o000 —"'-b‘b:"da‘g o E."’ 7 ﬁ":d"cj /i 23;“ gov:_ Clscary ;”‘e‘ 110007273000
United States/2004 1.4GHz - Quadrics / 4096 Cluster - Quadrics nftedistates indzhstond QU adyics et Quadncs
California Digital 13 Lawrence Livermore National  ASCI White, SP Power3 375 IBM SP Research 7304 640000
Sz L] Laboratory MHz [ 8152 SP Powerd 375 MHz 12288
3 |Los Alamos National ASCIQ - AlphaServer SC45, HP AlphaServer Research 13880 |633000 United States/2000 BM high node
re. 1.25GHz / 8132 Alpha-gerver-Clust 20430 | 225000
aaicie son Lazehy S 14 NERSC/LBNL Sasborg 1BM 5P Research 7304 640000
R United States/2002 5P Power3 375 MHz 16 way | SP Poverd 375 MHz 9984
1BM - Rochester BlueGene /L DD1 Prototype IBN BlueGene/L Vendor FERETO EEFRLE] 7 8656 Fohinate
United States/2004 (0.5GHz PowerPC 440 BlueGenerL 12384 i
w,/Custom) { 8152
IEMY LLNL 15 |NCsa TeraGrid, Itanium? 1.3/1.5 NOW - Intel Itanium | Academic 7215 540000
ST P el T SR B United States/2004 GHZ, Myrinet / 1776 Titan Cluster 10253
United States/2003 PowerEdge 1750, P4 ¥eon  PouerEdge 1750, 15300 BM Itaniurnz - Mytinet
NIl (2a00h (i 16 Lawrence livermore National  xSeries Cluster Xeon 2.4 1BM Cluster Research 6586 425000
Laboratory GHz - Quadrics { 1920 xSeries Cluster Reon - 9216 0000
3 ECHWE eServer pSeries 690 (1.9 IBM 5P Research £955 350000 United States/2003 IBM/{ Quadrics Quadrics
United Kingdarny2004 GHz Powerd+) / 2112 SP Poverd+, Weather and 15051
] Federation Climate Resesrch 17 |Lawrence Livermore National  Lifac 1BM Cluster Research 6232
7 | Institute of Physical and RIKEN Super Combined | Fujitsu Cluster Rasearch a728 474200 #‘:‘;ﬂ- ey "5“;’.’ xf"l“ag'o'“ Sher XSETS Clussergsan 2923
Chemical Res. (RIKEN) Cluster [ 2048 Fujitsu Cluster 12534 120000 nisRimaies %“’\: e fouadlcs
Japan/2004 Fujitsu
2 1B - Thomas Watson BlueGene /L DD2 Prototype IBM BlueGene/L Research 2655 294911 13 |HPCx eServer pSeries 690 (1.7 IBM SP Academic 6188 355000
Research Center (0.7 GHz PowerPC 440) /  BlueGenerl 11469 United Kingdorm/2004 CHz Powerd+) [ 1600 SP Poverd+, 10880
United States/2004 4096 1BM Federation
IB M LLNL
19 |Grid Technology Research AIST Supar Cluster P-32 1BM Cluster Research 6155
2 Lﬂ;lﬁc;nMwes! National ;fp:: e :"1 Eluim o Research ;‘i:is EEEEE Center, AIST AIST Super Cluster P-32,  eServer Cluster 8800
oratory. ntegrity rx nium2 | Integrity rx : .
United States/2003 1.5 GHz, Quadrics / 1336 | Itanium2 Cluster e gg;;m" el e L
Hp
M
10 shanghai Supercomputer Davning 40004, Opteron  NOW - AMD Research 2061 728400 e =
Tantar: 2.2 GHr, Myrinet / 2560 NOW Cluster - AMD - 11564 130000 20 Dak Ridge National Laboratory Cray X1/ 504 Cray X1 Research 5895 [asasaez
China/2004 Dauning Myrinst United States/2004 Cray Inc, Cray X1 5451 |sazen
" -
Performance Development Projected Performance Development
1 - #l
factor 1000 in 11 years - 500
- s T 1 #risp |
- = sum
-t
—
— e
- i
—T 5.8 TF
- e e a8
-
o
- -
. - - .
i " ae 5 o
H ——— e E o
13 a 13
k il T k
- o -
. 2 i a " o0 G Ly «
106 aFiops 4! - 190 GFisps 7 -
" -
Jr= LT
10 6Pk T 10 6Pk P
— =l
1 GFwgs = 1 GFwgs
e
190 WFRgL 190 Mg
LTI T "I " IMT TR TR TR I T TR TR TR ) 193 U 13 16 1N 198 19N 08 0 2001 2000 006 10 006 1607 1% ad amle

Projected Performance Development

Performance.

100 GFigs

10 GFips

1 GFlgs

-t —————0
:

190 MFRge
il

3 19 1 e

[

[ETNE N T TR

003 0004 2005 T006 2007 008 0009 201

-
« #1500
& Sum
# To
Line
#500
Line:
— Sum

end

Trend

Trend

Line

© m

notebook

data archive / tape robots
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EarthSimulator / NEC

networking

cabinets (65)
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EarthSimulator / NEC

= 640 nodes x 8 processors = 10TByte main memory
= 5120 processors = 700TByte disk
= 1.6PBytes tapes
= 200MioUSD for computer

= 200MioUSD for building = 83.000 copper cables
and electric power station . 2.800km / 220t of

cabeling
= Building: 3250m?
earth quake protected = Application field: climate
= Power: 7MW simulations
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BlueGene / IBM

Five Steps to a Petaflop Computer

Blue Gene g

1 Petaflop

hip W16/ Teraflops

|Teraflubs

rmw:zﬁigaﬂops

1 Gigaflop
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BlueGene / IBM

= IBM intends to break the = Application fields:
1PFlop/s barrier by end of bioinformatics
2006 = Ab initio protein folding
Molecular dynamics on a
millisecond to second

= Power consumption and

Outline

s Introduction
= Architecture
= Top Systems

floor space problems time _Scale = Programming
solved by new packing » Protein structure
technology prediction = Problems
( less than 30 Earth- = Own Research
Simulators! © )
= The Future
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Programming

Parallelization Paradigms

= What do we have?
= Many processors, one program, much data
= How do we proceed?

= Start one instance of the program on each
processor (called process)

= Give it one part of the data
= Collect the result
= Is this all?
= Well, sometimes yes ©, sometimes no ®

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Parallelization Paradigms...

= Remember the two categories
1. Compute masses of individual tasks
2. Compute complicated single taks

= Category 1: embarrassingly parallel
= Master/worker concept:
Start master on one processor
Start workers on all other processors
Master sends data to workers
Master collects results from workers
» Example: Analysis of different molecules

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Parallelization Paradigms...

= Category 2: non-trivial parallelism
= Usually: data partitioning
Data is partitioned amongst the processes
Each process computes results

During computation processes have to coordinate
with each other: done by communication

A selected process organizes input/output
= Example: Molecular dynamics simulations
= Only for experienced programmers

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 37

Parallelization Support

= Parallelization via automatically parallelizing compilers
= Complicated, seldom, inefficient, not scalable

= Parallelization for shared memory architectures
= Language support via OpenMP
= Only for small node numbers

= Parallelization for distributed memory architectures

= Done manually
= Decorate program with message passing calls

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 38

Message Passing

= Basic principle: use send and receive
library calls to transfer data

process procl process proc2
start: start:

computeData() ; computeData() ;

send (proc2,data) ;~></ send (procl,data) ;

recv (proc2,data) ; 4 I~ recv(procl,data) ;

goto start; goto start;
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Message Passing...

= Message passing standard:
MPI (Message Passing Interface)
= Conceived in the mid 90s
= Language bindings: C, C++, Fortran (others available)
= Divided into two parts
= MPI: just message passing
= MPI-2: process management, input/output, ...
= Available implementations
= Vendor versions on all major supercomputers

= Open source versions MPICH and LAME for
workstations clusters
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Message Passing...

= How big is MPI/MPI-2?
= Several hundreds of library calls!

= Don "t worry: half a dozen is enough
to start with

= What makes MPI so copious?

= All sorts of library calls to just have
more comfort with programming:

= Collective calls: e.g. compute a global sum over all processes
and distribute it to all of them
= Special communication calls: e.g. non-blocking calls provide

means to overlap computation and communication
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 41

Message Passing... The Dark Side

= Parallel programming in general introduces new
error category: 7ime dependent errors
= The reason for this

= Processes run in parallel but are not synchronized;
timing depends on concrete acitivites on the nodes

= The consequences!
= An erroneous program crashes only sometimes
= When you slow it down to observe it, it does not crash

= The precondition for the crash cannot be reproduced
(nondeterminism)

= The solution? Well, next question ®
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Performance Limitations:
Amdahl s Law

|
= How to evaluate parallel performance

= Run with 1 and with n processors
= Speedup: S(n) =t(1) / t(n)
= Efficiency: E(n) = S(n)/n
= Theoretical maximum: S, _,=n
= Practical maximum by Amdahl’s Law
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Performance Limitations:
Amdahl s Law...

|
= Every parallal program has a non-parallel

part (input/output, initialization, etc.)
= Fraction of non-parallel part is f
= Maximum speedup with Amdahl

Samdan = 1/ (f + (1-f)/p)
Examples:
« F=0.01 = Sj4,,=100
« F=0.001 = Sy, =1000

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 44

Outline

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Problems
Fault Tolerance

= What happens when during runtime a node
crashes? (probability increases with number of
components and execution time)

= Today
= The program just crashes
= The program crashes but can be restarted from a

checkpoint
= In the future

= The program continues with execution and uses a
different set of nodes

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 46

High Performance Input/Output

|
= How can we handle terabytes and

petabytes of input/output data?
= Today

= Not yet too efficiently; often a master
process handles all I/O

= In the future
= All processes perform 1/0-calls (parallel 1/0)

= All nodes have efficient access to high
performance I/O hardware

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Own Research
High Performance Parallel I/O

I
= High performance I/0O is a major challenge

today
= Research activities
= Investigate load balancing mechanisms for
parallel I/O systems (i.e. distribute data to disks
according to load)
= Provide performance measurement tools to see
the influence of I/O library calls in the source
code

= Adapt parallel programs to parallel I/O concepts

Outline
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The Future
Petaflops and Petabytes

|
= The new borders of supercomputing

= Petaflops: maybe by end of 2006?
= Petabytes: next year
= Number of processors: 10.000 and more

= However: do we have the right
algorithms and programs for that?
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Gridcomputing

= The new hype of supercomputing

= Idea: as with the power grid

» Computational performance should be available
everywhere

» Computational performance can be produced at
various places

= Concept
= Join parallel computers, cluster, compute centers
» Offer their aggregate compute performance

= Problems
= Programming, management, security, ...
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Limitations of High Performance
Computing

I
= Reconsider: ,everything that runs between

1 and 10000 days"

= Current supercomputers can reduce the
program runtime by a maximum factor of 5
orders of magnitude

= What to do, if you want to compute e.g.
billions of molecular variations?

= There is only one answer:
First: Improve the algorithm!
Second: Use supercomputers
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PART II: HPC in
Bioinformatics

= Grand Challenges in HPC Bioinformatics

= HPC Bioinformatics by Example of
Phylogenetic Inference
= phylogenetic analysis
= maximum likelihood
= bayesian inference
= sequential codes
= parallel & distributed RAXML
= future developments
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The Classic Slide:
GenBank Data Growth

Number of
Base Pairs

>
1980 2004 Years
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Increase in Nucleotide
Substitution Model Complexity

[
I\
Al |[aceo | [Fs1 ] [Hives | [GR+r]

operations

v

Grand Challenges

|
= Protein folding & structure prediction

= Homology search

= Multiple alignment

= Genomic sequence analysis

= Gene finding

= Gene expression data analysis

J = Drug discovery
1960 2004 Vears = Phylogenetic inference
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Grand Challenges Multiple Alignment

|
= Protein folding & structure prediction

= Homology search

= Multiple alignment

= Genomic sequence all Main focus
= Gene finding of this talk!

= Drug discovery
= Phylogeny construction

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 60

= The prerequisite for phylogenetic analysis

= Computational effort increases exponentially
in time and space with standard dynamic
programming approach and Sum-of-Pairs

score —

Which is the
adequate score
function?
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Multiple Alignment

= The prerequisite for phylogenetic analysis
= Computational effort increases exponentially
in time and space with standard dynamic
programming approach and Sum-of-Pairs
score —
= Good heuristics
= Parallel algorithms

= Fine-grained, e.g. on alignment matrix level
= FPGA implementations for pairwise alignment

» Heuristics & parallel algorithm
= coarse-grained divide-and-conquer

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 63

Multiple Alignment

= The prere. Type of reverse analys!s

= Computati engineering: How onentially
in time an can I change the ynamic
programm pf-Pairs

algorithm to be able

SCOr€ = | to parallelize it with

= Good hel MPI?
« Parallel .
= Fine-grai . on alignment matrix level
= FPGAi entations for pairwise alignment

» HeuristicS & parallel algorithm
= coarse-grained divide-and-conquer
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An example: DCA

= Stoye et al (1997) Divide-and-Conquer
Alignment Algorithm (DCA)

st |
S2 |
S3 4

L . y i
1. Divide sequence.s into smaller subsequence-sets / Divide ~.
2. If length of multiple subsequence-set < s - st
predifined threshold value L compute optimal 2 — . —
. . S3 _— S3 _—_—
subalignments in parallel | Align |
3. Concatenate subalignments to whole alignment 1 1
= The Art consists in the design of intelligent e ————— e
decomposition heuristics to obtain near \ Concatenate /
optimal concatenated alignment — non- o
trivial problem s2
S3
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 65 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 70
Outline Phylogenetic Analysis

= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 71

= Motivation
» Tree-of-life
= New insights in medical & biological research
» CIPRES: NSF-funded 11.6 million $ tree-of-life
project (www.phylo.org)
= Applications of phylogenetic trees
= Bader et al (2001) Industrial applications of high-
performance computing for phylogeny reconstruction.
= Baker et al (1994) Which whales are hunted? A
molecular genetic approach to whaling.
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Phylogenetic Methods

= Input: “"good” multiple Alignment
= Output: unrooted binary tree

= Various models for phylogenetic inference
» Models differ in computational complexity &
accuracy of final trees
» Fast & simple models
= Neighbor Joining

We focus on

» Parsimony (MP) ML &
= Slow & complex models Bayesian
Methods

= Maximum Likelihood
= Bayesian Methods

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 74

Remember !

= Input need not be DNA or protein sequence
data — gene order data

= Moret et al (2001) GRAPPA: a high performance
computational tool for phylogeny reconstruction from
gene-order data.

= Model need not be a tree — networks

= Gusfield et al (2003) Efficient reconstruction of
phylogenetic networks with constrained
recombination.

= Output need not be a strictly bifurcating tree
— multifurcating tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 75

Remember !

[
= Input need ng Qe DNA or protein sequence
data — gen r data

w | N mance
d We focus on computation of  }uction from

d strictly bifurcating phylogenetic
= Model| trees with maximum likelihood g
for DNA and Protein sequence
data !

¢ on of

A
recombination.

= Output need not be a strictly bifurcating tree
— multifurcating tree
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Example: Phylogeny of great
Apes

| common ancestorl time

Orangutan  Gorilla Chimpanzee Hu

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 77

| The number of trees explodes!
I

<
~< <
<

XX XXX
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The Algorithmic Problem

|
= Number of potential trees grows

exponentially

# Taxa # Trees I
This is = the
> 15 number of
10 2.027.025 atoms in the
universe
15 7.905.853.580.6201__ 1080
50 2.84 *10~76 7
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 84




Maximum Likelihood

Maximum Likelihood calculates:
1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value
Problem I: Number of possible topologies is exponential in n
Problem II: Computation of likelihood function is expensive
Solution: algorithmic optimizations + new heuristics + HPC

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Maximum Likelihood

Maximum Likelihood calculates:
1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value
Problem I: Number of possible topologies is exponential in n
Problem II: Computation of likelihood function is expensive
Solution: algorithmic optimizations + new heuristics + HPC
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Bayesian Inference

= Uses bayesian statistics

« P (t + m|d) =[P (d[t + m)]x P (t + m) / P (d)

Likelihood of the tree

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Bayesian Inference

= Uses bayesian statistics
s P(t+ m|d) =P (|t + m)x

P(d)

prior probability of the tree:
must be assumed; all possible
trees are usually considered to
be equally probable

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 90

Bayesian Inference

= Uses bayesian statistics
» P(t+m|d) =P (dlt+m)xP(t+m)/[P(d)]

problematic term: P(d) equals the
sum of the likelihood x prior probability
of the tree + model for all possible
trees.

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Bayesian Inference

= Uses bayesian statistics
s P(t+mld)=P(dlt+m)xP(t+m)/

of the tree %
trees.
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Bayesian Inference

= Solution: Metropolis-Coupled Markov Chain
Monte Carlo Simulation (MC3)

= Advantages compared to ML:
» straightforward statistical measure of phylogeny
= Avoids bootstrapping & provides straightforward
support values
] Disadvantages Compared to ML:
= Requires prior probabilities for tree & model
= MC3 convergence problem

= More difficult to parallelize: Feng et al (2003) Parallel
algorithms for bayesian phylogenetic inference.
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MC3 Algorithm

random starting tree

heated chain cold chain

Tree proposal mechanism

The art in the design of bayesian phylogenetic
analysis lies in the tree proposal mechanism.

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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MC3 Algorithm

R = L(t 1. 2)/L(t_1_1)
R <1 — accept tree
if random(0,1) < R

R=L(t_2_2)/L(t 2 1)
R > 1- accept tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 96

MC3 Algorithm

random starting tree

ifL(t_1_2) > L(t_2_3)
— swap chain states

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

97

MC3 Algorithm

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 98

ML vs. Bayes

Likelihood
value

Model parameter x (transition/transversion ratio)

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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MC3 convergence problem

A
Log Likelihood

v

Time

100

MC3 convergence problem

A
Log Likelihood

Area of apparent stationarity

v

Time

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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| MC3 convergence problem
! / ML analysis reference

A
Log Likelihood

+

\4

Time
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| Real-world example

| -T0000

01_RANDOM p
101_UISER b
75000 ; e
ML starting Av
tree
random |5 ° |
starting tree
25000 |
=100000 -
105000 -
=110000 > L
SON000 o 1. 50408 2e+08 250408
Gareeations
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Outline

= Grand Challenges in HPC Bioinformatics

= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments

104

ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

/T

Phylogenetics are an
algorithmic discipline

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Iterate

A4
Parallel program

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Basic Algorithms

108

= Two basic classes of algorithms

I.  Progressive algorithms: progressive
insertion of sequences into the tree e.g.
stepwise addition

II. Global algorithms:
= use NJ or parsimony starting tree
= optimize tree by application of standard
topological alterations
= NNI: Nearest Neighbor Interchange
= TBR: Tree Bisection Reconnection
= Subtree Rearrangements

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 109

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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NNI
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NNI
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TBR

vy
£a

TBR
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Subtree Rearrangements

sT1 ST2

ST3

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Subtree Rearrangements

ST2

ST1

ST5 ST4
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| Subtree Rearrangements

ST1

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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| Subtree Rearrangements

ST2

ST1

- ST3
ST6

ST5 ST4
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| Subtree Rearrangements

I ST6™,
ST1

ST5 ST4
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| Subtree Rearrangements

| ST6
ST1 o+ ST2

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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| Subtree Rearrangements

| Subtree Rearrangements

sT1 sT2 sT1 ST2
+2 / +2 /
ST3 ST3
ST5 ST6 ST4
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 126 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 127

State-of-the-Art sequential
phylogeny programs I

= PHYML: fast & accurate on simulated data
= Guindon et al (2003) A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum
likelihood.
= RAXML-III: fast & accurate on real data
= Stamatakis et al (2004) RAXML-III: A fast program for
maximum likelihood-based inference of large
phylogenetic trees.
= MetaPigA: fastest genetic search algorithm
= Lemmon et al (2002) The metapopulation genetic
algorithm: An efficient solution for the problem of
large phylogeny estimation.
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State-of-the-Art sequential
phylogeny programs II

= IQPNNI: accurate on real & simulated data;
slower than PHYML/RAxXML
= Vinh et al (2004) IQPNNI: Moving fast through tree
space and stopping in time.
» PAUP*: Many options for MP & ML searches; very
slow on ML, not available free of charge
= Swofford (1998) PAUP* 4.0 - Phylogenetic Analysis
Using Parsimony (*and Other Methods).
» MrBayes: fast bayesian inference

= Huelsenbeck (2001) MrBayes: Bayesian inference of
phylogenetic trees.
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Performance of Phylogeny
Programs

» Quantitative Measures
= Accuracy
= Time consumption
= Memory requirements
» Qualitative Measures
= Number of implemented evolutionary models
= Ability to optimize evol. model parameters
= Availability: negative examples TNT, DCM
= Code for various platforms

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 130

Performance of Phylogeny
Programs

= Quantitative Meas| Memory consumption is an
important
= Accuracy —often underestimated—
= Time consu problem !
= Memory requirements
» Qualitative Measures
= Number of implemented evolutionary models
= Ability to optimize evol. model parameters
= Availability: negative examples TNT, DCM
= Code for various platforms
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Performance of Phylogeny
Programs

= Simulated data
= generate simulated “true” tree
= Standard program: r8s
= generate simulated alignment for the tree
= Standard program: Seq-Gen
= compute tree with phylogeny program
= measure topological distance to true tree
= Standard measure: Robinson-Foulds distance
= Problems
» perfect world: no gaps, no sequencing errors
= evolutionary model known a priori
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Performance of Phylogeny
Programs

= Real data alignments
= compute tree with phylogeny programs
» compare final tree scores
= significance of small & between final ML scores
= apply likelihood ratio tests
= remember that programs return log-likelihood values
= High score-accuracy required: 99.99%
= Problems
= real tree not known
= evolutionary model not known
= application to one class of model (ML, MP) only

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 133

Performance of Phylogeny
Programs

= Real data alignments
mpute tree with phylogeny programs
res

The optimization of trees | between final ML scores
for real data is generally  kests

significantly harder than for bms return log-likelihood values
simulated data! equired: 99.99%

Performance of Phylogeny
Programs

= Real data alignments

- ~rlogeny programs
Current research issue:

When to stop the analysis? es .
between final ML scores
= apply lik ratio tests

= remember\ At programs return log-likelihood values
= High score-accuracy required: 99.99%

= Problems = Problems
= real tree not known = real tree not known
= evolutionary model not known = evolutionary model not known
= application to one class of model (ML, MP) only = application to one class of model (ML, MP) only
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Performance of Phylogeny
Programs When to stop the analysis?
[ 000 : : ,
= Real data alignments s
. compute)&ith phylogeny programs e
cores —
Current issue: Standard |5 otyeen final ML scores
real-data benchmark set | Y
required! rams return log-likelihood values % g |
= High score-accuracy required: 99.99%
= Problems =
= real tree not known 101600
= evolutionary model not known -
= application to one class of model (ML, MP) only : S
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When to stop the analysis?

I 99800

' “800_ZILA"
e Is this improvement
B oowo | worth the extra time?
T
% soom0 |
"mmo 2000 4000 s000 B0 10000 12000
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Survey of sequential Programs

= Comparison on small simulated alignemnts

= Williams et al (2003) An investigation of phylogenetic
likelihood methods.

= Evaluated RAxML, PHYML, MrBayes on 50
simulated alignments with 100 taxa
= Used 9 real-world alignments with 101-1000
taxa
= Results:
= RAXML best & fastest on real data
= MrBayes best on simulated data
= MrBayes significantly slower than PHYML, RAXML

138 © Thomas Ludwig, Alexandros Stamatakis, GCB04 139
.
Sequential Results: Simulated
Dat ' :
ata Sequential Results: Real Data
_;=_.|-'M|_:-m: p— l
<Ry 1 data PHYML. secs | MrBayes secs RAXML secs | R>PHY | PAXML hrs
secs
101SC | 740976 | 153 | 771915 | 40527 | 739193 | 617 |31 730759 |47
T i 150.SC | -44298.1 | 158 | -52084 |49427 | -441426 |3%0 |33 41469 | 164
—E - 150_ARB -77219.7 313 -77196.7 29383 -77189.7 178 67 -77189.8 300
E. 200_ARB -104826.5 | 477 -104856.4 156419 -104742.6 | 272 99 -104743.3 775
250 ARB | -131560.3 | 767 | -133238.3 | 156418 | 1314680 | 1067 | 249 1314690 | 1947
S00ARB | -253354.2 | 2235 | -263217.8 | 3664% | 2524994 | 26124 | 493 2525881 | 7372
1000 ARB | 4022150 | 16594 | -459392.4 | 509148 | 4009253 | 50729 | 1893 | -402282.1 | 9898
¢ : “ S e R 218 ROPIl | -157923.1 | 403 | 1589116 | 138453 | -1575260 | 6774 | 244 wa n/a
PHYML: 0.0796 / 35.21 secs RAxML: 0.0808 / 131.05 secs
MrBayes: 0.0741 / 945.32 secs RAxML: 0.0818 / 29.27 secs
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Sequential Results: Real Data Sequential Results: Real Data
dl - - ! 400800 T T T T T T
ata PHYML | secs | MiBayes | secs Ra e TR > Y [PAL s Ln Likelihood 6RAXML
401000 -
101SC | 740976 | 153 | 771915 | 40527 | 739193 | 617 |31 730759 |47 oo - |
150.SC | 44298.1 | 158 | 520284 |49427 | -441426 |3%0 |33 441469 | 164
401400 - E
150_ARB -77219.7 313 -77196.7 29383 -77189.7 178 67 -77189.8 300
—~oiaf® RAXML>PHYML .
200_ARB -104826.5 | 477 -104856.4 156419 -104742.6 | 272 99 -104743.3 775
250 ARB | -131560.3 | 787 | -133238.3 | 156418 | -131468.0 | 1067 | 249 1314690 | 1947 400 - 1
402000 - E
S00ARB | -253354.2 | 2235 | -263217.8 | 3664% | 2524994 | 26124 | 493 2525881 | 7372
1000 ARB | 4022150 | 16594 | 4593924 | 509148 | 4009253 | 50729 | 1893 | -402282.1 | 9898 -mz::n? PHYML pAX.ML .
—402400 L . . . . L Padh
218 ROPI | -157923.1 | 403 | -1589116 | 138453 | 1575260 | 6774 | 244 wa /a 0 506 leH]  15er] 207 25c:07 3et07 [ 35cs07  des0
/
Time in Seconds .
over 8000 CPU hours
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Sequential Results: Real Data

Sequentlal Results: Real Data

RAXML>PHYML
Jonsmb T T T T T T | 'RAXML
Ln Likelihood = @ RAXML _ o, M— : : : :
Ln Likelihood
401200 - 7 =4 10000 7
—401400 . . PHYML
—of® RAxML>PH  State-of-the-Art parallel ] N
program in 2002 ! 430000 |- B
—401800 4
~402000 |- \‘; 8 —h0a0 -
—J!P"ﬂ(? PHYML PAX.ML T 450000 T
400 ; . ; . LA MrBayes
-(Kt letl?  15e+07 2407 25e407  3elT [ 35c407  doslf SG0000 - . - L r
/ o 100000 200000 300000 ADODOG SO0000 G000
Time in Seconds
over 8000 CPU hours Time
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Sequentlal Results: Real Data Memory requirements
[
00 T T T T T T T
Ln ere.f:hood RAxML
—401000 X o . 1000 taxa 10000 taxa
R i RAXML 200MB 750MB
—401400 1
40 AXML>P) _
oo B RAXML>PHYML PHYML 900MB 8.8GB
401800 [~ T
000 1 MrBayes |1150MB not
—~402200 ® PHYML . available
—soson L1 L - .
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
Time
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Sequential RAXML Sequential RAXML
[ [
Compute randomized parsimony starting tree Compute randomized parsimony starting tree
with dnapars from PHYLIP with dnapars from PHYLIP
A 4
Advantage of RAXML: Apply exhaustive subtree rearrangements
search starts from distinct
points in search space RAXML performs fast lazy
rearrangements
150
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Sequential RAXML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

A 4
Apply exhaustive subtree rearrangements

Iterate while tree improves

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 151

Sequential RAXML

RAXML uses Subtree Equality Vectors: Stamatakis et al
(2002) Accelerating Parallel Maximum Likelihood-based
Phylogenetic Tree Calculations using Subtree Equality

Vectors.
I N~

Apply exhaustive subtree rearrangements |

Iterate while tree improves

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 152

Outline

I
= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of
Phylogenetic Inference
= phylogenetic analysis
= maximum likelihood
= bayesian inference
= sequential codes
= parallel & distributed RAXML
= future developments

Parallel & Distributed RAXML

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 153

Design goals
- minimize communication overhead
- attain good speedup
Master-Worker architecture
= 2 computational phases
I.  Computation of # workers parsimony trees
II. Rearrangement of subtrees at each worker
=  Program is non-deterministic — every run
yields distinct result, even with fixed
starting tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 154

Parallel RAXML: Phase I

Distribute alignment file &
Q} compute parsimony trees \Q}

\ Master /
Process
L ~(T

i

]

Q)

]
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Parallel RAXML: Phase I

Receive parsimony trees &
@ select best as starting tree @

—_ —_—

h == @

Master

Process
d / T~ (@

—=x

]
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Parallel RAXML: Phase II | Parallel RAXML: Phase II

Distribute currently best tree Workers issue work requests

g [ g a

Master Master

Process Process
. \@ A ~(@

]

B
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(]
E

| Parallel RAXML: Phase II Parallel RAXML: Phase II
I

Distribute subtree IDs Distribute subtree IDs

I

Ha
@)

J g
=

21\ /—

Master Master

Process Process
(@ / T~ / (@) T (@

Only one integer must be —
sent to each node!

w
|

!
2

]

]
]

| Parallel RAXML: Phase II | Parallel RAXML: Phase II
| ST1 ST2
d g
@ @
ST3 ST4




Parallel RAXML: Phase II

Receive result trees and
continue with best tree

\
\‘ Master / -
Process
A T~

@

@

19

—

]

|
|
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| Speedup

“OPTIMAL_SPEEDUP"
NORMAL SPEEDUP*
“FAIR_SPEEDUP"

o 5 10 15 ) F £ £
rumber of worker processes
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Slightly superlinear

L “ i !
speedup due to non- Bl
i determinism!

| \l

o 5 10 15 ) F £ £
rumber of worker processes
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RAXML: Biological Research

1.  Parallel inference of 5 10.000 taxon trees
containing Bacteria, Eukarya, Archaea on a
Linux PC Cluster

= Accumulated CPU hours per tree ~ 3200
=  Largest ML-analysis to date
= Major clades correctly identified

2.  Sequential analysis of 2415 mammals
(cytochrome-b sequences)

=  “Traditional” reference tree available
= Error about 10-13%
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Outline

= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments
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Future Developments

= Visualization
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ATV an _ARE TREE.|

Future Developments
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Visualization

Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree

Problem 1: Currently only 2
methods available for

| FUt alignment division: tS

| RAXML & DCM

= Visual
. Div'%-conquer algorithms
L

Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Future Developments

Visualization
Problem 2:Resolving gorithms
multifurcations is hard ub-alignments

optimization of the entire  Rlignments

tree required mprehensive tree by

\ ~fcation of supertree methods
IV. YResolve multifurcations & optimize supertree
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Distributed D & C

Construct Guide Tree & perform
tree-based alignment divison

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Distributed D & C

Compute Subtrees
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Distributed D & C

Merge into Guide Tree & (@
Re-Divide Alignment ==

i

{

e Ae
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| Distributed D & C

Compute Subtrees

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Recent Workon D & C
= Rec-I-DCM3: Very fast on parsimony

= Roshan (2004) Rec-I-DCM3: A fast algorithmic
technique for reconstructing large phylogenetic trees.

= PhyNav: Zoom-in zoom-out technique

= Vinh et al (2004) PhyNav: A novel approach to
reconstruct large phylogenies.

= BWD: New supertree reconstruction

method using distances

= Stephen J. Willson (2004) Constructing rooted
supertrees using distances.
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Future Developments

= Visualization

= Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree
= Shared memory or vector processors

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

178

| Shared Memory Parallelism

virtual root
%

N

g
o B

P[i] = f( 9(QLD) , 9(RIi]) )
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| Shared Memory Parallelism

virtual root
%

\

E This operation uses ~ 90%
of total execution time !

P[i] = f( 9(QLD) , 9(RIi]) )
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| Shared Memory Parallelism

virtual root
%

\

This operation uses ~ 90%
of total execution time !
— simple fine-grained
parallelisation

P[i] = f( 9(QLD) , 9(RIi]) )

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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| Shared Memory Parallelism

[ ]
virtual root
2 :
Y
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| Shared Memory Parallelism

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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| Shared Memory Parallelism

! virtual root
K\
2 g
(o]
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Future Developments

= Visualization

= Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree
= Shared memory or vector processors
= Combination of ML hill-climbing and MC3-
like sampling algorithms

© Thomas Ludwig, Alexandros Stamatakis, GCB'04
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Future Developments

. Visuglization
« Divid Potential Advantages:
| 1. Large number of

L Di sampled trees to build [ENts

II. Inf consensus tree

III. Mg 2. Faster convergence to fve tree by

ap best-known likelihood?

IV. Re 7e supertree

=  Share ory or vector processors

= Combination of ML hill-climbing and MC3-
like sampling algorithms
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| Combined method

I 99800

500 ZRLA®
aon | @ ——
100200
100400 H
! Start sampling?
:
$ womo |
~100800 -
101000 ‘
01200
o 2000 4000 s000 B0 10000 12000
Time in Seconds
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Recent HW-specific
optimization

= Like every ML program RAXML makes
many calls to exp() and log() in vectors
— expensive

= Utilisation of Intel™ MKL (Math Kernel
Library) on a Xeon 2.4GHz CPU

» Performance boost of over 30% ...
= ... in half a day of work

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

188

On-Line Resources

HPC Resources ‘matics R ces

= TOP500 List = CIPRES project
www.phylo.org

= Felsenatein’s phylogeny page
evolution.genetics.washington.edu/
phylip/software.html

= PHYML download
www.lirmm.fr/~guindon/phyml.htm|
= RAXML download

wwwbode.cs.tum.edu/~stamatak/
research.html

= IQPNNI & PhyNav download
www.bi.uni-duesseldorf.de/software

www.top500.0rg

= BlueGene
www.research.ibm.com/bluegene/

= EarthSimulator
www.es.jamstec.go.jp

= MPI-Forum
www.mpi-forum.org

= Global Grid Form
www.gridforum.org

= MPICH
Wwww-unix.mcs.anl.gov/mpi/mpich/

= OpenMP
www.openmp.org
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