
Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Computational interpretation of proofs:
Classical realizability and forcing

Alexandre Miquel

E
Q
U
I
P
O

. D E . L
O -
G
I
C
A

U

D
E L A

R

Semantics of proofs and certi�ed mathematics
PhD school � April 11th, 2014 � CIRM � Luminy

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Di�erent notions of models

Tarski models: JAK ∈ {0; 1}
Interprets classical provability (correctness/completeness)

Intuitionistic realizability: JAK ∈ P(Λ) [Kleene 45]

Interprets intuitionistic proofs
Theoretical basis of intuitionistic program extraction
Independence results, in intuitionistic theories
De�nitely incompatible with classical logic

Cohen forcing: JAK ∈ P(C) [Cohen 63]

Independence results, in classical theories
(Negation of continuum hypothesis, Solovay's axiom, etc.)

Classical realizability JAK ∈ P(Λc) [Krivine 94]

Interprets classical proofs
Generalizes Tarski models... and forcing!

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

What is forcing?

A technique invented by Paul Cohen ('63) to prove the independence
of the continuum hypothesis (CH) w.r.t. ZFC

The continuum hypothesis (CH), Hilbert's 1st problem

For every in�nite subset S ⊆ R:
Either S is denumerable (i.e. in bijection with N)

Either S has the power of continuum (i.e. is in bijection with R)

In symbols: 2ℵ0 = ℵ1

Gödel ('38) proved ZFC 6` ¬CH introducing constructible sets

Cohen ('63) proved ZFC 6` CH introducing forcing

Related to Boolean-valued models [Scott, Solovay, Vop¥nka]

Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

How does forcing work?

G

M

(P,≤)

g=limG

M [G]

On

PM (P)

P(P)

⊇

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

An analogy with algebra

Set theory Algebra

Start from a ground model M Start from a ground �eld F

We want to add a new set approximated We want to add a new point

by the elements of a given that should be a root of a given

forcing poset (P,≤) ∈M polynomial P ∈ F [X]

This de�nes a �ctitious This de�nes a �ctitious

generic �lter G ⊆ P (outside M) root α of P (outside F)

which generates around M a which generates around F a

generic extension M [G] �eld extension F [α]

Construction: Construction:

M [G] := M [P]/∼Ext F [α] := F [X]/PF [X]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Example: forcing ¬CH

Aim: Force the existence of an injection h : ℵ2 → P(ω)

We shall build it as a characteristic function g : ℵ2 × ω → 2

The ideal object g is approximated in the ground model M by
elements of (P,≤) = (Fin(ℵ2 × ω, 2), ⊇) (forcing poset)

Forcing invocation: Let M [G] be the generic extension generated
by an M -generic �lter G ⊆ P (always exists!)

In M [G], we let: g = limG =
⋃
G (: ℵ2 × ω ⇀ 2)

Using the M -genericity of the �lter G ⊆ P, we prove that:

Partial function g : ℵ2 × ω → 2 is actually total

Corresponding function h : ℵ2 → P(ω) is injective

Technicalities (countable chain condition) under the carpet

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Compared properties of M and M [G]

Forcing theorem: Given a model M and a forcing poset (P,≤) ∈M ,
the generic extension M [G] always exists

M and M [G] have the very same ordinals

If Axiom of Choice (AC) holds in M , then it holds in M [G] too

Finite cardinals and ℵ0 = ω are the same in M and M [G]

M [G] has in general fewer cardinals than M

Intuition: new bijections may appear in M [G] between sets in M ,
thus identifying their cardinals in M [G]

Cardinals are preserved if P ful�ls the countable chain condition
(This was the case for P = Fin(E , 2) for forcing ¬CH)

But in some circumstances, one may use forcing to kill cardinals:
Levy collapse, Solovay's axiom, etc.

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

The proof-theoretic point of view

Construction of M [G] parameterized by a forcing poset (P,≤),
whose elements are called forcing conditions

p ≤ q reads: `p is stronger than q'

Internally relies on a logical translation

A 7→ p F A (`p forces A')

where p is a fresh variable (representing a condition)

Complex de�nition by induction on A, using the poset (P,≤)

Properties

1 ` A entails ` (∀p ∈P) (p F A)

2 But ` (∀p ∈P) (p F A) for more formulas A (depending on P)

3 ` (∀p ∈P) (p 6F ⊥) (consistency)

Remark: Forcing commutes with ⊥, >, ∧ and ∀, but not with ⇒, ¬, ∨, ∃

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

p F A⇒ B ≡ (p F A)⇒ (p F B)

p F �A ≡ ∀q≤ p (q F A)

p F A⇒ B p F A

p F B

⇑
‖Gödel's translation from LJ to S4 (A ⇒ B)† ≡ �(A† ⇒ B†)

Kripke models for intuitionistic logic (LJ)

p F A⇒ B ≡
∀q≤ p ((q F A)⇒ (q F B))

p F A⇒ B q F A

q F B
q≤p

⇑
‖¬¬-translation from LK to LJ (tricky!)

Forcing in classical logic (LK)

p F A⇒ B ≡
∀q ((q F A)⇒ ∀r ≤ p, q (r F B))

p F A⇒ B q F A

r F B
r≤p,q

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Cohen forcing versus classical realizability

Cohen forcing Classical realizability

JAK ∈ P(C) |A| ∈ P(Λc)

p F A t
 A

p F A⇒ B q F A

pq︸︷︷︸
g.l.b.

F B
t
 A⇒ B u
 A

tu︸︷︷︸
application

 B

p F A q F B

pq F A ∧ B
t
 A u
 B

〈t; u〉
 A ∧ B

A ∧ B = A ∩ B A ∧ B 6= A ∩ B

Slogan: Classical realizability = Non commutative forcing

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Combining Cohen forcing with classical realizability

Forcing in classical realizability [Krivine 09]

Introduce realizability algebras, generalizing the λc -calculus

Discover the program transformation underlying forcing

Extend iterated forcing to classical realizability

Show how to force the existence of a well-ordering over R
(while keeping evaluation deterministic)

Computational analysis of forcing [Miquel 11]

Focus on the underlying program transformation (no generic �lter)

Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas & proofs

Classical program
transformation

 New abstract machine
(no transformation)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Higher-order arithmetic (PAω+)

A multi-sorted language that allows to express

Individuals (kind ι)
Propositions (kind o)
Functions over individuals (ι→ ι, ι→ ι→ ι, ...)
Predicates over individuals (ι→ o, ι→ ι→ o, ...)
Predicates over predicates... ((ι→ o)→ o, ...)

Syntax of kinds and higher-order terms

Kinds τ, σ ::= ι | o | τ → σ

Terms M,N,A,B ::= xτ | λxτ .M | MN | 0 | s | recτ
| A⇒ B | ∀xτ A | M = M ′ 7→ A

Equational implication: M = M ′ 7→ A

Means: A if M = M ′ (equality of denotations)

> otherwise (> = type of all proofs)

Provably equivalent to: M =τ M
′ ⇒ A (Leibniz equality)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Conversion (1/2)

Conversion M ∼=E M ′ parameterized by a (�nite) set of equations

E ≡ M1 = M ′1, . . . ,Mk = M ′k (non oriented, well `kinded')

Re�exivity, symmetry, transitivity + base case:

M ∼=E M ′
(M=M′)∈E

β-conversion, recursion:

(λxτ .M)N ∼=E M{x := N}
recτ MM ′ 0 ∼=E M

recτ MM ′ (sN) ∼=E M ′ N (recτ MM ′ N)

Usual context rules + extended rule for M = M ′ 7→ A:

A ∼=E,M=M′ A′

M = M ′ 7→ A ∼=E M = M ′ 7→ A′

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Conversion (2/2)

Rules for identifying computationally equivalent propositions:

∀xτ ∀yσ A ∼=E ∀yσ ∀xτ A
∀xτ A ∼=E A xτ /∈FV (A)

A⇒ ∀xτ B ∼=E ∀xτ (A⇒ B) xτ /∈FV (A)

M = M ′ 7→ N = N ′ 7→ A ∼=E N = N ′ 7→ M = M ′ 7→ A

M = M 7→ A ∼=E A

A⇒ (M = M ′ 7→ B) ∼=E M = M ′ 7→ (A⇒ B)

∀xτ (M = M ′ 7→ A) ∼=E M = M ′ 7→ ∀xτA xτ /∈FV (M,M′)

Example: > := tt = � 7→ ⊥ (type of all proof-terms)

where tt ≡ λxoyo . x, � ≡ λxoyo . y and ⊥ ≡ ∀zo z

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Deduction system (typing)

Proof terms: t, u ::= x | λx . t | tu | cc (Curry-style)

Contexts: Γ ::= x1 : A1, . . . , xn : An (Ai of sort o)

Deduction/typing rules

E ; Γ ` x : A
(x :A)∈Γ

E ; Γ ` t : A

E ; Γ ` t : A′
A∼=EA′

E ; Γ, x : A ` t : B

E ; Γ ` λx . t : A⇒ B

E ; Γ ` t : A⇒ B E ; Γ ` u : A

E ; Γ ` tu : B

E ,M = M ′; Γ ` t : A

E ; Γ ` t : M = M ′ 7→ A

E ; Γ ` t : M = M 7→ A

E ; Γ ` t : A

E ; Γ ` t : A

E ; Γ ` t : ∀xτA
xτ /∈FV (E;Γ)

E ; Γ ` t : ∀xτA
E ; Γ ` t : A{x := Nτ}

E ; Γ ` cc : ((A⇒ B)⇒ A)⇒ A

Remark: All proof-terms have type > ≡ tt = � 7→ ⊥ (normalization fails)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

From operational semantics...

Krivine's λc -calculus

λ-calculus with call/cc and continuation constants:

t, u ::= x | λx . t | tu | cc | kπ

An abstract machine with explicit stacks:

Stack = list of closed terms (notation: π, π′)
Process = closed term ? stack

Evaluation rules (weak head normalization, call by name)

(Grab)
(Push)
(Save)
(Restore)

λx . t ? u · π � t{x := u} ? π
tu ? π � t ? u · π
cc ? t · π � t ? kπ · π
kπ ? t · π′ � t ? π

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

... to classical realizability semantics

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK = N

Propositions interpreted as falsity values JoK = P(Π)
Functions interpreted set-theoretically Jτ → σK = JσKJτK

Parameterized by a pole ⊥⊥ ⊆ Λc ? Π (closed under anti-evaluation)

Interpreting logical constructions:

J∀xτAK =
⋃

e∈JτK

JA{x := ė}K JA⇒ BK = JAK⊥⊥ · JBK

JM = M′ 7→ AK =

{
JAK if JMK = JM′K
∅ otherwise

Adequacy

If E ; x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , u1
 A1[ρ], . . . , un
 An[ρ]

then: t{x1 := u1; . . . ; xn := un}
 B[ρ]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Representing conditions

Intuition: Represent the set of conditions as an upwards closed
subset of a meet-semilattice

Take:

A kind κ of conditions, equipped with

A binary product (p, q) 7→ pq (of kind κ→ κ→ κ)

A unit 1 (of kind κ)

A predicate p 7→ C [p] of well-formedness (of kind κ→ o)

Typical example: �nite functions from τ to σ are modelled by

κ ≡ τ → σ → o (binary relations ⊆ τ × σ)

pq ≡ λxτyσ . p x y ∨ q x y (union of relations p and q)

1 ≡ λxτyσ .⊥ (empty relation)

C [p] ≡ �p is a �nite function from τ to σ�

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Combinators

The forcing translation is parameterized by

The kind κ + closed terms ·, 1, C (logical level)
9 closed proof terms α∗, α1, . . . , α8 (computational level)

α∗ : C [1]

α1 : ∀pκ ∀qκ (C [pq]⇒ C [p])

α2 : ∀pκ ∀qκ (C [pq]⇒ C [q])

α3 : ∀pκ ∀qκ (C [pq]⇒ C [qp])

α4 : ∀pκ (C [p]⇒ C [pp])

α5 : ∀pκ ∀qκ ∀rκ (C [(pq)r]⇒ C [p(qr)])

α6 : ∀pκ ∀qκ ∀rκ (C [p(qr)]⇒ C [(pq)r])

α7 : ∀pκ (C [p]⇒ C [p1])

α8 : ∀pκ (C [p]⇒ C [1p])

This set is not minimal. One can take α∗, α1, α3, α4, α5, α7 and de�ne:
α2 := α1 ◦ α3, α6 := α3 ◦ α5 ◦ α3 ◦ α5 ◦ α3, α8 := α3 ◦ α7

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Derived combinators

The combinators α1, . . . , α8 can be composed:

Example: α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C [(pq)r]⇒ C [rp])

We will also use the following derived combinators:

α9 := α3 ◦ α1 ◦ α6 ◦ α3 : ∀pκ ∀qκ ∀rκ (C [(pq)r]⇒ C [pr])
α10 := α2 ◦ α5 : ∀pκ ∀qκ ∀rκ (C [(pq)r]⇒ C [qr])
α11 := α9 ◦ α4 : ∀pκ ∀qκ (C [pq]⇒ C [p(pq)])
α12 := α5 ◦ α3 : ∀pκ ∀qκ ∀rκ (C [p(qr)]⇒ C [q(rp)])
α13 := α3 ◦ α12 : ∀pκ ∀qκ ∀rκ (C [p(qr)]⇒ C [(rp)q])
α14 := α5 ◦ α3 ◦ α10 ◦ α4 ◦ α2 : ∀pκ ∀qκ ∀rκ (C [p(qr)]⇒ C [q(rr)])
α15 := α9 ◦ α3 : ∀pκ ∀qκ ∀rκ (C [p(qr)]⇒ C [qp])

Important remark:

C [pq]⇒ C [p] ∧ C [q], but C [p] ∧ C [q] 6⇒ C [pq] (in general)

Two conditions p and q are compatible when C [pq]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Ordering

Let p ≤ q := ∀rκ(C [pr]⇒ C [qr])

≤ is a preorder with greatest element 1:

λc . c : ∀pκ (p ≤ p)
λxyc . y(xc) : ∀pκ ∀qκ ∀rκ (p ≤ q ⇒ q ≤ r ⇒ p ≤ r)
α8 ◦ α2 : ∀pκ (p ≤ 1)

Product pq is the g.l.b. of p and q:

α9 : ∀pκ ∀qκ (pq ≤ p)
α10 : ∀pκ ∀qκ (pq ≤ q)
λxy . α13 ◦ y ◦ α12 ◦ x ◦ α11 : ∀pκ ∀qκ ∀rκ (r ≤ p ⇒ r ≤ q ⇒ r ≤ pq)

C (set of `good' conditions) is upwards closed:

λxc . α1 (x (α7 c)) : ∀pκ ∀qκ (p ≤ q ⇒ C [p]⇒ C [q])

Bad conditions are smallest elements:

λxc . x (α1 c) : ∀pκ (¬C [p]⇒ ∀qκ p ≤ q)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

The auxiliary translation (_)∗

Translating kinds: τ 7→ τ∗

ι∗ ≡ ι o
∗ ≡ κ→ o (τ → σ)∗ ≡ τ∗ → σ∗

Intuition: Propositions become sets of conditions

Translating terms: M 7→ M∗

(xτ)∗ ≡ xτ
∗

0∗ ≡ 0

(λxτ .M)∗ ≡ λxτ
∗
.M∗ s∗ ≡ s

(MN)∗ ≡ M∗N∗ rec∗τ ≡ recτ∗

(∀xτA)∗ ≡ λrκ . ∀xτ
∗
A∗r

(M1 = M2 7→ A)∗ ≡ λrκ .M∗1 = M∗2 7→ A∗r

(A⇒ B)∗ ≡ λrκ .∀qκ∀r ′κ[r = qr ′ 7→ ∀sκ(C [qs]⇒ A∗s)⇒ B∗r ′]

Lemma

(M{xτ := N})∗ ≡ M∗{xτ∗ := N∗} (substitutivity)

If M1
∼=E M2, then M∗1

∼=E∗ M∗2 (compatibility with conversion)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

The forcing translation

Given a proposition A and a condition p, let:

p F A := ∀rκ(C [pr]⇒ A∗r)

The forcing translation is trivial on ∀ and _ = _ 7→ _:

p F ∀xτA ∼=∅ ∀xτ
∗

(p F A)
p F M1 = M2 7→ A ∼=∅ M∗1 = M∗2 7→ (p F A)

All the complexity lies in implication! (cf next slide)

General properties

β1 := λxyc . y (x c) : ∀pκ ∀qκ (q ≤ p ⇒ (p F A)⇒ (q F A))

β2 := λxc . x (α1 c) : ∀pκ (¬C [p]⇒ p F A)

β3 := λxc . x (α9 c) : ∀pκ ∀qκ ((p F A)⇒ (pq F A))

β4 := λxc . x (α10 c) : ∀pκ ∀qκ ((q F A)⇒ (pq F A))

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Forcing an implication

De�nition of p F A⇒ B looks strange:

p F A⇒ B ≡ ∀rκ(C [pr]⇒ (A⇒ B)∗r)

∼=∅ ∀rκ(C [pr]⇒ ∀qκ∀r ′κ(r = qr ′ 7→ (q F A)⇒ B∗r ′))

But it is equivalent to

∀q ((q F A)⇒ (pq F B))

Hint:

p F A⇒ B q F A

pq F B



Coercions between p F A⇒ B and ∀q ((q F A)⇒ (pq F B))

γ1 := λxcy . x y (α6 c) : (∀q ((q F A)⇒ (pq F B)) ⇒ p F A⇒ B)

γ2 := λxyc . x (α5 c) y : (p F A⇒ B) ⇒ ∀q ((q F A)⇒ (pq F B))

γ3 := λxyc . x (α11 c) y : (p F A⇒ B) ⇒ (p F A) ⇒ (p F B)

γ4 := λxcy . x (y (α15 c)) : ¬A∗ p ⇒ p F A⇒ B

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Translating proof-terms

Krivine's program transformation t 7→ t∗:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (γ4 k)) γ4≡λxcy . x (y (α15 c))

(t u)∗ ≡ γ3 t
∗ u∗ γ3≡λxyc . x (α11 c) y

(λx . t)∗ ≡ γ1 (λx . t∗ {x := β4x}︸ ︷︷ ︸
bounded var

{xi := β3xi}ni=1︸ ︷︷ ︸
other free vars of t

) γ1≡λxcy . x y (α6 c)

β3≡λxc . x (α9 c)

β4≡λxc . x (α10 c)

The translation inserts: γ1 (�fold�) in front of each λ
γ3 (�apply�) in front of each app.

A bound occurrence of x in t is translated as βn3 (β4x),
where n is the de Bruijn index of this occurrence

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B

then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Translating proof-terms (optimized)

The latter program transformation creates bureaucratic β-redexes
due to the macros β3, β4, γ3, γ1 and γ4

If we reduce them, we get the following transformation:

x∗ ≡ x cc∗ ≡ λcx . cc (λk . x (α14 c) (λcx . k (x (α15 c))))

(t u)∗ ≡ λc . t∗ (α6 c) u∗

(λx . t)∗ ≡ λcx . t∗ {x := λc . x (α10 c)}︸ ︷︷ ︸
bounded var

{xi := λc . xi (α9 c)}ni=1︸ ︷︷ ︸
other free vars of t

(α11 c)

Soundness (in PAω+)

If E ; x1 : A1, . . . , xn : An ` t : B

then E∗; x1 : (p F A1), . . . , xn : (p F An) ` t∗ : (p F B)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Computational meaning of the transformation

A proof of p F A ≡ ∀rκ(C [pr]⇒ A∗r) is a function waiting
an argument c : C [pr] (for some r) computational condition

(λx . t)∗ ? c · u · π � t∗{x := β4u} ? α6 c · π

(tu)∗ ? c · π � t∗ ? α11 c · u∗ · π

cc∗ ? c · t · π � t ? α14 c · k∗π · π

k∗π ? c · t · π′ � t ? α15 c · π

where: k∗π ≡ γ4 kπ (≈ λcx . kπ (x (α15 c)))

Evaluation combinators

α6 : C [p(qr)] ⇒ C [(pq)r]
α11 : C [pr] ⇒ C [p(pr)]
α14 : C [p(qr)] ⇒ C [q(rr)]
α15 : C [p(qr)] ⇒ C [qp]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Krivine Forcing Abstract Machine (KFAM) [M.'11]

Terms

Environments

Closures

Stacks

t, u ::= x | λx . t | tu | cc
e ::= ∅ | e, x := c

c ::= t[e] | kπ | t[e]∗ | k∗π︸ ︷︷ ︸
forcing closuresπ ::= � | c · π

Evaluation rules: real mode

x[e, y := c] ? π � x[e] ? π (y 6≡ x)
x[e, x := c] ? π � c ? π

(λx . t)[e] ? c · π � t[e, x := c] ? π
(tu)[e] ? π � tt[e] ? u[e] · π
cc[e] ? c · π � c ? kπ · π
kπ ? c · π′ � c ? π

Evaluation rules: forcing mode

x[e, y := c]∗ ? c0 · π � x[e]∗ ? α9 c0 · π (y 6≡ x)
x[e, x := c]∗ ? c0 · π � c ? α10 c0 · π

(λx . t)[e]∗ ? c0 · c · π � t[e, x := c]∗ ? α6 c0 · π
(tu)[e]∗ ? c0 · π � t[e]∗ ? α11 c0 · u[e]∗ · π
cc[e]∗ ? c0 · c · π � c ? α14 c0 · k∗π · π

k∗π ? c0 · c · π′ � c ? α15 c0 · π

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Adequacy in real and forcing modes

New abstract machine means:

New classical realizability model (based on the KFAM)

New adequacy results

Adequacy (real mode)

If E ; x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , c1
 A1[ρ], . . . , cn
 An[ρ]

then: t[x1 := c1, . . . , xn := cn]
 B[ρ]

Assuming that αi
 type of αi (for i = 6, 9, 10, 11, 14, 15)

Adequacy (forcing mode)

If E ; x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E∗, c1
 (p1 F A1[ρ]), . . . , cn
 (pn F An[ρ])

then: t[x1 := c1; . . . ; xn := cn]∗
 ((p0p1) · · · pn F B[ρ])

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Program extraction in presence of forcing

Assume that:

1 We got a proof of B under some axiom A

x : A ` u : B (user program)

2 Axiom A is not provable, but it can be forced using a suitable set of
forcing conditions (C ,≤):

` s : (1 F A) (system program)

Then:

1 We have: u[x := s[]]∗
 (1 F B)

2 If moreover B is an arithmetical formula

(ξB z)[z := u[x := s[]]∗]
 B

using a suitable wrapper ξB
 (1 F B)⇒ B

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Plan

1 Cohen forcing

2 Higher-order arithmetic (tuned)

3 The forcing transformation

4 The forcing machine

5 Realizability algebras

6 Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Realizability algebras [Krivine'10]

De�nition

A realizability algebra A is given by:

3 sets Λ (A -terms), Π (A -stacks), Λ ?Π (A -processes)

3 functions (·) : Λ×Π→ Π, (?) : Λ×Π→ Λ ?Π, (k_) : Π→ Λ

A compilation function (t, σ) 7→ t[σ] that takes

an open proof term t

a Λ-substitution σ closing t

and returns an A -term t[σ] ∈ Λ

A set of A -processes ⊥⊥ ⊆ Λ ?Π such that:

σ(x) ? π ∈ ⊥⊥ implies x [σ] ? π ∈ ⊥⊥
t[σ, x := a] ? π ∈ ⊥⊥ implies (λx . t)[σ] ? a · π ∈ ⊥⊥

t[σ] ? u[σ] · π ∈ ⊥⊥ implies (tu)[σ] ? π ∈ ⊥⊥
a ? kπ · π ∈ ⊥⊥ implies cc[σ] ? a · π ∈ ⊥⊥
a ? π ∈ ⊥⊥ implies kπ ? a · π′ ∈ ⊥⊥

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Realizability model of PAω+ (general case)

Parameterized by a realizability algebra A = (Λ,Π,Λ ?Π, · · · ,⊥⊥)

Interpreting higher-order terms:

Individuals interpreted as natural numbers JιK = N

Propositions interpreted as A -falsity values JoK = P(Π)
Functions interpreted set-theoretically Jτ → σK = JσKJτK

Interpreting logical constructions:

J∀xτAK =
⋃

e∈JτK

JA{x := ė}K JA⇒ BK = JAK⊥⊥ · JBK

JM = M′ 7→ AK =

{
JAK if JMK = JM′K
∅ otherwise

Adequacy

If E ; x1 : A1, . . . , xn : An ` t : B (in PAω+)

ρ |= E , u1
 A1[ρ], . . . , un
 An[ρ]

then: t[x1 := u1; . . . ; xn := un]
 B[ρ]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Examples (1/2)

From an implementation of λc :

Standard realizability algebra

Λ = Λ, Π = Π, Λ ?Π = Λ ? Π

kπ, t · π, t ? π de�ned as themselves

Compilation function (t, σ) 7→ t[σ] de�ned by substitution

⊥⊥ = any saturated set of processes

We can do the same for all classical λ-calculi:

Parigot's λµ-calculus

Curien-Herbelin's λ̄µ-calculus (CBN or CBV)

Barbanera-Berardi's symmetric λ-calculus (t comes for free)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Examples (2/2)

From a forcing poset P de�ned as an upwards closed subset of a
meet semi-lattice L: P ⊆ L, P↑

Λ = Π = Λ ?Π = L
kπ = π, t · π = t ? π = tπ (product in L)
Compilation function (t, σ) 7→ t[σ]:

t[σ] =
∏

x∈FV (t)

σ(x)

⊥⊥ = L \ P

Corresponding realizability model isomorphic to the forcing model
de�ned from the poset P

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

KFAM: The realizability algebra of real mode

From a saturated set ⊥⊥ in the KFAM:

The realizability algebra A = (Λ,Π,Λ ?Π, . . . ,⊥⊥)

Λ, Π, Λ ?Π = sets of closures, stacks, processes of the KFAM

kπ (real mode), t · π, t ? π de�ned as in the KFAM

Compilation function (t, σ) 7→ t[σ] = closure formation (real mode)

⊥⊥ = itself

Adequacy w.r.t. the algebra A =

Adequacy in the KFAM in real mode (w.r.t. the pole ⊥⊥)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

KFAM: The realizability algebra of forcing mode

Given A = (Λ,Π,Λ ?Π, . . . ,⊥⊥) (cf prev. slide)

+ a forcing structure (κ,C , ·, 1)

The realizability algebra A ∗ = (Λ∗,Π∗,Λ∗ ?Π∗, . . . ,⊥⊥∗)
Λ∗ = Λ× JκK, Π∗ = Π× JκK, Λ∗ ?Π∗ = (Λ ?Π)× JκK

k(π,p) = (k∗π, p) (forcing mode)

(t, p) · (π, q) = (t · π, pq)

(t, p) ? (π, q) = (t ? π, pq)

Compilation function (t, σ) 7→ t[σ]:

t[x1 := (c1, p1); . . . ; xn := (cn, pn)] =(
t[x1 := c1; . . . ; xn := cn]∗, ((1p1) · · ·)pn

)
(forcing mode)

⊥⊥∗ = {(t ? π, p) : ∀c ∈ Λ ((c
A C [p])⇒ (t ? c · π) ∈ ⊥⊥)}

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

The connection lemma

Write J_K (resp. J_K∗) the interpretation w.r.t. A (resp. w.r.t. A ∗)

Notice that: JoK∗ = P(Π× JκK) ' (P(Π))JκK = Jo∗K

Connection lemma

1 There exists an iso: ψτ : Jτ∗K →̃ JτK∗

2 For all closed M of kind τ : JMK∗ = ψτ (JM∗K)

3 Given a closed formula A and a pair (c, p) ∈ Λ∗ (= Λ× JκK):

(c, p)
A ∗ A ⇔ c
A (p F A)

Connection lemma + Adequacy w.r.t. the algebra A ∗ =

Adequacy in the KFAM in forcing mode (w.r.t. the pole ⊥⊥)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

To sum up

From syntax...

The program transform t 7→ t∗ underlying Cohen's forcing:

` t : A ` t
∗ : (p F A)

A new machine (KFAM) with two execution modes such that

t[]∗ has the same behavior as t
∗[]

... to semantics: iterated forcing

Two realizability algebras A and A ′ related by

(c, p)
A ∗ A ⇔ c
A (p F A)

Two adequacy lemmas (real/forcing) as instances of the general
lemma of adequacy

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Conclusion (1/2)

Underlying methodology

Translation of
formulas & proofs

Program
transform

 Computation model
(transform becomes identity)

This methodology applies to the forcing translation

Computational meaning of the underlying program transformation

A new abstract machine: the KFAM

Reminiscent from well known tricks of computer architecture
(protection rings, virtual memory, hardware tracing, ...)

New insights in logic:

Logical meaning of explicit environments

Logical meaning of a particular side e�ect

Backtrack de�nes the limit between the stack and the memory

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

Conclusion (2/2)

Future work:

1 How this computation model is used in practice?

Hint: try simple axioms �rst!

2 Extend extraction techniques to the forcing mode

3 Use this methodology the other way around!

Deduce new logical translations from computation models
borrowed to computer architecture, operating systems, ...

Several connections between forcing and side e�ects

Forcing in classical realizability [Krivine'08, '09, '10]

Realizability with states and dependent choice [Miquel'09]

Towards an integration of side e�ects into the Curry-Howard
correspondence?

	Cohen forcing
	Higher-order arithmetic (tuned)
	The forcing transformation
	The forcing machine
	Realizability algebras
	Conclusion

