High Performance
Computing in
Bioinformatics

Thomas Ludwig (t.ludwig@computer.org)
Ruprecht-Karls-Universitdt Heidelberg
Computer Science Department

Alexandros Stamatakis (stamatak@cs.tum.edu)
Technische Universitat Miinchen
Computer Science Department

Tutorial Outline
|

= PART I: High Performance Computing
Thomas Ludwig

= PART II: HPC Computing in Bioinformatics
Alexandros Stamatakis
= Grand Challenges for HPC Bioinformatics

= HPC Bioinformatics by Example of Phylogenetic
Inference

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

PART I
High Performance Computing

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 3

Outline

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Introduction

Why High Performance Computing?
I

= Situation in science and engineering

= Replace complicated physical experiments by
computer simulations

= Evaluate more fine-grained models
= User requirements

= Compute masses of individual tasks

= Compute complicated single tasks
= Available computational power

= Single workstation is not sufficient

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 5

What Is It?

= High Performace Computing (HPC),
Networking and Storage
Deals with high and highest performance
computers, with high speed networks, and
powerful disk and tape storage systems
= Performance improvement

= Compared to personal computers and small
workstations:

Factor 100...10.000

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

What Do I Need?

[
= Small scale high performance computing
= Cheapest version: use what you have
Workstations with disks and network
= A bit more expensive: buy PCs

= E.g. 16 personal computers with disks and gigabit
ethernet

= It’s mainly a human ressources problem

= Network of workstations is time consuming to
maintain
» Software comes for free

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

What Do I Need...?

|
= Large scale high performance computing

= Buy 10.000 PCs or a dedicated
supercomputer

= Buy special hardware for networking and
storage

= Add a special building
= Add an electric power station

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 8

How Much Do I Have to Pay?

= Small scale (<64 nodes)
= 1000€/node
= Medium scale (64-1024 nodes)
= 2000€/node (multiprocessor, 64-bit)
= 1500€/node for high speed network
= 500€/node for high performance I/O
= Large scale (>1024 nodes)
= Money for building
= Money for power plant
= Current costs range between 20...400 million
Euros

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Application Fields

|
= Numerical calculations and simulations

= Particle physics
= Computational fluid dynamics
= Car crash simulations
= Weather forecast
= Non-numerical computations
= Chess playing, theorem proving
= Commercial database applications

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 10

Application Fields...

= All fields of Bioinformatics
= Computational genomics
= Computational proteomics
= Computational evolutionary biology

= In general
= Everything that runs beween 1 and 10.000 days
= Everything that uses high volumes of data

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Measures

Mega (22°=106) — Giga (239=10°) — Tera (24=1012)
Peta (250=1015) — Exa (260=1018)

= Computational Performance (Flop/s)

Flop/s = floating point operations per second

= Modern processor: 3 GFlop/s

= Nr. 1 supercomputer: 35 TFlop/s (factor 10.000)
= Network performance (Byte/s)

= Personal computer: 10/100 MByte/s

= Supercomputer networks: gigabytes/s

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 12

Measures...

= Main memory (Byte)

= Personal computer: 1 GByte

= Nr. 1 supercomputer: 10 TByte (factor 10.000)
= Disk space (Byte)

= Single disk 2004: 200 GByte

= Nr. 1 supercomputer: 700 TByte (factor 3.500)
= Tape storage (Byte)

= Personal computer: 200 GByte

= Nr. 1 supercomputer: 1.6 Pbyte (factor 8.000)

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 13

Outline

= Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 14

Architecture

|
= Basic classification concept:

How is the main memory organized?
= Distributed memory architecture
= Shared memory architecture

= Available systems
= Dedicated supercomputers
= Cluster systems

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 15

Distributed Memory Architecture

= Autonomous computers
connected via network

= Processes on each compute
node have access to local
memory only

= Parallel program spawns
processes over a set of
processors

= Communication between
computers (processes) via
message passing

= Called: multi computer system

computer 1 computer 2

recv()g send()g

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 16

Distributed Memory Architecture...

= Advantages
= Good scalability: just buy new nodes
= Concept scales up to 10.000+ nodes
= You can use what you already have

= Extend the system when you have money and
need for more power

= Disadvantages

= Complicated programming: parallelization of
formerly sequential programs

(including complicated debugging, performance
tuning, load blancing, etc.)

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 17

Shared Memory Architecture

computer = Several processors in one box
(e.g. multiprocessor mother-
board)

= Each process on a processor
sees complete address space

=« Communication between
processes via shared
variables

= Called: multiprocessor
system, symmetric multi-
processing system (SMP)

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 18

Shared Memory Architecture...

|
= Advantages

= Much easier programming
= Disadvantages
= Limited scalability: up to 64 processors

Reason: interconnection network becomes
bottleneck

= Limited extensibility

= Very expensive due to high performance
interconnection network

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 19

Hybrid Architectures

I
= Use several SMP systems

= Combination of shared memory systems and
distributed memory system

= The good thing: scalable performance
according to your financial budget

= The bad thing: programming gets even
more complicated (hybrid programming)

= The reality: vendors like to sell these
systems, because they are easier to build

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 20

Supercomputers vs. Clusters

|
= Supercomputers

(Distributed/shared memory)
= Constructed by a major vendor (IBM, HP, ...)
= Use custom components (processor, network,

o)
= Custom (Unix-like) operating systems
= Clusters (Network of workstations, NOWs)
= Assembled by vendor or users
= Commodity-of-the-shelf components (COTS)
= Linux operating system

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 21

Supercomputers vs. Clusters...

|
= Supercomputers

= Very expensive to buy
= Usually high availability and scalability

= Clusters
= Factor 10 cheaper to buy, but:
= Very expensive to own
= Lower overall availability and scalability

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 22

Outline

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 23

TOP500-List

= Lists world 500 most powerful systems
www.top500.org

= Update in June and November

= Ranking based on numerical algorithm

= In 6 months almost half of the systems
fall off the list

= The majority of systems now are clusters

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 24

1 |Los Alamos National Tightming NOV - AMD: Research BOSL 761160
ry Opteron 2 GHz, Myrinet | NOW Cluster - AMD - 11264 109208
United States/2003 2816 Myrinet
1 Earth Simulator Center Earth-Simulator / 5120 NEC Vector Research 3560 [1.0752e+08 RSt o
Japan/2002 HEC 5K 40360 |2e6240
T = —— T Y e Py TR [T 12 Lawrence Livermore Nai MCR Linux Cluster Keon 2.4 NOW - Intel Pentium | Research 7634 350000
Leboratory Intel [tanium? Tigerd. Itanium3 Tigerd 22935 |t1o000 —"'-b‘b:"da‘g o E."’ 7 ﬁ":d"cj /i 23;“ gov:_ Clscary ;”‘e‘ 110007273000
United States/2004 1.4GHz - Quadrics / 4096 Cluster - Quadrics nftedistates indzhstond QU adyics et Quadncs
California Digital 13 Lawrence Livermore National ASCI White, SP Power3 375 IBM SP Research 7304 640000
Sz L] Laboratory MHz [8152 SP Powerd 375 MHz 12288
3 |Los Alamos National ASCIQ - AlphaServer SC45, HP AlphaServer Research 13880 |633000 United States/2000 BM high node
re. 1.25GHz / 8132 Alpha-gerver-Clust 20430 | 225000
aaicie son Lazehy S 14 NERSC/LBNL Sasborg 1BM 5P Research 7304 640000
R United States/2002 5P Power3 375 MHz 16 way | SP Poverd 375 MHz 9984
1BM - Rochester BlueGene /L DD1 Prototype IBN BlueGene/L Vendor FERETO EEFRLE] 7 8656 Fohinate
United States/2004 (0.5GHz PowerPC 440 BlueGenerL 12384 i
w,/Custom) { 8152
IEMY LLNL 15 |NCsa TeraGrid, Itanium? 1.3/1.5 NOW - Intel Itanium | Academic 7215 540000
ST P el T SR B United States/2004 GHZ, Myrinet / 1776 Titan Cluster 10253
United States/2003 PowerEdge 1750, P4 ¥eon PouerEdge 1750, 15300 BM Itaniurnz - Mytinet
NIl (2a00h (i 16 Lawrence livermore National xSeries Cluster Xeon 2.4 1BM Cluster Research 6586 425000
Laboratory GHz - Quadrics { 1920 xSeries Cluster Reon - 9216 0000
3 ECHWE eServer pSeries 690 (1.9 IBM 5P Research £955 350000 United States/2003 IBM/{ Quadrics Quadrics
United Kingdarny2004 GHz Powerd+) / 2112 SP Poverd+, Weather and 15051
] Federation Climate Resesrch 17 |Lawrence Livermore National Lifac 1BM Cluster Research 6232
7 | Institute of Physical and RIKEN Super Combined | Fujitsu Cluster Rasearch a728 474200 #‘:‘;ﬂ- ey "5“;’.’ xf"l“ag'o'“ Sher XSETS Clussergsan 2923
Chemical Res. (RIKEN) Cluster [2048 Fujitsu Cluster 12534 120000 nisRimaies %“’\: e fouadlcs
Japan/2004 Fujitsu
2 1B - Thomas Watson BlueGene /L DD2 Prototype IBM BlueGene/L Research 2655 294911 13 |HPCx eServer pSeries 690 (1.7 IBM SP Academic 6188 355000
Research Center (0.7 GHz PowerPC 440) / BlueGenerl 11469 United Kingdorm/2004 CHz Powerd+) [1600 SP Poverd+, 10880
United States/2004 4096 1BM Federation
IB M LLNL
19 |Grid Technology Research AIST Supar Cluster P-32 1BM Cluster Research 6155
2 Lﬂ;lﬁc;nMwes! National ;fp:: e :"1 Eluim o Research ;‘i:is EEEEE Center, AIST AIST Super Cluster P-32, eServer Cluster 8800
oratory. ntegrity rx nium2 | Integrity rx : .
United States/2003 1.5 GHz, Quadrics / 1336 | Itanium2 Cluster e gg;;m" el e L
Hp
M
10 shanghai Supercomputer Davning 40004, Opteron NOW - AMD Research 2061 728400 e =
Tantar: 2.2 GHr, Myrinet / 2560 NOW Cluster - AMD - 11564 130000 20 Dak Ridge National Laboratory Cray X1/ 504 Cray X1 Research 5895 [asasaez
China/2004 Dauning Myrinst United States/2004 Cray Inc, Cray X1 5451 |sazen
" -
Performance Development Projected Performance Development
1 - #l
factor 1000 in 11 years - 500
- s T 1 #risp |
- = sum
-t
—
— e
- i
—T 5.8 TF
- e e a8
-
o
- -
. - - .
i " ae 5 o
H ——— e E o
13 a 13
k il T k
- o -
. 2 i a " o0 G Ly «
106 aFiops 4! - 190 GFisps 7 -
" -
Jr= LT
10 6Pk T 10 6Pk P
— =l
1 GFwgs = 1 GFwgs
e
190 WFRgL 190 Mg
LTI T "I " IMT TR TR TR I T TR TR TR) 193 U 13 16 1N 198 19N 08 0 2001 2000 006 10 006 1607 1% ad amle

Projected Performance Development

Performance.

100 GFigs

10 GFips

1 GFlgs

-t —————0
:

190 MFRge
il

3 19 1 e

[

[ETNE N T TR

003 0004 2005 T006 2007 008 0009 201

-
« #1500
& Sum
To
Line
#500
Line:
— Sum

end

Trend

Trend

Line

© m

notebook

data archive / tape robots

compute node
cabinets (320)

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

EarthSimulator / NEC

networking

cabinets (65)

30

EarthSimulator / NEC

= 640 nodes x 8 processors = 10TByte main memory
= 5120 processors = 700TByte disk
= 1.6PBytes tapes
= 200MioUSD for computer

= 200MioUSD for building = 83.000 copper cables
and electric power station . 2.800km / 220t of

cabeling
= Building: 3250m?
earth quake protected = Application field: climate
= Power: 7MW simulations

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

BlueGene / IBM

Five Steps to a Petaflop Computer

Blue Gene g

1 Petaflop

hip W16/ Teraflops

|Teraflubs

rmw:zﬁigaﬂops

1 Gigaflop

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

32

BlueGene / IBM

= IBM intends to break the = Application fields:
1PFlop/s barrier by end of bioinformatics
2006 = Ab initio protein folding
Molecular dynamics on a
millisecond to second

= Power consumption and

Outline

s Introduction
= Architecture
= Top Systems

floor space problems time _Scale = Programming
solved by new packing » Protein structure
technology prediction = Problems
(less than 30 Earth- = Own Research
Simulators! ©)
= The Future
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 33 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 34
Programming

Parallelization Paradigms

= What do we have?
= Many processors, one program, much data
= How do we proceed?

= Start one instance of the program on each
processor (called process)

= Give it one part of the data
= Collect the result
= Is this all?
= Well, sometimes yes ©, sometimes no ®

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Parallelization Paradigms...

= Remember the two categories
1. Compute masses of individual tasks
2. Compute complicated single taks

= Category 1: embarrassingly parallel
= Master/worker concept:
Start master on one processor
Start workers on all other processors
Master sends data to workers
Master collects results from workers
» Example: Analysis of different molecules

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

36

Parallelization Paradigms...

= Category 2: non-trivial parallelism
= Usually: data partitioning
Data is partitioned amongst the processes
Each process computes results

During computation processes have to coordinate
with each other: done by communication

A selected process organizes input/output
= Example: Molecular dynamics simulations
= Only for experienced programmers

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 37

Parallelization Support

= Parallelization via automatically parallelizing compilers
= Complicated, seldom, inefficient, not scalable

= Parallelization for shared memory architectures
= Language support via OpenMP
= Only for small node numbers

= Parallelization for distributed memory architectures

= Done manually
= Decorate program with message passing calls

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 38

Message Passing

= Basic principle: use send and receive
library calls to transfer data

process procl process proc2
start: start:

computeData() ; computeData() ;

send (proc2,data) ;~></ send (procl,data) ;

recv (proc2,data) ; 4 I~ recv(procl,data) ;

goto start; goto start;

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 39

Message Passing...

= Message passing standard:
MPI (Message Passing Interface)
= Conceived in the mid 90s
= Language bindings: C, C++, Fortran (others available)
= Divided into two parts
= MPI: just message passing
= MPI-2: process management, input/output, ...
= Available implementations
= Vendor versions on all major supercomputers

= Open source versions MPICH and LAME for
workstations clusters

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 40

Message Passing...

= How big is MPI/MPI-2?
= Several hundreds of library calls!

= Don "t worry: half a dozen is enough
to start with

= What makes MPI so copious?

= All sorts of library calls to just have
more comfort with programming:

= Collective calls: e.g. compute a global sum over all processes
and distribute it to all of them
= Special communication calls: e.g. non-blocking calls provide

means to overlap computation and communication
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 41

Message Passing... The Dark Side

= Parallel programming in general introduces new
error category: 7ime dependent errors
= The reason for this

= Processes run in parallel but are not synchronized;
timing depends on concrete acitivites on the nodes

= The consequences!
= An erroneous program crashes only sometimes
= When you slow it down to observe it, it does not crash

= The precondition for the crash cannot be reproduced
(nondeterminism)

= The solution? Well, next question ®

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 42

Performance Limitations:
Amdahl s Law

|
= How to evaluate parallel performance

= Run with 1 and with n processors
= Speedup: S(n) =t(1) / t(n)
= Efficiency: E(n) = S(n)/n
= Theoretical maximum: S, _,=n
= Practical maximum by Amdahl’s Law

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Performance Limitations:
Amdahl s Law...

|
= Every parallal program has a non-parallel

part (input/output, initialization, etc.)
= Fraction of non-parallel part is f
= Maximum speedup with Amdahl

Samdan = 1/ (f + (1-f)/p)
Examples:
« F=0.01 = Sj4,,=100
« F=0.001 = Sy, =1000

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 44

Outline

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Problems
Fault Tolerance

= What happens when during runtime a node
crashes? (probability increases with number of
components and execution time)

= Today
= The program just crashes
= The program crashes but can be restarted from a

checkpoint
= In the future

= The program continues with execution and uses a
different set of nodes

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 46

High Performance Input/Output

|
= How can we handle terabytes and

petabytes of input/output data?
= Today

= Not yet too efficiently; often a master
process handles all I/O

= In the future
= All processes perform 1/0-calls (parallel 1/0)

= All nodes have efficient access to high
performance I/O hardware

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Outline

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 48

Own Research
High Performance Parallel I/O

I
= High performance I/0O is a major challenge

today
= Research activities
= Investigate load balancing mechanisms for
parallel I/O systems (i.e. distribute data to disks
according to load)
= Provide performance measurement tools to see
the influence of I/O library calls in the source
code

= Adapt parallel programs to parallel I/O concepts

Outline

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 49

|
s Introduction

= Architecture

= Top Systems
= Programming
= Problems

= Own Research
= The Future

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 50

The Future
Petaflops and Petabytes

|
= The new borders of supercomputing

= Petaflops: maybe by end of 2006?
= Petabytes: next year
= Number of processors: 10.000 and more

= However: do we have the right
algorithms and programs for that?

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 51

Gridcomputing

= The new hype of supercomputing

= Idea: as with the power grid

» Computational performance should be available
everywhere

» Computational performance can be produced at
various places

= Concept
= Join parallel computers, cluster, compute centers
» Offer their aggregate compute performance

= Problems
= Programming, management, security, ...

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 52

Limitations of High Performance
Computing

I
= Reconsider: ,everything that runs between

1 and 10000 days"

= Current supercomputers can reduce the
program runtime by a maximum factor of 5
orders of magnitude

= What to do, if you want to compute e.g.
billions of molecular variations?

= There is only one answer:
First: Improve the algorithm!
Second: Use supercomputers

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 53

PART II: HPC in
Bioinformatics

= Grand Challenges in HPC Bioinformatics

= HPC Bioinformatics by Example of
Phylogenetic Inference
= phylogenetic analysis
= maximum likelihood
= bayesian inference
= sequential codes
= parallel & distributed RAXML
= future developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 54

Outline

I
= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of
Phylogenetic Inference
= phylogenetic analysis
= maximum likelihood
= bayesian inference
= sequential codes
= parallel & distributed RAXML
= future developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 55

The Classic Slide:
GenBank Data Growth

Number of
Base Pairs

>
1980 2004 Years

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 56

Increase in Nucleotide
Substitution Model Complexity

[
I\
Al |[aceo | [Fs1] [Hives | [GR+r]

operations

v

Grand Challenges

|
= Protein folding & structure prediction

= Homology search

= Multiple alignment

= Genomic sequence analysis

= Gene finding

= Gene expression data analysis

J = Drug discovery
1960 2004 Vears = Phylogenetic inference
© Thomas Ludwig, Alexandros Stamatakis, GCB'04 57 © Thomas Ludwig, Alexandros Stamatakis, GCB'04 58
Grand Challenges Multiple Alignment

|
= Protein folding & structure prediction

= Homology search

= Multiple alignment

= Genomic sequence all Main focus
= Gene finding of this talk!

= Drug discovery
= Phylogeny construction

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 60

= The prerequisite for phylogenetic analysis

= Computational effort increases exponentially
in time and space with standard dynamic
programming approach and Sum-of-Pairs

score —

Which is the
adequate score
function?

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 62

Multiple Alignment

= The prerequisite for phylogenetic analysis
= Computational effort increases exponentially
in time and space with standard dynamic
programming approach and Sum-of-Pairs
score —
= Good heuristics
= Parallel algorithms

= Fine-grained, e.g. on alignment matrix level
= FPGA implementations for pairwise alignment

» Heuristics & parallel algorithm
= coarse-grained divide-and-conquer

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 63

Multiple Alignment

= The prere. Type of reverse analys!s

= Computati engineering: How onentially
in time an can I change the ynamic
programm pf-Pairs

algorithm to be able

SCOr€ = | to parallelize it with

= Good hel MPI?
« Parallel .
= Fine-grai . on alignment matrix level
= FPGAi entations for pairwise alignment

» HeuristicS & parallel algorithm
= coarse-grained divide-and-conquer

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 64

An example: DCA

= Stoye et al (1997) Divide-and-Conquer
Alignment Algorithm (DCA)

st |
S2 |
S3 4

L . y i
1. Divide sequence.s into smaller subsequence-sets / Divide ~.
2. If length of multiple subsequence-set < s - st
predifined threshold value L compute optimal 2 — . —
. . S3 _— S3 _—_—
subalignments in parallel | Align |
3. Concatenate subalignments to whole alignment 1 1
= The Art consists in the design of intelligent e ————— e
decomposition heuristics to obtain near \ Concatenate /
optimal concatenated alignment — non- o
trivial problem s2
S3
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 65 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 70
Outline Phylogenetic Analysis

= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 71

= Motivation
» Tree-of-life
= New insights in medical & biological research
» CIPRES: NSF-funded 11.6 million $ tree-of-life
project (www.phylo.org)
= Applications of phylogenetic trees
= Bader et al (2001) Industrial applications of high-
performance computing for phylogeny reconstruction.
= Baker et al (1994) Which whales are hunted? A
molecular genetic approach to whaling.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 72

Phylogenetic Methods

= Input: “"good” multiple Alignment
= Output: unrooted binary tree

= Various models for phylogenetic inference
» Models differ in computational complexity &
accuracy of final trees
» Fast & simple models
= Neighbor Joining

We focus on

» Parsimony (MP) ML &
= Slow & complex models Bayesian
Methods

= Maximum Likelihood
= Bayesian Methods

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 74

Remember !

= Input need not be DNA or protein sequence
data — gene order data

= Moret et al (2001) GRAPPA: a high performance
computational tool for phylogeny reconstruction from
gene-order data.

= Model need not be a tree — networks

= Gusfield et al (2003) Efficient reconstruction of
phylogenetic networks with constrained
recombination.

= Output need not be a strictly bifurcating tree
— multifurcating tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 75

Remember !

[
= Input need ng Qe DNA or protein sequence
data — gen r data

w | N mance
d We focus on computation of }uction from

d strictly bifurcating phylogenetic
= Model| trees with maximum likelihood g
for DNA and Protein sequence
data !

¢ on of

A
recombination.

= Output need not be a strictly bifurcating tree
— multifurcating tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 76

Example: Phylogeny of great
Apes

| common ancestorl time

Orangutan Gorilla Chimpanzee Hu

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 77

| The number of trees explodes!
I

<
~< <
<

XX XXX

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 82

The Algorithmic Problem

|
= Number of potential trees grows

exponentially

Taxa # Trees I
This is = the
> 15 number of
10 2.027.025 atoms in the
universe
15 7.905.853.580.6201__ 1080
50 2.84 *10~76 7
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 84

Maximum Likelihood

Maximum Likelihood calculates:
1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value
Problem I: Number of possible topologies is exponential in n
Problem II: Computation of likelihood function is expensive
Solution: algorithmic optimizations + new heuristics + HPC

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Maximum Likelihood

Maximum Likelihood calculates:
1. Topologies

2. Branch lengths v[i]

3. Likelihood of the tree

Goal: Obtain topology with maximum likelihood value
Problem I: Number of possible topologies is exponential in n
Problem II: Computation of likelihood function is expensive
Solution: algorithmic optimizations + new heuristics + HPC

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 87

Bayesian Inference

= Uses bayesian statistics

« P (t + m|d) =[P (d[t + m)]x P (t + m) / P (d)

Likelihood of the tree

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Bayesian Inference

= Uses bayesian statistics
s P(t+ m|d) =P (|t + m)x

P(d)

prior probability of the tree:
must be assumed; all possible
trees are usually considered to
be equally probable

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 90

Bayesian Inference

= Uses bayesian statistics
» P(t+m|d) =P (dlt+m)xP(t+m)/[P(d)]

problematic term: P(d) equals the
sum of the likelihood x prior probability
of the tree + model for all possible
trees.

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Bayesian Inference

= Uses bayesian statistics
s P(t+mld)=P(dlt+m)xP(t+m)/

of the tree %
trees.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 92

Bayesian Inference

= Solution: Metropolis-Coupled Markov Chain
Monte Carlo Simulation (MC3)

= Advantages compared to ML:
» straightforward statistical measure of phylogeny
= Avoids bootstrapping & provides straightforward
support values
] Disadvantages Compared to ML:
= Requires prior probabilities for tree & model
= MC3 convergence problem

= More difficult to parallelize: Feng et al (2003) Parallel
algorithms for bayesian phylogenetic inference.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 93

MC3 Algorithm

random starting tree

heated chain cold chain

Tree proposal mechanism

The art in the design of bayesian phylogenetic
analysis lies in the tree proposal mechanism.

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

95

MC3 Algorithm

R = L(t 1. 2)/L(t_1_1)
R <1 — accept tree
if random(0,1) < R

R=L(t_2_2)/L(t 2 1)
R > 1- accept tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 96

MC3 Algorithm

random starting tree

ifL(t_1_2) > L(t_2_3)
— swap chain states

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

97

MC3 Algorithm

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 98

ML vs. Bayes

Likelihood
value

Model parameter x (transition/transversion ratio)

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

\4

99

MC3 convergence problem

A
Log Likelihood

v

Time

100

MC3 convergence problem

A
Log Likelihood

Area of apparent stationarity

v

Time

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

101

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

| MC3 convergence problem
! / ML analysis reference

A
Log Likelihood

+

\4

Time

102

| Real-world example

| -T0000

01_RANDOM p
101_UISER b
75000 ; e
ML starting Av
tree
random |5 ° |
starting tree
25000 |
=100000 -
105000 -
=110000 > L
SON000 o 1. 50408 2e+08 250408
Gareeations

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Je+08

103

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Outline

= Grand Challenges in HPC Bioinformatics

= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments

104

ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

/T

Phylogenetics are an
algorithmic discipline

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

106

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

ML Phylogeny Program
Development

Develop fast sequential algorithm with
new heuristics & optimizations

Iterate

A4
Parallel program

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Basic Algorithms

108

= Two basic classes of algorithms

I. Progressive algorithms: progressive
insertion of sequences into the tree e.g.
stepwise addition

II. Global algorithms:
= use NJ or parsimony starting tree
= optimize tree by application of standard
topological alterations
= NNI: Nearest Neighbor Interchange
= TBR: Tree Bisection Reconnection
= Subtree Rearrangements

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 109

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

110

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 111

NNI

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

112

NNI

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 113

TBR

vy
£a

TBR

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 114 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 115
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 116 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 117
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 118 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 119

Subtree Rearrangements

sT1 ST2

ST3

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

120

Subtree Rearrangements

ST2

ST1

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

121

| Subtree Rearrangements

ST1

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

122

| Subtree Rearrangements

ST2

ST1

- ST3
ST6

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

123

| Subtree Rearrangements

I ST6™,
ST1

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

124

| Subtree Rearrangements

| ST6
ST1 o+ ST2

ST5 ST4

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

125

| Subtree Rearrangements

| Subtree Rearrangements

sT1 sT2 sT1 ST2
+2 / +2 /
ST3 ST3
ST5 ST6 ST4
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 126 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 127

State-of-the-Art sequential
phylogeny programs I

= PHYML: fast & accurate on simulated data
= Guindon et al (2003) A simple, fast, and accurate
algorithm to estimate large phylogenies by maximum
likelihood.
= RAXML-III: fast & accurate on real data
= Stamatakis et al (2004) RAXML-III: A fast program for
maximum likelihood-based inference of large
phylogenetic trees.
= MetaPigA: fastest genetic search algorithm
= Lemmon et al (2002) The metapopulation genetic
algorithm: An efficient solution for the problem of
large phylogeny estimation.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 128

State-of-the-Art sequential
phylogeny programs II

= IQPNNI: accurate on real & simulated data;
slower than PHYML/RAxXML
= Vinh et al (2004) IQPNNI: Moving fast through tree
space and stopping in time.
» PAUP*: Many options for MP & ML searches; very
slow on ML, not available free of charge
= Swofford (1998) PAUP* 4.0 - Phylogenetic Analysis
Using Parsimony (*and Other Methods).
» MrBayes: fast bayesian inference

= Huelsenbeck (2001) MrBayes: Bayesian inference of
phylogenetic trees.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 129

Performance of Phylogeny
Programs

» Quantitative Measures
= Accuracy
= Time consumption
= Memory requirements
» Qualitative Measures
= Number of implemented evolutionary models
= Ability to optimize evol. model parameters
= Availability: negative examples TNT, DCM
= Code for various platforms

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 130

Performance of Phylogeny
Programs

= Quantitative Meas| Memory consumption is an
important
= Accuracy —often underestimated—
= Time consu problem !
= Memory requirements
» Qualitative Measures
= Number of implemented evolutionary models
= Ability to optimize evol. model parameters
= Availability: negative examples TNT, DCM
= Code for various platforms

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 131

Performance of Phylogeny
Programs

= Simulated data
= generate simulated “true” tree
= Standard program: r8s
= generate simulated alignment for the tree
= Standard program: Seq-Gen
= compute tree with phylogeny program
= measure topological distance to true tree
= Standard measure: Robinson-Foulds distance
= Problems
» perfect world: no gaps, no sequencing errors
= evolutionary model known a priori

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 132

Performance of Phylogeny
Programs

= Real data alignments
= compute tree with phylogeny programs
» compare final tree scores
= significance of small & between final ML scores
= apply likelihood ratio tests
= remember that programs return log-likelihood values
= High score-accuracy required: 99.99%
= Problems
= real tree not known
= evolutionary model not known
= application to one class of model (ML, MP) only

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 133

Performance of Phylogeny
Programs

= Real data alignments
mpute tree with phylogeny programs
res

The optimization of trees | between final ML scores
for real data is generally kests

significantly harder than for bms return log-likelihood values
simulated data! equired: 99.99%

Performance of Phylogeny
Programs

= Real data alignments

- ~rlogeny programs
Current research issue:

When to stop the analysis? es .
between final ML scores
= apply lik ratio tests

= remember\ At programs return log-likelihood values
= High score-accuracy required: 99.99%

= Problems = Problems
= real tree not known = real tree not known
= evolutionary model not known = evolutionary model not known
= application to one class of model (ML, MP) only = application to one class of model (ML, MP) only
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 134 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 135
Performance of Phylogeny
Programs When to stop the analysis?
[000 : : ,
= Real data alignments s
. compute)&ith phylogeny programs e
cores —
Current issue: Standard |5 otyeen final ML scores
real-data benchmark set | Y
required! rams return log-likelihood values % g |
= High score-accuracy required: 99.99%
= Problems =
= real tree not known 101600
= evolutionary model not known -
= application to one class of model (ML, MP) only : S
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 136 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 137

When to stop the analysis?

I 99800

' “800_ZILA"
e Is this improvement
B oowo | worth the extra time?
T
% soom0 |
"mmo 2000 4000 s000 B0 10000 12000

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Survey of sequential Programs

= Comparison on small simulated alignemnts

= Williams et al (2003) An investigation of phylogenetic
likelihood methods.

= Evaluated RAxML, PHYML, MrBayes on 50
simulated alignments with 100 taxa
= Used 9 real-world alignments with 101-1000
taxa
= Results:
= RAXML best & fastest on real data
= MrBayes best on simulated data
= MrBayes significantly slower than PHYML, RAXML

138 © Thomas Ludwig, Alexandros Stamatakis, GCB04 139
.
Sequential Results: Simulated
Dat ' :
ata Sequential Results: Real Data
;=.|-'M|_:-m: p— l
<Ry 1 data PHYML. secs | MrBayes secs RAXML secs | R>PHY | PAXML hrs
secs
101SC | 740976 | 153 | 771915 | 40527 | 739193 | 617 |31 730759 |47
T i 150.SC | -44298.1 | 158 | -52084 |49427 | -441426 |3%0 |33 41469 | 164
—E - 150_ARB -77219.7 313 -77196.7 29383 -77189.7 178 67 -77189.8 300
E. 200_ARB -104826.5 | 477 -104856.4 156419 -104742.6 | 272 99 -104743.3 775
250 ARB | -131560.3 | 767 | -133238.3 | 156418 | 1314680 | 1067 | 249 1314690 | 1947
S00ARB | -253354.2 | 2235 | -263217.8 | 3664% | 2524994 | 26124 | 493 2525881 | 7372
1000 ARB | 4022150 | 16594 | -459392.4 | 509148 | 4009253 | 50729 | 1893 | -402282.1 | 9898
¢ : “ S e R 218 ROPIl | -157923.1 | 403 | 1589116 | 138453 | -1575260 | 6774 | 244 wa n/a
PHYML: 0.0796 / 35.21 secs RAxML: 0.0808 / 131.05 secs
MrBayes: 0.0741 / 945.32 secs RAxML: 0.0818 / 29.27 secs
© Thomas Ludwig, Alexandros Stamatakis, GCB04 140 © Thomas Ludwig, Alexandros Stamatakis, GCB04 141
. .
Sequential Results: Real Data Sequential Results: Real Data
dl - - ! 400800 T T T T T T
ata PHYML | secs | MiBayes | secs Ra e TR > Y [PAL s Ln Likelihood 6RAXML
401000 -
101SC | 740976 | 153 | 771915 | 40527 | 739193 | 617 |31 730759 |47 oo - |
150.SC | 44298.1 | 158 | 520284 |49427 | -441426 |3%0 |33 441469 | 164
401400 - E
150_ARB -77219.7 313 -77196.7 29383 -77189.7 178 67 -77189.8 300
—~oiaf® RAXML>PHYML .
200_ARB -104826.5 | 477 -104856.4 156419 -104742.6 | 272 99 -104743.3 775
250 ARB | -131560.3 | 787 | -133238.3 | 156418 | -131468.0 | 1067 | 249 1314690 | 1947 400 - 1
402000 - E
S00ARB | -253354.2 | 2235 | -263217.8 | 3664% | 2524994 | 26124 | 493 2525881 | 7372
1000 ARB | 4022150 | 16594 | 4593924 | 509148 | 4009253 | 50729 | 1893 | -402282.1 | 9898 -mz::n? PHYML pAX.ML .
—402400 L L Padh
218 ROPI | -157923.1 | 403 | -1589116 | 138453 | 1575260 | 6774 | 244 wa /a 0 506 leH] 15er] 207 25c:07 3et07 [35cs07 des0
/
Time in Seconds .
over 8000 CPU hours
© Thomas Ludwig, Alexandros Stamatakis, GCB04 192 © Thomas Ludwig, Alexandros Stamatakis, GCB04

143

Sequential Results: Real Data

Sequentlal Results: Real Data

RAXML>PHYML
Jonsmb T T T T T T | 'RAXML
Ln Likelihood = @ RAXML _ o, M— : : : :
Ln Likelihood
401200 - 7 =4 10000 7
—401400 . . PHYML
—of® RAxML>PH State-of-the-Art parallel] N
program in 2002 ! 430000 |- B
—401800 4
~402000 |- \‘; 8 —h0a0 -
—J!P"ﬂ(? PHYML PAX.ML T 450000 T
400 ; . ; . LA MrBayes
-(Kt letl? 15e+07 2407 25e407 3elT [35c407 doslf SG0000 - . - L r
/ o 100000 200000 300000 ADODOG SO0000 G000
Time in Seconds
over 8000 CPU hours Time
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 144 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 145
Sequentlal Results: Real Data Memory requirements
[
00 T T T T T T T
Ln ere.f:hood RAxML
—401000 X o . 1000 taxa 10000 taxa
R i RAXML 200MB 750MB
—401400 1
40 AXML>P) _
oo B RAXML>PHYML PHYML 900MB 8.8GB
401800 [~ T
000 1 MrBayes |1150MB not
—~402200 ® PHYML . available
—soson L1 L - .
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000
Time
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 146 (© Thomas Ludwig, Alexandros Stamatakis, GCB'04 147
Sequential RAXML Sequential RAXML
[[
Compute randomized parsimony starting tree Compute randomized parsimony starting tree
with dnapars from PHYLIP with dnapars from PHYLIP
A 4
Advantage of RAXML: Apply exhaustive subtree rearrangements
search starts from distinct
points in search space RAXML performs fast lazy
rearrangements
150

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 149

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

Sequential RAXML

Compute randomized parsimony starting tree
with dnapars from PHYLIP

A 4
Apply exhaustive subtree rearrangements

Iterate while tree improves

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 151

Sequential RAXML

RAXML uses Subtree Equality Vectors: Stamatakis et al
(2002) Accelerating Parallel Maximum Likelihood-based
Phylogenetic Tree Calculations using Subtree Equality

Vectors.
I N~

Apply exhaustive subtree rearrangements |

Iterate while tree improves

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 152

Outline

I
= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of
Phylogenetic Inference
= phylogenetic analysis
= maximum likelihood
= bayesian inference
= sequential codes
= parallel & distributed RAXML
= future developments

Parallel & Distributed RAXML

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 153

Design goals
- minimize communication overhead
- attain good speedup
Master-Worker architecture
= 2 computational phases
I. Computation of # workers parsimony trees
II. Rearrangement of subtrees at each worker
= Program is non-deterministic — every run
yields distinct result, even with fixed
starting tree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 154

Parallel RAXML: Phase I

Distribute alignment file &
Q} compute parsimony trees \Q}

\ Master /
Process
L ~(T

i

]

Q)

]

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 155

Parallel RAXML: Phase I

Receive parsimony trees &
@ select best as starting tree @

—_ —_—

h == @

Master

Process
d / T~ (@

—=x

]

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 156

Parallel RAXML: Phase II | Parallel RAXML: Phase II

Distribute currently best tree Workers issue work requests

g [g a

Master Master

Process Process
. \@ A ~(@

]

B

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04

(]
E

| Parallel RAXML: Phase II Parallel RAXML: Phase II
I

Distribute subtree IDs Distribute subtree IDs

I

Ha
@)

J g
=

21\ /—

Master Master

Process Process
(@ / T~ / (@) T (@

Only one integer must be —
sent to each node!

w
|

!
2

]

]
]

| Parallel RAXML: Phase II | Parallel RAXML: Phase II
| ST1 ST2
d g
@ @
ST3 ST4

Parallel RAXML: Phase II

Receive result trees and
continue with best tree

\
\‘ Master / -
Process
A T~

@

@

19

—

]

|
|

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 163

| Speedup

“OPTIMAL_SPEEDUP"
NORMAL SPEEDUP*
“FAIR_SPEEDUP"

o 5 10 15) F £ £
rumber of worker processes
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 164

Slightly superlinear

L “ i !
speedup due to non- Bl
i determinism!

| \l

o 5 10 15) F £ £
rumber of worker processes
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 165

RAXML: Biological Research

1. Parallel inference of 5 10.000 taxon trees
containing Bacteria, Eukarya, Archaea on a
Linux PC Cluster

= Accumulated CPU hours per tree ~ 3200
= Largest ML-analysis to date
= Major clades correctly identified

2. Sequential analysis of 2415 mammals
(cytochrome-b sequences)

= “Traditional” reference tree available
= Error about 10-13%

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 166

Outline

= Grand Challenges in HPC Bioinformatics
= HPC Bioinformatics by Example of

Phylogenetic Inference

= phylogenetic analysis

= maximum likelihood

= bayesian inference

= sequential codes

= parallel & distributed RAXML

= future developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 167

Future Developments

= Visualization

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 168

ATV an _ARE TREE.|

Future Developments

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 170

Visualization

Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree

Problem 1: Currently only 2
methods available for

| FUt alignment division: tS

| RAXML & DCM

= Visual
. Div'%-conquer algorithms
L

Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

171

Future Developments

Visualization
Problem 2:Resolving gorithms
multifurcations is hard ub-alignments

optimization of the entire Rlignments

tree required mprehensive tree by

\ ~fcation of supertree methods
IV. YResolve multifurcations & optimize supertree

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 172

Distributed D & C

Construct Guide Tree & perform
tree-based alignment divison

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

173

Distributed D & C

Compute Subtrees

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 174

Distributed D & C

Merge into Guide Tree & (@
Re-Divide Alignment ==

i

{

e Ae

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 175

| Distributed D & C

Compute Subtrees

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

176

Recent Workon D & C
= Rec-I-DCM3: Very fast on parsimony

= Roshan (2004) Rec-I-DCM3: A fast algorithmic
technique for reconstructing large phylogenetic trees.

= PhyNav: Zoom-in zoom-out technique

= Vinh et al (2004) PhyNav: A novel approach to
reconstruct large phylogenies.

= BWD: New supertree reconstruction

method using distances

= Stephen J. Willson (2004) Constructing rooted
supertrees using distances.

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 177

Future Developments

= Visualization

= Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree
= Shared memory or vector processors

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

178

| Shared Memory Parallelism

virtual root
%

N

g
o B

P[i] = f(9(QLD) , 9(RIi]))

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 179

| Shared Memory Parallelism

virtual root
%

\

E This operation uses ~ 90%
of total execution time !

P[i] = f(9(QLD) , 9(RIi]))

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

180

| Shared Memory Parallelism

virtual root
%

\

This operation uses ~ 90%
of total execution time !
— simple fine-grained
parallelisation

P[i] = f(9(QLD) , 9(RIi]))

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

181

| Shared Memory Parallelism

[]
virtual root
2 :
Y
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 182

| Shared Memory Parallelism

virtual root

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

183

| Shared Memory Parallelism

! virtual root
K\
2 g
(o]

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 184

Future Developments

= Visualization

= Divide-and-conquer algorithms
I. Divide alignment into sub-alignments
II. Infer subtrees for sub-alignments

III. Merge subtrees into comprehensive tree by
application of supertree methods

IV. Resolve multifurcations & optimize supertree
= Shared memory or vector processors
= Combination of ML hill-climbing and MC3-
like sampling algorithms

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

185

Future Developments

. Visuglization
« Divid Potential Advantages:
| 1. Large number of

L Di sampled trees to build [ENts

II. Inf consensus tree

III. Mg 2. Faster convergence to fve tree by

ap best-known likelihood?

IV. Re 7e supertree

= Share ory or vector processors

= Combination of ML hill-climbing and MC3-
like sampling algorithms

(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 186

| Combined method

I 99800

500 ZRLA®
aon | @ ——
100200
100400 H
! Start sampling?
:
$ womo |
~100800 -
101000 ‘
01200
o 2000 4000 s000 B0 10000 12000
Time in Seconds
(© Thomas Ludwig, Alexandros Stamatakis, GCB'04 187

Recent HW-specific
optimization

= Like every ML program RAXML makes
many calls to exp() and log() in vectors
— expensive

= Utilisation of Intel™ MKL (Math Kernel
Library) on a Xeon 2.4GHz CPU

» Performance boost of over 30% ...
= ... in half a day of work

© Thomas Ludwig, Alexandros Stamatakis, GCB'04

188

On-Line Resources

HPC Resources ‘matics R ces

= TOP500 List = CIPRES project
www.phylo.org

= Felsenatein’s phylogeny page
evolution.genetics.washington.edu/
phylip/software.html

= PHYML download
www.lirmm.fr/~guindon/phyml.htm|
= RAXML download

wwwbode.cs.tum.edu/~stamatak/
research.html

= IQPNNI & PhyNav download
www.bi.uni-duesseldorf.de/software

www.top500.0rg

= BlueGene
www.research.ibm.com/bluegene/

= EarthSimulator
www.es.jamstec.go.jp

= MPI-Forum
www.mpi-forum.org

= Global Grid Form
www.gridforum.org

= MPICH
Wwww-unix.mcs.anl.gov/mpi/mpich/

= OpenMP
www.openmp.org

© Thomas Ludwig, Alexandros Stamatakis, GCB'04 189

