
Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Computational interpretation of proofs:
An introduction to realizability

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

Semantics of proofs and certi�ed mathematics
PhD school � April 9th, 2014 � CIRM � Luminy

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Typing versus realizability

Why does the term λx . x have type nat→ nat ?

Typing Realizability

x : nat ` x : nat
` λx . x : nat→ nat

for all n ∈ nat

(λx . x) n � n ∈ nat

Syntactic analysis of terms

At least semi-decidable

Simple justi�cation: derivation

Computational analysis of terms

Strongly undecidable

External justi�cation (proof)

Adequacy:

Correctness w.r.t. typing ⇒ Correctness w.r.t. realizability

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The hacker's point of view

Many situations where an ill-typed program is correct w.r.t. computation:

let my_stupid_function n =

if n * n + 1 = 0 then 42 else true

This expression has type bool but is here used with type int

However, my_stupid_function always returns a Boolean
when it is applied to an integer...

Two di�erent notions of correction:

1 Correction w.r.t. typing

2 Correction w.r.t. computation Realizability

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ-terms)

3 Kreisel's modi�ed realizability

4 Negative translations from LK to LJ

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ-terms)

3 Kreisel's modi�ed realizability

4 Negative translations from LK to LJ

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

System T : common parts

Syntax

Types A,B ::= nat | A× B | A→ B

Terms M,N ::= x | λx .M | MN

| pair | fst | snd

| 0 | S | rec

Notations: 〈M1,M2〉 ≡ pairM1M2, n ≡ Sn0 (n ∈ N)

Reduction rules

(λx .M)N � M{x := N}

fst 〈M1,M2〉 � M1

snd 〈M1,M2〉 � M2

rec M0 M1 0 � M0

rec M0 M1 (S N) � M1 N (rec M0 M1 N)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The point of view of typing (1/2)

Typing contexts Γ ::= x1 : A1, . . . , xn : An (xi 6≡ xj when i 6= j)

Typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` M : B

Γ ` λx .M : A→ B
Γ ` M : A→ B Γ ` N : A

Γ ` MN : B

Γ ` pair : A→ B → A× B

Γ ` fst : A× B → A Γ ` snd : A× B → B

Γ ` 0 : nat Γ ` S : nat→ nat

Γ ` rec : A→ (nat→ A→ A)→ nat→ A

Problem: Reduction is never mentioned in the rules!
How to be sure that computation will not go wrong?

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The point of view of typing (2/2)

Correction w.r.t. computation follows from 3 results:

Subject reduction (SR)

If Γ ` M : A and M � M ′, then Γ ` M ′ : A

Canonical forms of type nat (CF)

If ` M : nat, M in normal form, then M ≡ n for some n ∈ N

Strong normalization (SN)

If Γ ` M : A, then M is strongly normalizing

SR + CF + SN ⇒ Every closed term M : nat
reduces to a natural number n

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The point of view of realizability

De�nition (Binary relation M
 A, M closed)

1 M
 nat if M �∗ n for some n ∈ N
2 M
 A× B if M �∗ 〈M1,M2〉, where M1
 A, M2
 B

3 M
 A→ B if for all N: N
 A implies MN
 B

Closed terms: no typing context

Purely computational de�nition: syntax = black box

No correctness to prove: everything is in the de�nition!

Requires an external justi�cation: a proof (in which system?)

Relation M
 A undecidable, not even semi-decidable

Lemma

For each A, the set {M ∈ Λ : M
 A} is closed under anti-reduction

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Typing and realizability

Theorem (Adequacy)

If: x1 : A1, . . . , xn : An ` M : B

then for all N1
 A1, . . . , Nn
 An:

M{x1 := N1, . . . , xn := Nn}
 B

Proof: By induction on the derivation, using the fact that each set
{M ∈ Λ : M
 A} is closed under anti-reduction.

Particular cases (empty context)

` M : A implies M
 A

` M : nat implies M �∗ n for some n ∈ N

Remark: In the previous proof of correctness (SR + CF + SN),
a (customized) realizability model was hidden in the proof of SN

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ-terms)

3 Kreisel's modi�ed realizability

4 Negative translations from LK to LJ

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Background

Formalize the idea of constructivity according to Brouwer:

1908. Brouwer: The untrustworthiness of the principles of logic

(Principles of intuitionism)

1936. Church: An Unsolvable Problem of Elementary Number Theory

(Application of the λ-calculus to the Entscheidungsproblem)

1936. Turing: On Computable Numbers, with an Application to the

Entscheidungsproblem

1936. Kleene: λ-de�nability and recursiveness

1945. Kleene: On the Interpretation of Intuitionistic Number Theory

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Kleene realizability

1945. Kleene: On the Interpretation of Intuitionistic Number Theory

Realizability in Heyting Arithmetic (HA)

De�nition of the realizability relation n
 A

n = Gödel code of a partial recursive function
A = closed formula of HA

Theorem: every provable formula of HA is realized

Some unprovable formulas are realizable too...

Remarks:

Codes for partial recursive functions can be replaced by the elements
of any partial combinatory algebra

Here, we shall take closed terms of Gödel's system T

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Heyting Arithmetic

The language of HA

FO-terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= e1 = e2 | ⊥ | A⇒ B

| A ∧ B | A ∨ B | ∀x A | ∃x A

We assume given one function symbol f for each
primitive recursive function: 0, S, +, ×, ↑, etc.

For each closed FO-term e, write JeK its value (∈ N)

Deduction rules and axioms

Intuitionistic natural deduction: A1, . . . ,An ` B
Equality axioms (e.g. Leibniz axioms)

De�nitional axioms for primitive recursive functions

Peano axioms: injectivity, non confusion, induction

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

De�nition of the relation M
 A (M, A closed)

De�nition (realizability relation M
 A)

M
 e1 = e2 ≡ Je1K = Je2K ∧ M �∗ 0

M
 ⊥ ≡ ⊥

M
 A ∧ B ≡ ∃M1,M2 (M �∗ 〈M1,M2〉 ∧ M1
 A ∧ M2
 B)

M
 A ∨ B ≡ ∃N ((M �∗ 〈0,N〉 ∧ N
 A) ∨
(M �∗ 〈1,N〉 ∧ N
 B))

M
 A⇒ B ≡ ∀N (N
 A ⇒ MN
 B)

M
 ∀x A(x) ≡ ∀n M n
 A(n)

M
 ∃x A(x) ≡ ∃n ∃N (M �∗ 〈n,N〉 ∧ N
 A(n))

Lemma

For each A, the set {M ∈ Λ : M
 A} is closed under anti-reduction

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Adequacy

Every FO-term e with free variables x1, . . . , xk is translated into a
term e∗ of system T with the same meaning (and free variables)

Every derivation d : (A1, . . . ,An ` B) is translated into a term d∗

of system T with free variables x1, . . . , xk , z1, . . . , zn, where:

x1, . . . , xk are the free variables of A1, . . . ,An,B

z1, . . . , zn are proof variables associated to A1, . . . ,An

The construction of d∗ follows the CH correspondence

Proposition (Adequacy)

Given a derivation d : (A1, . . . ,An ` B):

for all valuations ρ : Var→ N

for all realizers N1
 A1[ρ], . . . ,Nn
 An[ρ]:

d∗[ρ]{z1 := N1, . . . , zn := Nn}
 B[ρ]

Proof: By induction on d .

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Extracting a term d
∗ from a valuation: some cases

(
A1, . . . ,An ` Ai

)∗
= zi

 d

Γ ` ⊥
Γ ` A

∗ = any_term


.... d

Γ,A ` B
Γ ` A⇒ B


∗

= λz . d∗

 d1
Γ ` A⇒ B

.... d1
Γ ` A

Γ ` B

∗ = d∗1 d
∗
2

 d

Γ ` A
Γ ` A ∨ B

∗ = 〈0, d∗〉

 d

Γ ` B
Γ ` A ∨ B

∗ = 〈1, d∗〉

 d

Γ ` A
Γ ` ∀x A

∗ = λx . d∗

 d

Γ ` ∀x A
Γ ` A{x := e}

∗ = d∗e∗

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Realizing the axioms of HA

Equality axioms and de�ning equalities for primitive recursive
functions have trivial realizers:

λy . 0
 ∀y (0 + y = y)

λxy . 0
 ∀x ∀y (s(x) + y = s(x + y)) (etc.)

Realizing Peano axioms:

λxyz . z
 ∀x ∀y (s(x) = s(y)⇒ x = y)

any_term
 ∀x (s(x) 6= 0)

rec
 A(0) ⇒ ∀x (A(x)⇒ A(s(x))) ⇒ ∀x A(x)

Theorem (Kleene)

If HA ` A, then M
 A for some M (A, M closed)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Optimizing realizers

Many true or provable formulas can be given trivial realizers,
without even looking at the proof:

Realizing true equalities

If N |= ∀~x (e1(~x) = e2(~x))

Then λ~x . 0
 ∀~x (e1(~x) = e2(~x))

Example: λxy . 0
 ∀x ∀y (x + y = y + x)

The formula

∀x ∀y ∀z ∀n (x 6= 0⇒ y 6= 0⇒ n > 2⇒ xn + yn 6= zn)

has a realizer that �ts into the margin1

This can be generalized to all Harrop formulas (see later)

1E.g. λz . z. For the proof that it is a realizer, see [Wiles-Taylor'95]

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Unprovable, but realizable

Consequence of the Halting problem:

6
 ∀x (Halt(x) ∨ ¬Halt(x))

Corollary: HA 6` EM (from Adequacy)

Therefore, the negation of the above formula is realized:

any_term
 ¬∀x (Halt(x) ∨ ¬Halt(x)) (Realizable, but not provable)

Markov Principle:

M
 ∀x (P(x) ∨ ¬P(x)) ⇒ ¬∀x ¬P(x) ⇒ ∃x P(x)

where M ≡ λu_ .Y (λfn . match u n with

| 〈0, p〉 7→ 〈n, p〉
| 〈1, _〉 7→ f (S n)) 0

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Realizability vs. provability/typing (metaphore)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Program extraction

Theorem (program extraction)

If M
 ∀x ∃y A(x , y), then for all n ∈ N:

M n �∗ 〈p,N〉

for some p ∈ N (witness) and N
 A(n, p) (justi�cation)

Extracted program: f ≡ λx . fst (M x)

Problem: N
 A(n, p) 6⇒ HA ` A(n, p)

Solution: glued realizability

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Glued realizability (1/2)

P set of closed formulas such that:

P contains all theorems of HA

P closed under modus ponens ((A⇒ B) ∈ P, A ∈ P B ∈ P)

M
P n = m ≡ n = m ∧ M �∗ 0

M
P ⊥ ≡ ⊥

M
P A ∧ B ≡ ∃M1,M2 (M �∗ 〈M1,M2〉 ∧ M1
P A ∧ M2
P B)

M
P A ∨ B ≡ ∃N ((M �∗ 〈0,N〉 ∧ N
P A) ∨
(M �∗ 〈1,N〉 ∧ N
P B))

M
P A⇒ B ≡ ∀N (N
P A ⇒ MN
P B) ∧ (A⇒ B) ∈ P

M
P ∀x A(x) ≡ ∀n M n
P A(n) ∧ (∀x A(x)) ∈ P

M
P ∃x A(x) ≡ ∃n ∃M ′ (M �∗ 〈n,M ′〉 ∧ M ′
P A(n))

Note: Plain realizability = case where P contains all formulas

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Glued realizability (2/2)

Theorem (Kleene)

1 If M
P A, then A ∈ P
2 If HA ` A, then there is a term M such that M
P A

Case where P is the set of all closed formulas Plain realizability

Case where P is the set of all theorems of HA:

1 A provable in HA ⇔ A is P-realizable

2 Disjunction property: HA ` A ∨ B HA ` A or HA ` B

3 Witness property: HA ` ∃x A(x) n + HA ` A(n)

(without using cut-elimination!)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Kleene's presentation

Kleene did not used closed λ-terms, but Gödel codes for partial
recursive functions, equipped with:

a recursive bijection 〈·, ·〉 : N×N→ N

Kleene's (partial) application: n ·m = φn(m)
(where (φn)n∈N is an enumeration of all partial recursive functions)

Convenient to formalize realizability within HA:

A 7→ n
 A (formula translation)

Theorem: If HA ` A, then there is n ∈ N such that HA ` (n
 A)

Remark: We can do the same with closed λ-terms, or with any
partial combinatory algebra that is de�nable in HA.

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Extensions and variants

Extensions:

To second-order arithmetic

To intuitionistic set theories (IZ, IZF, CZF):
Friedman, Myhill, McCarty, Aczel, etc.

Variants:

Modi�ed realizability: Kreisel

Techniques of reducibility candidates:
Tait, Girard, Parigot, etc.

Categorical realizability:

Strong connections with topos theory:
Scott, Hyland, Johnstone, Pitts

Realizability for classical logic:

Krivine realizability (in PA2, ZF)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ-terms)

3 Kreisel's modi�ed realizability

4 Negative translations from LK to LJ

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The arithmetic of �nite types: HAω

Multi-sorted �rst-order logic whose sorts are the types of system T :

τ, σ ::= bool | nat | τ × σ | τ → σ

Individuals of sort τ ≡ terms of type τ (in system T)

Formulas:

A,B ::= at(M) | A ∧ B | A⇒ B | ∀xτA | ∃xτA

at(M) means: M = tt (M : bool)

⊥ ≡ at(ff)

M1 =nat M2 ≡ at(nat_eqM1M2) (M1,M2 : nat)

A ∨ B ≡ ∃xbool ((x =bool tt⇒ A) ∧ (x =bool ff⇒ B))

Axioms: Equality, computation, Peano axioms

Remark: This system is a conservative extension of HA
(Not to be confused with higher-order arithmetic)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Kreisel's modi�ed realizability

To every formula A we associate a type A∗ of system T :

(at(M))∗ ≡ nat
(A ∧ B)∗ ≡ A∗ × B∗ (∃xτ A)∗ ≡ τ × A∗

(A⇒ B)∗ ≡ A∗ → B∗ (∀xτ A)∗ ≡ τ → A∗

To every formula A we associate another formula z mr A

(whose free variables are those of A, plus z : A∗)

z mr at(M) ≡ z = 0 ∧ at(M)

z mr A ∧ B ≡ fst(z) mr A ∧ snd(z) mr B

z mr A⇒ B ≡ ∀u (u mr A ⇒ z u mr B)

z mr ∀xτA(x) ≡ ∀xτ z x mr A(x)

z mr ∃xτA(x) ≡ snd(z) mr A(fst(z))

Theorem: If HAω ` A, then HAω ` M mr A for some M : A∗

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Properties of Kreisel's modi�ed realizability

Allows to prove that: HA 6` Markov

Allows to realize

The principle of Independence of Premises:

(¬A⇒ ∃x B(x)) ⇒ ∃x (¬A⇒ B(x))

The (type-theoretic) Axiom of Choice

∀xτ ∃yσA(x , y) ⇒ ∃f τ→σ ∀xτA(x , f (x))

Practical interest:

Program extraction towards a typed language (system T)

Possibility of optimizing extraction by erasing Harrop formulas:

H ::= at(M) | H ∧ H | A⇒ H | ∀xτ H

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Optimizing modi�ed realizers (1/2)

We introduce a pseudo-type ε expressing computational irrelevance
and optimize the de�nition of the type A∗ as follows:

A∗ ≡ ε (A atomic)

(A ∧ B)∗ ≡


ε if A∗ ≡ B∗ ≡ ε

B∗ if A∗ ≡ ε, B∗ 6≡ ε

A∗ if A∗ 6≡ ε, B∗ ≡ ε

A∗ × B∗ si A∗ 6≡ ε, B∗ 6≡ ε

(A⇒ B)∗ ≡


ε if B∗ ≡ ε

B∗ if A∗ ≡ ε, B∗ 6≡ ε

A∗ → B∗ si A∗ 6≡ ε, B∗ 6≡ ε

(∀xσA)∗ ≡
{
ε if A∗ ≡ ε

σ → A∗ if A∗ 6≡ ε

(∃xσA)∗ ≡
{
σ if A∗ ≡ ε

σ × A∗ if A∗ 6≡ ε

By construction: A∗ ≡ ε i� A Harrop

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Optimizing modi�ed realizers (2/2)

For every non-Harrop formula A (i.e. A∗ 6≡ ε) we modify the
de�nition of the relation z mr A accordingly (Exercise!)

No modi�ed realizability / program extraction for Harrop formulas

Theorem: If HAω ` A, then HAω ` M mr A for some M : A∗

(Provided A is non-Harrop)

Example: Euclidian division

∀xnat ∀ynat (y 6= 0 ⇒ ∃qnat ∃rnat (x = qy + r ∧ r < y))

Associated type is: nat→ nat→ nat× nat

A modi�ed realizer M mr A (extracted from a proof of A)
will only compute the function of interest

Method used by Schwichtenberg et al. in MinLog

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ-terms)

3 Kreisel's modi�ed realizability

4 Negative translations from LK to LJ

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

How to cope with classical logic?

Kleene realizability is de�nitely incompatible with classical logic

6
 ∀x (Halt(x) ∨ ¬Halt(x))

any_term
 ¬∀x (Halt(x) ∨ ¬Halt(x))

The same holds for modi�ed realizability

Two possible solutions:

1 Compose Kleene realizability with a negative translation from
classical logic (LK) to intuitionistic logic (LJ) (next slide)

2 Reformulate the principles of realizability to make them compatible
with classical logic: Krivine's classical realizability (next lecture)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The Gödel-Gentzen translation

Idea: Turn positive constructions (atomic formulas, ∨, ∃) into
negative constructions (⊥, ¬, ⇒, ∧, ∀) using De Morgan laws

Every formula A is translated into the formula AG de�ned by:

⊥G ≡ ⊥ (e1 = e2)G ≡ ¬¬(e1 = e2)

(A⇒ B)G ≡ AG ⇒ BG

(A ∧ B)G ≡ AG ∧ BG (A ∨ B)G ≡ ¬(¬AG ∧ ¬BG)

(∀x A)G ≡ ∀x AG (∃x A)G ≡ ¬∀x ¬AG

writing: ¬A ≡ A⇒ ⊥

Theorem (Soundness)

1 LK ` AG ⇔ A

2 If PA ` A, then HA ` AG

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Realizing translated formulas

Strategy:

1 Build a derivation d of A (in PA)

2 Turn it into a derivation dG of AG (in HA)

3 Turn dG into a Kleene realizer (program extraction)

Does not work! Failure comes from:

Proposition (Realizability collapse)

For every formula A, Kleene's semantics for AG mimics Tarski's
semantics for A:

{M ∈ Λ : M
 AG} =

{
Λ if N |= A

∅ if N 6|= A

Proof. By induction on A.

Reason: AG is always a Harrop formula (no computational contents)

Conclusion: Kleene ◦ Gödel-Gentzen = Tarski

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Friedman's R-translation (called A-translation by Friedman)

Principle: In Gödel-Gentzen's translation, replace each occurrence
of ⊥ (absurdity) by a �xed formula R, called the return formula

Every formula A is translated into the formula AF de�ned by:

⊥F ≡ R (e1 = e2)F ≡ ¬R¬R(e1 = e2)

(A⇒ B)F ≡ AF ⇒ BF

(A ∧ B)F ≡ AF ∧ BF (A ∨ B)F ≡ ¬R(¬RAF ∧ ¬RBF)

(∀x A)F ≡ ∀x AF (∃x A)F ≡ ¬R∀x ¬RAF

writing: ¬RA ≡ A⇒ R

Theorem (Soundness)

If PA ` A, then HA ` AF (independently from the formula R)

Beware! The two formulas A and AF are no more (classically) equivalent

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Friedman's trick

Theorem (Kreisel-Friedman)

PA conservatively extends HA over Π0
2-formulas:

If PA ` ∀x ∃y f (x , y) = 0, then HA ` ∀x ∃y f (x , y) = 0

Proof. Assume that PA ` ∀x ∃y f (x , y) = 0. We have:

HA ` ∀x¬R∀y¬R¬R¬R f (x , y) = 0 (by R-translation)
HA ` ∀x¬R∀y¬R f (x , y) = 0 (since ¬R¬R¬R ⇔ ¬R)
HA ` ¬R∀y¬R f (x0, y) = 0 (∀-elim, x0 fresh)
HA ` ∀y (f (x0, y) = 0⇒ R) ⇒ R (def. of ¬R)

We now let: R ≡ ∃y0 f (x0, y0) = 0 (Friedman's trick!) From the def. of R:

HA ` ∀y (f (x0, y) = 0⇒ ∃y0 f (x0, y0) = 0) ⇒ ∃y0 f (x0, y0) = 0

But the premise of the above implication is provable

HA ` ∀y (f (x0, y) = 0⇒ ∃y0 f (x0, y0) = 0) (∃-intro)

hence we get

HA ` ∃y0 f (x0, y0) = 0 (modus ponens)
HA ` ∀x0 ∃y0 f (x0, y0) = 0 (∀-intro)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

Realizing translated formulas, again

Strategy:

1 Build a derivation d of a Π0
2-formula A (in PA)

2 Turn it into a derivation F-trick(dF) of A (in HA)

3 Turn F-trick(dF) into a Kleene realizer of A (program extraction)

This technique perfectly works in practice. However:

The formula AF is never a Harrop formula, even when A is.
Possible �x: Introduce speci�c optimization techniques, e.g.:

Re�ned Program Extraction [Berger et al., 2001]

The translation A 7→ AF completely changes the structure of the
underlying proof. Possible �x: cf next slides

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The Lafont-Reus-Streicher translation (1/4)

Idea: Translate each formula A into the (relative) negation of a
formula A⊥ representing the negation of A:

ALRS ≡ ¬R A⊥ (A⊥ de�ned by induction on A)

(Again, this translation is parameterized by a return formula R)

To every predicate symbol p (source language) we associate a
predicate symbol p⊥ representing its negation (target language)

De�nition of the translations A 7→ A⊥ and A 7→ ALRS :

(p(e1, . . . , ek))⊥ ≡ p⊥(e1, . . . , ek) ⊥⊥ ≡ >
(A⇒ B)⊥ ≡ ALRS ∧ B⊥ (∀x A)⊥ ≡ ∃x A⊥

ALRS ≡ ¬R A⊥

Theorem (Soundness)

If LK ` A, then LJ ` ALRS (independently from the formula R)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The Lafont-Reus-Streicher translation (2/4)

Intuition: The translated formula A⊥ represents the type of stacks
opposing (classical) terms of type A:

(A1 ⇒ · · · ⇒ An ⇒ B)⊥ ≡ ALRS
1 ∧ · · · ∧ ALRS

n ∧ B⊥

(A1 → · · · → An → B)⊥ ≡ ALRS
1 × · · · × ALRS

n × B⊥

To analyze the computational contents of the LRS-translation, we
need to work across two λ-calculi:

I A source calculus to represent classical proofs:

λsource = λ→ + cc : ((A→ B)→ A)→ A (Peirce's law)

(Polymorphic constant cc introduces classical reasoning)

I An intutionistic target calculus to represent translated proofs:

λtarget = λ→,×

(In this calculus, pairs are used to represent stacks)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The Lafont-Reus-Streicher translation (3/4)

The underlying CPS-translation:

(x)LRS ≡ λs . x s
(λx . t)LRS ≡ λ〈x , s〉 . tLRS s

(tu)LRS ≡ λs . tLRS 〈uLRS , s〉

ccLRS ≡ λ〈x , s〉 . x 〈ks , s〉 ,
where ks ≡ λ〈y , _〉 . y s

Theorem (Soundness)

If Γ ` t : A (in the source λ-calculus)

then ΓLRS ` tLRS : ALRS (in the target λ-calculus)

Realizability for system T Kleene realizability Modi�ed realizability Negative translations

The Lafont-Reus-Streicher translation (4/4)

From the Lafont-Reus-Streicher translation...

(λx . t)LRS @ 〈u, s〉 � tLRS{x := u} @ s

(tu)LRS @ s � tLRS @ 〈uLRS , s〉
ccLRS @ 〈u, s〉 � u @ 〈ks , s〉

ks @ 〈u, s ′〉 � u @ s

... to the Krivine Abstract Machine (KAM)

Grab

Push

Save

Restore

λx . t ? u · π � t{x := u} ? π
tu ? π � t ? u · π
cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Reformulating Kleene realizability through the LRS-translation (and
its CPS), we get Krivine's classical realizability (cf next lecture)

	Realizability for Gödel's system T
	Kleene realizability (with -terms)
	Kreisel's modified realizability
	Negative translations from LK to LJ

