Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000000 000000 00000000000

Computational interpretation of proofs:
An introduction to realizability

Alexandre Miquel

y
>
A
=
=
=
=
=

H &A <
UNIVERSIDAD INGENIERIA R

DE LA REPUBLICA
URUGUAY

Semantics of proofs and certified mathematics
PhD school — April 9th, 2014 — CIRM - Luminy

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000000

Typing versus realizability

Why does the term Ax.x have type nat — nat ?

Typing Realizability
x:nat b x:nat for all n € nat
F Ax.x : nat — nat (Ax.x)n > n € nat
@ Syntactic analysis of terms @ Computational analysis of terms
@ At least semi-decidable @ Strongly undecidable
@ Simple justification: derivation @ External justification (proof)

Adequacy:

Correctness w.r.t. typing = Correctness w.r.t. realizability

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000000

The hacker’s point of view

Many situations where an ill-typed program is correct w.r.t. computation:

let my_stupid_function n =
if n * n + 1 = 0 then 42 else true

This expression has type bool but is here used with type int

However, my_stupid_function always returns a Boolean
when it is applied to an integer...

Two different notions of correction:

@ Correction w.r.t. typing
@ Correction w.r.t. computation ~» Realizability

Plan

© Realizability for Godel's system T

© Kleene realizability (with \-terms)

© Kreisel's modified realizability

© Negative translations from LK to LJ

© Realizability for Godel's system T

© Kleene realizability (with \-terms)

© Kreisel's modified realizability

@ Negative translations from LK to LJ

Realizability for system T Kleene realizability Modified realizability Negative translations

0e0000 0000000000000 000 000000 00000000000

System T: common parts

Types AB = nat | AxB | A—B
Terms M,N == x | MXx.M | MN

| pair | fst | snd

| 0 | S | rec

Notations: (M1, M2) = pair My M, n=S8"0 (n€IN)

Reduction rules

(M. M)N >~ M{x:= N}
fst <M1, M2> = M
snd <M1, M2> = M
rec Mo M; 0 > M,
rec Mo My (SN) > My N (rec My My N)

Realizability for system T Kleene realizability Modified realizability Negative translations

00@000 0000000000000 000 000000 00000000000
The point of view of typing (1/2)
Typing contexts I o= x1: A1, ..., % Ap (xi % xj when i;éj)J

Typing rules
Trx:A A
x:AEM:B rTEM:A—-B TEN:A
TFA.M:A> B r-MN:B

[Fpair:A—-B—+AxB

lEFfst: AxB— A [Fsnd: AxB — B

[F0: nat ES: nat — nat

N-rec: A— (nat - A— A) —» nat —» A

@ Problem: Reduction is never mentioned in the rules!
How to be sure that computation will not go wrong?

Realizability for system T Kleene realizability Modified realizability Negative translations
000e00 0000000000000 000 000000 00000000000

The point of view of typing (2/2)

Correction w.r.t. computation follows from 3 results:

Subject reduction (SR)
f TEM:A and M>=M', then TFM : A

Canonical forms of type nat (CF)

If = M :nat, M in normal form, then M =n for some nc IN

Strong normalization (SN)

If T M: A, then M is strongly normalizing

SR+ CF+SN = Every closed term M : nat
reduces to a natural number A

Realizability for system T Kleene realizability Modified realizability Negative translations
0000e0 0000000000000 000 000000 00000000000

The point of view of realizability

Definition (Binary relation M I- A, M closed)

Q@ MIF nat if M ~*n for some ne IN
Q MIFAxB if M =* <I\/717 M2>, where M I-A, My I B
QO MIFA—B if forall N: NI-A implies MN IF B

Closed terms: no typing context

Purely computational definition: syntax = black box

No correctness to prove: everything is in the definition!

Requires an external justification: a proof (in which system?)

Relation M IF A undecidable, not even semi-decidable

For each A, the set {M € A: M I- A} is closed under anti-reduction

Realizability for system T Kleene realizability Modified realizability Negative translations
00000e 0000000000000 000 000000 00000000000

Typing and realizability

Theorem (Adequacy)

If: x1: AL, ..., x,: AnEM: B
then for all Ny I Ag, ..., N, IFA,:

M{x1 := Ny,..., x5 :=N,} I B

Proof: By induction on the derivation, using the fact that each set
{M e N: MI- A} is closed under anti-reduction.

Particular cases (empty context)

e FM:A implies MIFA
@ M :nat implies M >=*n forsomene N

e Remark: In the previous proof of correctness (SR + CF + SN),
a (customized) realizability model was hidden in the proof of SN

© Realizability for Gédel’s system T

© Kleene realizability (with \-terms)

© Kreisel's modified realizability

@ Negative translations from LK to LJ

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0@00000000000000 000000 00000000000

Background

Formalize the idea of constructivity according to Brouwer:
@ 1908. Brouwer: The untrustworthiness of the principles of logic
(Principles of intuitionism)

@ 1936. Church: An Unsolvable Problem of Elementary Number Theory

(Application of the A-calculus to the Entscheidungsproblem)

@ 1936. Turing: On Computable Numbers, with an Application to the
Entscheidungsproblem

@ 1936. Kleene: \-definability and recursiveness

@ 1945. Kleene: On the Interpretation of Intuitionistic Number Theory

Realizability for system T Kleene realizability Modified realizability
000000 00@0000000000000

Negative translations
Kleene realizability

00000000000

1945. Kleene: On the Interpretation of Intuitionistic Number Theory
o Realizability in Heyting Arithmetic (HA)

@ Definition of the realizability relation nl- A
e n Goddel code of a partial recursive function
e A = closed formula of HA

@ Theorem: every provable formula of HA is realized

@ Some unprovable formulas are realizable too...

Remarks:

o Codes for partial recursive functions can be replaced by the elements
of any partial combinatory algebra

@ Here, we shall take closed terms of Gédel's system T

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0008000000000 000 000000 00000000000

Heyting Arithmetic

The language of HA

FO-terms e, e x | f(e,...,ex)

Formulas AB = eg=e | L | A=B
| AAB | AVB | VxA | 3xA

@ We assume given one function symbol f for each
primitive recursive function: 0, S, 4, X, T, etc.

@ For each closed FO-term e, write [e] its value (€ IN)

Deduction rules and axioms

@ Intuitionistic natural deduction: Ag,...,A, - B
e Equality axioms (e.g. Leibniz axioms)
@ Definitional axioms for primitive recursive functions

@ Peano axioms: injectivity, non confusion, induction

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000@00000000000 000000 00000000000

Definition of the relation M I A (M, A closed)

Definition (realizability relation M |- A)

MlFer=e = [a]=[e] AN M>="0
MI- L = 1
MIFAAB = 3My, My (M =* (My, M) A Myl-A A M, - B)
MIFAVB = 3N ((M=*{0,N) A NIFA) Vv
(M =* (1,N) A NI-B))
MIFA=B = VN(NIFA = MN I B)
MIFVxA(x) = Vn Mnl- A(n)
MIF3xA(x) = 3ndN (M=* (@ N) A NI- A(n))

<

For each A, the set {M € A: M I- A} is closed under anti-reduction

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 00000e0000000000 000000 00000000000
Adequacy
o Every FO-term e with free variables xi, ..., x, is translated into a
term e* of system T with the same meaning (and free variables)
o Every derivation d: (Ai,...,A, - B) s translated into a term d*
of system T with free variables xq,...,xx, z1, ..., z,, where:
@ Xi1,...,xk are the free variables of As,...,A,, B
e z1,...,2n are proof variables associated to A1, ..., A,

The construction of d* follows the CH correspondence

Proposition (Adequacy)
Given a derivation d: (A,..., A, B):
o for all valuations p : Var — IN
o for all realizers Ny IF Aq[p], . I Anlp]:
d*[pl{z = N1, ooy zp = Ny} I Blp]

Proof: By induction on d.

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 000000e000000000 000000 00000000000

Extracting a term d* from a valuation: some cases

*

. S d
<A17...7A,, . A,-) = z rc .| = any_term
TFA
éd édl §d1 '
LAEB | = Az.d” T[TFA=B Ik = dids
rFA=B r-B
4\ d
TFA = (0,d*) r-B =(1,d%)
r-FAvVB rFAvVB
rFA = Ax.d* [-VxA = d*e*

N-vxA M- A{x:=e}

Negative translations

Kleene realizability Modified realizability
00000000000

Realizability for system T
00000008000 00000 000000

000000

Realizing the axioms of HA

e Equality axioms and defining equalities for primitive recursive
functions have trivial realizers:

Ay.0 IF Vy (0+y=y)
Axy.0 IF VxVy (s(x)+y=s(x+y)) (etc.)

@ Realizing Peano axioms:

Mxyz.z IF V¥xVy (s s(y)=x=y)

any_term IF Vx(s(x

(s(x) =
) #0)
rec Ik A(0) = Vx

(A(x) = A(s(x))) = VxA(x)

Theorem (Kleene)
If HAF A, then MI-FA for some M

(A, M closed)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 00000000e@0000000 000000 00000000000

Optimizing realizers

@ Many true or provable formulas can be given trivial realizers,
without even looking at the proof:

Realizing true equalities

If N [= VX (e(X) = e(X))
Then AX.0 |k VX (e1(X) = ex(X))
o Example: Axy .0 IF VxVy(x+y=y+x)

@ The formula
VxVyVz¥n(x #0=y #0=n>2=x"4+y" #z")

has a realizer that fits into the margin!

@ This can be generalized to all Harrop formulas (see later)

1E.g. Az.z. For the proof that it is a realizer, see [Wiles-Taylor'95]

Realizability for system T Kleene realizability Modified realizability Negative translations

000000 000000000e000000 000000 00000000000

Unprovable, but realizable

o Consequence of the Halting problem:

I Vx (Halt(x) v —Halt(x)) J

Corollary: HA I/ EM (from Adequacy) |

@ Therefore, the negation of the above formula is realized:

any_term IF —Vx (Halt(x) v —Halt(x)) (Realizable, but not provable) |

@ Markov Principle:

M IF Vx (P(x)V-P(x)) = —Vx—-P(x) = IxP(x) J
where M = Ju_.Y (Afn. match u n with
| (0,p) — (m,p)

| (1,.) — f(sn))o0

(metaphore)

Realizability vs. provability /typing

Realizability for system T Kleene realizability Modified realizability
000000 00000000000e0000 000000

Program extraction

Negative translations
00000000000

Theorem (program extraction)

If MIFVx 3y A(x,y), then forall n € IN:
Mn == (p, N)

for some p e IN (witness) and NI A(n,p) (justification)

o Extracted program: f = Ax.fst(Mx)

e Problem: NI A(n,p) # HAHF A(n,p)

@ Solution: glued realizability

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 000000000000e000 000000 00000000000

Glued realizability (1/2)

P set of closed formulas such that:
@ P contains all theorems of HA
@ P closed under modus ponens ((A=B)eP, Ac¢P ~ BeP)

MiFpn=m = n=m A M>*0
MiFp L = 1
MiFp ANB = 3My, My (M =* (M, M) A Milp A A M l-p B)
MiFp AVB = 3N ((M=*(0,N) A Nlp A) V
(M =* (1,N) A NliFp B))
MiFpA=B = YN(NIFpA = MNIFpB) A (A=B)eP
MIFp VxA(x) = Vn Mnlkp A(n) A (VxA(x)) €P
MiFp 3xA(x) = 3n3IM' (M =" (n,M') A M I-p A(n))

Note: Plain realizability = case where P contains all formulas

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 e00 000000 00000000000

Glued realizability (2/2)

Theorem (Kleene)

QIf MIFp A then AcP
Q@ If HAF A, then thereis a term M such that MIkp A

@ Case where P is the set of all closed formulas ~~ Plain realizability
@ Case where P is the set of all theorems of HA:

© A provable in HA < A is P-realizable
@ Disjunction property: HAFAVB ~ HAFA or HAEB
© Witness property: HAF3xA(x) ~ n + HAFA(n)

(without using cut-elimination!)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 0e0 000000 00000000000

Kleene's presentation

o Kleene did not used closed A-terms, but Gédel codes for partial
recursive functions, equipped with:

e a recursive bijection (-,-) : IN. X IN — IN

o Kleene's (partial) application: n-m = ¢,(m)
(where (¢n)nem is an enumeration of all partial recursive functions)

e Convenient to formalize realizability within HA:
A — nlFA (formula translation)

Theorem: If HA - A, then there is n € IN such that HA F (n |- A) J

@ Remark: We can do the same with closed A-terms, or with any
partial combinatory algebra that is definable in HA.

Realizability for system T Kleene realizability Modified realizability
000000 000000000000000e 000000

Extensions and variants

o Extensions:

o To second-order arithmetic

e To intuitionistic set theories (I1Z, IZF, CZF):
Friedman, Myhill, McCarty, Aczel, etc.

e Variants:

o Modified realizability: Kreisel

e Techniques of reducibility candidates:
Tait, Girard, Parigot, etc.

o Categorical realizability:

e Strong connections with topos theory:
Scott, Hyland, Johnstone, Pitts

o Realizability for classical logic:
o Krivine realizability (in PA2, ZF)

Negative translations
00000000000

© Realizability for Gédel’s system T

© Kleene realizability (with \-terms)

© Kreisel's modified realizability

@ Negative translations from LK to LJ

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 0@0000 00000000000

The arithmetic of finite types: HA®

o Multi-sorted first-order logic whose sorts are the types of system T:

7,0 == bool | nat | 7xo | T—o0
@ Individuals of sort = = terms of type 7 (in system T)
e Formulas:
AB = at(M) | AAB | A=B | Yx"A | 3Ix"A J
o at(M) means: M =tt (M : bool)

o L = at(ff)
o My =pat Mo = at(nat_eq M1M2) (Ml, Ms : nat)
e AV B = 3Jxboo ((X —hool Tt = A) A (X =bool £f = B))

o Axioms: Equality, computation, Peano axioms

@ Remark: This system is a conservative extension of HA
(Not to be confused with higher-order arithmetic)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000000

Kreisel's modified realizability

@ To every formula A we associate a type A* of system T:

(at(M))* = nat
(ANB) = A*xB* (3x"A) = 7xA*
(A= B = A* =B (Vx"A) = 1A

@ To every formula A we associate another formula z mr A
(whose free variables are those of A, plus z : A*)

z mr at(M) = z=0 A at(M)

zmrAAB fst(z) mr A A snd(z) mr B
zmrA=B Vu(umrA = zumrB)
z mr Vx7 A(x) VxT zx mr A(x)

zmr Ix"A(x) = snd(z) mr A(fst(z))

Theorem: If HA“ - A, then HAYF M mr A for some M : A*)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000000

Properties of Kreisel's modified realizability

@ Allows to prove that: HA t/ Markov

o Allows to realize
e The principle of Independence of Premises:

(mA = 3IxB(x)) = 3Ix(-A= B(x))
o The (type-theoretic) Axiom of Choice
vx" JyTA(x,y) = IFTT77 UxTA(x, f(x))
e Practical interest:

e Program extraction towards a typed language (system T)

o Possibility of optimizing extraction by erasing Harrop formulas:

H == at(M) | HAH | A=H | Vx'H |

Negative translations

Kleene realizability Modified realizability
00000000000

Realizability for system T
0000000000000 000 0000e0

N . : (1/2)

Optimizing modified realizers

@ We introduce a pseudo-type € expressing computational irrelevance
and optimize the definition of the type A* as follows:

A* = € A atomic
()
€ if A*=B*=¢€
B* if A* =¢, B*
(A A B)* i €, Ze
A* if A* %€ B*=e€
A* x B* siA* %€, B*#e¢
€ if B* =€
(A= B)* = B* if A*=¢€, B*#e€
A* —» B* siA*#e B*#e
*:
(Vx A)* €
o%A* |fA*3é€
(3x7 A)* if A* =€
axA* if A* Z£e€
v

By construction: A*=e iff A Harrop

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 00000e 00000000000

Optimizing modified realizers (2/2)

e For every non-Harrop formula A (i.e. A* # €) we modify the
definition of the relation zmr A accordingly (Exercisel)

No modified realizability / program extraction for Harrop formulas

Theorem: If HA“F A, then HAY - M mr A for some M : A*
(Provided A is non-Harrop)

o Example: Euclidian division
VxMat ynat (y £0 = F¢"T Mt (x=qy+r A r<y))
o Associated type is: nat — nat — nat X nat

A modified realizer M mr A (extracted from a proof of A)
will only compute the function of interest

o Method used by Schwichtenberg et al. in MinLog

© Realizability for Gédel’s system T
© Kleene realizability (with \-terms)
© Kreisel's modified realizability

© Negative translations from LK to LJ

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 0@000000000

How to cope with classical logic?

o Kleene realizability is definitely incompatible with classical logic
I Vx (Halt(x) v —Halt(x))
any_term |F —Vx (Halt(x) Vv —Halt(x))

The same holds for modified realizability

@ Two possible solutions:

© Compose Kleene realizability with a negative translation from
classical logic (LK) to intuitionistic logic (LJ) (next slide)

© Reformulate the principles of realizability to make them compatible
with classical logic: Krivine's classical realizability (next lecture)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00e00000000

The Godel-Gentzen translation

o Idea: Turn positive constructions (atomic formulas, Vv, 3) into
negative constructions (L, -, =, A, V) using De Morgan laws

o Every formula A is translated into the formula A® defined by:

1¢6=1 (&1 = ez)G = (e = e)
(A= B)® = A® = B°
(AAB)¢ = A° ABC (AV B)® = —~(—A® A -BS)
(Vx A)€ = V¥x A® (Ax A)€ = —¥x-A°

writing: A = A= 1

Theorem (Soundness)

OLKHF A= A
Q@ If PA A then HA - AS

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 000e0000000

Realizing translated formulas

o Strategy:
© Build a derivation d of A (in PA)
© Turn it into a derivation d® of A® (in HA)
© Turn d° into a Kleene realizer (program extraction)

@ Does not work! Failure comes from:

Proposition (Realizability collapse)

For every formula A, Kleene's semantics for A® mimics Tarski's
semantics for A:)
AN if NEA

{(MeN : MIFA®} = {@ N A

Proof. By induction on A.
e Reason: AC is always a Harrop formula (no computational contents)

o Conclusion: Kleene o Godel-Gentzen = Tarski

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 0000e000000

Friedman’s R-translation (called A-translation by Friedman)

@ Principle: In Godel-Gentzen's translation, replace each occurrence
of L (absurdity) by a fixed formula R, called the return formula

o Every formula A is translated into the formula AF defined by:

1F=R (&1 = ez)F = —r-r(e1 =)
(A= B)f = AF = BF
(AAB)F = AF A BF (AV B)F = —g(=rAF A —rBF)
(Vx A)F = vx AF (3x A)F = —rVx rAF

writing: -rA = A=R

Theorem (Soundness)

If PA - A then HA F AF (independently from the formula R)

Beware! The two formulas A and AF are no more (classically) equivalent

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000800000

Friedman's trick

Theorem (Kreisel-Friedman)

PA conservatively extends HA over M3-formulas:

If PA + Vx3Jyf(x,y)=0, then HA F Vx3yf(x,y)=0

Proof. Assume that PA F Vx3yf(x,y) =0. We have:

HA + VX—‘RVy—\R—\R—\Rf(X,y) =0 (by R—translation)

HA + VXﬁRVyﬁRf(X,y) =0 (Since TRTRTR & “R)
HA + —grVy-gf(xo,y) =0 (V-elim, xq fresh)

HA + Vy (f(x,y)=0=R) = R (def. of —g)

We now let: R =3yof(xo0,y0) =0 (Friedman'’s trick!) From the def. of R:
HA + Vy (f(xo,y) =0 = 3yo f(x0,¥) =0) = Tyo f(x0,%0) =0

But the premise of the above implication is provable

HA + Vy (f(x0,y) = 0= 3yo f(x0,¥0) =0) (3-intro)
hence we get
HA F 3yo f(x0,5) =0 (modus ponens)

HA + Vxo E|y0 f(Xo,yo) =0 (V—intro) O

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000080000

Realizing translated formulas, again

o Strategy:
© Build a derivation d of a M3-formula A (in PA)
@ Turn it into a derivation F-trick(d) of A (in HA)

© Turn F-trick(d”) into a Kleene realizer of A (program extraction)

@ This technique perfectly works in practice. However:

o The formula AF is never a Harrop formula, even when A is.
Possible fix: Introduce specific optimization techniques, e.g.:

Refined Program Extraction [Berger et al., 2001]

o The translation A — AF completely changes the structure of the
underlying proof. Paossible fix: cf next slides

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000008000

The Lafont-Reus-Streicher translation (1/4)

o ldea: Translate each formula A into the (relative) negation of a
formula At representing the negation of A:

ALRS = o AL (AL defined by induction on A)

(Again, this translation is parameterized by a return formula R)

o To every predicate symbol p (source language) we associate a
predicate symbol p representing its negation (target language)

o Definition of the translations A+— AL and A+ ALRS.

(p(elv"‘vek))J— = pL(EI,...,Ek) J-J_ =T
(A= B)L = ALRS L (VxA)L = TxAt
ALRS = o AL

Theorem (Soundness)

If LK - A, then LJ - ALRS (independently from the formula R)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000800

The Lafont-Reus-Streicher translation (2/4)

o Intuition: The translated formula AL represents the type of stacks
opposing (classical) terms of type A:
(A= = A, =Bt = ARSA...NALRS A Bt

(AL — - = A, = B)t = ALRS x ... x ALRS gt

@ To analyze the computational contents of the LRS-translation, we
need to work across two A-calculi:

» A source calculus to represent classical proofs:
Asource = A +@: (A= B)—=A)— A (Peirce’s law)

(Polymorphic constant @ introduces classical reasoning)

» An intutionistic target calculus to represent translated proofs:
>\target -)\—>¢><
(In this calculus, pairs are used to represent stacks)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 00000000080

The Lafont-Reus-Streicher translation (3/4)

@ The underlying CPS-translation:

(x)LRS = Xs.xs
(Ax.)RS = X(x,s).ttRS s
(tu)tRS = Ns. tLRS (utRS)
RS = \x,s).x(ks,s),
where ks = Xy,_).ys

Theorem (Soundness)

If Fr=t:A (in the source A-calculus)

then THR [pllRs R (in the target A-calculus)

Realizability for system T Kleene realizability Modified realizability Negative translations
000000 0000000000000 000 000000 0000000000e
The Lafont-Reus-Streicher translation (4/4)

@ From the Lafont-Reus-Streicher translation...

(Ax.)RS @ (u,s) = tRS{x:=u} @s
(tu)LRS @ s . tLRS @ (uLRS.s)
RS @ (u,s) = u @ (k,s)
ks @ (u,s’y > u®s
... to the Krivine Abstract Machine (KAM)

Grab M. txu-m = t{x=u}xm

Push tu * - txu-m

Save Txu-T = uxky- -m
Restore ke xu-n" > u*m

o Reformulating Kleene realizability through the LRS-translation (and
its CPS), we get Krivine's classical realizability (cf next lecture)

	Realizability for Gödel's system T
	Kleene realizability (with -terms)
	Kreisel's modified realizability
	Negative translations from LK to LJ

