Cohen forcing Higher-order arithmetic (tuned)

Forcing transformation

ion Forcing machine 0000

chine Realizability algebras

oras Conclusion

Computational interpretation of proofs: Classical realizability and forcing

Alexandre Miquel

Semantics of proofs and certified mathematics PhD school – April 11th, 2014 – CIRM – Luminy
 Cohen forcing
 Higher-order arithmetic (tuned)
 Forcing transformation
 Forcing machine
 Realizability algebras

 0000000000
 000000000
 000000000
 000000000
 000000000

Different notions of models

- Tarski models: $\llbracket A \rrbracket \in \{0; 1\}$
 - Interprets classical provability

(correctness/completeness)

• Intuitionistic realizability: $\llbracket A rbracket \in \mathfrak{P}(\Lambda)$

[Kleene 45]

Conclusion

- Interprets intuitionistic proofs
- Theoretical basis of intuitionistic program extraction
- Independence results, in intuitionistic theories
- Definitely incompatible with classical logic
- Cohen forcing: $\llbracket A \rrbracket \in \mathfrak{P}(C)$

[Cohen 63]

 Independence results, in classical theories (Negation of continuum hypothesis, Solovay's axiom, etc.)

• Classical realizability $\llbracket A \rrbracket \in \mathfrak{P}(\Lambda_c)$

[Krivine 94]

- Interprets classical proofs
- Generalizes Tarski models... and forcing!

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	000000	0000000000	0000	00000000	00	

Plan

- Cohen forcing
- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- 4 The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
000000000	0000000	0000000000	0000	00000000	00	
Plan						

Cohen forcing

- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- 4 The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
000000000	0000000	0000000000	0000	00000000	00
What is	s forcing?				

• A technique invented by Paul Cohen ('63) to prove the independence of the continuum hypothesis (CH) w.r.t. ZFC

The continuum hypothesis (CH), Hilbert's 1st problem

For every infinite subset $S \subseteq \mathbb{R}$:

- Either S is denumerable (i.e. in bijection with IN)
- Either S has the power of continuum (i.e. is in bijection with IR)

In symbols:

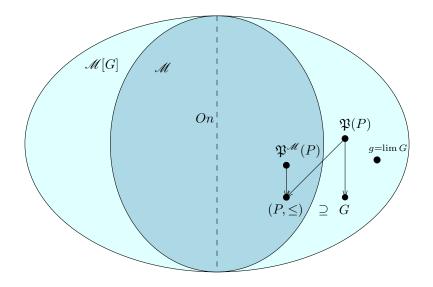
$$2^{\aleph_{\boldsymbol{0}}} = \aleph_1$$

- Gödel ('38) proved ZFC ⊣ ¬CH introducing constructible sets
- Cohen ('63) proved ZFC ⊣ CH introducing forcing
- Related to Boolean-valued models [Scott, Solovay, Vopěnka]
- Used to prove the consistency/independence of many axioms

[Solovay, Shelah, Woodin, etc.]

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
000000000	000000	0000000000	0000	00000000	00

How does forcing work?



Cohen forcing Higher-order arithmetic (tuned) Forcing transformation 00000000 0000000

Forcing machine

Realizability algebras

Conclusion

An analogy with algebra

ground model M Start from a

We want to add a new set approximated by the elements of a given

forcing poset $(P, <) \in \mathcal{M}$

This defines a fictitious generic filter $G \subseteq P$ (outside \mathcal{M})

> which generates around \mathcal{M} a generic extension $\mathcal{M}[G]$

Algebra

ground field F Start from a

We want to add a new point that should be a root of a given polynomial $P \in F[X]$

This defines a fictitious root α of P (outside F)

which generates around F a field extension $F[\alpha]$

Construction: $F[\alpha] := F[X]/PF[X]$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	000000	0000000000	0000	00000000	00
Examp	le: forcing ¬CH				

- Aim: Force the existence of an injection h: ℵ₂ → 𝔅(ω)
 We shall build it as a characteristic function g: ℵ₂ × ω → 2
- The ideal object g is approximated in the ground model \mathscr{M} by elements of $(P, \leq) = (Fin(\aleph_2 \times \omega, 2), \supseteq)$ (forcing poset)
- Forcing invocation: Let $\mathscr{M}[G]$ be the generic extension generated by an \mathscr{M} -generic filter $G \subseteq P$ (always exists!)
- In $\mathscr{M}[G]$, we let: $g = \lim G = \bigcup G$ (: $\aleph_2 \times \omega \rightarrow 2$) Using the \mathscr{M} -genericity of the filter $G \subseteq P$, we prove that:
 - Partial function $g: leph_2 imes \omega o 2$ is actually total
 - Corresponding function $h: leph_2 o \mathfrak{P}(\omega)$ is injective

Technicalities (countable chain condition) under the carpet

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation 000000000 0000000

Forcing machine

Realizability algebras

Compared properties of \mathcal{M} and $\mathcal{M}[G]$

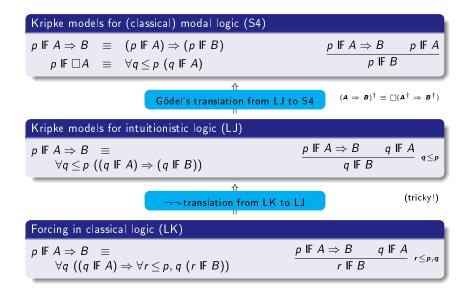
Forcing theorem: Given a model \mathcal{M} and a forcing poset $(P, \leq) \in \mathcal{M}$, the generic extension $\mathcal{M}[G]$ always exists

- *M* and *M*[*G*] have the very same ordinals
- If Axiom of Choice (AC) holds in \mathcal{M} , then it holds in $\mathcal{M}[G]$ too
- Finite cardinals and $\aleph_0 = \omega$ are the same in \mathcal{M} and $\mathcal{M}[G]$
- $\mathcal{M}[G]$ has in general fewer cardinals than \mathcal{M}
 - Intuition: new bijections may appear in $\mathcal{M}[G]$ between sets in \mathcal{M} , thus identifying their cardinals in $\mathcal{M}[G]$
 - Cardinals are preserved if P fulfils the countable chain condition (This was the case for P = Fin(E, 2) for forcing $\neg CH$)
 - But in some circumstances, one may use forcing to kill cardinals: Levy collapse, Solovay's axiom, etc.

Cohen forcingHigher-order arithmetic (tuned)000000000000000000	Forcing transformation	Forcing machine	Realizability algebras	Conclusion 00				
The proof-theoretic point of view								
 Construction of <i>M</i>[G] parameterized by a forcing poset (P, ≤), whose elements are called forcing conditions p ≤ q reads: 'p is stronger than q' Internally relies on a logical translation 								
A	$A \mapsto \rho \Vdash A \qquad (`p \text{ forces } A')$							
where p is a fresh varial		,		_				
 Complex definition b 	y induction on A,	using the poset	(P, \leq)					
Properties								
● $\vdash A$ entails $\vdash (\forall p \in P) (p \mid F A)$								
3 But $\vdash (\forall p \in P) (p \Vdash F)$	A) for more fo	rmulas A	(depending on	P)				
3 ⊢ ($\forall p \in P$) ($p \not\Vdash \bot$)			(consister	ncy)				

• Remark: Forcing commutes with \bot , \top , \land and \forall , but not with \Rightarrow , \neg , \lor , \exists

Kripke forcing versus Cohen forcing



Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine 000000000 0000000

Realizability algebras

Conclusion

Cohen forcing versus classical realizability

Cohen forcing	Classical realizability
$\llbracket A \rrbracket \in \mathfrak{P}(\mathcal{C})$	$ A \in\mathfrak{P}(\Lambda_c)$
p IF A	$t \Vdash A$
$\frac{p \Vdash A \Rightarrow B}{\underbrace{pq}_{g.l.b.} \Vdash B} q \Vdash A$	$\frac{t \Vdash A \Rightarrow B}{\underbrace{tu}_{\text{application}} \Vdash B} u \Vdash A$
$\frac{p \Vdash A \qquad q \Vdash B}{pq \Vdash A \land B}$	$\frac{t \Vdash A u \Vdash B}{\langle t; u \rangle \Vdash A \land B}$
$A \wedge B = A \cap B$	$A \wedge B \neq A \cap B$

Classical realizability = Non commutative forcing Slogan:

Higher-order arithmetic (tuned) Forcing transformation

Cohen forcing

000000000

Forcing machine

Realizability algebras Conclusion

Combining Cohen forcing with classical realizability

Forcing in classical realizability [Krivine 09]

- Introduce realizability algebras, generalizing the λ_c -calculus
- Discover the program transformation underlying forcing
- Extend iterated forcing to classical realizability
- Show how to force the existence of a well-ordering over IR (while keeping evaluation deterministic)

Computational analysis of forcing

[Mique| 11]

- Focus on the underlying program transformation (no generic filter)
- Hard-wire the program transformation into the abstract machine

Underlying methodology Translation of Classical program New abstract machine \rightarrow \rightarrow formulas & proofs transformation (no transformation)

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	●000000	0000000000	0000	00000000	00
Plan					

1 Cohen forcing

- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- 4 The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	000000	0000000000	0000	00000000	00	
Higher-order arithmetic (PA ω^+)						

- A multi-sorted language that allows to express
 - Individuals (+
 - Propositions
 - Functions over individuals
 - Predicates over individuals
 - Predicates over predicates...

 $(\text{kind } \iota)$ (kind o) $(\iota \rightarrow \iota, \quad \iota \rightarrow \iota \rightarrow \iota, \quad ...)$ $(\iota \rightarrow o, \quad \iota \rightarrow \iota \rightarrow o, \quad ...)$ $((\iota \rightarrow o) \rightarrow o, \quad ...)$

Syntax of kinds and higher-order terms

Kinds	$ au, \sigma$::=	$\iota \mid o \mid \tau \rightarrow \sigma$
Terms	<i>M</i> , <i>N</i> , <i>A</i> , <i>B</i>		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

• Equational implication: $M = M' \mapsto A$

• Means: A if M = M'op otherwise

• Provably equivalent to: $M =_{\tau} M' \Rightarrow A$

(equality of denotations) (\top = type of all proofs) (Leibniz equality)

Cohen forcing Higher	• • •	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
Conversion	(1/2)				

- Conversion $M \cong_{\mathcal{E}} M'$ parameterized by a (finite) set of equations $\mathcal{E} \equiv M_1 = M'_1, \dots, M_k = M'_k$ (non oriented, well 'kinded')
- Reflexivity, symmetry, transitivity + base case:

$$\overline{M \cong_{\mathcal{E}} M'} \stackrel{(M=M')\in\mathcal{E}}{\longrightarrow}$$

• β -conversion, recursion:

$$\begin{array}{rcl} (\lambda x^{\tau} \cdot M)N & \cong_{\mathcal{E}} & M\{x := N\} \\ \operatorname{rec}_{\tau} M M' 0 & \cong_{\mathcal{E}} & M \\ \operatorname{rec}_{\tau} M M' (s N) & \cong_{\mathcal{E}} & M' N \left(\operatorname{rec}_{\tau} M M' N\right) \end{array}$$

• Usual context rules + extended rule for $M = M' \mapsto A$:

$$\frac{A \cong_{\mathcal{E}, M=M'} A'}{M = M' \mapsto A \cong_{\mathcal{E}} M = M' \mapsto A'}$$

Cohen forcing	Higher-order arithmetic (tuned) ○○○●○○○	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
Convers	ion $(2/2)$				

• Rules for identifying computationally equivalent propositions:

$$\begin{array}{rcl} \forall x^{\tau} \forall y^{\sigma} A &\cong_{\mathcal{E}} & \forall y^{\sigma} \forall x^{\tau} A \\ & \forall x^{\tau} A &\cong_{\mathcal{E}} & A & & x^{\tau} \notin FV(A) \end{array}$$

$$A \Rightarrow \forall x^{\tau} B &\cong_{\mathcal{E}} & \forall x^{\tau} (A \Rightarrow B) & x^{\tau} \notin FV(A) \end{array}$$

$$M = M' \mapsto N = N' \mapsto A &\cong_{\mathcal{E}} & N = N' \mapsto M = M' \mapsto A \\ M = M \mapsto A &\cong_{\mathcal{E}} & A \end{array}$$

$$A \Rightarrow (M = M' \mapsto B) \cong_{\mathcal{E}} & M = M' \mapsto (A \Rightarrow B)$$

$$\forall x^{\tau} (M = M' \mapsto A) \cong_{\mathcal{E}} & M = M' \mapsto \forall x^{\tau} A & x^{\tau} \notin FV(M,M') \end{array}$$

• Example: \top := $tt = ff \mapsto \bot$ (type of all proof-terms) where $tt \equiv \lambda x^{\circ} y^{\circ} \cdot x$, $ff \equiv \lambda x^{\circ} y^{\circ} \cdot y$ and $\bot \equiv \forall z^{\circ} z$ Cohen forcing Higher-order arithmetic (tuned) Forcing transformation 000000000 0000000

Forcing machine Realizability algebras Conclusion

Deduction system (typing)

- Proof terms: $t, u ::= x \mid \lambda x \cdot t \mid tu \mid cc$ (Curry-style)
- Contexts: $\Gamma ::= \mathbf{x}_1 : A_1, \dots, \mathbf{x}_n : A_n$ $(A_i \text{ of sort } o)$

Deduction/typing rules

$\overline{\mathcal{E}; \Gamma \vdash \mathbf{x} : A} (\mathbf{x}:A) \in \Gamma$	
$\frac{\mathcal{E}; \Gamma, x : A \vdash t : B}{\mathcal{E}; \Gamma \vdash \lambda x \cdot t : A \Rightarrow B}$	<u></u> <i>Е</i> ;Г

 $\mathcal{E}, M = M'; \Gamma \vdash t : A$ $\overline{\mathcal{E}: \Gamma \vdash t} : M = M' \mapsto A$

 $\frac{\mathcal{E}; \Gamma \vdash t : A}{\mathcal{E}: \Gamma \vdash t : \forall x^{\tau} A} \times^{\tau} \notin FV(\mathcal{E}; \Gamma)$

$$\frac{\mathcal{E}; \Gamma \vdash t : A}{\mathcal{E}; \Gamma \vdash t : A'} \mathrel{A \cong_{\mathcal{E}} A'}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : M = M \mapsto A}{\mathcal{E}; \Gamma \vdash t : A}$$

$$\frac{\mathcal{E}; \Gamma \vdash t : \forall x^{\tau} A}{\mathcal{E}; \Gamma \vdash t : A\{x := N^{\tau}\}}$$

$$\mathcal{E}; \Gamma \vdash \mathbf{c} : ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$$

All proof-terms have type $\top \equiv tt = ff \mapsto \bot$ (normalization fails) Remark:

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	0000000000	0000	00000000	00

From operational semantics...

- Krivine's λ_c -calculus
 - λ -calculus with call/cc and continuation constants:

 $t, u ::= x \mid \lambda x \cdot t \mid t u \mid \alpha \mid k_{\pi}$

- An abstract machine with explicit stacks:
 - Stack = list of closed terms (notation: π , π')
 - Process = closed term \star stack

Evaluation rules

(weak head normalization, call by name)

(Grab)	λx . t	*	$u\cdot\pi$	\succ	$t\{x := u\}$	*	π
(Push)	tu	*	π	\succ	t	*	$u \cdot \pi$
(Save)	c	*	$t\cdot\pi$	\succ	t	*	$k_{\pi} \cdot \pi$
(Restore)	k_{π}	*	$t\cdot\pi'$	\succ	t	*	π

Higher-order arithmetic (tuned) Cohen forcing 000000

Forcing transformation

Forcing machine

Realizability algebras Conclusion

- to classical realizability semantics
 - Interpreting higher-order terms:
 - Individuals interpreted as natural numbers
 - Propositions interpreted as falsity values
 - Functions interpreted set-theoretically
 - Parameterized by a pole $\bot \subseteq \Lambda_c \star \Pi$
 - Interpreting logical constructions:

$$\begin{split} \llbracket \iota \rrbracket &= \mathsf{IN} \\ \llbracket \sigma \rrbracket &= \mathfrak{P}(\mathsf{\Pi}) \\ \llbracket \tau \to \sigma \rrbracket &= \llbracket \sigma \rrbracket^{\llbracket \tau \rrbracket} \end{split}$$

(closed under anti-evaluation)

$$\begin{bmatrix} \forall x^{\tau} A \end{bmatrix} = \bigcup_{e \in \llbracket \tau \rrbracket} \llbracket A \{ x := e \} \rrbracket \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket A \rrbracket^{\perp} \cdot \llbracket B \rrbracket$$
$$\llbracket M = M' \mapsto A \rrbracket = \begin{cases} \llbracket A \rrbracket & \text{if } \llbracket M \rrbracket = \llbracket M' \rrbracket$$
$$\varnothing & \text{otherwise} \end{cases}$$

Adequacy

If
•
$$\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$$
 (in $\mathsf{PA}\omega^+$)
• $\rho \models \mathcal{E}, \quad u_1 \Vdash A_1[\rho], \dots, u_n \Vdash A_n[\rho]$
then:
 $t\{x_1 := u_1; \dots; x_n := u_n\} \Vdash B[\rho]$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	000000	●000000000	0000	00000000	00	
Ы						

Plan

1 Cohen forcing

- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- 4 The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	0000000000	0000	00000000	00
Represe	enting conditions	5			

- Intuition: Represent the set of conditions as an upwards closed subset of a meet-semilattice
- Take:
 - A kind κ of conditions, equipped with
 - A binary product $(p,q) \mapsto pq$ (of kind $\kappa \to \kappa \to \kappa$)
 - A unit 1 (of kind κ)
 - A predicate $p \mapsto C[p]$ of well-formedness (of kind $\kappa \to o$)
- Typical example: finite functions from τ to σ are modelled by
 - $\kappa \equiv \tau \rightarrow \sigma \rightarrow o$ (binary relations $\subseteq \tau \times \sigma$)
 - $pq \equiv \lambda x^{\tau} y^{\sigma} . p x y \lor q x y$
 - 1 $\equiv \lambda x^{\tau} y^{\sigma} . \bot$

- (union of relations *p* and *q*) (empty relation)
- $C[p] \equiv$ "p is a finite function from au to σ "

Cohen forcing	Higher-order arithmetic (tuned) 0000000	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
Combin	ators					
•	The forcing translation • The kind κ + close	•	d by	(logical lev	vel)	

• 9 closed proof terms $\alpha_*, \alpha_1, \ldots, \alpha_8$

(logical level) (computational level)

 $\begin{array}{rcl} \alpha_{*} & : & C[1] \\ \alpha_{1} & : & \forall p^{\kappa} \; \forall q^{\kappa} \; (C[pq] \Rightarrow C[p]) \\ \alpha_{2} & : & \forall p^{\kappa} \; \forall q^{\kappa} \; (C[pq] \Rightarrow C[q]) \\ \alpha_{3} & : & \forall p^{\kappa} \; \forall q^{\kappa} \; (C[pq] \Rightarrow C[qp]) \\ \alpha_{4} & : & \forall p^{\kappa} \; (C[p] \Rightarrow C[pp]) \\ \alpha_{5} & : & \forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[(pq)r] \Rightarrow C[p(qr)]) \\ \alpha_{6} & : & \forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[p(qr)] \Rightarrow C[(pq)r]) \\ \alpha_{7} & : & \forall p^{\kappa} \; (C[p] \Rightarrow C[p1]) \\ \alpha_{8} & : & \forall p^{\kappa} \; (C[p] \Rightarrow C[1p]) \end{array}$

This set is not minimal. One can take $\alpha_*, \alpha_1, \alpha_3, \alpha_4, \alpha_5, \alpha_7$ and define: $\alpha_2 := \alpha_1 \circ \alpha_3, \quad \alpha_6 := \alpha_3 \circ \alpha_5 \circ \alpha_3 \circ \alpha_5 \circ \alpha_3, \quad \alpha_8 := \alpha_3 \circ \alpha_7$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	0000000000	0000	00000000	00
Derived	combinators				

- The combinators $\alpha_1, \ldots, \alpha_8$ can be composed: Example: $\alpha_1 \circ \alpha_6 \circ \alpha_3 : \forall p^{\kappa} \forall q^{\kappa} \forall r^{\kappa} (C[(pq)r] \Rightarrow C[rp])$
- We will also use the following derived combinators:

lpha9	:=	$\alpha_3 \circ \alpha_1 \circ \alpha_6 \circ \alpha_3$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[(pq)r] \Rightarrow C[pr])$
α_{10}	:=	$\alpha_2 \circ \alpha_5$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[(pq)r] \Rightarrow C[qr])$
α_{11}	:=	$\alpha_9 \circ \alpha_4$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; (C[pq] \Rightarrow C[p(pq)])$
α_{12}	:=	$\alpha_5 \circ \alpha_3$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[p(qr)] \Rightarrow C[q(rp)])$
$lpha_{13}$:=	$\alpha_3 \circ \alpha_{12}$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[p(qr)] \Rightarrow C[(rp)q])$
α_{14}	:=	$\alpha_5 \circ \alpha_3 \circ \alpha_{10} \circ \alpha_4 \circ \alpha_2$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[p(qr)] \Rightarrow C[q(rr)])$
$lpha_{15}$:=	$\alpha_9 \circ \alpha_3$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (C[p(qr)] \Rightarrow C[qp])$

Important remark:

- $C[pq] \Rightarrow C[p] \land C[q]$, but $C[p] \land C[q] \not\Rightarrow C[pq]$
- Two conditions *p* and *q* are compatible when *C*[*pq*]

(in general)

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	0000000000	0000	00000000	00
<u> </u>					

Ordering

• Let $p \leq q := \forall r^{\kappa}(C[pr] \Rightarrow C[qr])$

ullet \leq is a preorder with greatest element 1:

λc.c		$orall m{ ho}^\kappa \ (m{ ho} \leq m{ ho})$
$\lambda xyc . y(xc)$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (p \leq q \Rightarrow q \leq r \Rightarrow p \leq r)$
$\alpha_8 \circ \alpha_2$:	$orall p^\kappa \; ({m ho} \leq 1)$

• Product pq is the g.l.b. of p and q:

lpha9	:	$orall p^\kappa \; orall q^\kappa \; (pq \leq p)$
α_{10}	:	$orall p^\kappa \; orall q^\kappa \; (pq \leq q)$
$\lambda xy . \alpha_{13} \circ y \circ \alpha_{12} \circ x \circ \alpha_{11}$:	$\forall p^{\kappa} \; \forall q^{\kappa} \; \forall r^{\kappa} \; (r \leq p \Rightarrow r \leq q \Rightarrow r \leq pq)$

• C (set of 'good' conditions) is upwards closed:

 $\lambda xc . \alpha_1 (x (\alpha_7 c)) : \forall p^{\kappa} \forall q^{\kappa} (p \leq q \Rightarrow C[p] \Rightarrow C[q])$

• Bad conditions are smallest elements:

 $\lambda x c . x (\alpha_1 c) \quad : \quad \forall p^{\kappa} (\neg C[p] \Rightarrow \forall q^{\kappa} p \leq q)$

Cohen forcing Higher-order arithmetic (tuned) 0000000000 0000000	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
The auxiliary translatio	n (_)*			

• Translating kinds:
$$\tau \mapsto \tau^*$$

 $\iota^* \equiv \iota$ $o^* \equiv \kappa \to o$ $(\tau \to \sigma)^* \equiv \tau^* \to \sigma^*$

Intuition: Propositions become sets of conditions

• Translating terms: $M \mapsto M^*$

$$\begin{array}{rcl} (x^{\tau})^{*} & \equiv & x^{\tau^{*}} & 0^{*} & \equiv & 0 \\ (\lambda x^{\tau} \cdot M)^{*} & \equiv & \lambda x^{\tau^{*}} \cdot M^{*} & s^{*} & \equiv & s \\ (MN)^{*} & \equiv & M^{*}N^{*} & \operatorname{rec}_{\tau}^{*} & \equiv & \operatorname{rec}_{\tau^{*}} \end{array} \\ (\forall x^{\tau}A)^{*} & \equiv & \lambda r^{\kappa} \cdot \forall x^{\tau^{*}}A^{*}r \\ (M_{1} = M_{2} \mapsto A)^{*} & \equiv & \lambda r^{\kappa} \cdot M_{1}^{*} = M_{2}^{*} \mapsto A^{*}r \\ (A \Rightarrow B)^{*} & \equiv & \lambda r^{\kappa} \cdot \forall q^{\kappa} \forall r'^{\kappa} [r = qr' \mapsto \forall s^{\kappa} (C[qs] \Rightarrow A^{*}s) \Rightarrow B^{*}r'] \end{array}$$

Lemma

- $(M\{x^{\tau} := N\})^* \equiv M^*\{x^{\tau^*} := N^*\}$ (substitutivity)
- If $M_1\cong_{\mathcal{E}} M_2$, then $M_1^*\cong_{\mathcal{E}^*} M_2^*$ (compatibility with conversion)

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	000000	0000000000	0000	00000000	00
The for	cing translation				

• Given a proposition A and a condition p, let:

$$p \Vdash A := \forall r^{\kappa}(C[pr] \Rightarrow A^*r)$$

• The forcing translation is trivial on \forall and $_=_\mapsto_:$

$$p \text{ IF } \forall x^{\tau}A \cong_{\varnothing} \forall x^{\tau^{*}}(p \text{ IF } A)$$
$$p \text{ IF } M_{1} = M_{2} \mapsto A \cong_{\varnothing} M_{1}^{*} = M_{2}^{*} \mapsto (p \text{ IF } A)$$

• All the complexity lies in implication!

(cf next slide)

General properties

$$\begin{split} \beta_{1} &:= \lambda xyc . y(xc) &: \forall p^{\kappa} \forall q^{\kappa} (q \leq p \Rightarrow (p \mid \mathsf{F} A) \Rightarrow (q \mid \mathsf{F} A)) \\ \beta_{2} &:= \lambda xc . x(\alpha_{1} c) &: \forall p^{\kappa} (\neg C[p] \Rightarrow p \mid \mathsf{F} A) \\ \beta_{3} &:= \lambda xc . x(\alpha_{9} c) &: \forall p^{\kappa} \forall q^{\kappa} ((p \mid \mathsf{F} A) \Rightarrow (pq \mid \mathsf{F} A)) \\ \beta_{4} &:= \lambda xc . x(\alpha_{10} c) &: \forall p^{\kappa} \forall q^{\kappa} ((q \mid \mathsf{F} A) \Rightarrow (pq \mid \mathsf{F} A)) \end{split}$$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	00000000000	0000	00000000	00
Forcing	an implication				

• Definition of $p \Vdash A \Rightarrow B$ looks strange:

$$p \Vdash A \Rightarrow B \equiv \forall r^{\kappa}(C[pr] \Rightarrow (A \Rightarrow B)^{*}r)$$

$$\cong_{\varnothing} \forall r^{\kappa}(C[pr] \Rightarrow \forall q^{\kappa} \forall r'^{\kappa}(r = qr' \mapsto (q \Vdash A) \Rightarrow B^{*}r'))$$

• But it is equivalent to

$$\forall q ((q \Vdash A) \Rightarrow (pq \Vdash B)) \qquad \left(\mathsf{Hint:} \quad \frac{p \Vdash A \Rightarrow B \qquad q \Vdash A}{pq \Vdash B} \right)$$

Coercions between <i>p</i> IF A	$h \Rightarrow B$ and $orall q\left((q \Vdash A) \Rightarrow (pq \Vdash B) ight)$	
$\gamma_1 := \lambda x c y . x y (\alpha_6 c)$: $(\forall q ((q \Vdash A) \Rightarrow (pq \Vdash B)) \Rightarrow p \Vdash A \Rightarrow B)$	
$\gamma_2 := \lambda xyc . x(\alpha_5 c) y$: $(p \Vdash A \Rightarrow B) \Rightarrow \forall q ((q \Vdash A) \Rightarrow (pq \Vdash B))$	
$\gamma_3 := \lambda xyc . x(\alpha_{11} c) y$	$: (p \Vdash A \Rightarrow B) \Rightarrow (p \Vdash A) \Rightarrow (p \Vdash B)$	
$\gamma_4 := \lambda x c y . x (y (\alpha_{15} c))$	$: \neg A^* p \Rightarrow p \Vdash A \Rightarrow B$	

Cohen forcing	Higher-order arith	nmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000		00000000000	0000	00000000	00
		C				

Translating proof-terms

• Krivine's program transformation $t \mapsto t^*$:

$$\begin{array}{rcl} x^* &\equiv x & \alpha^* &\equiv \lambda cx . \alpha \left(\lambda k . x \left(\alpha_{14} c\right) \left(\gamma_4 k\right)\right) & \gamma_4 \equiv \lambda x cy . x \left(y \left(\alpha_{15} c\right)\right) \\ (t \ u)^* &\equiv \gamma_3 \ t^* \ u^* & \gamma_3 \equiv \lambda x c . x \left(\alpha_{11} c\right) y \\ (\lambda x . t)^* &\equiv \gamma_1 \left(\lambda x . t^* \underbrace{\{x := \beta_4 x\}}_{\text{bounded var other free vars of } t} \underbrace{\{x_i := \beta_3 x_i\}_{i=1}^n}_{\text{other free vars of } t} & \gamma_1 \equiv \lambda x cy . x \left(\alpha_6 c\right) \\ \beta_3 \equiv \lambda x c . x \left(\alpha_9 c\right) \\ \beta_4 \equiv \lambda x c . x \left(\alpha_{10} c\right) \end{array}$$

- The translation inserts: γ_1 ("fold") in front of each λ γ_3 ("apply") in front of each app.
- A bound occurrence of x in t is translated as $\beta_3^n(\beta_4 x)$, where n is the de Bruijn index of this occurrence

Soundness (in $PA\omega^+$)

If
$$\mathcal{E}$$
; $x_1 : A_1, \ldots, x_n : A_n \vdash t : B$
then \mathcal{E}^* ; $x_1 : (p \Vdash A_1), \ldots, x_n : (p \Vdash A_n) \vdash t^* : (p \Vdash B)$

- The latter program transformation creates bureaucratic β -redexes due to the macros β_3 , β_4 , γ_3 , γ_1 and γ_4
- If we reduce them, we get the following transformation:

$$x^* \equiv x \qquad \alpha^* \equiv \lambda cx \cdot \alpha (\lambda k \cdot x (\alpha_{14} c) (\lambda cx \cdot k (x (\alpha_{15} c))))$$
$$(t u)^* \equiv \lambda c \cdot t^* (\alpha_6 c) u^*$$
$$(\lambda x \cdot t)^* \equiv \lambda cx \cdot t^* \underbrace{\{x := \lambda c \cdot x (\alpha_{10} c)\}}_{\text{bounded var}} \underbrace{\{x_i := \lambda c \cdot x_i (\alpha_9 c)\}_{i=1}^n}_{\text{other free vars of } t} (\alpha_{11} c)$$

Soundness (in $PA\omega^+$)

$$\begin{array}{ll} \mathsf{lf} & \mathcal{E}; \ x_1 : A_1, \ \ldots, \ x_n : A_n \ \vdash \ t \ : \ B \\ \mathsf{then} & \mathcal{E}^*; \ x_1 : (p \Vdash A_1), \ \ldots, \ x_n : (p \Vdash A_n) \ \vdash \ t^* \ : \ (p \Vdash B) \end{array}$$

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras 0000000000

Conclusion

Computational meaning of the transformation

• A proof of $p \Vdash A \equiv \forall r^{\kappa}(C[pr] \Rightarrow A^*r)$ is a function waiting an argument c: C[pr] (for some $r) \leftrightarrow$ computational condition

$(\lambda x . t)^*$	*	$\mathbf{c} \cdot \mathbf{u} \cdot \pi$	\succ	$t^*\{x:=\beta_4u\}$	*	$\alpha_6 \ c \cdot \pi$
(<i>tu</i>)*	*	$c \cdot \pi$	\succ	t*	*	$\alpha_{11} \operatorname{c} \cdot u^* \cdot \pi$
œ*	*	$c \cdot t \cdot \pi$	\succ	t	*	$lpha_{14} \operatorname{c} \cdot k_{\pi}^* \cdot \pi$
k_π^*	*	$\mathbf{c} \cdot \mathbf{t} \cdot \pi'$	\succ	t	*	$\alpha_{15} \mathbf{c} \cdot \pi$
	_				_	

 $k_{\pi}^* \equiv \gamma_4 k_{\pi} \quad (\approx \lambda cx \cdot k_{\pi} (x (\alpha_{15} c)))$ where:

Evaluation combinators

$$\begin{array}{rcl} \alpha_{6} & : & C[p(qr)] & \Rightarrow & C[(pq)r] \\ \alpha_{11} & : & C[pr] & \Rightarrow & C[p(pr)] \\ \alpha_{14} & : & C[p(qr)] & \Rightarrow & C[q(rr)] \\ \alpha_{15} & : & C[p(qr)] & \Rightarrow & C[qp] \end{array}$$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	0000000	0000000000	0000	00000000	00	
Plan						

-

- ① Cohen forcing
- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned) 0000000	Forcing transformation	Forcing machine ○●○○	Realizability algebras	Conclusion
Krivine	Forcing Abstrac	ct Machine ((KFAM)		[M.'11]

Terms	t, u	::=	$x \mid \lambda x \cdot t \mid$	tu cc
Environments	е	::=	$\emptyset \mid e, x := c$	
Closures	с	::=	t[e] k _π	$t[e]^* k_{\pi}^*$
Stacks	π	::=	$\diamond \mid \mathbf{c} \cdot \pi$	forcing closures

• Evaluation rules: real mode

x[e, y := c]	*	π	\succ	x[e]	*	π	$(y \not\equiv x)$
x[e,x:=c]	*	π	\succ	С	\star	π	
$(\lambda x . t)[e]$	*	$c \cdot \pi$	\succ	t[e, x := c]	*	π	
(tu)[e]	*	π	\succ	tt[e]	*	$u[e] \cdot \pi$	
œ[e]	*	$c\cdot\pi$	\succ	с	*	$k_\pi\cdot\pi$	
k_{π}	*	$c \cdot \pi'$	\succ	С	*	π	

• Evaluation rules: forcing mode

$$\begin{aligned} x[e, y := c]^* &\star c_0 \cdot \pi &\succ x[e]^* &\star \alpha_9 c_0 \cdot \pi & (y \neq x) \\ x[e, x := c]^* &\star c_0 \cdot \pi &\succ c &\star \alpha_{10} c_0 \cdot \pi \\ &(\lambda x. t)[e]^* &\star c_0 \cdot c \cdot \pi &\succ t[e, x := c]^* &\star \alpha_6 c_0 \cdot \pi \\ &(tu)[e]^* &\star c_0 \cdot \pi &\succ t[e]^* &\star \alpha_{11} c_0 \cdot u[e]^* \cdot \pi \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

 Cohen forcing
 Higher-order arithmetic (tuned)
 Forcing transformation
 Forcing machine
 Realiz

 0000000000
 000000000
 00000
 0000
 00000

Realizability algebras Conclusion

Adequacy in real and forcing modes

- New abstract machine means:
 - New classical realizability model (based on the KFAM)
 - New adequacy results

Adequacy (real mode)

lf

lf

•
$$\mathcal{E}$$
; $x_1 : A_1, \ldots, x_n : A_n \vdash t : B$ (in $\mathsf{PA}\omega^+$)

•
$$\rho \models \mathcal{E}, \quad c_1 \Vdash A_1[\rho], \ldots, c_n \Vdash A_n[\rho]$$

then: $t[x_1 := c_1, ..., x_n := c_n] \Vdash B[\rho]$

• Assuming that $\alpha_i \Vdash$ type of α_i (for i = 6, 9, 10, 11, 14, 15)

Adequacy (forcing mode)

•
$$\mathcal{E}$$
; x_1 : A_1 , ..., x_n : $A_n \vdash t$: B (in $\mathsf{PA}\omega^+$)

•
$$\rho \models \mathcal{E}^*$$
, $c_1 \Vdash (p_1 \Vdash A_1[\rho]), \ldots, c_n \Vdash (p_n \Vdash A_n[\rho])$

then: $t[x_1 := c_1; ...; x_n := c_n]^* \Vdash ((p_0 p_1) \cdots p_n \Vdash B[\rho])$

Program extraction in presence of forcing

Assume that:

 We got a proof of B under some axiom A x : A ⊢ u : B (user program)
 Axiom A is not provable, but it can be forced using a suitable set of forcing conditions (C, ≤): ⊢ s : (1 IF A) (system program)

• Then:

• We have: $u[x := s[]]^* \Vdash (1 \Vdash B)$

2 If moreover B is an arithmetical formula

 $(\xi_B \ z)[z := u[x := s[]]^*] \ \Vdash \ B$ using a suitable wrapper $\xi_B \ \Vdash \ (1 \ {\rm IF} \ B) \Rightarrow B$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	0000000	0000000000	0000	•0000000	00	
Plan						

- 1 Cohen forcing
- 2 Higher-order arithmetic (tuned)
- The forcing transformation
- 4 The forcing machine
- 6 Realizability algebras

6 Conclusion

Cohen forcing	Higher-order arithmetic (tuned) 0000000	Forcing transformation	Forcing machine	Realizability algebras ○●○○○○○○○	Conclusion
Realiza	bility algebras			[K	rivine'10]

Definition

A realizability algebra \mathscr{A} is given by:

- 3 sets Λ (\mathscr{A} -terms), Π (\mathscr{A} -stacks), $\Lambda \star \Pi$ (\mathscr{A} -processes)
- 3 functions $(\cdot): \mathbf{\Lambda} \times \mathbf{\Pi} \to \mathbf{\Pi}, (\star): \mathbf{\Lambda} \times \mathbf{\Pi} \to \mathbf{\Lambda} \star \mathbf{\Pi}, (\mathbf{k}_{-}): \mathbf{\Pi} \to \mathbf{\Lambda}$
- A compilation function $(t, \sigma) \mapsto t[\sigma]$ that takes
 - an open proof term t
 - a Λ -substitution σ closing t

and returns an \mathscr{A} -term $t[\sigma] \in \mathbf{\Lambda}$

• A set of \mathscr{A} -processes $\bot\!\!\!\!\bot \subseteq \Lambda \star \Pi$ such that:

Forcing machine

Realizability algebrasConclusion00●00000000

 $\llbracket o \rrbracket = \mathfrak{P}(\mathbf{\Pi})$ $\llbracket \tau \to \sigma \rrbracket = \llbracket \sigma \rrbracket^{\llbracket \tau \rrbracket}$

 $\llbracket \iota \rrbracket = \mathsf{IN}$

Realizability model of $PA\omega^+$ (general case)

- Parameterized by a realizability algebra $\mathscr{A} = (\Lambda, \Pi, \Lambda \star \Pi, \cdots, \mathbb{L})$
- Interpreting higher-order terms:
 - Individuals interpreted as natural numbers
 - Propositions interpreted as \mathscr{A} -falsity values
 - Functions interpreted set-theoretically
- Interpreting logical constructions:

$$\begin{bmatrix} \forall x^{\tau} A \end{bmatrix} = \bigcup_{e \in \llbracket \tau \rrbracket} \llbracket A \{ x := e \} \rrbracket \qquad \llbracket A \Rightarrow B \rrbracket = \llbracket A \rrbracket^{\perp} \cdot \llbracket B \rrbracket$$
$$\llbracket M = M' \mapsto A \rrbracket = \begin{cases} \llbracket A \rrbracket & \text{if } \llbracket M \rrbracket = \llbracket M' \rrbracket$$
$$\varnothing & \text{ot herwise} \end{cases}$$

Adequacy

If
•
$$\mathcal{E}; x_1 : A_1, \dots, x_n : A_n \vdash t : B$$
 (in $\mathsf{PA}\omega^+$)
• $\rho \models \mathcal{E}, \quad u_1 \Vdash A_1[\rho], \dots, u_n \Vdash A_n[\rho]$
then:
 $t[x_1 := u_1; \dots; x_n := u_n] \Vdash B[\rho]$

Cohen forcing Higher-ord	· · · ·	Forcing transformation	Forcing machine	Realizability algebras 000●00000	Conclusion
Examples	(1/2)				

• From an implementation of λ_c :

Standard realizability algebra

- $\Lambda = \Lambda$, $\Pi = \Pi$, $\Lambda \star \Pi = \Lambda \star \Pi$
- k_{π} , $t \cdot \pi$, $t \star \pi$ defined as themselves
- Compilation function $(t,\sigma)\mapsto t[\sigma]$ defined by substitution
- $\bot\!\!\!\bot$ = any saturated set of processes
- We can do the same for all classical λ -calculi:
 - Parigot's $\lambda\mu$ -calculus
 - Curien-Herbelin's $ar{\lambda}\mu$ -calculus
 - Barbanera-Berardi's symmetric λ -calculus

(CBN or CBV) (h comes for free)

Cohen forcing Higher-or	· · · ·	Forcing transformation	Forcing machine	Realizability algebras 0000€0000	Conclusion
Examples	(2/2)				

- From a forcing poset P defined as an upwards closed subset of a meet semi-lattice L: P ⊆ L, P↑
- $\Lambda = \Pi = \Lambda \star \Pi = \mathcal{L}$
- $k_{\pi} = \pi$, $t \cdot \pi = t \star \pi = t\pi$ (product in \mathcal{L})
- Compilation function $(t, \sigma) \mapsto t[\sigma]$:

$$t[\sigma] = \prod_{x \in FV(t)} \sigma(x)$$

• $\bot\!\!\!\bot = \mathcal{L} \setminus P$

• Corresponding realizability model isomorphic to the forcing model defined from the poset *P*

Conclusion

KFAM: The realizability algebra of real mode

• From a saturated set \perp in the KFAM:

The realizability algebra $\mathscr{A} = (\Lambda, \Pi, \Lambda \star \Pi, \dots, \bot)$

- $\Lambda,\ \Pi,\ \Lambda\star\Pi\ =\$ sets of closures, stacks, processes of the KFAM
- k_{π} (real mode), $t \cdot \pi$, $t \star \pi$ defined as in the KFAM
- Compilation function $(t,\sigma)\mapsto t[\sigma]$ = closure formation (real mode)
- $\bot\!\!\!\bot$ = itself
- Adequacy w.r.t. the algebra \mathscr{A} =

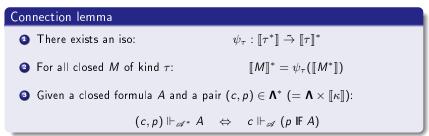
Adequacy in the KFAM in real mode (w.r.t. the pole \bot)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion 0000000000 KFAM: The realizability algebra of forcing mode • Given $\mathscr{A} = (\Lambda, \Pi, \Lambda \star \Pi, \ldots, \mathbb{L})$ (cf prev. slide) + a forcing structure $(\kappa, C, \cdot, 1)$ The realizability algebra $\mathscr{A}^* = (\mathbf{\Lambda}^*, \mathbf{\Pi}^*, \mathbf{\Lambda}^* \star \mathbf{\Pi}^*, \dots, \mathbb{L}^*)$ • $\Lambda^* = \Lambda \times \llbracket \kappa \rrbracket$, $\Pi^* = \Pi \times \llbracket \kappa \rrbracket$, $\Lambda^* \star \Pi^* = (\Lambda \star \Pi) \times \llbracket \kappa \rrbracket$ (forcing mode) • $k_{(\pi,p)} = (k_{\pi}^*, p)$ • $(t, p) \cdot (\pi, q) = (t \cdot \pi, pq)$ • $(t, p) \star (\pi, q) = (t \star \pi, pq)$ • Compilation function $(t, \sigma) \mapsto t[\sigma]$: $t[x_1 := (c_1, p_1): \ldots : x_n := (c_n, p_n)] =$ $(t[x_1 := c_1; \ldots; x_n := c_n]^*, ((1p_1) \cdots)p_n)$ (forcing mode)

• $\mathbb{L}^* = \{(t \star \pi, p) : \forall c \in \Lambda ((c \Vdash_{\mathscr{A}} C[p]) \Rightarrow (t \star c \cdot \pi) \in \mathbb{L})\}$

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion
0000000000	0000000	0000000000	0000	000000000	00
The co	nnection lemma				

- Write $[\![_]\!]$ (resp. $[\![_]\!]^*$) the interpretation w.r.t. \mathscr{A} (resp. w.r.t. \mathscr{A}^*)
- Notice that: $\llbracket o \rrbracket^* = \mathfrak{P}(\Pi \times \llbracket \kappa \rrbracket) \simeq (\mathfrak{P}(\Pi))^{\llbracket \kappa \rrbracket} = \llbracket o^* \rrbracket$



• Connection lemma + Adequacy w.r.t. the algebra $\mathscr{A}^* =$ Adequacy in the KFAM in forcing mode (w.r.t. the pole \mathbb{L})

Cohen forcing	Higher-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
0000000000	0000000	0000000000	0000	00000000	00	
To sum	up					

From syntax...

• The program transform $t\mapsto t^*$ underlying Cohen's forcing:

$$\vdash t : A \quad \rightsquigarrow \quad \vdash t^* : (p \Vdash A)$$

• A new machine (KFAM) with two execution modes such that

 $t[]^*$ has the same behavior as $t^*[]$

• ... to semantics: iterated forcing

 $\bullet\,$ Two realizability algebras $\mathscr A$ and $\mathscr A'$ related by

$$(c,p) \Vdash_{\mathscr{A}^*} A \quad \Leftrightarrow \quad c \Vdash_{\mathscr{A}} (p \Vdash A)$$

• Two adequacy lemmas (real/forcing) as instances of the general lemma of adequacy

Cohen forcing High	er-order arithmetic (tuned)	Forcing transformation	Forcing machine	Realizability algebras	Conclusion	
000000000 000	0000	0000000000	0000	00000000	•0	
Conclusio	n (1/2)					

- This methodology applies to the forcing translation
 - Computational meaning of the underlying program transformation
 - A new abstract machine: the KFAM
 - Reminiscent from well known tricks of computer architecture (protection rings, virtual memory, hardware tracing, ...)
- New insights in logic:
 - Logical meaning of explicit environments
 - Logical meaning of a particular side effect
 - Backtrack defines the limit between the stack and the memory

Cohen forcing		· · · · · ·	Forcing transformation	Forcing machine	Realizability algebras	Conclusion ○●
Conclus	sion	(2/2)				

- Future work:
 - I How this computation model is used in practice?
 - Hint: try simple axioms first!
 - 2 Extend extraction techniques to the forcing mode
 - Ose this methodology the other way around!
 - Deduce new logical translations from computation models borrowed to computer architecture, operating systems,
- Several connections between forcing and side effects
 - Forcing in classical realizability [Krivine'08, '09, '10]
 - Realizability with states and dependent choice [Miquel'09]
- Towards an integration of side effects into the Curry-Howard correspondence?