Computational interpretation of proofs: Classical realizability and forcing

Alexandre Miquel

Semantics of proofs and certified mathematics PhD school - April 11th, 2014 - CIRM - Luminy

Different notions of models

- Tarski models: $\llbracket A \rrbracket \in\{0 ; 1\}$
- Interprets classical provability
(correctness/completeness)
- Intuitionistic realizability: $\llbracket A \rrbracket \in \mathfrak{P}(\Lambda)$
- Interprets intuitionistic proofs
- Theoretical basis of intuitionistic program extraction
- Independence results, in intuitionistic theories
- Definitely incompatible with classical logic
- Cohen forcing: $\llbracket A \rrbracket \in \mathfrak{P}(C)$
[Cohen 63]
- Independence results, in classical theories (Negation of continuum hypothesis, Solovay's axiom, etc.)
- Classical realizability $\llbracket A \rrbracket \in \mathfrak{P}\left(\Lambda_{c}\right)$
[Krivine 94]
- Interprets classical proofs
- Generalizes Tarski models... and forcing!

Plan

(1) Cohen forcing
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation
(4) The forcing machine
(5) Realizability algebras
(6) Conclusion

Cohen forcing Higher-order arithmetic (tuned)
-000000000 0000000
Plan

Forcing machine Realizability algebras

Conclusion
(1) Cohen forcing
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation

4 The forcing machine
(5) Realizability algebras
(6) Conclusion

What is forcing?

- A technique invented by Paul Cohen ('63) to prove the independence of the continuum hypothesis (CH) w.r.t. ZFC

The continuum hypothesis (CH), Hilbert's 1st problem

For every infinite subset $S \subseteq \mathbb{R}$:

- Either S is denumerable (i.e. in bijection with $\mathbb{I N}$)
- Either S has the power of continuum (i.e. is in bijection with \mathbb{R})

In symbols:

$$
2^{\aleph_{0}}=\aleph_{1}
$$

- Gödel ('38) proved ZFC $\forall \neg \mathrm{CH}$ introducing constructible sets
- Cohen ('63) proved ZFC $\vdash \mathrm{CH}$ introducing forcing
- Related to Boolean-valued models [Scott, Solovay, Vopẽnka]
- Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]

How does forcing work?

An analogy with algebra

Set theory

Start from a ground model \mathscr{M}

We want to add a new set approximated by the elements of a given forcing poset $(P, \leq) \in \mathscr{M}$

This defines a fictitious
generic filter $G \subseteq P \quad$ (outside \mathscr{M})
which generates around \mathscr{M} a
generic extension $\mathscr{M}[G]$

Construction:
$\mathscr{M}[G]:=\mathscr{M}^{[P]} / \sim_{\text {Ext }}$

Algebra

Start from a ground field F

We want to add a new point that should be a root of a given polynomial $P \in F[X]$

This defines a fictitious root α of $P \quad$ (outside F)
which generates around F a field extension $F[\alpha]$

Construction:
$F[\alpha]:=F[X] / P F[X]$

Example: forcing $\neg \mathrm{CH}$

- Aim: Force the existence of an injection $h: \aleph_{2} \rightarrow \mathfrak{P}(\omega)$ We shall build it as a characteristic function $g: \aleph_{2} \times \omega \rightarrow 2$
- The ideal object g is approximated in the ground model \mathscr{M} by elements of $\quad(P, \leq)=\left(\operatorname{Fin}\left(\aleph_{2} \times \omega, 2\right), \supseteq\right) \quad$ (forcing poset)
- Forcing invocation: Let $\mathscr{M}[G]$ be the generic extension generated by an \mathscr{M}-generic filter $G \subseteq P$
(always exists!)
- In $\mathscr{M}[G]$, we let: $\quad g=\lim G=\bigcup G \quad\left(: \aleph_{2} \times \omega \rightharpoonup 2\right)$ Using the \mathscr{M}-genericity of the filter $G \subseteq P$, we prove that:
- Partial function $g: \aleph_{2} \times \omega \rightarrow 2$ is actually total
- Corresponding function $h: \aleph_{2} \rightarrow \mathfrak{P}(\omega)$ is injective

Technicalities (countable chain condition) under the carpet

Compared properties of \mathscr{M} and $\mathscr{M}[G]$

Forcing theorem: Given a model \mathscr{M} and a forcing poset $(P, \leq) \in \mathscr{M}$, the generic extension $\mathscr{M}[G]$ always exists

- \mathscr{M} and $\mathscr{M}[G]$ have the very same ordinals
- If Axiom of Choice (AC) holds in \mathscr{M}, then it holds in $\mathscr{M}[G]$ too
- Finite cardinals and $\aleph_{0}=\omega$ are the same in \mathscr{M} and $\mathscr{M}[G]$
- $\mathscr{M}[G]$ has in general fewer cardinals than \mathscr{M}
- Intuition: new bijections may appear in $\mathscr{M}[G]$ between sets in \mathscr{M}, thus identifying their cardinals in $\mathscr{M}[G]$
- Cardinals are preserved if P fulfils the countable chain condition (This was the case for $P=\operatorname{Fin}(E, 2)$ for forcing $\neg \mathrm{CH}$)
- But in some circumstances, one may use forcing to kill cardinals: Levy collapse, Solovay's axiom, etc.

The proof-theoretic point of view

- Construction of $\mathscr{M}[G]$ parameterized by a forcing poset (P, \leq), whose elements are called forcing conditions
- $p \leq q$ reads: ' p is stronger than q '
- Internally relies on a logical translation

$$
A \mapsto p \mathbb{F} A
$$

(' p forces A^{\prime})
where p is a fresh variable (representing a condition)

- Complex definition by induction on A, using the poset (P, \leq)

Properties

(1) $\vdash A$ entails $\vdash(\forall p \in P)(p \mathrm{FF} A)$
(2) But $\vdash(\forall p \in P)(p \mathbb{F} A)$ for more formulas A (depending on P)

- $\stackrel{\vdash}{ }(\forall p \in P)(p \mathbb{F} \perp)$
- Remark: Forcing commutes with \perp, \top, \wedge and \forall, but not with $\Rightarrow, \neg, \vee, \exists$

Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

$$
\begin{aligned}
p \mathrm{FF} A \Rightarrow B & \equiv(p \mathrm{FF} A) \Rightarrow(p \mathrm{FF} B) & \frac{p \mathrm{FF} A \Rightarrow B \quad p \text { IF } A}{p \text { IF } B}
\end{aligned}
$$

介

Gödel's translation from LJ to S4

$$
(\mathbf{A} \Rightarrow \boldsymbol{B})^{\dagger} \equiv \square\left(\boldsymbol{A}^{\dagger} \Rightarrow \boldsymbol{B}^{\dagger}\right)
$$

Kripke models for intuitionistic logic (LJ)

$$
\begin{aligned}
& p \mathrm{IF} A \Rightarrow B \equiv \\
& \quad \forall q \leq p((q \text { IF } A) \Rightarrow(q \text { IF } B))
\end{aligned}
$$

$$
\frac{p \mathrm{IF} A \Rightarrow B}{q \text { IF } B} \quad q \text { IF } A_{q \leq p}
$$

Forcing in classical logic (LK)
p IF $A \Rightarrow B \equiv$
$\forall q((q$ IF $A) \Rightarrow \forall r \leq p, q(r \operatorname{FF} B))$

$$
\frac{p \mathrm{IF} A \Rightarrow B \quad q \mathrm{IF} A}{r \operatorname{IF} B} r \leq p, q
$$

Cohen forcing versus classical realizability

Cohen forcing	Classical realizability
$\llbracket A \rrbracket \in \mathfrak{P}(C)$	$\|A\| \in \mathfrak{P}\left(\Lambda_{c}\right)$
$p \mathrm{IF} A$	$t \Vdash A$
$\underline{p \mathbb{F} A \Rightarrow B \quad q \mathbb{F} A}$	
$\underbrace{p q}_{\text {g.l.b. }} \mathbb{F}$	$\underbrace{t u}_{\text {application }} \Vdash B$
$p \mathrm{FF} A \quad q \mathrm{FFB}$	$\underline{t} \Vdash^{\prime} \quad u \Vdash B$
$p q \mathrm{FF} A \wedge B$	$\langle t ; u\rangle \Vdash A \wedge B$
$A \wedge B=A \cap B$	$A \wedge B \neq A \cap B$

- Slogan: Classical realizability $=$ Non commutative forcing

Combining Cohen forcing with classical realizability

- Forcing in classical realizability
- Introduce realizability algebras, generalizing the λ_{c}-calculus
- Discover the program transformation underlying forcing
- Extend iterated forcing to classical realizability
- Show how to force the existence of a well-ordering over \mathbb{R} (while keeping evaluation deterministic)
- Computational analysis of forcing
- Focus on the underlying program transformation (no generic filter)
- Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of
formulas \& proofs

Classical program New abstract machine (no transformation)

Higher-order arithmetic (tuned) - 000000

Realizability algebras 000000000

Conclusion
(1) Cohen forcing
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation

4 The forcing machine
(5) Realizability algebras
(6) Conclusion

Higher-order arithmetic $\left(\mathrm{PA} \omega^{+}\right)$

- A multi-sorted language that allows to express
- Individuals
- Propositions
- Functions over individuals

$$
\begin{array}{r}
(\iota \rightarrow \iota, \quad \iota \rightarrow \iota \rightarrow \iota, \quad \ldots) \\
(\iota \rightarrow 0, \quad \iota \rightarrow \iota \rightarrow 0, \quad \ldots) \\
((\iota \rightarrow 0) \rightarrow 0, \\
\ldots)
\end{array}
$$

- Predicates over individuals
- Predicates over predicates...

Syntax of kinds and higher-order terms

Kinds $\quad \tau, \sigma \quad::=\iota|\quad \circ \quad| \quad \tau \rightarrow \sigma$

- Equational implication: $M=M^{\prime} \mapsto A$
- Means: A if $M=M^{\prime}$
(equality of denotations)
(\top = type of all proofs)
- Provably equivalent to: $M={ }_{\tau} M^{\prime} \Rightarrow A$
(Leibniz equality)

Conversion

- Conversion $M \cong_{\mathcal{E}} M^{\prime}$ parameterized by a (finite) set of equations

$$
\mathcal{E} \equiv M_{1}=M_{1}^{\prime}, \ldots, M_{k}=M_{k}^{\prime} \quad \text { (non oriented, well 'kinded') }
$$

- Reflexivity, symmetry, transitivity + base case:

$$
\overline{M \cong_{\mathcal{E}} M^{\prime}}\left(M=M^{\prime}\right) \in \mathcal{E}
$$

- β-conversion, recursion:

$$
\begin{array}{rll}
\left(\lambda x^{\tau} \cdot M\right) N & \cong_{\mathcal{E}} & M\{x:=N\} \\
\operatorname{rec}_{\tau} M M^{\prime} 0 & \cong_{\mathcal{E}} & M \\
\operatorname{rec}_{\tau} M M^{\prime}(\mathrm{s} N) & \cong_{\mathcal{E}} & M^{\prime} N\left(\operatorname{rec}_{\tau} M M^{\prime} N\right)
\end{array}
$$

- Usual context rules + extended rule for $M=M^{\prime} \mapsto A$:

$$
\frac{A \cong_{\mathcal{E}, M=M^{\prime}} A^{\prime}}{M=M^{\prime} \mapsto A \cong_{\mathcal{E}} M=M^{\prime} \mapsto A^{\prime}}
$$

- Rules for identifying computationally equivalent propositions:

$$
\begin{array}{rlll}
\forall x^{\tau} \forall y^{\sigma} A & \cong_{\mathcal{E}} & \forall y^{\sigma} \forall x^{\tau} A & \\
\forall x^{\tau} A & \cong_{\mathcal{E}} & A & x^{\tau} \notin F V(A) \\
A \Rightarrow \forall x^{\tau} B & \cong_{\mathcal{E}} & \forall x^{\tau}(A \Rightarrow B) & x^{\tau} \notin F V(A) \\
M=M^{\prime} \mapsto N=N^{\prime} \mapsto A & \cong_{\mathcal{E}} \quad N=N^{\prime} \mapsto M=M^{\prime} \mapsto A & \\
M=M \mapsto A & \cong_{\mathcal{E}} \quad A & \\
A \Rightarrow\left(M=M^{\prime} \mapsto B\right) & \cong_{\mathcal{E}} \quad M=M^{\prime} \mapsto(A \Rightarrow B) & \\
\forall x^{\tau}\left(M=M^{\prime} \mapsto A\right) & \cong_{\mathcal{E}} & M=M^{\prime} \mapsto \forall x^{\tau} A & x^{\tau} \notin F V\left(M, M^{\prime}\right)
\end{array}
$$

- Example: $\quad \top \quad:=\mathrm{tt}=\mathrm{ff} \mapsto \perp$
(type of all proof-terms)
where $\quad \mathrm{tt} \equiv \lambda x^{\circ} y^{\circ} \cdot x, \quad \mathrm{ff} \equiv \lambda x^{\circ} y^{\circ} \cdot y \quad$ and $\quad \perp \equiv \forall z^{\circ} z$

Deduction system (typing)

- Proof terms:

$$
\begin{array}{llr}
t, u::=x|\lambda x . t| t u \mid \propto & \text { (Curry-style) } \\
\Gamma::=x_{1}: A_{1}, \ldots, x_{n}: A_{n} & \left(A_{i} \text { of sort } o\right)
\end{array}
$$

- Contexts:

Deduction/typing rules

$$
\begin{array}{cc}
\overline{\mathcal{E} ; \Gamma \vdash x: A}(x: A) \in \Gamma & \frac{\mathcal{E} ; \Gamma \vdash t: A}{\mathcal{E} ; \Gamma \vdash t: A^{\prime}} A \cong_{\mathcal{E}} A^{\prime} \\
\frac{\mathcal{E} ; \Gamma, x: A \vdash t: B}{\mathcal{E} ; \Gamma \vdash \lambda x \cdot t: A \Rightarrow B} & \frac{\mathcal{E} ; \Gamma \vdash t: A \Rightarrow B \quad \mathcal{E} ; \Gamma \vdash u: A}{\mathcal{E} ; \Gamma \vdash t u: B} \\
\frac{\mathcal{E}, M=M^{\prime} ; \Gamma \vdash t: A}{\mathcal{E} ; \Gamma \vdash t: M=M^{\prime} \mapsto A} & \frac{\mathcal{E} ; \Gamma \vdash t: M=M \mapsto A}{\mathcal{E} ; \Gamma \vdash t: A} \\
\frac{\mathcal{E} ; \Gamma \vdash t: A}{\mathcal{E} ; \Gamma \vdash t: \forall x^{\tau} A} x^{\tau} \notin F V(\mathcal{E} ; \Gamma) & \frac{\mathcal{E} ; \Gamma \vdash t: \forall x^{\tau} A}{\mathcal{E} ; \Gamma \vdash t: A\left\{x:=N^{\tau}\right\}} \\
\overline{\mathcal{E} ; \Gamma \vdash \propto:((A \Rightarrow B) \Rightarrow A) \Rightarrow A}
\end{array}
$$

Remark: \quad All proof-terms have type $\top \equiv \mathrm{tt}=\mathrm{ff} \mapsto \perp \quad$ (normalization fails)

From operational semantics...

- Krivine's λ_{c}-calculus
- λ-calculus with call/cc and continuation constants:

$$
t, u \quad::=x \left\lvert\, \begin{array}{ll|l|l|l}
& x & & & \\
\mathrm{k}_{\pi}
\end{array}\right.
$$

- An abstract machine with explicit stacks:
- Stack $=$ list of closed terms (notation: π, π^{\prime})
- Process $=$ closed term \star stack
- Evaluation rules

(Grab)	$\lambda x . t$	\star	$u \cdot \pi$	\succ	$t\{x:=u\}$	\star	π
(Push)	$t u$	\star	π	\succ	t	\star	$u \cdot \pi$
(Save)	\propto	\star	$t \cdot \pi$	\succ	t	\star	$\mathrm{k}_{\pi} \cdot \pi$
(Restore)	k_{π}	\star	$t \cdot \pi^{\prime}$	\succ		t	\star
			π				

to classical realizability semantics

- Interpreting higher-order terms:
- Individuals interpreted as natural numbers

$$
\begin{array}{r}
\llbracket \iota \rrbracket=\mathbb{N} \\
\llbracket o \rrbracket=\mathfrak{P}(\square) \\
\llbracket \tau \rightarrow \sigma \rrbracket=\llbracket \sigma \rrbracket \llbracket \rrbracket
\end{array}
$$

- Propositions interpreted as falsity values
- Functions interpreted set-theoretically
- Parameterized by a pole $\Perp \subseteq \Lambda_{c} \star \Pi$
(closed under anti-evaluation)
- Interpreting logical constructions:

$$
\begin{gathered}
\llbracket \forall x^{\tau} A \rrbracket=\bigcup_{e \in \llbracket \tau \rrbracket} \llbracket A\{x:=\dot{e}\} \rrbracket \quad \llbracket A \Rightarrow B \rrbracket=\llbracket A \rrbracket \rrbracket \cdot \llbracket B \rrbracket \\
\llbracket M=M^{\prime} \mapsto A \rrbracket= \begin{cases}\llbracket A \rrbracket & \text { if } \llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \\
\varnothing & \text { otherwise }\end{cases}
\end{gathered}
$$

Adequacy

If

- $\mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$
(in PA ω^{+})
- $\rho \models \mathcal{E}, \quad u_{1} \Vdash A_{1}[\rho], \ldots, u_{n} \Vdash A_{n}[\rho]$
then: $\quad t\left\{x_{1}:=u_{1} ; \ldots ; x_{n}:=u_{n}\right\} \Vdash B[\rho]$

Plan

(1) Cohen forcing
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation

44 The forcing machine
(5) Realizability algebras
(6) Conclusion

Representing conditions

- Intuition: Represent the set of conditions as an upwards closed subset of a meet-semilattice
- Take:
- A kind κ of conditions, equipped with
- A binary product $(p, q) \mapsto p q$ (of kind $\kappa \rightarrow \kappa \rightarrow \kappa$)
- A unit 1
- A predicate $p \mapsto C[p]$ of well-formedness
(of kind κ)
(of kind $\kappa \rightarrow 0$)
- Typical example: finite functions from τ to σ are modelled by
- $\kappa \equiv \tau \rightarrow \sigma \rightarrow 0$
- $p q \equiv \lambda x^{\tau} y^{\sigma} \cdot p x y \vee q x y$
- $1 \equiv \lambda x^{\tau} y^{\sigma} . \perp$
(binary relations $\subseteq \tau \times \sigma$)
(union of relations p and q)
(empty relation)
- $C[p] \equiv " p$ is a finite function from τ to $\sigma "$

Combinators

- The forcing translation is parameterized by
- The kind κ + closed terms •, $1, C$
(logical level)
- 9 closed proof terms $\alpha_{*}, \alpha_{1}, \ldots, \alpha_{8}$

$$
\begin{array}{lll}
\alpha_{*} & : & C[1] \\
\alpha_{1} & : & \forall p^{\kappa} \forall q^{\kappa}(C[p q] \Rightarrow C[p]) \\
\alpha_{2} & : & \forall p^{\kappa} \forall q^{\kappa}(C[p q] \Rightarrow C[q]) \\
\alpha_{3} & : & \forall p^{\kappa} \forall q^{\kappa}(C[p q] \Rightarrow C[q p]) \\
\alpha_{4} & : & \forall p^{\kappa}(C[p] \Rightarrow C[p p]) \\
\alpha_{5} & : & \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[(p q) r] \Rightarrow C[p(q r)]) \\
\alpha_{6} & : & \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[p(q r)] \Rightarrow C[(p q) r]) \\
\alpha_{7} & : & \forall p^{\kappa}(C[p] \Rightarrow C[p 1]) \\
\alpha_{8} & : & \forall p^{\kappa}(C[p] \Rightarrow C[1 p])
\end{array}
$$

This set is not minimal. One can take $\alpha_{*}, \alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{5}, \alpha_{7}$ and define: $\alpha_{2}:=\alpha_{1} \circ \alpha_{3}, \quad \alpha_{6}:=\alpha_{3} \circ \alpha_{5} \circ \alpha_{3} \circ \alpha_{5} \circ \alpha_{3}, \quad \alpha_{8}:=\alpha_{3} \circ \alpha_{7}$

Derived combinators

- The combinators $\alpha_{1}, \ldots, \alpha_{8}$ can be composed:

$$
\text { Example: } \quad \alpha_{1} \circ \alpha_{6} \circ \alpha_{3}: \forall p^{\kappa} \forall q^{k} \forall r^{\kappa}(C[(p q) r] \Rightarrow C[r p])
$$

- We will also use the following derived combinators:

$$
\begin{array}{lll}
\alpha_{9} & :=\alpha_{3} \circ \alpha_{1} \circ \alpha_{6} \circ \alpha_{3} & : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[(p q) r] \Rightarrow C[p r]) \\
\alpha_{10} & :=\alpha_{2} \circ \alpha_{5} & : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[(p q) r] \Rightarrow C[q r]) \\
\alpha_{11} & :=\alpha_{9} \circ \alpha_{4} & : \forall p^{\kappa} \forall q^{\kappa}(C[p q] \Rightarrow C[p(p q)]) \\
\alpha_{12} & :=\alpha_{5} \circ \alpha_{3} & : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[p(q r)] \Rightarrow C[q(r p)]) \\
\alpha_{13} & :=\alpha_{3} \circ \alpha_{12} & : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[p(q r)] \Rightarrow C[(r p) q]) \\
\alpha_{14} & :=\alpha_{5} \circ \alpha_{3} \circ \alpha_{10} \circ \alpha_{4} \circ \alpha_{2} & : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa}(C[p(q r)] \Rightarrow C[q(r r)]) \\
\alpha_{15} & :=\alpha_{9} \circ \alpha_{3} & : \forall p^{\kappa} \forall q^{k} \forall r^{\kappa}(C[p(q r)] \Rightarrow C[q p])
\end{array}
$$

- Important remark:

- $C[p q] \Rightarrow C[p] \wedge C[q]$, but $C[p] \wedge C[q] \nRightarrow C[p q]$
(in general)
- Two conditions p and q are compatible when $C[p q]$

Ordering

- Let $p \leq q:=\forall r^{\kappa}(C[p r] \Rightarrow C[q r])$
- \leq is a preorder with greatest element 1 :

$$
\begin{array}{ll}
\lambda c \cdot c & : \\
\begin{array}{ll}
\lambda x y c \cdot y(x c) & : \\
\alpha_{8} \circ \alpha_{2} & : \\
: & \forall p^{\kappa}(p \leq p) \\
\left.\forall q^{\kappa} \leq 1\right)
\end{array}\left(p r^{\kappa}(p \leq q \Rightarrow q \leq r \Rightarrow p \leq r)\right.
\end{array}
$$

- Product $p q$ is the g.I.b. of p and q :

```
\alpha9
: }\forall\mp@subsup{p}{}{\kappa}\forall\mp@subsup{q}{}{\kappa}(pq\leqp
\alpha
: }\forall\mp@subsup{p}{}{\kappa}\forall\mp@subsup{q}{}{\kappa}(pq\leqq
\lambdaxy.\alpha}\mp@subsup{\alpha}{13}{}\circy\circ\mp@subsup{\alpha}{12}{}\circx\circ\mp@subsup{\alpha}{11}{}:|\mp@subsup{p}{}{\kappa}\forall\mp@subsup{q}{}{\kappa}\forall\mp@subsup{r}{}{\kappa}(r\leqp=>r\leqq=>r\leqpq
```

- C (set of 'good' conditions) is upwards closed:

$$
\lambda x c \cdot \alpha_{1}\left(x\left(\alpha_{7} c\right)\right) \quad: \quad \forall p^{\kappa} \forall q^{\kappa}(p \leq q \Rightarrow C[p] \Rightarrow C[q])
$$

- Bad conditions are smallest elements:

$$
\lambda x c \cdot x\left(\alpha_{1} c\right): \quad \forall p^{\kappa}\left(\neg C[p] \Rightarrow \forall q^{\kappa} p \leq q\right)
$$

The auxiliary translation (_)*

- Translating kinds: $\tau \mapsto \tau^{*}$

$$
\iota^{*} \equiv \iota \quad o^{*} \equiv \kappa \rightarrow 0 \quad(\tau \rightarrow \sigma)^{*} \equiv \tau^{*} \rightarrow \sigma^{*}
$$

Intuition: Propositions become sets of conditions

- Translating terms: $M \mapsto M^{*}$

$$
\begin{array}{rlrl}
\left(x^{\tau}\right)^{*} & \equiv x^{\tau^{*}} & 0^{*} & \equiv 0 \\
\left(\lambda x^{\tau} \cdot M\right)^{*} & \equiv \lambda x^{\tau^{*}} \cdot M^{*} & \mathrm{~s}^{*} & \equiv \mathrm{~s} \\
(M N)^{*} & \equiv M^{*} N^{*} & \operatorname{rec}_{\tau}^{*} & \equiv \operatorname{rec}_{\tau^{*}} \\
\left(\forall x^{\tau} A\right)^{*} & \equiv \lambda r^{\kappa} \cdot \forall x^{\tau^{*}} A^{*} r \\
\left(M_{1}=M_{2} \mapsto A\right)^{*} & \equiv \lambda r^{\kappa} \cdot M_{1}^{*}=M_{2}^{*} \mapsto A^{*} r \\
(A \Rightarrow B)^{*} & \equiv \lambda r^{\kappa} \cdot \forall q^{k} \forall r^{\prime \kappa}\left[r=q r^{\prime} \mapsto \forall s^{\kappa}\left(C[q s] \Rightarrow A^{*} s\right) \Rightarrow B^{*} r^{\prime}\right]
\end{array}
$$

Lemma

- $\left(M\left\{x^{\tau}:=N\right\}\right)^{*} \equiv M^{*}\left\{x^{\tau^{*}}:=N^{*}\right\}$
- If $M_{1} \cong_{\mathcal{E}} M_{2}$, then $M_{1}^{*} \cong_{\mathcal{E}^{*}} M_{2}^{*}$ (compatibility with conversion)

The forcing translation

- Given a proposition A and a condition p, let:

$$
p \mathbb{F} A:=\forall r^{\kappa}\left(C[p r] \Rightarrow A^{*} r\right)
$$

- The forcing translation is trivial on \forall and $=_{-} \mapsto_{-}$:

$$
\begin{array}{rll}
p \mathrm{IF} \forall x^{\tau} A & \cong_{\varnothing} & \forall x^{\tau^{*}}(p \operatorname{IF} A) \\
p \mathrm{IF} M_{1}=M_{2} \mapsto A & \cong_{\varnothing} & M_{1}^{*}=M_{2}^{*} \mapsto(p \mathrm{IF} A)
\end{array}
$$

- All the complexity lies in implication!

General properties

$$
\begin{aligned}
& \beta_{1}:=\lambda x y c \cdot y(x c) \quad: \quad \forall p^{\kappa} \forall q^{\kappa}(q \leq p \Rightarrow(p \mid F A) \Rightarrow(q \text { IF } A)) \\
& \beta_{2}:=\lambda x c \cdot x\left(\alpha_{1} c\right): \forall p^{\kappa}(\neg C[p] \Rightarrow p \text { IF } A) \\
& \beta_{3}:=\lambda x c \cdot x\left(\alpha_{9} c\right): \forall p^{\kappa} \forall q^{\kappa}((p \mathbb{F} A) \Rightarrow(p q \mathbb{I F} A)) \\
& \beta_{4}:=\lambda x c \cdot x\left(\alpha_{10} c\right): \quad \forall p^{\kappa} \forall q^{\kappa}((q \mathbb{F} A) \Rightarrow(p q \mathbb{F} A))
\end{aligned}
$$

Forcing an implication

- Definition of $p \mathbb{F} A \Rightarrow B$ looks strange:

$$
\begin{aligned}
p \text { IF } A \Rightarrow B & \equiv \forall r^{\kappa}\left(C[p r] \Rightarrow(A \Rightarrow B)^{*} r\right) \\
& \cong \not \varliminf_{\varnothing} \quad \forall r^{\kappa}\left(C[p r] \Rightarrow \forall q^{\kappa} \forall r^{\prime \kappa}\left(r=q r^{\prime} \mapsto(q \mathbb{F} A) \Rightarrow B^{*} r^{\prime}\right)\right)
\end{aligned}
$$

- But it is equivalent to

$$
\forall q((q \mathbb{F} A) \Rightarrow(p q \mathbb{F F} B)) \quad\left(\text { Hint: } \frac{p \mathbb{F} A \Rightarrow B \quad q \mathbb{F} A}{p q \mathbb{F F} B}\right)
$$

Coercions between $\quad p \mathbb{F} A \Rightarrow B$ and $\forall q((q \mathbb{F} A) \Rightarrow(p q \mathbb{F} B))$

$$
\begin{array}{ll}
\gamma_{1}:=\lambda x c y \cdot x y\left(\alpha_{6} c\right) & :(\forall q((q \mathbb{F} A) \Rightarrow(p q \mathbb{I F} B)) \Rightarrow p \mathbb{I F} A \Rightarrow B) \\
\gamma_{2}:=\lambda x y c \cdot x\left(\alpha_{5} c\right) y & :(p \mathbb{F} A \Rightarrow B) \Rightarrow \forall q((q \mathbb{F} A) \Rightarrow(p q \mathbb{F} B)) \\
\gamma_{3}:=\lambda x y c \cdot x\left(\alpha_{11} c\right) y & :(p \mathbb{F} A \Rightarrow B) \Rightarrow(p \mathbb{F} A) \Rightarrow(p \mathbb{F} B) \\
\gamma_{4}:=\lambda x c y \cdot x\left(y\left(\alpha_{15} c\right)\right) & : \quad \neg A^{*} p \Rightarrow p \mathbb{F} A \Rightarrow B
\end{array}
$$

Translating proof-terms

- Krivine's program transformation $t \mapsto t^{*}$:

$$
\begin{array}{rlrl}
x^{*} & \equiv x & \propto^{*} \equiv \lambda c x \cdot \propto\left(\lambda k \cdot x\left(\alpha_{14} c\right)\left(\gamma_{4} k\right)\right) & \\
(t u)^{*} & \equiv \gamma_{3} t^{*} u^{*} \equiv \lambda x c y \cdot x\left(y\left(\alpha_{15} c\right)\right) \\
(\lambda x \cdot t)^{*} & \equiv \gamma_{1}(\lambda x \cdot t^{*} \underbrace{\left\{x:=\beta_{4} x\right\}}_{\text {bounded var }} \underbrace{\left.\left\{x_{i}:=\beta_{3} x_{i}\right\}_{i=1}^{n}\right)}_{\text {other free vars of } t} & \begin{array}{l}
\gamma_{\mathbf{3}} \equiv \lambda x y c \cdot x\left(\alpha_{11} c\right) y \\
\gamma_{\mathbf{1}} \equiv \lambda x c y \cdot x y\left(\alpha_{6} c\right) \\
\beta_{\mathbf{3}} \equiv \lambda x c \cdot x\left(\alpha_{9} c\right) \\
\beta_{4} \equiv \lambda x c \cdot x\left(\alpha_{10} c\right)
\end{array}
\end{array}
$$

- The translation inserts: γ_{1} ("fold") in front of each λ γ_{3} ("apply") in front of each app.
- A bound occurrence of x in t is translated as $\beta_{3}^{n}\left(\beta_{4} x\right)$, where n is the de Bruijn index of this occurrence

Soundness (in PA ω^{+})

If $\quad \mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$
then
$\mathcal{E}^{*} ; x_{1}:\left(p \mathbb{F} A_{1}\right), \ldots, x_{n}:\left(p \mathbb{F} A_{n}\right) \vdash t^{*}:(p \mathbb{F} B)$

Translating proof-terms (optimized)

- The latter program transformation creates bureaucratic β-redexes due to the macros $\beta_{3}, \beta_{4}, \gamma_{3}, \gamma_{1}$ and γ_{4}
- If we reduce them, we get the following transformation:

$$
\begin{aligned}
x^{*} & \equiv x \quad \propto^{*} \equiv \lambda c x \cdot \propto\left(\lambda k \cdot x\left(\alpha_{14} c\right)\left(\lambda c x \cdot k\left(x\left(\alpha_{15} c\right)\right)\right)\right) \\
(t u)^{*} & \equiv \lambda c \cdot t^{*}\left(\alpha_{6} c\right) u^{*} \\
(\lambda x \cdot t)^{*} & \equiv \lambda c x \cdot t^{*} \underbrace{\left\{x:=\lambda c \cdot x\left(\alpha_{10} c\right)\right.}_{\text {bounded var }} \underbrace{\left\{x_{i}:=\lambda c \cdot x_{i}\left(\alpha_{9} c\right)\right\}_{i=1}^{n}}_{\text {other free vars of } t}\left(\alpha_{11} c\right)
\end{aligned}
$$

Soundness (in PA ω^{+})

If $\quad \mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$
then

$$
\mathcal{E}^{*} ; x_{1}:\left(p \mathbb{F} A_{1}\right), \ldots, x_{n}:\left(p \mathbb{F} A_{n}\right) \vdash t^{*}:(p \mathbb{F} B)
$$

Computational meaning of the transformation

- A proof of $p \mathrm{IF} A \equiv \forall r^{\kappa}\left(C[p r] \Rightarrow A^{*} r\right) \quad$ is a function waiting an argument $c: C[p r]$ (for some r) \rightsquigarrow computational condition

$$
\begin{array}{rllrll}
(\lambda x \cdot t)^{*} & \star c \cdot u \cdot \pi & \succ & t^{*}\left\{x:=\beta_{4} u\right\} & \star & \alpha_{6} c \cdot \pi \\
(t u)^{*} & \star c \cdot \pi & \succ & t^{*} & \star & \alpha_{11} c \cdot u^{*} \cdot \pi \\
\propto^{*} & \star c \cdot t \cdot \pi & \succ & & t & \star \\
\mathrm{k}_{\pi}^{*} & \star & \alpha_{14} c \cdot t \cdot \mathrm{k}_{\pi}^{*} \cdot \pi \\
& \succ & & t & \star & \alpha_{15} c \cdot \pi
\end{array}
$$

where:

$$
\mathbf{k}_{\pi}^{*} \equiv \gamma_{4} \mathbf{k}_{\pi} \quad\left(\approx \lambda c x \cdot \mathbf{k}_{\pi}\left(x\left(\alpha_{15} c\right)\right)\right)
$$

Evaluation combinators

$$
\begin{array}{rllll}
\alpha_{6} & : & C[p(q r)] & \Rightarrow & C[(p q) r] \\
\alpha_{11} & : & C[p r] & \Rightarrow & C[p(p r)] \\
\alpha_{14} & : & C[p(q r)] & \Rightarrow & C[q(r r)] \\
\alpha_{15} & : & C[p(q r)] & \Rightarrow & C[q p]
\end{array}
$$

Plan

(1) Cohen forcing
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation
(4) The forcing machine
(5) Realizability algebras
(6) Conclusion

Krivine Forcing Abstract Machine (KFAM)

Terms	t, u	$::=$	x	$\lambda x . t \mid$	$t u \mid \propto$	
Environments	e	$:=$	\emptyset	$e, x:=c$		
Closures	c	$::=$	$t[e]$	$\mid \quad \mathrm{k}_{\pi}$	\mid	$\underbrace{t[e]^{*}}_{\text {forcing closures }} \mid \quad \mathrm{k}_{\pi}^{*}$

- Evaluation rules: real mode

$$
\begin{array}{rllllll}
x[e, y:=c] & \star & \pi & \succ & x[e] & \star & \pi \\
x[e, x:=c] & \star & \pi & \succ & c & \star & \pi \\
(\lambda x \cdot t)[e] & \star & c \cdot \pi & \succ & t[e, x:=c] & \star & \pi \\
(t u)[e] & \star & \pi & \succ & t t[e] & \star & u[e] \cdot \pi \\
\propto[e] & \star & c \cdot \pi & \succ & c & \star & \mathrm{k}_{\pi} \cdot \pi \\
\mathrm{k}_{\pi} & \star & c \cdot \pi^{\prime} & \succ & c & \star & \\
& & &
\end{array}
$$

- Evaluation rules: forcing mode

$$
\begin{array}{rlllllll}
x[e, y:=c]^{*} & \star & c_{0} \cdot \pi & \succ & & x[e]^{*} & \star & \alpha_{9} c_{0} \cdot \pi \\
x[e, x:=c]^{*} & \star & c_{0} \cdot \pi & & \succ & & \star & \alpha_{10} c_{0} \cdot \pi
\end{array} \quad(y \not \equiv x)
$$

Adequacy in real and forcing modes

- New abstract machine means:
- New classical realizability model (based on the KFAM)
- New adequacy results

Adequacy (real mode)

If

- $\mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B \quad\left(\right.$ in $\left.\mathrm{PA} \omega^{+}\right)$
- $\rho \models \mathcal{E}, \quad c_{1} \Vdash A_{1}[\rho], \ldots, c_{n} \Vdash A_{n}[\rho]$
then: $t\left[x_{1}:=c_{1}, \ldots, x_{n}:=c_{n}\right] \Vdash B[\rho]$
- Assuming that $\alpha_{i} \Vdash$ type of $\alpha_{i} \quad($ for $i=6,9,10,11,14,15)$

Adequacy (forcing mode)

If

- $\mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B \quad\left(\right.$ in $\left.\mathrm{PA} \omega^{+}\right)$
- $\rho \models \mathcal{E}^{*}, \quad c_{1} \Vdash\left(p_{1} \mathbb{F} A_{1}[\rho]\right), \ldots, c_{n} \Vdash\left(p_{n} \mathbb{F} A_{n}[\rho]\right)$
then: $t\left[x_{1}:=c_{1} ; \ldots ; x_{n}:=c_{n}\right]^{*} \Vdash\left(\left(p_{0} p_{1}\right) \cdots p_{n} \mathbb{F} B[\rho]\right)$

Program extraction in presence of forcing

- Assume that:
(1) We got a proof of B under some axiom A

$$
x: A \vdash u: B
$$

(2) Axiom A is not provable, but it can be forced using a suitable set of forcing conditions (C, \leq) :

$$
\vdash s:(1 \mathrm{IF} A) \quad \text { (system program) }
$$

- Then:
(1) We have:

$$
u[x:=s[]]^{*} \Vdash(1 \text { IF } B)
$$

(2) If moreover B is an arithmetical formula

$$
\left(\xi_{B} z\right)\left[z:=u[x:=s[]]^{*}\right] \Vdash B
$$

using a suitable wrapper $\xi_{B} \Vdash(1 \mathrm{IF} B) \Rightarrow B$
(2) Higher-order arithmetic (tuned)
(3) The forcing transformation

44 The forcing machine
(5) Realizability algebras
(6) Conclusion

Realizability algebras

Definition

A realizability algebra \mathscr{A} is given by:

- 3 sets $\boldsymbol{\Lambda}(\mathscr{A}$-terms $), ~ \Pi(\mathscr{A}$-stacks $), \quad \Lambda \star \Pi$ (\mathscr{A}-processes)
- 3 functions $(\cdot): \boldsymbol{\Lambda} \times \boldsymbol{\Pi} \rightarrow \boldsymbol{\Pi},(\star): \boldsymbol{\Lambda} \times \boldsymbol{\Pi} \rightarrow \boldsymbol{\Lambda} \star \boldsymbol{\Pi}, \quad\left(k_{-}\right): \boldsymbol{\Pi} \rightarrow \boldsymbol{\Lambda}$
- A compilation function $(t, \sigma) \mapsto t[\sigma]$ that takes
- an open proof term t
- a $\boldsymbol{\Lambda}$-substitution σ closing t
and returns an \mathscr{A}-term $t[\sigma] \in \boldsymbol{\Lambda}$
- A set of \mathscr{A}-processes $\Perp \subseteq \Lambda \star \Pi$ such that:

$$
\begin{array}{ccccc}
\sigma(x) \star \pi & \in \Perp & \text { implies } & x[\sigma] \star \pi & \in \Perp \\
t[\sigma, x:=a] \star \pi & \in \Perp & \text { implies } & (\lambda x . t)[\sigma] \star a \cdot \pi & \in \Perp \\
t[\sigma] \star u[\sigma] \cdot \pi \in \Perp & \text { implies } & (t u)[\sigma] \star \pi & \in \Perp \\
a \star \mathrm{k}_{\pi} \cdot \pi & \in \Perp & \text { implies } & \propto[\sigma] \star a \cdot \pi \in \Perp \\
a \star \pi & \in \Perp & \text { implies } & \mathrm{k}_{\pi} \star a \cdot \pi^{\prime} \in \Perp
\end{array}
$$

Realizability model of PA ω^{+}(general case)

- Parameterized by a realizability algebra $\mathscr{A}=(\boldsymbol{\Lambda}, \boldsymbol{\Pi}, \boldsymbol{\Lambda} \star \boldsymbol{\Pi}, \cdots, \Perp)$
- Interpreting higher-order terms:
- Individuals interpreted as natural numbers

$$
\begin{array}{r}
\llbracket \iota \rrbracket=\mathbb{N} \\
\llbracket o \rrbracket=\mathfrak{P}(\mathbb{\Pi}) \\
\llbracket \tau \rightarrow \sigma \rrbracket=\llbracket \sigma \rrbracket \llbracket \rrbracket
\end{array}
$$

- Propositions interpreted as \mathscr{A}-falsity values
- Functions interpreted set-theoretically
- Interpreting logical constructions:

$$
\begin{aligned}
\llbracket \forall x^{\tau} A \rrbracket= & \llbracket A \Rightarrow B \rrbracket=\llbracket A \rrbracket \Perp \cdot \llbracket B \rrbracket \\
& \llbracket M\{x:=\dot{e}\} \rrbracket \square \tau \rrbracket \\
& \llbracket M=M^{\prime} \mapsto A \rrbracket= \begin{cases}\llbracket A \rrbracket & \text { if } \llbracket M \rrbracket=\llbracket M^{\prime} \rrbracket \\
\varnothing & \text { otherwise }\end{cases}
\end{aligned}
$$

Adequacy

If

- $\mathcal{E} ; x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B$
(in PA ω^{+})
- $\rho \models \mathcal{E}, \quad u_{1} \Vdash A_{1}[\rho], \ldots, u_{n} \Vdash A_{n}[\rho]$
then: $\quad t\left[x_{1}:=u_{1} ; \ldots ; x_{n}:=u_{n}\right] \Vdash B[\rho]$

Examples $\quad(1 / 2)$

- From an implementation of λ_{c} :

Standard realizability algebra

- $\boldsymbol{\Lambda}=\Lambda, \quad \Pi=\Pi, \quad \Lambda \star \Pi=\Lambda \star \Pi$
- $\mathrm{k}_{\pi}, \quad t \cdot \pi, \quad t \star \pi$ defined as themselves
- Compilation function $(t, \sigma) \mapsto t[\sigma]$ defined by substitution
- $\Perp=$ any saturated set of processes
- We can do the same for all classical λ-calculi:
- Parigot's $\lambda \mu$-calculus
- Curien-Herbelin's $\bar{\lambda} \mu$-calculus
(CBN or CBV)
- Barbanera-Berardi's symmetric λ-calculus

Examples $\quad(2 / 2)$

- From a forcing poset P defined as an upwards closed subset of a meet semi-lattice $\mathcal{L}: \quad P \subseteq \mathcal{L}, \quad P \uparrow$
- $\boldsymbol{\Lambda}=\boldsymbol{\Pi}=\boldsymbol{\Lambda} \star \boldsymbol{\Pi}=\mathcal{L}$
- $\mathrm{k}_{\pi}=\pi, \quad t \cdot \pi=t \star \pi=t \pi \quad$ (product in $\left.\mathcal{L}\right)$
- Compilation function $(t, \sigma) \mapsto t[\sigma]$:

$$
t[\sigma]=\prod_{x \in F V(t)} \sigma(x)
$$

- $\Perp=\mathcal{L} \backslash P$
- Corresponding realizability model isomorphic to the forcing model defined from the poset P

KFAM: The realizability algebra of real mode

- From a saturated set \Perp in the KFAM:

The realizability algebra $\mathscr{A}=(\Lambda, \Pi, \Lambda \star \Pi, \ldots, \Perp)$

- $\boldsymbol{\Lambda}, \boldsymbol{\Pi}, \boldsymbol{\Lambda} \star \boldsymbol{\Pi}=$ sets of closures, stacks, processes of the KFAM
- k_{π} (real mode), $t \cdot \pi, \quad t \star \pi$ defined as in the KFAM
- Compilation function $(t, \sigma) \mapsto t[\sigma]=$ closure formation (real mode)
- \Perp = itself
- Adequacy w.r.t. the algebra $\mathscr{A}=$

Adequacy in the KFAM in real mode (w.r.t. the pole \Perp)

KFAM: The realizability algebra of forcing mode

- Given $\mathscr{A}=(\boldsymbol{\Lambda}, \boldsymbol{\Pi}, \boldsymbol{\Lambda} \star \boldsymbol{\Pi}, \ldots, \Perp)$
(cf prev. slide) + a forcing structure $(\kappa, C, \cdot, 1)$

The realizability algebra $\mathscr{A}^{*}=\left(\boldsymbol{\Lambda}^{*}, \boldsymbol{\Pi}^{*}, \boldsymbol{\Lambda}^{*} \star \boldsymbol{\Pi}^{*}, \ldots, \Perp^{*}\right)$

$-\boldsymbol{\Lambda}^{*}=\boldsymbol{\Lambda} \times \llbracket \kappa \rrbracket, \quad \boldsymbol{\Pi}^{*}=\boldsymbol{\Pi} \times \llbracket \kappa \rrbracket, \quad \boldsymbol{\Lambda}^{*} \star \boldsymbol{\Pi}^{*}=(\boldsymbol{\Lambda} \star \boldsymbol{\Pi}) \times \llbracket \kappa \rrbracket$

- $\mathrm{k}_{(\pi, p)}=\left(\mathrm{k}_{\pi}^{*}, p\right)$
(forcing mode)
- $(t, p) \cdot(\pi, q)=(t \cdot \pi, p q)$
- $(t, p) \star(\pi, q)=(t \star \pi, p q)$
- Compilation function $(t, \sigma) \mapsto t[\sigma]$:

$$
\begin{aligned}
& t\left[x_{1}:=\left(c_{1}, p_{1}\right) ; \ldots ; x_{n}:=\left(c_{n}, p_{n}\right)\right]= \\
& \quad\left(t\left[x_{1}:=c_{1} ; \ldots ; x_{n}:=c_{n}\right]^{*},\left(\left(1 p_{1}\right) \cdots\right) p_{n}\right)
\end{aligned}
$$

(forcing mode)

- $\Perp^{*}=\left\{(t \star \pi, p): \forall c \in \Lambda\left(\left(c \Vdash_{\mathscr{A}} C[p]\right) \Rightarrow(t \star c \cdot \pi) \in \Perp\right)\right\}$

The connection lemma

- Write $\llbracket _\rrbracket\left(\right.$ resp. $\left.\llbracket _\rrbracket^{*}\right)$ the interpretation w.r.t. \mathscr{A} (resp. w.r.t. $\left.\mathscr{A}^{*}\right)$
- Notice that: $\llbracket o \rrbracket^{*}=\mathfrak{P}(\boldsymbol{\Pi} \times \llbracket \kappa \rrbracket) \simeq(\mathfrak{P}(\Pi))^{\llbracket \kappa \rrbracket}=\llbracket o^{*} \rrbracket$

Connection lemma

(1) There exists an iso:

$$
\begin{aligned}
\psi_{\tau}: \llbracket \tau^{*} \rrbracket & \widetilde{\rightarrow} \llbracket \rrbracket^{*} \\
& \llbracket M \rrbracket^{*}=\psi_{\tau}\left(\llbracket M^{*} \rrbracket\right)
\end{aligned}
$$

(2) For all closed M of kind τ :
(Given a closed formula A and a pair $(c, p) \in \boldsymbol{\Lambda}^{*}(=\boldsymbol{\Lambda} \times \llbracket \kappa \rrbracket)$:

$$
(c, p) \Vdash_{\mathscr{A}^{*}} A \quad \Leftrightarrow \quad c \Vdash_{\mathscr{A}}(p \mathbb{F} A)
$$

- Connection lemma + Adequacy w.r.t. the algebra $\mathscr{A}^{*}=$ Adequacy in the KFAM in forcing mode (w.r.t. the pole \Perp)

To sum up

- From syntax...
- The program transform $t \mapsto t^{*}$ underlying Cohen's forcing:

$$
\vdash t: A \quad \rightsquigarrow \quad \vdash t^{*}:(p \text { IF } A)
$$

- A new machine (KFAM) with two execution modes such that

$$
t[]^{*} \text { has the same behavior as } t^{*}[]
$$

- ... to semantics: iterated forcing
- Two realizability algebras \mathscr{A} and \mathscr{A}^{\prime} related by

$$
(c, p) \Vdash_{\mathscr{A}^{*}} A \Leftrightarrow c \Vdash_{\mathscr{A}}(p \mathbb{F} A)
$$

- Two adequacy lemmas (real/forcing) as instances of the general lemma of adequacy

Conclusion

Underlying methodology

| Translation of
 formulas \& proofs |
| :---: | | Program
 transform |
| :---: |
| Computation model
 (transform becomes identity) |

- This methodology applies to the forcing translation
- Computational meaning of the underlying program transformation
- A new abstract machine: the KFAM
- Reminiscent from well known tricks of computer architecture (protection rings, virtual memory, hardware tracing, ...)
- New insights in logic:
- Logical meaning of explicit environments
- Logical meaning of a particular side effect
- Backtrack defines the limit between the stack and the memory

Conclusion (2/2)

- Future work:
(1) How this computation model is used in practice?
- Hint: try simple axioms first!
(2) Extend extraction techniques to the forcing mode
(3) Use this methodology the other way around!
- Deduce new logical translations from computation models borrowed to computer architecture, operating systems, ...
- Several connections between forcing and side effects
- Forcing in classical realizability [Krivine'08, '09, '10]
- Realizability with states and dependent choice
[Miquel'09]
- Towards an integration of side effects into the Curry-Howard correspondence?

