
Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Computational interpretation of proofs:
Classical realizability

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

Semantics of proofs and certi�ed mathematics
PhD school � April 10th, 2014 � CIRM � Luminy

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

What is classical realizability?

Complete reformulation of the principles of Kleene realizability
to take into account classical reasoning

Based on Gri�n's discovery about the connection between classical
reasoning and control operators (call/cc)

call/cc : ((A⇒ B)⇒ A)⇒ A (Peirce's law)

Interprets the axiom of dependent choices (DC)

Initially designed for PA2 (+ DC), but extends to:

Higher-order arithmetic (PAω)

Zermelo-Fraenkel set theory (ZF)

The calculus of constructions with universes
(with classical logic in Prop)

Deep connections with Cohen forcing (3rd lecture)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Terms, stacks and processes

Syntax of the language parameterized by

A countable set K = {cc; . . .} of instructions,
containing at least the instruction cc (call/cc)

A countable set Π0 of stack constants (or stack bottoms)

Terms, stacks and processes

Terms

Stacks

Processes

t, u ::= x | λx . t | tu | κ | kπ

π, π′ ::= α | t · π

p, q ::= t ? π

(κ ∈ K)

(α ∈ Π0, t closed)

(t closed)

A λ-calculus with two kinds of constants:

Instructions κ ∈ K, including cc
Continuation constants kπ, one for every stack π (generated by cc)

Notation: Λ, Π, Λ ? Π (sets of closed terms / stacks / processes)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Proof-like terms

Proof-like term ≡ Term containing no continuation constant

Proof-like terms t, u ::= x | λx . t | tu | κ (κ ∈ K)

Idea: All realizers coming from actual proofs are of this form,
continuation constants kπ are treated as paraproofs

Notation: PL ≡ set of closed proof-like terms

Natural numbers encoded as proof-like terms by:

Krivine numerals n ≡ sn 0 ∈ PL (n ∈ N)
writing 0 ≡ λxy . x and s ≡ λnxy . y (n x y)

Note: Krivine numerals 6≡ Church numerals, but β-equivalent

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The Krivine Abstract Machine (KAM) (1/2)

We assume that the set Λ ? Π comes with a preorder p � p′ of
evaluation satisfying the following rules:

Krivine Abstract Machine (KAM)

Push

Grab

Save

Restore

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π
· · · · · ·

(+ re�exivity & transitivity)

Evaluation not de�ned but axiomatized. The preorder p � p′ is
another parameter of the calculus, just like the sets K and Π0

Extensible machinery: can add extra instructions and rules
(We shall see examples later)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The Krivine Abstract Machine (KAM) (2/2)

Rules Push and Grab implement weak head β-reduction
(call-by-name strategy):

Push

Grab

tu ? π � t ? u · π
λx . t ? u · π � t{x := u} ? π

Rules Save and Restore implement backtracking:

Save

Restore

cc ? u · π � u ? kπ · π
kπ ? u · π′ � u ? π

Instruction cc creates continuation constants kπ:

Usage: cc (λk . t)
Intuition: let k = curr-cont() in t

Computation: cc (λk . t) ? π � t{k := kπ} · π

Continuation constant kπ restores the saved context π

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Examples of extra instructions (1/2)

The instruction quote

quote ? t · u · π � u ? dte · π
where t 7→ dte is a �xed bijection from Λ to N

Useful to realize the axiom of dependent choices [Krivine'03]

The instruction eq

eq ? t1 · t2 · u · v · π �

{
u ? π if t1 ≡ t2

v ? π if t1 6≡ t2

Tests syntactic equality t1 ≡ t2
Can be implemented using quote

The instruction t (fork)

t ? u · v · π �

{
u ? π

v ? π

Non deterministic choice operator
Useful for pedagogy � bad for realizability (collapses to forcing)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Examples of extra instructions (2/2)

The instruction stop:
stop ? π 6�

Stops execution. Final result returned on the stack π

The instruction print:

print ? n · u · π � u ? π (formal speci�cation)

and prints integer n on standard output (informal speci�cation)

 Displays intermediate results without stopping the machine
(poor man's side e�ect)

The instruction make_co�ee:

make_co�ee ? u · π � u ? π + makes co�ee

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The language of (minimal) second-order logic

Second-order logic deals with two kinds of objects:

1st-order objects = individuals (i.e. basic objects of the theory)

2nd-order objects = k-ary relations over individuals

First-order terms and formulas

First-order terms

Formulas

e, e′ ::= x | f (e1, . . . , ek)

A,B ::= X (e1, . . . , ek) | A⇒ B

| ∀x A | ∀X A

Two kinds of variables

1st-order vars: x , y , z , . . . (not to be confused with λ-variables!)

2nd-order vars: X , Y , Z , . . . of all arities k ≥ 0

Two kinds of substitution:

1st-order subst.: e{x := e0}, A{x := e0} (de�ned as usual)

2nd-order subst.: A{X := P0}, P{X := P0} (postponed)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

First-order terms

De�ned from a �rst order signature Σ (as usual):

First-order terms e, e′ ::= x | f (e1, . . . , ek)

f ranges over k-ary function symbols in Σ

In what follows we assume that:

Each k-ary function symbol f is interpreted in N by a function

f
N : Nk → N

The signature Σ contains a function symbol for every primitive
recursive function: 0, s, +, ×, ↑, . . .

Denotation (in N) of a closed �rst-order term e written JeK

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Formulas

Formulas of minimal second-order logic

Formulas A,B ::= X (e1, . . . , ek) | A⇒ B

| ∀x A | ∀X A

only based on implication and 1st/2nd-order universal quanti�cation

Other connectives/quanti�ers are de�ned (second-order encodings)

⊥ ≡ ∀Z Z

¬A ≡ A⇒ ⊥

A ∧ B ≡ ∀Z ((A⇒ B ⇒ Z)⇒ Z)
A ∨ B ≡ ∀Z ((A⇒ Z)⇒ (B ⇒ Z)⇒ Z)

∃x A(x) ≡ ∀Z (∀x (A(x)⇒ Z)⇒ Z)
∃X A(X) ≡ ∀Z (∀X (A(X)⇒ Z)⇒ Z)

e1 = e2 ≡ ∀Z (Z(e1)⇒ Z(e2))

(absurdity)
(negation)

(conjunction)
(disjunction)

(1st-order ∃)
(2nd-order ∃)

(Leibniz equality)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Predicates

2nd-order variables represent unknown (abstract) relations

Concrete relations are represented using predicates (syntactic sugar)

Predicates P,Q ::= x̂1 · · · x̂kA (of arity k)

Let P ≡ x̂1 · · · x̂kA
Variables x1, . . . , xn (pairwise 6≡) are the arguments of P

Other free variables of formula A are the parameters of P

Notation: FV (P) = FV (A) \ {x1, . . . , xk} (free vars = params)

Predicates are subject to α-conversion (x̂i s treated as binders)

0-ary predicates are formulas

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Predicate application / substitution

Partial/total application of P ≡ x̂1 · · · x̂kA to e1, . . . , e`:

P(e1, . . . , e`) ≡ x̂`+1 · · · x̂kA{x1 := e1; . . . ; x` := e`} (` ≤ k)

where xj /∈ FV (ei) for i ∈ [1..`], j ∈ [`+ 1..k])

Result is a (k − `)-ary predicate, and a formula if k = `

Every k-ary 2nd-order variable may be viewed as a predicate:

X ≡ x̂1 · · · x̂kX (x1, . . . , xk)

Second-order substitution (X , P of same arity)

(X (e1, . . . , ek)){X := P} ≡ P(e1, . . . , ek)

In a formula: A{X := P}
In a predicate: Q{X := P}

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Unary predicates as sets

Unary predicates represent sets of individuals

Syntactic sugar: {x : A} ≡ x̂A, e ∈ P ≡ P(e)

Example: The set N of Dedekind numerals

N ≡ {x : ∀Z (0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ x ∈ Z}

Relativized quanti�cations:

(∀x ∈P)A(x) ≡ ∀x (x ∈ P ⇒ A(x))

(∃x ∈P)A(x) ≡ ∀Z (∀x (x ∈ P ⇒ A(x)⇒ Z)⇒ Z)
⇔ ∃x (x ∈ P ∧ A(x))

Inclusion and extensional equality:

P ⊆ Q ≡ ∀x (x ∈ P ⇒ x ∈ Q)
P = Q ≡ ∀x (x ∈ P ⇔ x ∈ Q)

Set constructors: P ∪ Q ≡ {x : x ∈ P ∨ x ∈ Q} (etc.)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

A type system for second-order logic (λNK2)

Use proof-like terms as Curry-style proof terms
Represent the computational contents of classical proofs

Typing judgement: x1 : A1, . . . , xn : An︸ ︷︷ ︸
typing context Γ

` t : B

Typing rules

Γ ` x : A
(x :A)∈Γ

Γ, x : A ` t : B

Γ ` λx . t : A⇒ B

Γ ` t : A⇒ B Γ ` u : A
Γ ` tu : B

Γ ` t : A
Γ ` t : ∀x A

x /∈FV (Γ)
Γ ` t : ∀x A

Γ ` t : A{x := e}

Γ ` t : A
Γ ` t : ∀X A

X /∈FV (Γ)
Γ ` t : ∀X A

Γ ` t : A{X := P}

Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Typing examples

Intuitionistic principes:

pair ≡ λxyz . z x y : ∀X ∀Y (X ⇒ Y ⇒ X ∧ Y)
fst ≡ λz . z (λxy . x) : ∀X ∀Y (X ∧ Y ⇒ X)
snd ≡ λz . z (λxy . y) : ∀X ∀Y (X ∧ Y ⇒ Y)

re� ≡ λz . z : ∀x (x = x)
trans ≡ λxyz . y (x z) : ∀x ∀y ∀z (x = y ⇒ y = z ⇒ x = z)

Excluded middle, double negation elimination:

left ≡ λxuv . u x : ∀X ∀Y (X ⇒ X ∨ Y)
right ≡ λyuv . v y : ∀X ∀Y (Y ⇒ X ∨ Y)

EM ≡ cc (λk . right (λx . k (left x))) : ∀X (X ∨ ¬X)

DNE ≡ λz . cc (λk . z k) : ∀X (¬¬X ⇒ X)

De Morgan laws:

λzy . z (λx . yx) : ∃x A(x) ⇒ ¬∀x ¬A(x)
λzy . cc (λk . z (λx . k (y x))) : ¬∀x ¬A(x) ⇒ ∃x A(x)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Classical second-order logic: PA2

System λNK2 de�nes provability in classical 2nd-order logic (NK2).
For classical 2nd-order arithmetic (PA2), add the following axioms:

De�ning equations of primitive recursive functions:

∀x (x + 0 = x) ∀x ∀y (x + s(y) = s(x + y))
∀x (x × 0 = 0) ∀x ∀y (x × s(y) = x × y + x) (etc.)

Peano 3rd and 4th axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)
(P4) ∀x ¬(s(x) = 0)

The induction axiom:

Ind ≡ ∀x (x ∈ N)

⇔ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ ∀x (x ∈ Z)]

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The induction axiom

Problem: The induction axiom is not realizable!

Ind ≡ ∀x (x ∈ N)

⇔ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ ∀x (x ∈ Z)]

Solution: Relativize all 1st-order quanti�cations to N:

Non relativized Relativized

∀x A(x) (∀x ∈N)A(x)
∀x (x∈N⇒A(x))

∃x A(x) (∃x ∈N)A(x)
∀Z (∀x (A(x)⇒Z)⇒Z) ∀Z (∀x (x∈N⇒A(x)⇒Z)⇒Z)

Theorem

If PA2 ` A, then PA2− Ind ` AN (AN ≡ A relativized to N)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Computational contents of relativization

Intuition:

(∀x ∈N)A(x) ≡ ∀x (x ∈ N⇒ A(x))
≈ (Πx ∈ nat)A(x) (Coq, Agda)

Recall: x ∈ N ≡ ∀Z [Z (0)⇒ ∀y (Z (y)⇒ Z (s(y)))⇒ Z (x)]

0 ≡ λzf . fz : 0 ∈ N
s ≡ λnzf . f (n z f) : (∀x ∈N) s(x) ∈ N
n ≡ sn0 : n ∈ N
plus ≡ λnm .mn s : (∀x , y ∈N) x + y ∈ N
mult ≡ λnm .m 0 (λp . plus p n) : (∀x , y ∈N) x × y ∈ N

(etc.)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Classical realizability: principles

Intuitions:

term = �proof� / stack = �counter-proof�
process = �contradiction� (slogan: never trust a classical realizer!)

Classical realizability model parameterized by a pole ⊥⊥
= set of processes closed under anti-evaluation (or saturated)

If p � p′ and p′ ∈ ⊥⊥, then p ∈ ⊥⊥

Each formula A is interpreted as two sets:

A set of stacks ‖A‖ (falsity value)
A set of terms |A| (truth value)

Falsity value ‖A‖ de�ned by induction on A (negative interpretation)

Truth value |A| de�ned by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Architecture of the realizability model

The realizability model M⊥⊥ is de�ned from:

The full standard model M of PA2: the ground model
(but we could take any model M of PA2 as well)

An instance (K,Π0,�) of the λc -calculus

A saturated set of processes ⊥⊥ ⊆ Λ ? Π (the pole)

Architecture:

First-order terms/variables interpreted as natural numbers n ∈ N
Formulas interpreted as falsity values S ∈ P(Π)

k-ary 2nd-order variables (and k-ary predicates) interpreted as falsity
functions F : Nk → P(Π).

Formulas with parameters A,B ::= · · · | Ḟ (e1, . . . , ek)

Add a predicate constant Ḟ for every falsity function Ḟ : Nk → P(Π)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Interpreting closed formulas with parameters

Let A be a closed formula (with parameters)

Falsity value ‖A‖ de�ned by induction on A:

‖Ḟ (e1, . . . , en)‖ = F (Je1K, . . . , JenK)

‖A⇒ B‖ = |A| · ‖B‖ = {t · π : t ∈ |A|, π ∈ ‖B‖}

‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖

‖∀X A‖ =
⋃

F :Nk→P(Π)

‖A{X := Ḟ}‖

Truth value |A| de�ned by orthogonality:

|A| = ‖A‖⊥⊥ = {t ∈ Λ : ∀π ∈ ‖A‖ t ? π ∈ ⊥⊥}

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The realizability relation

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them (sometimes) ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependency

Realizability relations

t A ≡ t ∈ |A|⊥⊥
t � A ≡ ∀⊥⊥ t ∈ |A|⊥⊥

(Realizability w.r.t. ⊥⊥)

(Universal realizability)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

From computation to realizability (1/2)

Fundamental idea: The computational behavior of a term determines
the formula(s) it realizes:

Example 1: A closed term t is identity-like if:

t ? u · π � u ? π for all u ∈ Λ, π ∈ Π

Proposition

If t is identity-like, then t � ∀X (X ⇒ X)

Proof: Exercise! (Remark: converse implication holds � exercise!)

Examples of identity-like terms:

λx . x , (λx . x) (λx . x), etc.

λx . ccλk . x , λx . ccλk . k x , λx . ccλk . k x (δ δ), etc.

λx .marshal x λn . unmarshal n (λz . z)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

From computation to realizability (2/2)

Example 2: Control operators:

cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

�Typing� kπ: kπ ? t · π′ � t ? π

Lemma

If π ∈ ‖A‖, then kπ A⇒ B (B any)

Proof: Exercise

�Typing� cc: cc ? t · π � t ? kπ · π

Proposition (Peirce's law)

cc � ((A⇒ B)⇒ A)⇒ A

Proof: Exercise

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Adequacy (1/2)

Aim: Prove the theorem of adequacy:

t : A (in the sense of λNK2) implies t A (in the sense of realizability)

Closing typing judgments x1 : A1, . . . , xn : An ` t : A

We close logical objects (1st-order terms, formulas, predicates) using
semantic objects (natural numbers, falsity values, falsity functions)

We close proof-terms using realizers

De�nition (Valuations)

1 A valuation is a function ρ such that:

ρ(x) ∈ N for each 1st-order variable x

ρ(X) : Nk → P(Π) for each 2nd-order variable X of arity k

2 Closure of A with ρ written A[ρ] (formula with parameters)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Adequacy (2/2)

De�nition (Adequate judgment, adequate rule)

Given a �xed pole ⊥⊥:
1 A judgment x1 : A1, . . . , xn : An ` t : A is adequate if for every

valuation ρ and for all u1 A1[ρ],. . . , un An[ρ] we have:

t{x1 := u1, . . . , xn := un} A[ρ]

2 A typing rule is adequate if it preserves the property of adequacy
(from the premises to the conclusion of the rule)

Theorem

1 All typing rules of λNK2 are adequate

2 All derivable judgments of λNK2 are adequate

Corollary: If ` t : A (A closed formula), then t � A

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Extending adequacy to subtyping

De�nition (Adequate subtyping judgment)

Judgment A ≤ B adequate ≡ ‖B[ρ]‖ ⊆ ‖A[ρ]‖ (for all valuations ρ)

Remark: Implies: |A[ρ]| ⊆ |B[ρ]| (for all ρ), but strictly stronger

Adequate typing/subtyping rules

A ≤ A

A ≤ B B ≤ C

A ≤ C

Γ ` t : A A ≤ B

Γ ` t : B

∀x A ≤ A{x := e} ∀X A ≤ A{X := P}

A ≤ B

A ≤ ∀x B
x /∈FV (A)

A ≤ B

A ≤ ∀X B
X /∈FV (A)

A′ ≤ A B ≤ B′

A⇒ B ≤ A′ ⇒ B′

∀x (A⇒ B) ≤ A⇒ ∀x B
x /∈FV (A)

∀X (A⇒ B) ≤ A⇒ ∀X B
X /∈FV (A)

Example: ∀X ∀Y (((X ⇒ Y)⇒ X)⇒ X)︸ ︷︷ ︸
Peirce's law

≤ ∀X (¬¬X ⇒ X)︸ ︷︷ ︸
DNE

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Anatomy of the model (1/2)

Denotation of universal quanti�cation:

Falsity value: ‖∀x A‖ =
⋃
n∈N

‖A{x := n}‖ (by de�nition)

Truth value: |∀x A| =
⋂
n∈N

|A{x := n}| (by orthogonality)

(and similarly for 2nd-order universal quanti�cation)

Denotation of implication:

Falsity value: ‖A⇒ B‖ = |A| · ‖B‖ (by de�nition)

Truth value: |A⇒ B| ⊆ |A| → |B| (by orthogonality)

writing |A| → |B| = {t ∈ Λ : ∀u ∈ |A| tu ∈ |B|} (realizability arrow)

1 Converse inclusion does not hold in general, unless ⊥⊥ closed under Push

2 In all cases: If t ∈ |A| → |B|, then λx . tx ∈ |A⇒ B| (η-expansion)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Anatomy of the model (2/2)

Falsity value ‖A‖ and truth value |A| depend on the pole ⊥⊥
 write them ‖A‖⊥⊥ and |A|⊥⊥ to recall the dependecy

Degenerate case: ⊥⊥ = ∅
Truth values can take only two values: ∅ and Λ
Classical realizability simply mimics the Tarski interpretation:

Degenerated interpretation

In the case where ⊥⊥ = ∅, for every closed formula A:

|A| =

{
Λ if M |= A

∅ if M 6|= A

Non degenerate cases: ⊥⊥ 6= ∅
Every truth value |A| is inhabited:

If t0 ? π0 ∈ ⊥⊥, then kπ0t0 ∈ |A| for all A (paraproof)

We shall only consider realizers that are proof-like terms (∈ PL)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Provability, universal realizability and truth

From what precedes:

1 A provable ⇒ A universally realized (by a proof-like term)

2 A universally realized ⇒ A true (in the standard model)

 Universal realizability: an intermediate notion
between provability and truth

Beware!

Intuitionistic proofs of A ⊂ Classical proofs of A

∩ ∩
Intuitionistic realizers of A 6⊆

6⊇ Classical realizers of A

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The axioms of PA2 (recall)

De�ning equations of primitive recursive functions:

∀x (x + 0 = x) ∀x ∀y (x + s(y) = s(x + y))
∀x (x × 0 = 0) ∀x ∀y (x × s(y) = x × y + x) (etc.)

Peano 3rd and 4th axioms:

(P3) ∀x ∀y (s(x) = s(y)⇒ x = y)
(P4) ∀x ¬(s(x) = 0)

The induction axiom:

Ind ≡ ∀x (x ∈ N)

⇔ ∀Z [0 ∈ Z ⇒ ∀y (y ∈ Z ⇒ s(y) ∈ Z)⇒ ∀x (x ∈ Z)]

Beware! Since induction is not realizable (in general), we work in
PA2− = PA2− Ind, relativizing all 1st-order ∀/∃ to N

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Realizing equalities

Equality between individuals de�ned by:

e1 = e2 ≡ ∀Z (Z (e1)⇒ Z (e2)) (Leibniz equality)

Denotation of Leibniz equality

Given two closed 1st-order terms e1, e2 (and a pole ⊥⊥)

‖e1 = e2‖ =

{
‖1‖ = {t · π : (t ? π) ∈ ⊥⊥} if Je1K = Je2K
‖> ⇒ ⊥‖ = Λ · Π if Je1K 6= Je2K

where 1 ≡ ∀Z (Z ⇒ Z) and > ≡ ∅̇

Intuitions:

A realizer of a true equality (in the model) behaves as the identity
function λz . z

A realizer of a false equality (in the model) behaves as a point of
backtrack (breakpoint)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Realizing Peano axioms

Corollary 1 (Realizing true equations)

If M |= ∀~x (e1(~x) = e2(~x)) (truth in the ground model)

then λz . z � ∀~x (e1(~x) = e2(~x)) (universal realizability)

Corollary 2

All the de�ning equations of the arithmetic function symbols
(+, ×, ↑, etc.) are realized by λz . z

Corollary 3 (Realizing Peano axioms)

λz . z � ∀x ∀y (s(x) = s(y)⇒ x = y)

λz . z (λw .w) � ∀x ¬(s(x) = 0)

Remark: Corollary 3 generalizes to all the Horn formulas that are true
in the ground model (using trivial realizers)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Program extraction

Extracting a program from a proof in PA2

If PA2 ` A, then there is t ∈ PL such that t � AN

(AN obtained from A by relativizing all 1st-order quanti�cations to N)

In practice:

Only apply the adequacy theorem to the computationally relevant
parts of the proof

For the computationally irrelevant parts (i.e. Horn formulas), use
`default realizers' realizer optimization

Example 1: λnmz . z � (∀x , y ∈N) x + y = y + x

Example 2: Fermat's last theorem1

(∀x , y , z , n∈N) (x ≥ 1⇒ y ≥ 1⇒ n ≥ 3⇒ xn + yn 6= zn)

1. realized by: λxyznuvw . u (v (w I))

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Plan

1 Introduction

2 The λc -calculus

3 Second-order logic

4 Realizability interpretation

5 Realizing the axioms of PA2−

6 Witness extraction

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Some problems of classical realizability

1 The speci�cation problem

Given a formula A, characterize its universal realizers
from their computational behavior

Specifying Peirce's law [Guillermo-Miquel'12]

2 Witness extraction from classical realizers (cf below)

3 Realizability algebras + Cohen forcing (3rd lecture)

Realizability algebras: a program to well-order R [Krivine'11]
Forcing as a program transformation [Miquel'11]

4 Models induced by classical realizability

What are the interesting formulas that are realized in M⊥⊥
that are not already true in the ground model M ?

Realizability algebras II: new models of ZF + DC [Krivine'12]

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The problem of witness extraction

Problem: Extract a witness from a universal realizer (or a proof)

t0 � (∃x ∈N)A(x)

i.e. some n ∈ N such that A(n) is true

This is not always possible!

t0 � (∃x ∈N) ((x = 1 ∧ C) ∨ (x = 0 ∧ ¬C))

(C = Continuum hypothesis, Goldbach's conjecture, etc.)

Two possible compromises:

Intuitionistic logic: restrict the shape of the realizer t0
(by only keeping intuitionistic reasoning principles)

Classical logic: restrict the shape of the formula A(x)
(typically: ∆0

0
-formulas)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Storage operators

The call-by-value implication:

Formulas A,B ::= · · · | {e} ⇒ A

Semantics: ‖{e} ⇒ A‖ = {n · π : n = JeK, π ∈ ‖A‖}

From the de�nition: e ∈ N⇒ A ≤ {e} ⇒ A

so that: I � ∀x ∀Z ((x ∈ N⇒ Z)⇒ ({x} ⇒ Z)) (direct implication)

De�nition (Storage operator)

A storage operator is a closed proof-like term M such that:

M � ∀x ∀Z (({x} ⇒ Z)⇒ (x ∈ N⇒ Z)) (converse implication)

They exist, for instance: M ≡ λfn . n f (λhx . h (s x)) 0

Conclusion: e ∈ N⇒ A and {e} ⇒ A interchangeables

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Storage operators

Intuitively, a storage operator

M � ∀x ∀Z (({x} ⇒ Z)⇒ (x ∈ N⇒ Z))

is a proof-like term that is intended to be applied to

a function f speci�ed only on totally evaluated numerals
(i.e. intuitionistic integers)

a classical integer t n ∈ N (n arbitrary)

and that evaluates (or �smoothes�) the classical integer t into a
value of the form n before passing this value to f

Alternative point of view:

M � ∀x ({x} ⇒ A(x)) ⇒ (∀x ∈N)A(x)

A property that holds for all values (i.e. intuitionistic integers) also
holds for all classical integers

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Computing with storage operators: an example

Given a k-ary function f , we let:

Total(f) ≡ (∀x1 ∈N) · · · (∀xk ∈N) (f (x1, . . . , xk) ∈ N)

Comput(f) ≡ ∀x1 · · · ∀xk ∀Z [{x1} ⇒ · · · ⇒ {xk} ⇒
({f (x1, . . . , xk)} ⇒ Z)⇒ Z]

Theorem (Speci�cation of the formula Comput(f))

For all t ∈ Λ, the following assertions are equivalent:

1 t � Comput(f)

2 t computes f : for all (n1, . . . , nk) ∈ Nk , u ∈ Λ, π ∈ Π:

t ? n1 · · · nk · u · π � u ? f (n1, . . . , nk) · π

Using a storage operator M, we can build proof-like terms such that:

ξk � Total(f) ⇒ Comput(f)
ξ′k � Comput(f) ⇒ Total(f)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

The naive extraction method

A classical realizer t0 � (∃x ∈N)A(x) always evaluates to a
pair witness/justi�cation

Naive extraction

If t0 � (∃x ∈N)A(x), then there are n ∈ N and u ∈ Λ such that

t0 ?M (λxy . stop x y) · π � stop ? n · u · π

(w.r.t. a particular pole ⊥⊥)

But n ∈ N might be a false witness because the justi�cation
u A(n) is cheating! (i.e. u might contain hidden continuations)

In the case where t0 comes from an intuitionistic proof,
extracted witness n ∈ N is always correct

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Extraction in the Σ0
1-case

Extraction in the Σ0
1-case (+ display intermediate results)

If t0 � (∃x ∈N) (f (x) = 0), then

t0 ?M (λxy . print x y (stop x)) · π � stop ? n · π

for some n ∈ N such that f (n) = 0

Storage operator M used to evaluate 1st component

2nd component (y) used as a breakpoint
(Relies on the particular structure of equality realizers)

Holds independently from the instruction set

Supports any representation of numerals
(one have to implement the storage operator M accordingly)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Extraction in the Σ0
n-case (1/2)

De�nition (conditional refutation)

rA ∈ Λ is a conditional refutation of the predicate A(x) if

For all n ∈ N such that M 6|= A(n): rAn � ¬A(n)

Such a conditional refutation can be constructed for every predicate
A(x) of 1st-order arithmetic

This result is a consequence of the:

Theorem [Krivine-Miquey]

For every formula A of 1st-order arithmetic, there exists a proof-like
term tA such that:

If M |= A then tA � A

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Extraction in the Σ0
n-case (2/2)

The Kamikaze extraction method

Let

1 t0 � (∃x ∈N)A(x)

2 rA a conditional refutation of the predicate A(x)

Then the process

t0 ?M (λxy . print x (rA x y)) · π

displays a correct witness after �nitely many evaluation steps

Remark: No correctness invariant is ensured as soon as the (�rst)
correct witness has been displayed!

After, everything may happen: crash, in�nite loop, displaying
incorrect witnesses, etc.

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Primitive numerals (1/2)

Extend the machine with the following instructions:

For every integer n ∈ N, an instruction n̂ ∈ K
with no evaluation rule (i.e. inert constant).

Intuition: n̂ ? π � segmentation fault

An instruction null with the rules:

null ? n̂ · u · v · π �

{
u ? π if n = 0

v ? π otherwise

Instructions f̌ with the rules:

f̌ ? n̂1 · · · n̂k · u · π � u ? m̂ · π where m = f (n1, . . . , nk)

for all the usual arithmetic operations

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Primitive numerals (2/2)

Call-by-value implication, yet another de�nition:

Formulas A,B ::= · · · | [e]⇒ A

Semantics: ‖[e]⇒ A‖ = {n̂ · π : n = JeK, π ∈ ‖A‖}

Rede�ning the set of natural numbers:
N′ ≡ {x : ∀Z (([e]⇒ Z)⇒ Z)}

box ≡ λx r . r x � ∀x ([x]⇒ x ∈ N′)
box n̂ � n ∈ N′

λn . n λx . š x box � (∀x ∈N′) s(x) ∈ N′

λnm . n λx .m λy . ˇ(+) x y box � (∀x , y ∈N′) x + y ∈ N′

rec_cbv ≡ λz0zs .Y λxr . null x z0 (pred x λy . zs y (r y))
� ∀Z [Z(0) ⇒ ∀y ([y]⇒ Z(y)⇒ Z(s(y))) ⇒ ∀x ([x]⇒ Z(x))]

rec ≡ λz0zsn . n λx . rec_cbv z0 (λyz . zs (box y) z) x
� ∀Z [Z(0) ⇒ (∀y ∈N′) (Z(y)⇒ Z(s(y))) ⇒ (∀x ∈N′)Z(x)]

Conclusion: � ∀x (x ∈ N′ ⇔ x ∈ N)

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Example: the minimum principle (in Coq)

Minimum principle (for an inhabited type T)

(∀f : T → N) (∃x : T) (∀y : T) f (x) ≤ f (y)︸ ︷︷ ︸
undecidable

Proof: Reductio ad absurdum + course-by-value induction.

Remark: No intuitionistic proof (oracle)

Corollary

(∀f : N→ N) (∃x : N) f (x) ≤ f (2x + 1)︸ ︷︷ ︸
decidable

More generally: (∀f , g : N→ N) (∃x : N) f (x) ≤ f (g(x))

Proof. Take the point x given by the minimum principle.

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Krivine's realizability vs the LRS R-translation (1/2)

Krivine's realizability can seen as the composition of the Lafont-
Reus-Streicher (LRS) R-translation with Kleene's realizability

CPS ◦ Krivine = Kleene ◦ LRS [Oliva-Streicher'08]

The dictionary

Classical realizability LRS R-translation

Pole ⊥⊥ Return formula R

Falsity value ‖A‖ Negative translation A⊥

‖A⇒ B‖ = |A| · ‖B‖ (A⇒ B)⊥ ≡ ALRS ∧ B⊥

Truth value |A| = ‖A‖⊥⊥ ALRS ≡ A⊥ ⇒ R

Through the CPS translation, Krivine's extraction method in the
Σ0
1-case is exactly Friedman's trick [Miquel'10]

Introduction λc -calculus 2nd-order logic Realizability interpretation Realizing axioms Witness extraction

Krivine's realizability vs the LRS R-translation (2/2)

Beware of reductionism!

It only holds for pure classical reasoning
(extra instructions are not taken into account)

Classical realizers are easier to understand than their
CPS-translations (and more e�cient...)

Classical realizability is more than Kleene's realizability composed
with the Lafont-Reus-Streicher R-translation!

An image:

2H2 + O2 −→ 2H2O

but can we deduce the properties of water from the ones of H2 and O2?

	Introduction
	The c-calculus
	Second-order logic
	Realizability interpretation
	Realizing the axioms of PA2-
	Witness extraction

