Kleene realizability

Modified realizability

Negative translations

Computational interpretation of proofs: An introduction to realizability

Alexandre Miquel

Semantics of proofs and certified mathematics PhD school – April 9th, 2014 – CIRM – Luminy

Kleene realizability

Modified realizability

Negative translations

Typing versus realizability

Why does the term $\lambda x \cdot x$ have type nat \rightarrow nat ?

 $\frac{x: \mathsf{nat} \vdash x: \mathsf{nat}}{\vdash \lambda x.x: \mathsf{nat} \to \mathsf{nat}}$

- Syntactic analysis of terms
- At least semi-decidable
- Simple justification: derivation

Realizability

for all $n \in \operatorname{nat}$ $(\lambda x \, . \, x) \, n \succ n \in \operatorname{nat}$

- Computational analysis of terms
- Strongly undecidable
- External justification (proof)

Adequacy:

 ${\sf Correctness \ w.r.t. \ typing} \ \ \Rightarrow \ \ {\sf Correctness \ w.r.t. \ realizability}$

Realizability for system T	Kleene realizability	Modified realizability	Negative translation
000000	00000000000000000	000000	0000000000
			

The hacker's point of view

Many situations where an ill-typed program is correct w.r.t. computation:

```
let my_stupid_function n =
    if n * n + 1 = 0 then 42 else true
```

This expression has type bool but is here used with type int

However, my_stupid_function always returns a Boolean when it is applied to an integer...

Two different notions of correction:

- Orrection w.r.t. typing
- Orrection w.r.t. computation ~~ Realizability

Kleene realizability

Modified realizability

Negative translations

Plan

Realizability for Gödel's system T

2 Kleene realizability (with λ -terms)

3 Kreisel's modified realizability

Kleene realizability

Modified realizability

Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ -terms)

3 Kreisel's modified realizability

Realizability for system T	Kleene realizability	Modified realizability	Negative translations	
00000	0000000000000000	000000	0000000000	
с. т				

System *T*: common parts

Syntax				
	Types	A, B	::=	nat \mid $A imes B$ \mid $A o B$
	Terms	<i>M</i> , <i>N</i>	::=	$x \mid \lambda x . M \mid MN$
				pair fst snd
				0 S rec

Notations:
$$\langle M_1, M_2 \rangle \equiv \operatorname{pair} M_1 M_2, \quad \overline{n} \equiv S^n O \quad (n \in \mathbb{N})$$

Reduction rules

$(\lambda x . M)N$	\succ	$M\{x := N\}$
$\texttt{fst}\left< M_1, M_2 \right> \\ \texttt{snd}\left< M_1, M_2 \right>$	${\succ}$	M ₁ M ₂
rec M_0 M_1 0 rec M_0 M_1 (S N)	${\succ}$	M ₀ M ₁ N (rec M ₀ M ₁ N)

• **Problem:** Reduction is never mentioned in the rules! How to be sure that computation will not go wrong?

Kleene realizability

Modified realizability

Negative translations

The point of view of typing

Correction w.r.t. computation follows from 3 results:

Subject reduction (SR)

If $\Gamma \vdash M : A$ and $M \succ M'$, then $\Gamma \vdash M' : A$

Canonical forms of type nat (CF)

If $\vdash M$: nat, M in normal form, then $M \equiv \overline{n}$ for some $n \in \mathbb{N}$

Strong normalization (SN)

If $\Gamma \vdash M : A$, then M is strongly normalizing

 $\mathbf{SR} + \mathbf{CF} + \mathbf{SN} \implies$ Every closed term M: nat reduces to a natural number \overline{n}

Kleene realizability

Modified realizability

Negative translations

The point of view of realizability

Definition (Binary	relation	$M \Vdash A, M$ closed)
Imat M I⊢ nat	if	$M \succ^* \overline{n}$ for some $n \in \mathbb{N}$
$ M \Vdash A \times B $	if	$M \succ^* \langle M_1, M_2 \rangle$, where $M_1 \Vdash A$, $M_2 \Vdash B$
	if	for all $N: N \Vdash A$ implies $MN \Vdash B$

- Closed terms: no typing context
- Purely computational definition: syntax = black box
- No correctness to prove: everything is in the definition!
- Requires an external justification: a proof (in which system?)
- Relation $M \Vdash A$ undecidable, not even semi-decidable

Lemma

For each A, the set $\{M \in \Lambda : M \Vdash A\}$ is closed under anti-reduction

Realizability for system *T* 00000● Kleene realizability

Modified realizability

Negative translations

Typing and realizability

Theorem (Adequacy)

If:
$$x_1: A_1, \ldots, x_n: A_n \vdash M: B$$

then for all $N_1 \Vdash A_1, \ldots, N_n \Vdash A_n$:

$$M\{x_1 := N_1, \ldots, x_n := N_n\} \Vdash B$$

Proof: By induction on the derivation, using the fact that each set $\{M \in \Lambda : M \Vdash A\}$ is closed under anti-reduction.

Particular cases (empty context)

• $\vdash M : A$ implies $M \Vdash A$

- $\vdash M$: nat implies $M \succ^* \overline{n}$ for some $n \in \mathbb{N}$
- Remark: In the previous proof of correctness (SR + CF + SN), a (customized) realizability model was hidden in the proof of SN

Kleene realizability

Modified realizability

Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ -terms)

3 Kreisel's modified realizability

Realiza bility	for	system	т
000000			

Kleene realizability

Modified realizability

Negative translations

Background

Formalize the idea of constructivity according to Brouwer:

- 1908. Brouwer: The untrustworthiness of the principles of logic (Principles of intuitionism)
- 1936. Church: An Unsolvable Problem of Elementary Number Theory (Application of the λ -calculus to the Entscheidungsproblem)
- 1936. Turing: On Computable Numbers, with an Application to the Entscheidungsproblem
- 1936 Kleene: λ -definability and recursiveness
- 1945. Kleene: On the Interpretation of Intuitionistic Number Theory

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000000	000000	0000000000
Kleene realizability	1		

1945. Kleene: On the Interpretation of Intuitionistic Number Theory

- Realizability in Heyting Arithmetic (HA)
- Definition of the realizability relation $n \Vdash A$
 - n = Gödel code of a partial recursive function
 - A = closed formula of HA
- Theorem: every provable formula of HA is realized
- Some unprovable formulas are realizable too...

Remarks:

- Codes for partial recursive functions can be replaced by the elements of any partial combinatory algebra
- ullet Here, we shall take closed terms of Gödel's system ${\cal T}$

Realiza bility	for	system	Т	
000000				

Kleene realizability

Modified realizability

Negative translations

Heyting Arithmetic

The language	of	HA
--------------	----	----

FO-terms	e,e'	::=	$x \mid f(e_1,\ldots,e_k)$
Formulas	A, B	::=	$e_1=e_2 \hspace{0.1in} \hspace{0.1in} \perp \hspace{0.1in} \hspace{0.1in} A \Rightarrow B$
			$A \wedge B \mid A \lor B \mid \forall x A \mid \exists x A$

- We assume given one function symbol f for each primitive recursive function: 0, S, +, ×, ↑, etc.
- For each closed FO-term *e*, write [*e*] its value

 $(\in \mathbb{N})$

Deduction rules and axioms

- Intuitionistic natural deduction: $A_1, \ldots, A_n \vdash B$
- Equality axioms (e.g. Leibniz axioms)
- Definitional axioms for primitive recursive functions
- Peano axioms: injectivity, non confusion, induction

Kleene realizability

Modified realizability

Negative translations

Definition of the relation $M \Vdash A$

(M, A closed)

Definition (realizability relation $M \Vdash A$)

- $M \Vdash e_1 = e_2 \equiv [\![e_1]\!] = [\![e_2]\!] \land M \succ^* 0$
- $M \Vdash \bot \equiv \bot$
- $M \Vdash A \land B \equiv \exists M_1, M_2 \ (M \succ^* \langle M_1, M_2 \rangle \land M_1 \Vdash A \land M_2 \Vdash B)$
- $M \Vdash A \Rightarrow B \equiv \forall N (N \Vdash A \Rightarrow MN \Vdash B)$
- $M \Vdash \forall x \ A(x) \equiv \forall n \ M \ \overline{n} \Vdash A(n)$
- $M \Vdash \exists x \ A(x) \equiv \exists n \ \exists N \ (M \succ^* \langle \overline{n}, N \rangle \land N \Vdash A(n))$

Lemma

For each A, the set $\{M \in \Lambda : M \Vdash A\}$ is closed under anti-reduction

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	0000000000
Adequacy			

- Every FO-term e with free variables x₁,..., x_k is translated into a term e* of system T with the same meaning (and free variables)
- Every derivation $d: (A_1, \ldots, A_n \vdash B)$ is translated into a term d^* of system T with free variables $x_1, \ldots, x_k, z_1, \ldots, z_n$, where:
 - x_1, \ldots, x_k are the free variables of A_1, \ldots, A_n, B
 - z_1, \ldots, z_n are proof variables associated to A_1, \ldots, A_n

The construction of d^* follows the CH correspondence

Proposition (Adequacy)

Given a derivation $d: (A_1, \ldots, A_n \vdash B)$:

- for all valuations $\rho: \mathsf{Var} \to \mathsf{IN}$
- for all realizers $N_1 \Vdash A_1[\rho], \ldots, N_n \Vdash A_n[\rho]$:

$$d^*[\rho]\{z_1 := N_1, \ldots, z_n := N_n\} \Vdash B[\rho]$$

Proof: By induction on *d*.

Kleene realizability

Modified realizability

Negative translations

Extracting a term d^* from a valuation: some cases

$$\left(\overline{A_{1},\ldots,A_{n}\vdash A_{i}}\right)^{*} = z_{i} \qquad \left(\frac{\vdots d}{\Gamma\vdash A}\right)^{*} = \operatorname{any_term}$$

$$\left(\frac{\vdots d}{\Gamma\vdash A \Rightarrow B}\right)^{*} = \lambda z \cdot d^{*} \qquad \left(\frac{\vdots d_{1} \qquad \vdots \ d_{1}}{\Gamma\vdash A \Rightarrow B}\right)^{*} = d_{1}^{*}d_{2}^{*}$$

$$\left(\frac{\vdots d}{\Gamma\vdash A \Rightarrow B}\right)^{*} = \langle 0, d^{*} \rangle \qquad \left(\frac{\vdots d}{\Gamma\vdash B}\right)^{*} = \langle 1, d^{*} \rangle$$

$$\left(\frac{\vdots d}{\Gamma\vdash A \lor B}\right)^{*} = \lambda x \cdot d^{*} \qquad \left(\frac{\vdots d}{\Gamma\vdash A \lor B}\right)^{*} = d^{*}e^{*}$$

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	0000000000

Realizing the axioms of HA

• Equality axioms and defining equalities for primitive recursive functions have trivial realizers:

$$\begin{array}{rcl} \lambda y . 0 & \Vdash & \forall y \ (0 + y = y) \\ \lambda xy . 0 & \Vdash & \forall x \ \forall y \ (s(x) + y = s(x + y)) \end{array} \tag{etc.}$$

• Realizing Peano axioms:

$$\begin{array}{rcl} \lambda xyz.z & \Vdash & \forall x \ \forall y \ (s(x) = s(y) \Rightarrow x = y) \\ \texttt{any_term} & \Vdash & \forall x \ (s(x) \neq 0) \\ \texttt{rec} & \Vdash & A(0) \Rightarrow \ \forall x \ (A(x) \Rightarrow A(s(x))) \Rightarrow \ \forall x \ A(x) \end{array}$$

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	0000000000
Optimizing re	alizers		

• Many true or provable formulas can be given trivial realizers, without even looking at the proof:

Realizing true equalities

lf	$\mathbb{N} \models \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$
Then	$\lambda \vec{x} . 0 \Vdash \forall \vec{x} (e_1(\vec{x}) = e_2(\vec{x}))$

- Example: $\lambda xy \cdot 0 \Vdash \forall x \forall y (x + y = y + x)$
- The formula

$$\forall x \forall y \forall z \forall n (x \neq 0 \Rightarrow y \neq 0 \Rightarrow n > 2 \Rightarrow x^n + y^n \neq z^n)$$

has a realizer that fits into the margin¹

This can be generalized to all Harrop formulas (see later)

¹E.g. $\lambda z \cdot z$. For the proof that it is a realizer, see [Wiles-Taylor'95]

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	0000000000
Unprovable,	but realizable		

• Consequence of the Halting problem:

 $\not\vdash \forall x (\operatorname{Halt}(x) \lor \neg \operatorname{Halt}(x))$

Corollary: HA \nvdash EM

(from Adequacy)

• Therefore, the negation of the above formula is realized:

any_term $\Vdash \neg \forall x (\operatorname{Halt}(x) \lor \neg \operatorname{Halt}(x))$ (Realizable, but not provable)

Markov Principle:

 $M \Vdash \forall x (P(x) \lor \neg P(x)) \Rightarrow \neg \forall x \neg P(x) \Rightarrow \exists x P(x)$

where $M \equiv \lambda u_{_} \cdot \mathbf{Y} (\lambda fn. \text{ match } u \text{ n with} | \langle 0, p \rangle \mapsto \langle n, p \rangle | \langle 1, _\rangle \mapsto f(Sn)) 0$

Negative translations

Realizability vs. provability/typing

Realiza bility	for	system	Т
000000			

Kleene realizability

Modified realizability

Negative translations

Program extraction

Theorem	(program	extraction)
---------	----------	-------------

If $M \Vdash \forall x \exists y \ A(x, y)$, then for all $n \in \mathbb{N}$:

$$M \overline{n} \succ^* \langle \overline{p}, N \rangle$$

for some $p \in \mathbb{N}$ (witness) and $N \Vdash A(n, p)$ (justification)

- Extracted program: $f \equiv \lambda x$.fst(Mx)
- **Problem:** $N \Vdash A(n,p) \Rightarrow HA \vdash A(n,p)$
- Solution: glued realizability

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	000000000000000000000000000000000000000	000000	0000000000
Glued realizability			(1/2)

 (\perp / \perp)

- \mathcal{P} set of closed formulas such that:
 - P contains all theorems of HA
 - \mathcal{P} closed under modus ponens $((A \Rightarrow B) \in \mathcal{P}, A \in \mathcal{P} \rightsquigarrow B \in \mathcal{P})$

 $M \Vdash_{\mathcal{P}} n = m \equiv n = m \land M \succ^* 0$ $M \Vdash_{\mathcal{P}} \bot \equiv \bot$ $M \Vdash_{\mathcal{P}} A \wedge B \equiv \exists M_1, M_2 (M \succ^* \langle M_1, M_2 \rangle \wedge M_1 \Vdash_{\mathcal{P}} A \wedge M_2 \Vdash_{\mathcal{P}} B)$ $M \Vdash_{\mathcal{P}} A \lor B \equiv \exists N ((M \succ^* \langle 0, N \rangle \land N \Vdash_{\mathcal{P}} A)) \lor$ $(M \succ^* \langle 1, N \rangle \land N \Vdash_{\mathcal{P}} B))$ $M \Vdash_{\mathcal{P}} A \Rightarrow B \equiv \forall N (N \Vdash_{\mathcal{P}} A \Rightarrow MN \Vdash_{\mathcal{P}} B) \land (A \Rightarrow B) \in \mathcal{P}$ $M \Vdash_{\mathcal{P}} \forall x A(x) \equiv \forall n \ M n \Vdash_{\mathcal{P}} A(n) \land (\forall x A(x)) \in \mathcal{P}$ $M \Vdash_{\mathcal{P}} \exists x A(x) \equiv \exists n \exists M' (M \succ^* \langle n, M' \rangle \land M' \Vdash_{\mathcal{P}} A(n))$

Note: Plain realizability = case where \mathcal{P} contains all formulas

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	00000000000000000	000000	
Glued realizability			(2/2)

 (\angle / \angle)

Theorem (Kleene)

- **1** If $M \Vdash_{\mathcal{P}} A$, then $A \in \mathcal{P}$
- **2** If $HA \vdash A$, then there is a term M such that $M \Vdash_{\mathcal{P}} A$
 - Case where \mathcal{P} is the set of all closed formulas \rightarrow Plain realizability
 - Case where \mathcal{P} is the set of all theorems of HA:
 - **1** A provable in HA \Leftrightarrow A is \mathcal{P} -realizable **2** Disjunction property: $HA \vdash A \lor B \rightsquigarrow HA \vdash A$ or $HA \vdash B$
 - **(2)** Witness property: $HA \vdash \exists x A(x) \rightsquigarrow n + HA \vdash A(n)$

(without using cut-elimination!)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	000000000000000000	000000	0000000000
Kleene's presen	tation		

- Kleene did not used closed λ -terms, but Gödel codes for partial recursive functions, equipped with:
 - a recursive bijection $\langle \cdot, \cdot \rangle : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$
 - Kleene's (partial) application: n ⋅ m = φ_n(m) (where (φ_n)_{n∈ℕ} is an enumeration of all partial recursive functions)
- Convenient to formalize realizability within HA:

 $A \mapsto n \Vdash A$ (formula translation)

Theorem: If $HA \vdash A$, then there is $n \in \mathbb{N}$ such that $HA \vdash (n \Vdash A)$

• **Remark:** We can do the same with closed λ -terms, or with any partial combinatory algebra that is definable in HA.

Kleene realizability 000000000000000 Modified realizability

Negative translations

Extensions and variants

Extensions:

- To second-order arithmetic
- To intuitionistic set theories (IZ, IZF, CZF): Friedman, Myhill, McCarty, Aczel, etc.

• Variants:

- Modified realizability: Kreisel
- Techniques of reducibility candidates: Tait, Girard, Parigot, etc.

• Categorical realizability:

• Strong connections with topos theory: Scott, Hyland, Johnstone, Pitts

• Realizability for classical logic:

• Krivine realizability (in PA2, ZF)

Kleene realizability

Modified realizability

Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ -terms)

Kleene realizability

Modified realizability

Negative translations

The arithmetic of finite types: HA^{ω}

• Multi-sorted first-order logic whose sorts are the types of system T:

 $\tau, \sigma \quad ::= \quad \mathsf{bool} \quad | \quad \mathsf{nat} \quad | \quad \tau \times \sigma \quad | \quad \tau \to \sigma$

• Individuals of sort $\tau \equiv$ terms of type τ (in system T)

• Formulas:

A,B ::= at(M) | $A \wedge B$ | $A \Rightarrow B$ | $\forall x^{\tau}A$ | $\exists x^{\tau}A$

- at(M) means: M = tt (M: bool)
- \perp \equiv at(ff)
- $M_1 =_{nat} M_2 \equiv at(nat_eq M_1 M_2)$ $(M_1, M_2: nat)$
- $A \lor B \equiv \exists x^{bool} \ ((x =_{bool} tt \Rightarrow A) \land (x =_{bool} ff \Rightarrow B))$
- Axioms: Equality, computation, Peano axioms
- **Remark:** This system is a conservative extension of HA (Not to be confused with higher-order arithmetic)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	00000	0000000000

Kreisel's modified realizability

• To every formula A we associate a type A^* of system T:

$$\begin{array}{rcl} (\operatorname{at}(M))^* & \equiv & \operatorname{nat} \\ (A \wedge B)^* & \equiv & A^* \times B^* \\ (A \Rightarrow B)^* & \equiv & A^* \to B^* \end{array} \quad (\exists x^{\tau} A)^* & \equiv & \tau \times A^* \\ (\forall x^{\tau} A)^* & \equiv & \tau \to A^* \end{array}$$

 To every formula A we associate another formula z mr A (whose free variables are those of A, plus z : A*)

$z \mathbf{mr} \mathrm{at}(M)$	\equiv	$z=0~\wedge$ at (M)
$z \operatorname{mr} A \wedge B$	≡	$fst(z) \operatorname{mr} A \land \operatorname{snd}(z) \operatorname{mr} B$
$z \operatorname{mr} A \Rightarrow B$	\equiv	$\forall u \ (u \ \mathbf{mr} \ A \ \Rightarrow \ z \ u \ \mathbf{mr} \ B)$
$z \operatorname{mr} \forall x^{\tau} A(x)$	≡	$\forall x^{\tau} z \ x \ \mathbf{mr} \ A(x)$
$z \operatorname{mr} \exists x^{\tau} A(x)$	\equiv	$\operatorname{snd}(z) \operatorname{mr} A(\operatorname{fst}(z))$

Theorem: If $HA^{\omega} \vdash A$, then $HA^{\omega} \vdash M$ mr A for some $M : A^*$

Kleene realizability

Modified realizability

Negative translations

Properties of Kreisel's modified realizability

- Allows to prove that: HA $\not\vdash$ Markov
- Allows to realize
 - The principle of Independence of Premises:

$$(\neg A \Rightarrow \exists x B(x)) \Rightarrow \exists x (\neg A \Rightarrow B(x))$$

• The (type-theoretic) Axiom of Choice

$$\forall x^{\tau} \exists y^{\sigma} A(x,y) \Rightarrow \exists f^{\tau \to \sigma} \forall x^{\tau} A(x,f(x))$$

Practical interest:

- Program extraction towards a typed language (system T)
- Possibility of optimizing extraction by erasing Harrop formulas:

$$H$$
 ::= at (M) | $H \wedge H$ | $A \Rightarrow H$ | $\forall x^{\tau} H$

Kleene realizability

Modified realizability 0000●0 Negative translations

(1/2)

- Optimizing modified realizers
 - We introduce a pseudo-type ϵ expressing computational irrelevance and optimize the definition of the type A^* as follows:

A*	≡	ϵ (A atomic)
$(A \wedge B)^*$	≡	$\begin{cases} \boldsymbol{\epsilon} & \text{if } A^* \equiv B^* \equiv \boldsymbol{\epsilon} \\ B^* & \text{if } A^* \equiv \boldsymbol{\epsilon}, \ B^* \not\equiv \boldsymbol{\epsilon} \\ A^* & \text{if } A^* \not\equiv \boldsymbol{\epsilon}, \ B^* \equiv \boldsymbol{\epsilon} \\ A^* \times B^* & \text{si } A^* \not\equiv \boldsymbol{\epsilon}, \ B^* \not\equiv \boldsymbol{\epsilon} \end{cases}$
$(A \Rightarrow B)^*$	≡	$\begin{cases} \boldsymbol{\epsilon} & \text{if } B^* \equiv \boldsymbol{\epsilon} \\ B^* & \text{if } A^* \equiv \boldsymbol{\epsilon}, \ B^* \not\equiv \boldsymbol{\epsilon} \\ A^* \to B^* & \text{si } A^* \not\equiv \boldsymbol{\epsilon}, \ B^* \not\equiv \boldsymbol{\epsilon} \end{cases}$
$(\forall x^{\sigma}A)^*$	≡	$\begin{cases} \boldsymbol{\epsilon} & \text{if } A^* \equiv \boldsymbol{\epsilon} \\ \sigma \to A^* & \text{if } A^* \not\equiv \boldsymbol{\epsilon} \end{cases}$
$(\exists x^{\sigma}A)^*$	≡	$\begin{cases} \sigma & \text{if } A^* \equiv \epsilon \\ \sigma \times A^* & \text{if } A^* \not\equiv \epsilon \end{cases}$

By construction: $A^* \equiv \epsilon$ iff A Harrop

Realizability for system T DOOOOO	Kleene realizability 00000000000000000	Modified realizability 00000●	Negative translations
Optimizing m	odified realizers		(2/2)

For every non-Harrop formula A (i.e. A^{*} ≠ ε) we modify the definition of the relation z mr A accordingly (Exercise!)
 No modified realizability / program extraction for Harrop formulas

Theorem: If $HA^{\omega} \vdash A$, then $HA^{\omega} \vdash M$ mr A for some $M : A^*$ (Provided A is non-Harrop)

• Example: Euclidian division

 $\forall x^{\operatorname{nat}} \ \forall y^{\operatorname{nat}} \ (y \neq 0 \ \Rightarrow \ \exists q^{\operatorname{nat}} \ \exists r^{\operatorname{nat}} \ (x = qy + r \ \land \ r < y))$

 $\bullet \ \ \mathsf{Associated type is:} \quad \mathsf{nat} \to \mathsf{nat} \to \mathsf{nat} \times \mathsf{nat}$

A modified realizer $M \operatorname{mr} A$ (extracted from a proof of A) will only compute the function of interest

Method used by Schwichtenberg et al. in MinLog

Kleene realizability

Modified realizability

Negative translations

Plan

1 Realizability for Gödel's system T

2 Kleene realizability (with λ -terms)

3 Kreisel's modified realizability

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	000000000000000000000000000000000000000	000000	000000000
11 .		n	

How to cope with classical logic?

• Kleene realizability is definitely incompatible with classical logic

The same holds for modified realizability

- Two possible solutions:
 - Compose Kleene realizability with a negative translation from classical logic (LK) to intuitionistic logic (LJ) (next slide)
 - Reformulate the principles of realizability to make them compatible with classical logic: Krivine's classical realizability (next lecture)

Kleene realizability

Modified realizability

Negative translations

The Gödel-Gentzen translation

- Idea: Turn positive constructions (atomic formulas, ∨, ∃) into negative constructions (⊥, ¬, ⇒, ∧, ∀) using De Morgan laws
- Every formula A is translated into the formula A^G defined by:

 A^G

writing: $\neg A \equiv A \Rightarrow \bot$

Theorem (Soundness)

● LK
$$\vdash$$
 $A^G \Leftrightarrow A$
● If PA \vdash A. then HA \vdash

Realiza bility	for	system	Т
000000			

Kleene realizability

Modified realizability

Negative translations

Realizing translated formulas

• Strategy:

- Build a derivation d of A
- 2 Turn it into a derivation d^{G} of A^{G}
- Turn d^G into a Kleene realizer

(in PA) (in HA) (program extraction)

• Does not work! Failure comes from:

Proposition (Realizability collapse)

For every formula A, Kleene's semantics for A^G mimics Tarski's semantics for A: $\left[A \quad \text{if } \mathbb{N} \models A \right]$

$$\{M \in \Lambda : M \Vdash A^G\} = \begin{cases} \Lambda & \text{if } N \vDash \Lambda \\ \varnothing & \text{if } N \not\models \Lambda \end{cases}$$

Proof. By induction on A.

- **Reason:** A^G is always a Harrop formula (no computational contents)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	000000000000000	000000	0000000000

Friedman's *R*-translation

(called A-translation by Friedman)

- **Principle:** In Gödel-Gentzen's translation, replace each occurrence of ⊥ (absurdity) by a fixed formula *R*, called the return formula
- Every formula A is translated into the formula A^F defined by:

writing: $\neg_{\mathbf{R}} A \equiv A \Rightarrow \mathbf{R}$

Th	ieorem (Sou	ndness)		
lf	$PA \vdash A$,	then	$HA \vdash A^{F}$	(independently from the formula R)

Beware! The two formulas A and A^F are no more (classically) equivalent

Kleene realizability

Modified realizability

Negative translations

Friedman's trick

Theorem (Kreisel-Friedman)

PA conservatively extends HA over Π_2^0 -formulas:

If $PA \vdash \forall x \exists y f(x, y) = 0$, then $HA \vdash \forall x \exists y f(x, y) = 0$

Proof. Assume that $PA \vdash \forall x \exists y f(x, y) = 0$. We have:

 $\begin{array}{ll} \mathsf{HA} \vdash \forall x \neg_R \forall y \neg_R \neg_R \neg_R f(x,y) = 0 & (by \ R\text{-translation}) \\ \mathsf{HA} \vdash \forall x \neg_R \forall y \neg_R f(x,y) = 0 & (since \ \neg_R \neg_R \neg_R \Leftrightarrow \ \neg_R) \\ \mathsf{HA} \vdash \neg_R \forall y \neg_R f(x_0,y) = 0 & (\forall\text{-elim, } x_0 \ \text{fresh}) \\ \mathsf{HA} \vdash \forall y \left(f(x_0,y) = 0 \Rightarrow R\right) \Rightarrow R & (def. \ of \ \neg_R) \end{array}$

We now let: $R \equiv \exists y_0 f(x_0, y_0) = 0$ (Friedman's trick!) From the def. of R:

$$\mathsf{HA} \vdash \forall y (f(x_0, y) = 0 \Rightarrow \exists y_0 f(x_0, y_0) = 0) \Rightarrow \exists y_0 f(x_0, y_0) = 0$$

But the premise of the above implication is provable

 $\mathsf{HA} \vdash \forall y (f(x_0, y) = 0 \Rightarrow \exists y_0 f(x_0, y_0) = 0) \qquad (\exists \text{-intro})$

hence we get

 $\begin{array}{ll} \mathsf{HA} \vdash \exists y_0 \ f(x_0, y_0) = 0 & (\text{modus ponens}) \\ \mathsf{HA} \vdash \forall x_0 \ \exists y_0 \ f(x_0, y_0) = 0 & (\forall \text{-int ro}) \end{array}$

Kleene realizability

Modified realizability

Negative translations

Realizing translated formulas, again

• Strategy:

- Build a derivation d of a Π_2^0 -formula A (in PA)
- **2** Turn it into a derivation F-trick (d^F) of A (in HA)
- Solution Turn F-trick (d^{F}) into a Kleene realizer of A (program extraction)
- This technique perfectly works in practice. However:
 - The formula A^F is never a Harrop formula, even when A is. **Possible fix:** Introduce specific optimization techniques, e.g.: Refined Program Extraction [Berger et al., 2001]
 - The translation A → A^F completely changes the structure of the underlying proof. Possible fix: cf next slides

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	000000000000000000000000000000000000000	000000	00000000000
The Lefent Dave	C+++++++++++++++++++++++++++++++++++++	- +:	(1/4)

The Lafont-Reus-Streicher translation

- (1/4)
- Idea: Translate each formula A into the (relative) negation of a formula A[⊥] representing the negation of A:

 $A^{LRS} \equiv \neg_R A^{\perp}$ (A^{\perp} defined by induction on A)

(Again, this translation is parameterized by a return formula R)

- To every predicate symbol p (source language) we associate a predicate symbol p[⊥] representing its negation (target language)
- Definition of the translations $A \mapsto A^{\perp}$ and $A \mapsto A^{LRS}$:

$$\begin{array}{rcl} (p(e_1,\ldots,e_k))^{\perp} &\equiv p^{\perp}(e_1,\ldots,e_k) & \perp^{\perp} &\equiv \top \\ (A\Rightarrow B)^{\perp} &\equiv A^{LRS} \wedge B^{\perp} & (\forall x \ A)^{\perp} &\equiv \exists x \ A^{\perp} \\ & A^{LRS} &\equiv \neg_R \ A^{\perp} \end{array}$$

Theorem (Soundness)

If $LK \vdash A$, then $LJ \vdash A^{LRS}$

(independently from the formula R)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	000000000000
The Lafont Rou	c Straichar tranc	lation	(2/4)

(_ / ¬)

• Intuition: The translated formula A[⊥] represents the type of stacks opposing (classical) terms of type A:

$$(A_1 \Rightarrow \dots \Rightarrow A_n \Rightarrow B)^{\perp} \equiv A_1^{LRS} \land \dots \land A_n^{LRS} \land B^{\perp} (A_1 \Rightarrow \dots \Rightarrow A_n \Rightarrow B)^{\perp} \equiv A_1^{LRS} \times \dots \times A_n^{LRS} \times B^{\perp}$$

- To analyze the computational contents of the LRS-translation, we need to work across two λ-calculi:
 - ► A source calculus to represent classical proofs: $\lambda_{source} = \lambda_{\rightarrow} + \alpha : ((A \rightarrow B) \rightarrow A) \rightarrow A$ (Peirce's law) (Polymorphic constant α introduces classical reasoning)
 - An intutionistic target calculus to represent translated proofs: $\lambda_{\rm target} = \lambda_{\rightarrow,\times}$

(In this calculus, pairs are used to represent stacks)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	0000000000000000	000000	
The Lafont-Reus-S	treicher transla	tion	(3/4)

• The underlying CPS-translation:

$$\begin{array}{lll} (x)^{LRS} &\equiv& \lambda s \,.\, x \,s \\ (\lambda x \,.\, t)^{LRS} &\equiv& \lambda \langle x,s \rangle \,.\, t^{LRS} \,s \\ (tu)^{LRS} &\equiv& \lambda s \,.\, t^{LRS} \,\langle u^{LRS},s \rangle \\ & & \alpha^{LRS} &\equiv& \lambda \langle x,s \rangle \,.\, x \,\langle k_s,s \rangle \,, \\ & & \text{where } k_s &\equiv& \lambda \langle y,_\rangle \,.\, y \,s \end{array}$$

Theorem	n (Soundness)	
lf	$\Gamma \vdash t : A$	(in the source λ -calculus)
then	$\Gamma^{LRS} \vdash t^{LRS} : A^{LRS}$	(in the target λ -calculus)

Realizability for system T	Kleene realizability	Modified realizability	Negative translations
000000	00000000000000000	000000	000000000●
The Lafont-Reus	-Streicher trans	lation	(4/4)

• From the Lafont-Reus-Streicher translation...

$(\lambda x . t)^{LRS} @ \langle u, s \rangle$	\succ	$t^{LRS}\{x := u\} @ s$
$(tu)^{LRS}$ @ s	\succ	$t^{LRS} @ \langle u^{LRS}, s \rangle$
${f cc}^{LRS}$ @ $\langle u,s angle$	\succ	$u @ \langle k_s, s \rangle$
$k_s @ \langle u, s' \rangle$	\succ	u@s

... to the Krivine Abstract Machine (KAM)

Grab	$\lambda x . t \star u \cdot \pi$	\succ	$t\{x := u\} \star \pi$
Push	tu $\star \pi$	\succ	$t \star u \cdot \pi$
Save	$\mathbf{c} \star \mathbf{u} \cdot \pi$	\succ	$u \star k_{\pi} \cdot \pi$
Restore	$k_\pi \star \mathit{u} \cdot \pi'$	\succ	$u \star \pi$

 Reformulating Kleene realizability through the LRS-translation (and its CPS), we get Krivine's classical realizability (cf next lecture)