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What is classical realizability?

o Complete reformulation of the principles of Kleene realizability
to take into account classical reasoning

o Based on Griffin’s discovery about the connection between classical
reasoning and control operators (call/cc)

call/cc : (A=B)=A)=A (Peirce’s law)

o Interprets the axiom of dependent choices (DC)

o Initially designed for PA2 (+ DC), but extends to:

o Higher-order arithmetic (PAw)
o Zermelo-Fraenkel set theory (ZF)

o The calculus of constructions with universes
(with classical logic in Prop)

@ Deep connections with Cohen forcing (3rd lecture)
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Terms, stacks and processes

@ Syntax of the language parameterized by

o A countable set K = {; ...} of instructions,
containing at least the instruction « (call/cc)

e A countable set Mg of stack constants (or stack bottoms)

Terms, stacks and processes

Terms tbu = x | M.t | tu | & | kg (k € K)
Stacks ' = a | tew (a € Mo, t closed)
Processes p,q = txT (t closed)

o A )-calculus with two kinds of constants:

e Instructions k € K, including «
o Continuation constants k,, one for every stack m (generated by @)

@ Notation: A, 1, AxIl (sets of closed terms / stacks / processes)
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Proof-like terms

@ Proof-like term = Term containing no continuation constant

Proof-like terms t,bu = x | M.t | tu | kK (r€K) |

o Idea: All realizers coming from actual proofs are of this form,
continuation constants k, are treated as paraproofs

o Notation: PL = set of closed proof-like terms

@ Natural numbers encoded as proof-like terms by:

Krivine numerals n = 5"0 € PL (n€IN)

writing 0= XAxy.x and 3= Anxy.y(nxy)

o Note: Krivine numerals £ Church numerals, but -equivalent
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The Krivine Abstract Machine (KAM) (1/2)

@ We assume that the set A x 1 comes with a preorder p = p’ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push tu * - t x u-m
Grab Ax.t x u-m > tH{x:=u} *7
Save @ * Uu-T - u * ky-m
Restore ke *x u-7 > u x

(+ reflexivity & transitivity)

@ Evaluation not defined but axiomatized. The preorder p = p’ is
another parameter of the calculus, just like the sets K and Iy

o Extensible machinery: can add extra instructions and rules
(We shall see examples later)
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The Krivine Abstract Machine (KAM)

@ Rules Push and Grab implement weak head [-reduction
(call-by-name strategy):

Push tu x - txu-m
Grab Ax.txu-m > t{x:=u}*m

Witness extraction
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(2/2)

@ Rules Save and Restore implement backtracking:

Save cxu-m = uxk;-w
Restore ke xu-m = uxm

o Instruction @ creates continuation constants k:

Usage: a(Xk.t)
Intuition: let k = curr-cont() in t
Computation: «(Ak.t)x7m = t{k: =k} -7

o Continuation constant k;, restores the saved context 7
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Examples of extra instructions (1/2)

@ The instruction quote

quotext-u-m > ux*[t]-mw
where t — [t] is a fixed bijection from A to IN
o Useful to realize the axiom of dependent choices [Krivine'03]

@ The instruction eq
uxmT ifti =t
eqxty-b-u-v-m > .
VxT IftliétQ

o Tests syntactic equality t; = t2
o Can be implemented using quote

@ The instruction M (fork)
u*m
hxu-v-m >
vk
e Non deterministic choice operator
o Useful for pedagogy — bad for realizability (collapses to forcing)
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Examples of extra instructions

@ The instruction stop:
stopxm ¥

Stops execution. Final result returned on the stack 7

@ The instruction print:

Witness extraction
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(2/2)

printxn-u-m > uxT (formal specification)

and prints integer n on standard output (informal specification)

~» Displays intermediate results without stopping the machine
(poor man'’s side effect)

@ The instruction make _coffee:

make coffeexu-m > wuxm + makes coffee
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The language of (minimal) second-order logic

@ Second-order logic deals with two kinds of objects:

o lst-order objects = individuals (i.e. basic objects of the theory)
o 2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms e, e = x | f(en,...,ex)
Formulas AB = X(e,...,e) | A=B
| VxA VX A

@ Two kinds of variables
o lst-order vars: x,y, z, ... (not to be confused with A-variables!)
o 2nd-order vars: X, Y, Z, ... of all arities Kk > 0

@ Two kinds of substitution:

o lst-order subst.: e{x:=e}, A{x:=e} (defined as usual)
e 2nd-order subst.: A{X := Py}, P{X :=Po} (postponed)
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First-order terms

@ Defined from a first order signature X (as usual):

First-order terms e, e = x | f(ey,...,e)

Witness extraction
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o f ranges over k-ary function symbols in X

o In what follows we assume that:

o Each k-ary function symbol f is interpreted in IN by a function

MNoOINE SN

o The signature X contains a function symbol for every primitive

recursive function: 0, s, +, X, 1, ...

o Denotation (in IN) of a closed first-order term e written [e]
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@ Formulas of minimal second-order logic

VxA | VXA

Formulas AB = X(e,...,ex) | A=B }

only based on implication and 1st/2nd-order universal quantification

@ Other connectives/quantifiers are defined (second-order encodings)

1l = vzz (absurdity)

A = A= 1 (negation)
AANB = ((A =B=27)=127) (conjunction)
AVB = VZ(A=2Z)=(B=2)=2) (disjunction)
IxA(x) = ( x(A(x) = Z) = 2) (1st-order 3)
IXAX) = VZ(VX(AX)=2Z)= 2) (2nd-order 3)
a=e = VZ(Z(a)=Z(e)) (Leibniz equality)
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Predicates

@ 2nd-order variables represent unknown (abstract) relations

o Concrete relations are represented using predicates  (syntactic sugar)

Predicates P,Q 1= X - XA (of arity k)J

o Llet P=Xy--- XA
o Variables xi, ..., xn (pairwise #) are the arguments of P

o Other free variables of formula A are the parameters of P
o Notation: FV(P)=FV(A)\ {x1,...,xk} (free vars = params)

@ Predicates are subject to a-conversion (%;s treated as binders)

@ 0O-ary predicates are formulas
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Predicate application / substitution

o Partial/total application of P =% --- XA toey,..., e

Pler,...,e0) = Xpy1- XuA{x1 :=e1;...;x0 = e} (£ < k)
where x; ¢ FV(ej) for i€ [1..4], j €[+ 1.k])

Result is a (k — £)-ary predicate, and a formula if k = ¢
o Every k-ary 2nd-order variable may be viewed as a predicate:
X = R X(xt, .., Xk)

@ Second-order substitution (X, P of same arity)
(X(er,...,ex)){X =P} = Pler,...,e)

o Inaformula: A{X := P}
o In a predicate: Q{X := P}
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Unary predicates as sets

@ Unary predicates represent sets of individuals
Syntactic sugar: {x: A} = %A, ecP = P(e)

Example: The set IN of Dedekind numerals
N ={x:VZ(0eZ=>Vy(yeZ=5s(y)eZ)=xecZ}

@ Relativized quantifications:
(VxeP)A(x) = Vx(xeP= A(x))

(IxeP)A(x) = VZ(Vx(xeP=Ax)=2)=2)
< Ix(x € PAA(X))

@ Inclusion and extensional equality:

PCQ = Vx(xeP=x€eQ)
P=Q = ¥Vx(xeP&xeQ)
@ Set constructors: PUQ = {x : xePVxeQ} (etc.)
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A type system for second-order logic (ANK2)

@ Use proof-like terms as Curry-style proof terms
Represent the computational contents of classical proofs

e Typing judgement: X1 AL Xt Ap EE B

typing context I

Typing rules

_— A
IR el
x:AFt:B r-t:A=8B rFu:A
Fr-Xx.t:A=8B Fe=tu:B
r'Et: A <gFV(T) FEt:VxA
FEt:VxA FEt: A{x:=e}
Fr-t: A X¢FV () r-t:vXA
FEt: VXA ret: A{X:=P}
Fr-ac:(A=B)=A)= A
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@ Intuitionistic principes:

Axyz.zxy VXYY (X = Y= XAY)
Az.z(dxy.x) : VXVY(XAY = X)
Az.z(Mxy.y) : VXVY(XAY=Y)

Az.z © Vx(x =x)

Axyz.y(xz) = VxVyVz(x=y=y=z=x=2)

pair
fst
snd

refl
trans

o Excluded middle, double negation elimination:

left
right
EM
DNE

e De Morgan laws:

Axuv.ux  YXVY(X=XVY)
Ayuv.vy  YXVY (Y = XVY)

@ (Ak.right (Ax . k (leftx))) : VX (XV-X)
Az.x(Ak.zk)  VX(—X=X)

Azy . z(Ax.yx) : 3IxA(x) = —Vx-A(x)

Azy .@a(Ak.z(Ax. k(yx))) : —Vx—-A(x) = IxA(x)
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Classical second-order logic: PA2

System ANK2 defines provability in classical 2nd-order logic (NK2).
For classical 2nd-order arithmetic (PA2), add the following axioms:

@ Defining equations of primitive recursive functions:

Vx (x +0 = x) VxVy (x +s(y) =s(x+y))
Vx (x x 0 =0) VxVy (x X s(y) =x X y + x) (etc.)
@ Peano 3rd and 4th axioms:
(P3)  VxVy(s(x) =s(y) = x=y)
(P4) Vx—(s(x)=0)
@ The induction axiom:

Ind = Vx(xe€IN)
& VZ[0eZ=Vy(yeZ=s(y) € Z)=Vx(x € Z)]
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The induction axiom

@ Problem: The induction axiom is not realizable!

Ind = Vx(xelN)
& VZ[0eZ=Vy(yeZ=s(y)eZ)=VYx(xe Z)]

o Solution: Relativize all 1st-order quantifications to IN:

Non relativized Relativized
Vx A(x) ~ (Vx €IN) A(x)
Vx (x€IN=-A(x))
Ix A(x) ~ (3x €IN) A(x)
VZ (Vx (A(x)=2Z2)=2Z) VZ (Vx (xeN=A(x)=Z)=Z)

If PA2+ A, then PA2 —Ind+ AN (AN = A relativized to IN)
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Computational contents of relativization

o Intuition:

(Vx €IN) A(x) Vx (x € IN = A(x))

(Mx € nat) A(x) (Coq, Agda)

el

@ Recall. xe€IN = VZ[Z(0)=Vy(Z(y)= Z(s(y))) = Z(x)]

0 = M\ . fz : 0€lN

5 = Anzf .f(nzf) © (Yx€IN)s(x) € N

n = 30 : nelN

pluss = Anm.mn3s : (Vx,yelN)x+y €N
mult = Anm.mO(Ap.pluspn) : (Vx,y€IN)xxy €N
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Classical realizability: principles

o Intuitions:

e term = “proof” / stack = “counter-proof”
e process = “contradiction” (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole 1.
= set of processes closed under anti-evaluation (or saturated)

If p=p and p'el, then pe I

@ Each formula A is interpreted as two sets:

o A set of stacks ||A]| (falsity value)
o A set of terms |A| (truth value)

Falsity value ||AH defined by induction on A (negative interpretation)

Truth value |A| defined by orthogonality:
Al = JJAIX = {teA :Vre|A| txmel}
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Architecture of the realizability model

@ The realizability model .# is defined from:

o The full standard model .# of PA2: the ground model
(but we could take any model .# of PA2 as well)

o An instance (/C, Mo, ) of the Ac-calculus
o A saturated set of processes 1L C A% Tl (the pole)

o Architecture:

Witness extraction
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o First-order terms/variables interpreted as natural numbers n € IN

o Formulas interpreted as falsity values S € B(IN)

e k-ary 2nd-order variables (and k-ary predicates) interpreted as falsity

functions F : IN — ().

Formulas with parameters AB == - | Fle,-...

7€k) J

Add a predicate constant F for every falsity function F : INkK — PB(M)
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Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

o Falsity value ||A|| defined by induction on A:

HF(elw"ven)” = F([[el]]""?[[enﬂ)
A= Bl = |A[-]B]l = {t-7 : telA, m<]|B|}
Ivx Al = J IIA{x = n}|
nelN
VX Al = |J IA{X = F}
F:INk—93()

@ Truth value |A| defined by orthogonality:

Al = At = {teA : Vrne|A] txmel} )
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The realizability relation

Falsity value ||A]| and truth value |A| depend on the pole L
~> write them (sometimes) ||A||L and |A| L to recall the dependency

Realizability relations
tFA = telAw (Realizability w.r.t. L)
tIFA = VI te|AL (Universal realizability)
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From computation to realizability (1/2)

Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:
txu-T = Uxm forallue A, men

Proposition
If t is identity-like, then t IIF VX (X = X)

Proof: Exercisel (Remark: converse implication holds — exercise!)

o Examples of identity-like terms:

o Ax.x, (Ax.x)(Ax.x), etc.
o Mx.@Ak.x, Ax.acAk.kx, Mx.axcXk.kx(05), etc.

o Ax.marshal x An.unmarshal n(A\z. z)
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From computation to realizability (2/2)
Example 2: Control operators:
@ x t-m - t x ky-m

k. x t-a -

o “Typing" ky: kpxt-m' = txm

If =e|A|

Proof: Exercise

, then k;IFA=B (B any)

e "Typing" «: cxt-m = tkky-w

Proposition (Peirce’s law)

clF (A=B)=A)=A

Proof: Exercise
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Adequacy (1/2)

Aim: Prove the theorem of adequacy:

t: A (in the sense of ANK2) implies tIF A (in the sense of realizability)

@ Closing typing judgments x1: AL, xp tApE A

e We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

o We close proof-terms using realizers

Definition (Valuations)

© A valuation is a function p such that:

e p(x) €N for each 1st-order variable x
o p(X): INk — g3() for each 2nd-order variable X of arity k

@ Closure of A with p written A[p] (formula with parameters)
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Adequacy (2/2)

Definition (Adequate judgment, adequate rule)

Given a fixed pole L :

Q A judgment x;:Ai,....x,:ApFEt:A isadequate if for every
valuation p and for all vy IF A1[p],. .., u, IF Asp] we have:

t{x1 = uy,...,xp = u,} - Alp]

@ A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

@ All typing rules of ANK2 are adequate
@ All derivable judgments of ANK2 are adequate

Corollary: If Ft:A (A closed formula), then ¢l A )
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Extending adequacy to subtyping

Definition (Adequate subtyping judgment)

Judgment A < B adequate =

IBlelll < ALl
Implies: |A[p]| C |B[p]| (for all p), but strictly stronger

Adequate typing/subtyping rules

(for all valuations p)

Remark:

A<B B<C TFt:A A<B

A<A A<C F-t:B
VxA < A{x:=e} VXA < A{X :=P}
A<B A<LB A <A B < B’
———— x¢FV(A) ————— X¢FV(A)
A <VxB A<VXB

A=B < A =B

x¢FV(A)
Vx(A=B) < A= VxB

X¢FV(A)
VX(A=B) < A=VXB

@ Example: VXVY ((X=Y)=X)=X) < VX(-X = X)

Peirce’s law

DNE
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Anatomy of the model (1/2)

o Denotation of universal quantification:

Falsity value: Ivx Al = [ A{x == n}]| (by definition)
nelN

Truth value: Vx Al = ﬂ |A{x := n}| (by orthogonality)
nclN

(and similarly for 2nd-order universal quantification)

o Denotation of implication:

Falsity value: |A= B| = |Al-|B| (by definition)
Truth value: |[A= B| C |Al — |B| (by orthogonality)
writing |A| — |[B| = {t €A : Yuel|A| tuc |B|} (realizability arrow)

o Converse inclusion does not hold in general, unless L closed under Push
@ Inallcases: If t€|Al — |B|, then Ax.tx € |A= B| (n-expansion)
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Anatomy of the model (2/2)

o Falsity value ||A|| and truth value |A| depend on the pole L
~» write them ||A||.L and |A| L to recall the dependecy

o Degenerate case: 1 =o

o Truth values can take only two values: @ and A
o Classical realizability simply mimics the Tarski interpretation:

Degenerated interpretation

In the case where I = &, for every closed formula A:

Al = AN if=A
o faEA

o Non degenerate cases: 1 # o
o Every truth value |A| is inhabited:
If toxmo € L, then kroto €Al forall A (paraproof)
o We shall only consider realizers that are proof-like terms (e PL)
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Provability, universal realizability and truth

e From what precedes:

© A provable = A universally realized (by a proof-like term)
© A universally realized = A true (in the standard model)

~+  Universal realizability: an intermediate notion
between provability and truth

o Beware!

Intuitionistic proofs of A C Classical proofs of A

n n
Intuitionistic realizers of A % Classical realizers of A
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The axioms of PA2 (recall)

Defining equations of primitive recursive functions:

Vx (x +0=x) VxVy (x +s(y) =s(x+y))
Vx (x x 0 =0) VxVy (x X s(y) =x X y + x) (etc.)
Peano 3rd and 4th axioms:

(P3)  WxVy(s(x) =s(y) = x=y)
(P4) Vx—(s(x)=0)

The induction axiom:

Ind = Vx(x€IN)
& VZ[0eZ=Vy(yeZ=s(y)eZ)=Vx(xe Z))

Beware! Since induction is not realizable (in general), we work in
PA2" = PA2 —Ind, relativizing all 1st-order ¥/3 to IN
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Realizing equalities

o Equality between individuals defined by:
ee=e = VZ(Z(e1) = Z(e)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed 1st-order terms e1, ez (and a pole 1)
o al Il = {t-m: (txm)e L} if [ea] = [e]
IT=L1 = A-N if [ex] # [e2]

where 1=VZ(Z=2) and T=9

@ Intuitions:
o A realizer of a true equality (in the model) behaves as the identity
function \z.z

o A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)
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Realizing Peano axioms

Corollary 1 (Realizing true equations)
If M = VX (er(X) = ex2(X)) (truth in the ground model)

then Az.z lIF VX (e1(X) = e2(X)) (universal realizability)

v

Corollary 2

All the defining equations of the arithmetic function symbols
(+, %, 1, etc.) are realized by \z.z

N

Corollary 3 (Realizing Peano axioms)

Az.z lIF VxVy(s(x)=s(y)=x=y)
Az.z(Aw.w) [IF Vx-(s(x)=0)

Remark: Corollary 3 generalizes to all the Horn formulas that are true
in the ground model (using trivial realizers)
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Program extraction

Extracting a program from a proof in PA2
If PA2F A, then thereis t € PL such that ¢l AN

(A" obtained from A by relativizing all 1st-order quantifications to IN)

@ In practice:

o Only apply the adequacy theorem to the computationally relevant
parts of the proof

o For the computationally irrelevant parts (i.e. Horn formulas), use
‘default realizers’ ~» realizer optimization

o Example 1: Anmz.z IF (Vx,yelN) x+y=y+x
o Example 2: Fermat's last theorem?

(Vx,y,z,neN) (x >1=y>1=n>3=x"+y"#2")

1. realized by: Axyznuvw . u (v (wl))
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Some problems of classical realizability

@ The specification problem

Given a formula A, characterize its universal realizers
from their computational behavior

Witness extraction
0@000000000000C

Specifying Peirce’s law  [Guillermo-Miquel'12]

@ Witness extraction from classical realizers

© Realizability algebras + Cohen forcing

Realizability algebras: a program to well-order IR
Forcing as a program transformation

©Q Models induced by classical realizability

What are the interesting formulas that are realized in .
that are not already true in the ground model .Z7?

Realizability algebras Il: new models of ZF + DC

(cf below)
(3rd lecture)

[Krivine'11]
[Miquel’11]

[Krivine'12]
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The problem of witness extraction

@ Problem: Extract a witness from a universal realizer (or a proof)
to IF (3x €IN) A(x)

i.e. some n € IN such that A(n) is true

@ This is not always possible!
to IF (3xeN)((x=1AC)V (x=0A=C))

(C = Continuum hypothesis, Goldbach’s conjecture, etc.)

@ Two possible compromises:

o Intuitionistic logic: restrict the shape of the realizer to
(by only keeping intuitionistic reasoning principles)

o Classical logic: restrict the shape of the formula A(x)
(typically: A3-formulas)
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Storage operators

@ The call-by-value implication:

Formulas AB == - | {e}=A J
Semantics: I{e} = Al = {7-m : n=[e], = € ||A||}
@ From the definition: eeN=A < {e}=A
so that: 1 lIF VxVZ ((x € N= Z) = ({x} = Z)) (direct implication)

Definition (Storage operator)

A storage operator is a closed proof-like term M such that:

M IF VxVZ (({x} = Z) = (x € N = Z)) (converse implication)

@ They exist, for instance: M = Mn.nf (Ahx.h(5x))0

e Conclusion: ecIN=A and {e}= A interchangeables



Introducti Ac-caleul 2nd-order logic Realizability interpr i Realizing axioms Witness extraction

[o]e] 0000000 000000000000 0000000000000 00000 0000000000000

Storage operators

@ Intuitively, a storage operator
M I VxVZ({x} = 2Z)= (x e N = 2))

is a proof-like term that is intended to be applied to

e a function f specified only on totally evaluated numerals
(i-e. intuitionistic integers)
o a classical integer t I n € IN (n arbitrary)

and that evaluates (or “smoothes”) the classical integer t into a
value of the form 7 before passing this value to f

o Alternative point of view:
M IIF ¥x({x} = A(x)) = (¥xeNN)A(x)

A property that holds for all values (i.e. intuitionistic integers) also
holds for all classical integers
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Computing with storage operators: an example

@ Given a k-ary function f, we let:

Total(f) = (Vxa€IN)--- (Vxk €IN) (f(x1,...,x) € IN)

Comput(f) = Vxi---VxVZ [{x1} == {x}=
{flxay. o yx)} = Z) = Z]

Theorem (Specification of the formula Comput(f))

For all t € A, the following assertions are equivalent:
Q t I Comput(f)
@ t computes f: for all (m1,...,m) € INK, ue A, 7 el

tkmy---ng-u-m > uxf(ny,...,ng)-m

@ Using a storage operator M, we can build proof-like terms such that:

& IF Total(f) = Comput(f)
& IIF Comput(f) = Total(f)
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The naive extraction method

o A classical realizer 1ty lIF (3x € IN) A(x) always evaluates to a
pair witness/justification

Naive extraction

If t; IF (3x€IN)A(x), then there are n € IN and u € A such that
tox M (Axy.stopxy)-m > stopxmA-u-T

(w.r.t. a particular pole 1)

@ But n € IN might be a false witness because the justification
ulk A(n) is cheating! (i.e. u might contain hidden continuations)

@ In the case where ty comes from an intuitionistic proof,
extracted witness n € IN is always correct
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Extraction in the ¥9-case

Extraction in the ¥%-case (+ display intermediate results)

If to IF (3x€IN)(f(x) =0), then
tox M (Axy .printx y (stopx))-m > stopxn-m

for some n € IN such that f(n) =0

Storage operator M used to evaluate 1st component

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

@ Supports any representation of numerals
(one have to implement the storage operator M accordingly)
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Extraction in the ¥%-case (1/2)

Definition (conditional refutation)

ra € N is a conditional refutation of the predicate A(x) if

For all n € IN such that .# [~ A(n): ran - =A(n)

@ Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the:

Theorem [Krivine-Miquey]

For every formula A of 1st-order arithmetic, there exists a proof-like
term t4 such that:

If #}=A then ta IF A
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Extraction in the ¥%-case (2/2)
The Kamikaze extraction method
Let

O t IF (3xeN)A(x)
@ ra a conditional refutation of the predicate A(x)

Then the process

tox M (Axy . printx (raxy)) -7

displays a correct witness after finitely many evaluation steps

o Remark: No correctness invariant is ensured as soon as the (first)
correct witness has been displayed!

After, everything may happen: crash, infinite loop, displaying
incorrect witnesses, etc.
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Primitive numerals

Extend the machine with the following instructions:

@ For every integer n € N, an instruction n € K
with no evaluation rule (i.e. inert constant).

Intuition: fixm >~ segmentation fault

@ An instruction null with the rules:

N uxm ifn=0
nullxn-uv-v-m > .
v+ m otherwise

e Instructions f with the rules:

fxn---ng-u-m > uxm-m where m = f(ny,. ..

for all the usual arithmetic operations

Witness extraction

0000000000000

(1/2)

7”/()
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Primitive numerals (2/2)

o Call-by-value implication, yet another definition:

Formulas AB = - | [e]=A J

Semantics: lle] = Al = {n-m : n=][e], = €|Al}

@ Redefining the set of natural numbers:
N = {x : VZ(([e] = Z) = 2)}

box = Axr.rx I Vx([x] = x € IN)
boxn = nelN
An.n)x.3xbox I (vx€IN")s(x) € IN

Anm.ndx.mAy.(+)xybox I (Vx,yeIN)x+yeIN

rec_cbv = Azpzs. Y Axr.nullx zo (pred x Ay . zs y (ry))
FvZ[z(0) = Vy(ly] = 2(y) = Z(s(¥))) = Yx([x] = Z(x))]

Azpzsn.nx.rec_cbvzg (Ayz.zs (boxy) z) x
VZ[Z(0) = (VyeWN')(Z(y) = Z(s(y))) = (¥xeIN')Z(x)]

rec

F

e Conclusion: IF Vx(xelN < xeN)
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Example: the minimum principle (in Coq)

Minimum principle (for an inhabited type T)

(VF:T—=IN)(3x:T) (Vy:T) f(x)<f(y)

undecidable

Proof: Reductio ad absurdum + course-by-value induction.

o Remark: No intuitionistic proof (oracle)

(VF:IN—=IN) (3x : IN) f(x) < f(2x+1)
—_———

decidable

More generally: (VFf,g : IN = IN) (3x : IN) f(x) < f(g(x))

Proof. Take the point x given by the minimum principle.
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Krivine's realizability vs the LRS R-translation (1/2)

@ Krivine's realizability can seen as the composition of the Lafont-
Reus-Streicher (LRS) R-translation with Kleene's realizability

CPS o Krivine = Kleeneo LRS [Oliva-Streicher’08]
Classical realizability LRS R-translation
Pole 1L Return formula R
Falsity value ||A|| Negative translation A+
A= Bl = Al [B] | (A= B)*=ALRS A B
Truth value |A| = || AL ALRS = AL = R

@ Through the CPS translation, Krivine's extraction method in the
¥ 9-case is exactly Friedman'’s trick [Miquel’10]
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Krivine's realizability vs the LRS R-translation (2/2)

Beware of reductionism!

@ It only holds for pure classical reasoning
(extra instructions are not taken into account)

o Classical realizers are easier to understand than their
CPS-translations  (and more efficient...)

o Classical realizability is more than Kleene's realizability composed
with the Lafont-Reus-Streicher R-translation!

An image:
2Hy + 05 —  2H,0

but can we deduce the properties of water from the ones of H, and 057
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