Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000000000 00

Computational interpretation of proofs:
Classical realizability and forcing

Alexandre Miquel

y
>
A
=
=
=
=
=

i &A <
UNIVERSIDAD INGENIERIA R

DE LA REPUBLICA
URUGUAY

Semantics of proofs and certified mathematics
PhD school — April 11th, 2014 — CIRM - Luminy

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000000000 [e]e)

Different notions of models

Tarski models: [A] € {0;1}

o Interprets classical provability (correctness/completeness)

Intuitionistic realizability: [A] € P(A) [Kleene 45]
o Interprets intuitionistic proofs
o Theoretical basis of intuitionistic program extraction
o Independence results, in intuitionistic theories
o Definitely incompatible with classical logic

o Cohen forcing: [A] € B(C) [Cohen 63]

o Independence results, in classical theories
(Negation of continuum hypothesis, Solovay’s axiom, etc.)

Classical realizability [A] € B(A;) [Krivine 94]
o Interprets classical proofs
o Generalizes Tarski models... and forcing!

Plan

© Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

© The forcing machine

© Realizability algebras

© Conclusion

© Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

@ The forcing machine

© Realizability algebras

@ Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0@00000000 0000000 00000000000 0000 000000000 [e]e)

What is forcing?

@ A technique invented by Paul Cohen ('63) to prove the independence
of the continuum hypothesis (CH) w.r.t. ZFC

The continuum hypothesis (CH), Hilbert's 1st problem

For every infinite subset S C IR:

o Either S is denumerable (i.e. in bijection with IN)
o Either S has the power of continuum (i.e. is in bijection with R)

In symbols: 2N — 1

Godel ('38) proved ZFCl/ —~CH introducing constructible sets
Cohen ('63) proved ZFC I/ CH introducing forcing

Related to Boolean-valued models [Scott, Solovay, Vop&nka]

Used to prove the consistency/independence of many axioms
[Solovay, Shelah, Woodin, etc.]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation
00000000000

0008000000 0000000

An analogy with algebra

Set theory
Start from a ground model .#Z

We want to add a new set approximated
by the elements of a given

forcing poset (P,<) € .4

This defines a fictitious
generic filter G C P (outside .%)

which generates around .# a
generic extension .Z[G]

Construction:

MG = M)~y

Forcing machine Realizability algebras Conclusion
0000 000000000 [e]e)

Algebra
Start from a ground field F
We want to add a new point
that should be a root of a given

polynomial P € F[X]

This defines a fictitious
root o of P (outside F)

which generates around F a
field extension F[a]

Construction:

Fla] = F[X]/PF[X]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000@00000 0000000 00000000000 0000 000000000 [e]e)

Example: forcing —=CH

e Aim: Force the existence of an injection h: Ny — PB(w)

We shall build it as a characteristic function g: Ny X w — 2

@ The ideal object g is approximated in the ground model .# by
elements of (P,<) = (Fin(Ry x w,2), D) (forcing poset)

e Forcing invocation: Let .#[G] be the generic extension generated
by an .# -generic filter G C P (always exists!)

o In Z[G],welet: g=ImG=UG (:Noxw—2)
Using the . -genericity of the filter G C P, we prove that:

o Partial function g : N x w — 2 s actually total

o Corresponding function h: N — P(w) is injective

Technicalities (countable chain condition) under the carpet

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000080000 0000000 00000000000 0000 000000000 [e]e)

Compared properties of .Z and .Z[G]|

Forcing theorem: Given a model .# and a forcing poset (P, <) € .#,
the generic extension .#[G] always exists

o ./ and .#[G] have the very same ordinals

@ If Axiom of Choice (AC) holds in ., then it holds in .#Z[G] too
e Finite cardinals and Xg = w are the same in .# and .Z[G]

o /[G] has in general fewer cardinals than .#Z

o Intuition: new bijections may appear in .Z[G] between sets in .,
thus identifying their cardinals in .Z[G]

o Cardinals are preserved if P fulfils the countable chain condition
(This was the case for P = Fin(E,2) for forcing —=CH)

o But in some circumstances, one may use forcing to kill cardinals:
Levy collapse, Solovay's axiom, etc.

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000008000 0000000 00000000000 0000 000000000 [e]e)

The proof-theoretic point of view

o Construction of .Z[G] parameterized by a forcing poset (P, <),
whose elements are called forcing conditions

o p< g reads: 'pis stronger than ¢’

o Internally relies on a logical translation

A — plFA (‘p forces A)J

where p is a fresh variable (representing a condition)

o Complex definition by induction on A, using the poset (P, <)

Properties
Q@ FA entails F(YpeP)(plFA)
@ But F (VpeP)(pIFA) for more formulas A (depending on P)
QF(peP)(plFl) (consistency)

@ Remark: Forcing commutes with L, T, A and V, but not with =, =, Vv, 3

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000800 0000000 00000000000 0000 000000000 [e]e)

Kripke forcing versus Cohen forcing

Kripke models for (classical) modal logic (S4)

plFA=B = (pIFA)= (pIFB) plFA=B pIFA
pIFOA Vg<p (qIF A) pIFB

Kripke models for intuitionistic logic (LJ)
plFA=B = plFA=B qglFA

Vg<p ((q IF A) = (q IF B)) qIFB

Forcing in classical logic (LK)

pFA=B = pFA=B qFA

r<p,q

Vq ((q IFA) = Vr<p,q (rIFB)) rlF B

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
00000000000

0000000080 0000000

0000 000000000

Cohen forcing versus classical realizability

Cohen forcing

Classical realizability

[A] € B(C) Al € B(Ac)
plFA ti-FA
plFA=B qlF A tFA=B ul-A
pq FB tu IFB
~— ——

g.l.b. application
pFA_qlFB tEA ul-B

pqglF ANB (t;u) FAAB
AANB = ANnB AANB # ANB

o Slogan: Classical realizability

= Non commutative forcing

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
000000000® 0000000 00000000000 0000 000000000 [e]e)

Combining Cohen forcing with classical realizability

e Forcing in classical realizability [Krivine 09]

o Introduce realizability algebras, generalizing the A\c-calculus
o Discover the program transformation underlying forcing
o Extend iterated forcing to classical realizability

o Show how to force the existence of a well-ordering over R
(while keeping evaluation deterministic)

o Computational analysis of forcing [Miquel 11]

e Focus on the underlying program transformation (no generic filter)

o Hard-wire the program transformation into the abstract machine

Underlying methodology

Translation of Classical program New abstract machine
formulas & proofs transformation (no transformation)

@ Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

@ The forcing machine

© Realizability algebras

@ Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 Oe00000 00000000000 0000 000000000 [e]e)

Higher-order arithmetic (PAw™)

@ A multi-sorted language that allows to express

e Individuals (kind ¢)
e Propositions (kind o)
e Functions over individuals (b=, t=1—=0,)
o Predicates over individuals (t—=0, t—>1—o0,)
o Predicates over predicates... ((t = 0) = o,)

Syntax of kinds and higher-order terms

Kinds o = (| o | T—=o0o

Terms M,N,A,B == x" | Xx".M | MN | 0 | s | rec,
| A=B | YA | M=M — A

o Equational implication: M=M= A
o Means: A if M=M (equality of denotations)
T otherwise (T = type of all proofs)

o Provably equivalent to: M =, M' = A (Leibniz equality)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0O0e0000 00000000000 0000 000000000 [e]e)

Conversion (1/2)

o Conversion M =g M’ parameterized by a (finite) set of equations
E = My =M,.... M= M,/((non oriented, well ‘kinded’)
o Reflexivity, symmetry, transitivity + base case:

M g MM |

@ (-conversion, recursion:

(AT .MN = M{x:= N}
recc MM'0 =2 M
recc MM’ (sN) = M’ N(rec: MM’ N)

@ Usual context rules + extended rule for M = M’ — A:
A ey A

M=M A =2 M=M= A

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0008000 00000000000 0000 000000000 [e]e)

Conversion (2/2)

@ Rules for identifying computationally equivalent propositions:

VxTVy? A = Vy7Vx™ A
VxTA = A xT ¢FV(A)

A=Vx"B 2= Vx" (A= B) xT ¢FV/(A)

M=M —N=N —A 2 N=N—>M=M—A
M=M—A = A

A=>(M=M —B) =2 M=M (A= B)
XM =M= A) =2 M=M —Vx"A xT ¢FV(M,M’)

e Example: T = tt=ff— L (type of all proof-terms)
where tt = Ax°y°.x, ff=Ax°y°.y and L =Vz°z

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000e00 00000000000 0000 000000000 [e]e)

Deduction system (typing)

@ Proof terms: tbu = x | M.t | tu]| « (Curry-style)
@ Contexts: M = xg A, x 0 Ay (A; of sort 0)
Deduction/typing rules
ETFx:A e ETFt: A °
ElNx:AFt: B ETHt:A=B ETFHu:A
ETHM.t: A= B ETFtu: B
EM=MTHt:A ETHt:M=M— A
ETHFt:M=M — A ETEHt A
ETHt: A ETEt:VXTA
T TEFV(ED)
ETHLE:VX"A ETEt:A{x:=N"}
ETFa: ((A=B)=A)=A

Remark: All proof-terms have type T =tt =ff — L (normalization fails)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

0000000000 0000080 00000000000 0000 000000000 (e]e]

From operational semantics...

@ Krivine's \.-calculus

o M-calculus with call/cc and continuation constants:
tbu = x | M.t | tu | @ | ke

e An abstract machine with explicit stacks:

o Stack = list of closed terms (notation: m, 7')
o Process = closed term x stack
@ Evaluation rules (weak head normalization, call by name)
(Grab) Ax.t % u-m - t{x:=u} x =
(Push) tu x - t x u-w
(Save) c *x t-7 - t x kp-mw
(Restore) ke * t-n - t * 7

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 000000e 00000000000 0000 000000000 [e]e)

... to classical realizability semantics

@ Interpreting higher-order terms:

o Individuals interpreted as natural numbers []=IN
o Propositions interpreted as falsity values [e] =B(M)
o Functions interpreted set-theoretically [r = o] = [o])
@ Parameterized by a pole AL C AT (closed under anti-evaluation)

@ Interpreting logical constructions:

x"Al = | [Alx = &) [A=B] = [A*[B]
ec(7]
Mo say — (1AL 1M =[]
(%] otherwise

Adequacy

If 0 & x:A,....x,: A, Ft:B (in PAw™)
e pEE, wlFAp]. ..., unlE Aslp]
then: t{xy :==uy1;...;x, ;== u,} |- B[p]

@ Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

@ The forcing machine

© Realizability algebras

@ Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000000000 (e]e]

Representing conditions

o Intuition: Represent the set of conditions as an upwards closed
subset of a meet-semilattice

o Take:
o A kind k of conditions, equipped with
e A binary product (p, q) — pg (of kind kK = Kk — K)
o Aunitl (of kind k)
o A predicate p — C|p] of well-formedness (of kind x — 0)

o Typical example: finite functions from 7 to o are modelled by

e K =T—>0—0 (binary relations C 7 X o)
e pg = MXy%.pxyVvVagxy (union of relations p and q)
el = Mx"y%. 1L (empty relation)

o C[p] = “pis a finite function from 7 to "

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00@00000000 0000 000000000 (e]e]

Combinators

@ The forcing translation is parameterized by

o The kind k + closed terms -, 1, C (logical level)
e 9 closed proof terms a, a1,...,as (computational level)
ax = C[1]

a1 Vp® Vq® (Clpg] = Clp])

a2 Vp" Vq® (Clpq] = Clq])

oz Vp" Vq® (Clpa] = Clap])

as = Vp® (Clp] = Clpp])

as : Vp" Vq® Vr" (C[(pq)r] = Clp(qr)])
as = Vp" ¥q" vrt (Clp(gr)] = Cl(pq)r])
oz Vp" (Clp] = Clp1])

as : Vp" (Cl[p] = C[1p])

This set is not minimal. One can take a., a1, a3, ag, as, a7 and define:
Qp = 1 O3, Qg = (13 0 Qp O30 Qs O3, Qg:.:= Q30 Q7

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00080000000 0000 000000000 (e]e]

Derived combinators

@ The combinators «;,...,ag can be composed:
Example: agoagoas : Vp® Vq® Vr® (Cl(pqg)r] = Clrp])

o We will also use the following derived combinators:

Q9 = 030Q10Q6003 o Vp© Vq" Vr® (Cl(pg)r] = Clpr])
Q10 = 0oas . Vp" Vq" Vr* (C[(pq)r] = Clar])
Qi = agou 1 Vp" Vq" (Clpq] = Clp(pq)])

Q2 = asoas : Vp" Vq" vr® (Clp(ar)] = Cla(rp)])
o3 = azoou : Vp" Vq" vr* (Clp(qr)] = Cl(rp)q])
Qs = asoazoarpoasoaz : Vp®Vg® Vr® (Clp(qr)] = Clg(rr)])
s = agoas : Vp" Vq" vr* (Clp(qr)] = Clap])

o Important remark:

o Clpg] = Clp] A Clq], but C[p] A Clq] # Clpq] (in general)
e Two conditions p and g are compatible when C[pq]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 0000@000000 0000 000000000 (e]e]

Ordering

o Let p<gq = VYr(Clpr] = Clgr])

o < is a preorder with greatest element 1:

Ac.c : Vp® (p<p)
Axyc.y(xc) : VprVqEVrt (p<q=q<r=p<r)
g o ap o Vpr (p<1)

@ Product pq is the g.l.b. of p and ¢:

ag : Vp® Va® (pq < p)
aio © VptVg" (pg < q)
Axy.ai3oyoaipoxoaqr : VpEVgEVre (r<p=r<gq=r<pq)

o C (set of ‘good’ conditions) is upwards closed:

Axc.oq (x(azc)) : Vp" Vaq© (p < q= C[p] = Clq]) J

@ Bad conditions are smallest elements:

Axc.x(cac) : Vp® (=Clp] = Vq" p <q) J

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000800000 0000 000000000 (e]e]

The auxiliary translation (_)*

o Translating kinds: 7 +— 7*

*

= o"=Kk—o0 (r—=o)' =7" =0

Intuition: Propositions become sets of conditions

o Translating terms: M — M*

*

x") = x7 0" =
AT M) = M7 .M* st =
(MN)* = M*N* rec; =
(VXTA)* = ArfluxT Atr
(My = My — A)* = Ar".M; = M — A'r
(A= B) =

recC =

A Ng™Vr' " [r = qr’ — Vs®(C[gs] = A*s) = B*r']

o (M{x™ :=N})* = M*{x™ = N*}
o If My ¢ My, then M. M;

(substitutivity)

(compatibility with conversion)

v

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

0000000000 0000000 000000@0000 0000 000000000

The forcing translation

@ Given a proposition A and a condition p, let:

plIFA = Vr®(Clpr] = A'r)

(e]e]

o The forcing translation is trivial on Vand = +—

pIFVX"A =, Vx7 (pIF A)
pIFM =M~ A =5 Mi=Mw(plFA)

o All the complexity lies in implication! (cf next slide)

General properties

Br = Mxyc.y(xc) : Vp"Vqg"(g<p=(pIFA)=(qIFA))
B2 = Mxc.x(aic) : Vp® (=Clp] = pIFA)
Bz = Mxc.x(asc) : Vp"Vg" ((pIFA)= (pqglFA))

Ba = Mxc.x(awc) : Vp© Vg™ ((qIFA)= (pgFA))

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000008000 0000 000000000 (e]e]

Forcing an implication

@ Definition of p IF A= B looks strange:

pFA=B Vr®(Clpr] = (A= B)r)

oz Vr*(Clpr] = Vq"Vr'"(r = qr' — (q IF A) = B*r’))

[l

@ But it is equivalent to

Vq((q IF A) = (pq IF B))

_ pFA=B qFA
Hint: quFB

Coercions between plIF A= B and VYq((qIF A) = (pqF B))

Y1 = Mxcy.xy (asc) : (Vg((gIFA)=(pgIFB)) = pIFA=B)
Y2 = Mxyc.x(asc)y : (pIFA=B) = VYq ((q IF A) = (pq IF B))
v3 = Axyc.x (a1 c)y . (pIFA=B) = (plFA) = (pIFB)

Ya =)\xcy,x(y(alsc)) : —A* p = plFA:>B

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation
0000000000 0000000 00000000800

Translating proof-terms

Forcing machine Realizability algebras Conclusion
0000 000000000 [e]e)

@ Krivine's program transformation t +— t*:

* *

x* = x = Aex.@(Ak.x(caac)(1ak)) vas=axey.x(v(a1s <)
(tu)* v3 t* u*
(M. t)* = y1 (Ax.t" {x:= Bax} {xi :== Baxi}i=1)

bounded var other free vars of t = (eg)

Y3=Axye . x (a1 €)y

Y1=Axcy .xy (ag <)

Ba=Xxc.x(ayg €)

o The translation inserts: 1 (“fold”) in front of each A
~v3 (“apply”) in front of each app.

o A bound occurrence of x in t is translated as 33 (8ax),
where n is the de Bruijn index of this occurrence

Soundness (in PAw™)

If E x1: A1, ..., xy: A, Bt B
then &% xx:(pIFAL), ..., xn:(pIFA,) F t* : (pFB)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000080 0000 000000000 (e]e]

Translating proof-terms (optimized)

@ The latter program transformation creates bureaucratic 3-redexes
due to the macros Sz, 54, ¥3, 71 and 4

o If we reduce them, we get the following transformation:

* X c* = Aex.@(Mk.x (a1 ¢) (Aex . k (x (ais ©))))

X
Il

—
~
<

~

*
I

= Ac.t" (asc)u”

(Ax.t)" = dex.t" {x = Ac.x (a0)} {xi := Ac.x; (o c)}i=1 (11 €)

bounded var other free vars of t

Soundness (in PAw™)

If E x1: A1, ..., xy A Bt B
then &% x1:(pFA1), ..., xn:(pIFA,) F t* : (pFB)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 0000000000e 0000 000000000 (e]e]

Computational meaning of the transformation

e Aproofof pIFA = Vr%(Clpr] = A*r) is a function waiting
an argument c : Clpr] (for some r) ~» computational condition

(M.t)" x c-u-mw - t"{x:=fau} * wec-m
(tw)* * c-m - t* * ouc-utem
c *x c-t-w - t x auc-ki-mw
ki % c-t-n - t x oisC-T
where: ki = qaks (= Aex.kr(x(a1sc¢)))

as : Clp(qr)] = C[(pg)r]
onr : Clpr] = Clp(pr)]
ara = Clp(gr)] = Clq(rr)]
s Clp(gr)] = Clap]

@ Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

© The forcing machine

© Realizability algebras

@ Conclusion

Cohen forcing

Higher-order arithmetic (tuned)

Forcing transformation Forcing machine Realizability algebras Conclusion

0000000000 0000000 00000000000 [e] Iele) 000000000 (e]e]
Krivine Forcing Abstract Machine (KFAM) [M.11]
Terms t,u = x | M.t | tw | «
Environments e = 0 | ex:=c
Closures c u= tle] | kx | tle]" | ki
Stacks ™ = 9 | c-m forcing closures
@ Evaluation rules: real mode
x[e,y:=¢c] * w - xle] » = (y #x)
xle,x:=¢c] * w - c x
(Ax.t)e] * c-m > tleyxi=c] x 7w
(tu)[e] » = - ttle] x ule] - =w
«le] ¢ > c * kp-m
kr * c-m > c x T
@ Evaluation rules: forcing mode
x[e,y :=c]* x o7 - x[e]* * agco-m (y £ x)
x[e,x:=¢c]* x co-m - C *x a1pCo T
(Ax.t)[e]* * co-c-m = tle,x:=c]* x asco-T
(tu)[e]* co-7 - tle]* * ai1co-ule]* -
«le]* x co-c-m > ¢ * awaco-ki-m
kf x co-c-n’ = C *x ai5Co-T

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion

0000000000 0000000 00000000000 ooeo 000000000 (e]e]

Adequacy in real and forcing modes

@ New abstract machine means:

o New classical realizability model (based on the KFAM)
o New adequacy results

Adequacy (real mode)

If @ E:x1:A1,...,xn: An k- t: B (in PAwT)

@ pEE& alkAilpl ..., calk Anfp]
then: t[x1 :=c1,...,xn := ca] Ik B[p]

@ Assuming that «; IF type of o; (for i =6,9,10,11,14,15)

Adequacy (forcing mode)

If @ Ex1:A1,...,xn:An - t: B (in PAw™)

@ pE=E&*, alk(p1FAip]), ..., calF (pn IF Anlp])
then: t[x1:=c1;...;xn 1= ca]" IF ((Pop1) - - pn IF Blp])

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 oooe 000000000 [e]e)

Program extraction in presence of forcing

@ Assume that:

© We got a proof of B under some axiom A
x:AkF u:B (user program)

© Axiom A is not provable, but it can be forced using a suitable set of
forcing conditions (C, <):

Fs: (LIFA) (system program)
@ Then:
Q@ We have: ulx :==s[]]* IF (1IFB)

© If moreover B is an arithmetical formula

(& 2)[z:=ulx=53[]]'] + B
using a suitable wrapper g I+ (1IF B) = B

@ Cohen forcing

© Higher-order arithmetic (tuned)
© The forcing transformation

@ The forcing machine

© Realizability algebras

@ Conclusion

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 0@0000000 (e]e]

Realizability algebras [Krivine'10]

A realizability algebra <7 is given by:

@ 3sets A (&/-terms), T (<o7/-stacks), A« I (o/-processes)
@ 3functions ():AxM—=MN, (x):AxO=Ax0, (k):N=A

@ A compilation function (t,c) — t[o] that takes

e an open proof term t
o a A-substitution o closing t

and returns an 2/-term t[o] € A

@ A set of .o7-processes 1L C A I such that:

o(x) 7 el implies x[o] x = el

tlo,x :==a] x 7 el implies (Ax.t)o] xa-m € 1L
tlo] *x ufo] -7 € 1L implies (tu)[o] * = el
axkr m €l implies clo]lxa-m € 1L

a*xm e 1 implies kr xa -7 € 1

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 00@000000 (e]e]

Realizability model of PAw™ (general case)

o Parameterized by a realizability algebra & = (A,I,AxN,--- 1)

@ Interpreting higher-order terms:

o Individuals interpreted as natural numbers [J=N
e Propositions interpreted as .</-falsity values [o] = B(M)
o Functions interpreted set-theoretically [r = o] = [o]1")

@ Interpreting logical constructions:

xmal = | [Afx = &) [A=B] = [A]*-[B]

ec[r]

M — JIAL M= [M]
(%] otherwise

Adequacy

If 0 & x:A,....x,: A, Ft:B (in PAw™)
e pEE, wlFAp]. ..., unlE Aslp]
then: t[xq := w1;...;x, := u,] IF Blp]

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000800000 (e]e]

Examples (1/2)

@ From an implementation of \.:

Standard realizability algebra

o A=A, N=1TI, AxN=A%TIl
o ky, t-m, txm defined as themselves
o Compilation function (t,c) > t[o] defined by substitution

o I = any saturated set of processes

@ We can do the same for all classical \-calculi:
o Parigot’s A\p-calculus
o Curien-Herbelin’s Ap-calculus (CBN or CBV)

o Barbanera-Berardi's symmetric A-calculus (rh comes for free)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 0000@0000 (e]e]

Examples (2/2)

From a forcing poset P defined as an upwards closed subset of a
meet semi-lattice £L: P C L, P?

s A=N=AxN=L

o kpy=m, t-m=txm=tr (productin L)

Compilation function (t, o) — t[o]:

tlo] = H o(x)

xEFV(t)

ol = L\P

Corresponding realizability model isomorphic to the forcing model
defined from the poset P

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000008000 (e]e]

KFAM: The realizability algebra of real mode

@ From a saturated set L in the KFAM:
The realizability algebra & = (N,I1,Ax M, ..., 1)

o A M, AxM = sets of closures, stacks, processes of the KFAM

o kr (real mode), t-m, txm defined asin the KFAM

o Compilation function (t,0) — t[oc] = closure formation (real mode)
o I = itself

@ Adequacy w.r.t. the algebra & =

Adequacy in the KFAM in real mode (w.r.t. the pole 1)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000000e00 (e]e]

KFAM: The realizability algebra of forcing mode

e Given &7 = (N\M,AxN, ... 1) (cf prev. slide)
+ a forcing structure (, C,-, 1)

The realizability algebra &* = (N*, 1", A" x 1", ... 1 ")
o N"=Ax[r], M=Nx[x], A"x0" =(Ax0) x [x]

o kir,p) = (kx, p) (forcing mode)
O (tap)'(ﬂ—7q) :(t'ﬂ',pq)
o (t,p)*(m q) = (t*m, pq)

o Compilation function (t, o) — t[o]:

(tha :=c1i. . ixn = ca)", ((1p1)---)pPn) (forcing mode)

o I* = {(t*xm,p) : VceN ((clka Clp]) = (t*xc-m) € 1)}

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras Conclusion
0000000000 0000000 00000000000 0000 000000080 (e]e]

The connection lemma

o Write [] (resp. [_]*) the interpretation w.r.t. &7 (resp. w.r.t. &™)
o Notice that: [o]* = P(N x [s]) =~ (P = [o*]

Connection lemma

© There exists an iso: e [T] S [r]"

@ For all closed M of kind 7: M]* = - ([M*])

@ Given a closed formula A and a pair (¢, p) € A* (= A x [&]):

(c,p) Ik A & clio (pFA)

o Connection lemma + Adequacy w.r.t. the algebra o/*

Adequacy in the KFAM in forcing mode (w.r.t. the pole 1)

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras
0000000000 0000000 00000000000 0000 00000000e

To sum up

o From syntax...
o The program transform t — t* underlying Cohen’s forcing:
Ft:A ~ Ft:(plFA)
o A new machine (KFAM) with two execution modes such that

t[]* has the same behavior as t*[]

@ ... to semantics: iterated forcing
o Two realizability algebras & and &/’ related by
(c,p) Fay= A & clry (pIFA)

o Two adequacy lemmas (real/forcing) as instances of the general
lemma of adequacy

Conclusion
[e]e)

Conclusion

Realizability algebras
o0

Forcing machine
000000000

Forcing transformation
0000

Cohen forcing Higher-order arithmetic (tuned)
00000000000

0000000000 0000000

Conclusion (1/2)

Underlying methodology

Computation model

Program
Rl
(transform becomes identity)

transform

Translation of -
formulas & proofs

@ This methodology applies to the forcing translation
o Computational meaning of the underlying program transformation

o A new abstract machine: the KFAM
o Reminiscent from well known tricks of computer architecture

)

(protection rings, virtual memory, hardware tracing,

@ New insights in logic:
o Logical meaning of explicit environments

o Logical meaning of a particular side effect
o Backtrack defines the limit between the stack and the memory

Cohen forcing Higher-order arithmetic (tuned) Forcing transformation Forcing machine Realizability algebras
0000000000 0000000 00000000000 0000 000000000

Conclusion (2/2)

o Future work:
© How this computation model is used in practice?
o Hint: try simple axioms first!
@ Extend extraction techniques to the forcing mode

© Use this methodology the other way around!

o Deduce new logical translations from computation models
borrowed to computer architecture, operating systems, ...

@ Several connections between forcing and side effects

Conclusion
oe

o Forcing in classical realizability [Krivine'08, '09, '10]

o Realizability with states and dependent choice [Miquel'09]

o Towards an integration of side effects into the Curry-Howard
correspondence?

	Cohen forcing
	Higher-order arithmetic (tuned)
	The forcing transformation
	The forcing machine
	Realizability algebras
	Conclusion

