
Capítulo 2

Ordinales y cardinales

2.1. Ordinales

2.1.1. Buenos órdenes

Definición 2.1 (Buen orden). Un buen orden sobre un conjunto A es una relación de orden (≤)
sobre A (en el sentido amplio) tal que todo subconjunto no vacío de A tenga un mínimo:

(≤) buen orden sobre A ≡ (≤) orden (amplio) sobre A ∧
(∀X ⊆ A) (X , ∅⇒ (∃x ∈ X)(∀y ∈ X) x ≤ y) .

Un conjunto bien ordenado es un conjunto ordenado (A,≤) cuyo orden es un buen orden.

Es claro que todo buen orden (≤) es un orden total, pero la recíproca es falsa.

Ejemplos 2.2. (1) El orden usual sobre N es un buen orden.
(2) Todo orden total sobre un conjunto finito es un buen orden.
(3) Los conjuntos infinitos Z, Q, R están totalmente ordenados por el orden usual, pero no

están bien ordenados.

Dado un conjunto ordenado (A,≤), se llama segmento inicial de (A,≤) a todo subconjunto
S ⊆ A tal que todo elemento de A menor o igual a un elemento de S también pertenezca a S :

S segmento inicial de (A,≤) ≡ S ⊆ A ∧ (∀x, y ∈ A) (x ≤ y ∧ y ∈ S ⇒ x ∈ S ) .

Para todo x ∈ A, se escribe Seg(x) := {y ∈ A : y < x}; es claro que Seg(x) es un segmento
inicial de (A,≤) tal que x < Seg(x). Cuando el orden ≤ es total, se verifica fácilmente que la
función x 7→ Seg(x) (de A a P(A)) es inyectiva.

Proposición 2.3 (Segmentos iniciales de un conjunto bien ordenado). Todo segmento inicial S
de un conjunto bien ordenado (A,≤) es o bien de la forma S = A (subconjunto lleno), o bien
de la forma S = Seg(x) para algún x ∈ A (los dos casos son disjuntos).

Demostración. Si S es un segmento inicial de (A,≤), o bien S = A, o bien S , A, y en este
caso se verifica fácilmente que S = Seg(x), donde x = mı́n(A − S ). □

43



También se puede definir una noción de buen orden estricto, que corresponde a la noción
de buen orden a través de la biyección canónica (véase Sección 1.9.3) entre los órdenes (en el
sentido amplio) y los órdenes estrictos sobre un mismo conjunto A:

Definición 2.4 (Buen orden estricto). Un buen orden estricto sobre un conjunto A es una re-
lación de orden estricto (<) sobre A cuya relación de orden asociada (en el sentido amplio) es
una relación de buen orden sobre A:

(<) buen orden estricto sobre A ≡ (<) orden estricto sobre A ∧
(∀X ⊆ A) (X , ∅⇒ (∃x ∈ X)(∀y ∈ X) (x = y ∨ x < y))

Se puede demostrar que toda relación de buen orden estricto sobre un conjunto A es una
relación bien fundada sobre A (véase Ejercicio 1.16 p. 40), es decir:

Proposición 2.5 (Inducción bien fundada). Todo buen orden estricto < sobre un conjunto A
cumple el principio de inducción bien fundada:

(∀X ⊆ A) [(∀x ∈ A) ((∀y ∈ A) (y < x⇒ y ∈ X) ⇒ x ∈ X) ⇒ X = A] .

2.1.2. La clase de los ordinales

Se recuerda que un conjunto a es transitivo (véase Sección 1.8.2 p. 27) cuando todo ele-
mento de a está incluido en a:

a transitivo ≡ (∀x ∈ a) x ⊆ a
≡ (∀x ∈ a)(∀y ∈ x) y ∈ a

Definición 2.6 (Ordinal). Un ordinal es un conjunto transitivo α en el cual la relación de per-
tenencia ∈ (restringida a α) define un buen orden estricto.

En lo siguiente, la fórmula «α es un ordinal» se escribe On(α) (o bien α : On). En el
lenguaje de la teoría de conjuntos, esta fórmula está dada por:

On(α) ≡ (∀x ∈α)(∀y ∈ x) (y ∈ α) ∧
(∀x ∈α) (x < x) ∧
(∀x, y, z ∈α) (x ∈ y ∧ y ∈ z⇒ x ∈ z) ∧
(∀X ⊆α) (X , ∅⇒ (∃x ∈α)(∀y ∈α) (x = y ∨ x ∈ y))

(α transitivo)
(∈ irreflexiva en α)
(∈ transitiva en α)

(existencia del mín.)

También se utilizarán las abreviaturas:

(∀α : On) ϕ(α) ≡ ∀α (On(α)⇒ ϕ(α))
(∃α : On) ϕ(α) ≡ ∃α (On(α) ∧ ϕ(α))

Ejemplos 2.7. (1) Los conjuntos ∅, {∅}, {∅, {∅}} y {∅, {∅}, {∅, {∅}}} son ordinales.

(2) Más generalmente, si α es un ordinal, entonces α ∪ {α} es un ordinal.

(3) El conjunto {∅, {∅}, {{∅}}} es transitivo, pero no es un ordinal, pues los dos elementos ∅
y {{∅}} de este conjunto no son comparables: ∅ < {{∅}} ∧ ∅ , {{∅}} ∧ {{∅}} < ∅.
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La clase de los ordinales (definida por el predicado On(α)) está naturalmente ordenada por
la relación de inclusión, y se escriben

α ≤ β ≡ α ⊆ β
α < β ≡ α ⊆ β ∧ α , β (para todos α, β : On)

En particular, esta clase tiene un mínimo: el ordinal vacío, que se escribe 0 (:=∅).

Proposición 2.8 (Caracterización del orden estricto).

(1) Todo elemento de un ordinal es un ordinal.
(2) Para todos ordinales α y β: β < α si y sólo si β ∈ α.
(3) Todo ordinal α es el conjunto de los ordinales anteriores: α = {β : On(β) ∧ β < α}.

Demostración. (1) Sean α un ordinal y x un elemento de α. Se verifica que:

El conjunto x es transitivo. En efecto, si z ∈ y e y ∈ x, tenemos que x, y, z ∈ α (pues α
es transitivo). Y como la relación ∈ es transitiva sobre α, se deduce que z ∈ x.
La relación ∈ es un buen orden estricto sobre x. Obvio, pues x ⊆ α. □

(2) (⇐) Supongamos que β ∈ α. Esto implica que β ⊆ α (pues α es transitivo). Además,
tenemos que β , α, pues β ∈ α y β < β (pues ∈ es irreflexiva en α). Luego: β < α.
(⇒) Supongamos que β < α, es decir: β ⊆ α y β , α. Sea x := mı́n(α − β) (en el sentido
del orden estricto ∈ en α). Para todo z ∈ x, tenemos que z ∈ α y z < x (en el sentido de ∈),
entonces z < (α − β) (por definición de x), luego z ∈ β. Esto demuestra que x ⊆ β. Ahora, se
trata de demostrar que x = β. Por el absurdo, se supone que x ⊊ β, y se considera el elemento
y := mı́n(β − x) ∈ α. Como el orden estricto ∈ es total en α, se distinguen tres casos:

x ∈ y. Como y ∈ β, se deduce que x ∈ β, lo que es imposible por definición de x.
x = y. Como y ∈ β, se deduce que x ∈ β, lo que es imposible por definición de x.
y ∈ x. Este caso es imposible por definición de y = mı́n(β − x) < x.

Así, la hipótesis x ⊊ β es absurda, luego x = β. Y como x ∈ α, se deduce que β ∈ α.
(3) Sigue inmediatamente de los ítems (1) y (2).

Proposición y definición 2.9 (Sucesor de un ordinal). Dado un ordinal α:

(1) El conjunto s(α) := α ∪ {α} es un ordinal.
(2) Para todo ordinal β: β < s(α) si y sólo si β ≤ α;

en particular, no hay ningún ordinal entre α y s(α).

El ordinal s(α) se llama el sucesor del ordinal α.

Demostración. (1) Se verifica fácilmente que el conjunto s(α) := α ∪ {α} es transitivo, y que
la relación ∈ es un orden estricto sobre s(α) (que admite α como máximo). Par demostrar la
propiedad del mínimo, se considera X ⊆ s(α) tal que X , ∅, y se distinguen dos casos:

O bien X ∩ α = ∅. En este caso, tenemos que X = {α}, de tal modo que mı́n(X) = α.
O bien X ∩ α , ∅. En este caso, tenemos que mı́n(X) = mı́n(X ∩ α).
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(2) Usando la equivalencia de la Prop. 2.8 (2), tenemos que:
β < s(α) ⇔ β ∈ (α ∪ {α}) ⇔ β ∈ α ∨ β = α ⇔ β ≤ α. □

Además:

Proposición 2.10 (Inyectividad del sucesor). En la clase de los ordinales, la correspondencia
α 7→ s(α) es inyectiva: (∀α, β : On) (s(α) = s(β)⇒ α = β).

Demostración. Es claro que
⋃

s(α) =
⋃

(α∪ {α}) = (⋃α)∪α = α para todo ordinal α (pues α
es transitivo). Luego, si s(α) = s(β), tenemos que α =

⋃
s(α) =

⋃
s(β) = β. □

Ya vimos que el ordinal 0 está definido por 0 := ∅. Los otros enteros naturales (esta noción
será definida formalmente en la Sección 2.1.4) están definidos por:

1 := s(0) = 0 ∪ {0} = {0} = {∅},
2 := s(1) = 1 ∪ {1} = {0, 1} = {∅, {∅}},
3 := s(2) = 2 ∪ {2} = {0, 1, 2} = {∅, {∅}, {∅, {∅}}},
4 := s(3) = 3 ∪ {3} = {0, 1, 2, 3} = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}},
5 := s(4) = 4 ∪ {4} = {0, 1, 2, 3, 4}, etc.

El orden α ≤ β (≡ α ⊆ β) sobre la clase de los ordinales es total:

Proposición 2.11 (Orden total). Dos ordinales cualesquiera son comparables:

(∀α, β : On) (α ≤ β ∨ β ≤ α) .

Demostración. Sea γ := α ∩ β. Es claro que γ es un conjunto transitivo (es la intersección de
dos conjuntos transitivos) y que la relación de pertenencia es un buen orden estricto sobre γ
(por la inclusión γ ⊆ α); entonces γ es un ordinal. Ahora, se trata de demostrar que γ = α o
γ = β. Para ello, se supone por el absurdo que γ ⊊ α y γ ⊊ β. Por la Prop. 2.8 (2), esto implica
que γ ∈ α y γ ∈ β, entonces γ ∈ (α ∩ β) = γ, lo que es absurdo. Luego, o bien γ = α (lo que
implica α ≤ β), o bien γ = β (lo que implica β ≤ α). □

Más generalmente:

Proposición 2.12 (Buen orden sobre la clase de los ordinales).

(1) Todo conjunto no vacío de ordinales tiene un mínimo.
(2) Toda clase no vacía de ordinales (definida por un predicado ϕ(x)) tiene un mínimo:

(∃α : On) ϕ(α) ⇒ (∃α : On) (ϕ(α) ∧ (∀β : On) (ϕ(β)⇒ α ≤ β))

En lo siguiente, diremos por abuso de lenguaje que la relación α ≤ β es un buen orden
sobre la clase On de los ordinales, aunque esta clase no corresponda a ningún conjunto (como
lo veremos en el Corolario 2.16 más abajo).

Demostración. (1) Dado un conjunto X , ∅ cuyos elementos son ordinales, se considera un
ordinal α0 ∈ X y se define α :=

⋂
X (⊆ α0). Es claro que α es un conjunto transitivo (por

intersección) y que la relación ∈ es un buen orden estricto sobre α (pues α ⊆ α0, con α0 : On).
Luego, α es un ordinal; por construcción, es el ínfimo de X. Se trata de demostrar que α ∈ X.
Por el absurdo, se supone que α < X. Esto implica que α < β para todo β ∈ X, es decir α ∈ β
para todo β ∈ X, entonces α ∈ (

⋂
X) = α, lo que es absurdo. Luego, α ∈ X y α = mı́n(X).
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(2) Se considera un ordinal α0 tal que ϕ(α), y se define X := {β ≤ α0 : ϕ(β)} (⊆ s(α0)); por
construcción, X es un conjunto de ordinales, no vacío pues α0 ∈ X. Por (1), el conjunto X tiene
un mínimo α := mı́n(X) (≤ α0). Para concluir, se trata de demostrar que α también es el mínimo
de la clase ϕ, es decir: que α ≤ β para todo ordinal β tal que ϕ(β). Para ello, se considera un
ordinal β tal que ϕ(β), y se distinguen dos casos según que β ≤ α0 o α0 ≤ β (por la Prop. 2.11).
En el caso donde β ≤ α0, tenemos que β ∈ X (por definición de X), luego α = mı́n(X) ≤ β. En
el caso donde α0 ≤ β, tenemos obviamente que α ≤ α0 ≤ β. □

Lema 2.13. Todo conjunto transitivo de ordinales es un ordinal.

Demostración. Sea α un conjunto transitivo de ordinales. El conjunto α es transitivo por hipó-
tesis y la relación de pertenencia ∈ sobre α (que corresponde al orden estricto < sobre la clase
de los ordinales) es un buen orden estricto por la Prop. 2.12 (1). Luego α es un ordinal. □

Proposición 2.14 (Supremo de un conjunto de ordinales). Todo conjunto X de ordinales tiene
un supremo, que está dado por: sup(X) =

⋃
X (: On).

Demostración. Sea α :=
⋃

X; es claro que α es un conjunto transitivo de ordinales, luego es
un ordinal (Lema 2.13). Y por construcción, es obvio que α =

⋃
X es el supremo de X. □

Observación 2.15. El supremo sup(C) =
⋃

C puede pertenecer a C, o no. En efecto:

Si C tiene máximo, entonces sup(C) = máx(C) ∈ C.
Si C no tiene máximo, entonces sup(C) < C, y sup(C) > β para todo β ∈ C.

Corolario 2.16 (Clase propia). El predicado On(α) no es colectivizante.

Así, no hay ningún conjunto de todos los ordinales, y se dice que On es una clase propia.

Demostración. Supongamos que existe un conjunto O = {α : On(α)} de todos los ordinales. Es
claro que O es un conjunto transitivo cuyos elementos son ordinales, entonces O sí mismo es
un ordinal (por el Lema 2.13). Luego O ∈ O, lo que es absurdo. □

2.1.3. Ordinales y conjuntos bien ordenados
Sean (A,≤A) y (B,≤B) dos conjuntos ordenados. Se recuerda que un isomorfismo entre

(A,≤A) y (B,≤B) es una biyección f : A →̃ B tal que:

(∀x, y ∈ A) (x ≤A y ⇔ f (x) ≤B f (y)) .

Es claro que un isomorfismo f : A →̃ B preserva todas las estructuras definidas a partir del
orden ≤A; en particular, tenemos que f (SegA(x)) = SegB( f (x)) para todo x ∈ A.

Todo ordinal α se puede ver como un conjunto bien ordenado, es decir: como el conjunto
ordenado (α,≤α) cuya relación de buen orden (≤α) ⊆ α × α está definida por:

x ≤α y ≡ x ⊆ y ≡ x ∈ y ∨ x = y (para todos x, y ∈ α)

El objetivo de esta sección es demostrar que los ordinales (vistos como conjuntos bien orde-
nados particulares) son los representantes naturales de los conjuntos bien ordenados a menos
de isomorfismo, en el sentido que todo conjunto bien ordenado es isomorfo a un único ordinal,
con isomorfismo único. Para ello, se necesita demostrar algunas propiedades de los conjuntos
bien ordenados:
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Lema 2.17 (Isomorfismo entre segmentos iniciales). Dos segmentos iniciales de un mismo
conjunto bien ordenado son isomorfos (como conjuntos ordenados) si y sólo si son iguales, y
el único isomorfismo es la función identidad.

Demostración. Sean (A,≤) un conjunto bien ordenado, S , S ′ ⊆ A dos segmentos iniciales, y
f : S →̃ S ′ un isomorfismo entre ellos. Primero, queremos demostrar que x ≤ f (x) para todo
x ∈ S . Para ello, se supone por el absurdo que existe x ∈ S tal que x > f (x), y se escribe
x0 := mı́n{x ∈ S : x > f (x)}. Por construcción, tenemos que x0 > f (x0), entonces f (x0) ∈ S
y f (x0) > f ( f (x0)) (pues f es estrictamente creciente). Luego x0 ≤ f (x0) (por minimalidad
de x0), lo que es absurdo. Por lo tanto, tenemos que x ≤ f (x) para todo x ∈ S , lo que implica en
particular que S ⊆ S ′. Simétricamente (intercambiando S con S ′ y usando f −1 en lugar de f ),
se demuestra que x ≤ f −1(x) (es decir: f (x) ≤ x) para todo x ∈ S ′, lo que implica que S ′ ⊆ S .
Al final, obtenemos que S = S ′ y f (x) = x para todo x ∈ S . La recíproca es obvia. □

En el caso particular donde S = S ′ = A, se deduce de lo anterior que el único automorfismo
de un conjunto bien ordenado (A,≤) es la función identidad. Más generalmente:

Proposición 2.18 (Unicidad). Si dos conjuntos bien ordenados son isomorfos, entonces el iso-
morfismo entre ellos es único.

Demostración. Sean (A,≤A), (B,≤B) dos conjuntos bien ordenados, con dos isomorfismos f , g :
A →̃ B. Como las funciones g−1 ◦ f : A →̃ A y f ◦ g−1 : B →̃ B son automorfismos, se deduce
que g−1 ◦ f = idA y f ◦ g−1 = idB, lo que implica que f = g. □

Teorema 2.19 (Isomorfismo entre conjuntos bien ordenados y ordinales).

(1) Dos ordinales son isomorfos (como conjuntos bien ordenados) si y sólo si son iguales, y
el único isomorfismo es la función identidad.

(2) Todo conjunto bien ordenado es isomorfo a un único ordinal, con isomorfismo único.

Demostración. (1) Sigue directamente del Lema 2.17, observando que dos ordinales α y β
cualesquiera son segmentos iniciales del ordinal máx(α, β).
(2) Sea (A,≤) un conjunto bien ordenado. Se considera la relación binaria entre los elementos
de A y los ordinales definida por la fórmula

ϕ(x, α) :≡ x ∈ A ∧ On(α) ∧ (∃ f : SegA(x)→ α)( f isomorfismo) .

Primero, se observa que la relación ϕ(x, α) es funcional respecto a la variable x ∈ A. En efecto,
dados un elemento x ∈ A y dos ordinales α y α′, las condiciones ϕ(x, α) y ϕ(x, α′) implican que
los ordinales α y α′ son isomorfos, y luego α = α′ por el ítem (1). Ahora, se escriben:

S := {x ∈ A : ∃αϕ(x, α)} (⊆ A) al dominio de la relación ϕ(x, α).
O := {α : (∃x ∈ S ) ϕ(x, α)} a la imagen del conjunto S por la relación funcional ϕ(x, α),
que existe por la Prop. 1.25 p. 271. (Por construcción, O es un conjunto de ordinales.)
h : S → O a la función (sobreyectiva) definida por h := {(x, α) ∈ S × O : ϕ(x, α)}.

1Recordemos que la Prop. 1.25 p. 27 es consecuencia del esquema de reemplazo (Sección 1.8.1). Aquí, el uso
del esquema de reemplazo es crucial en la demostración, pues se puede demostrar por métodos metamatemáticos
que el enunciado del ítem (2) del Teorema 2.19 es indecidible en la teoría de conjuntos de Zermelo.
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Luego, se verifican los siguiente enunciados:
S es un segmento inicial de A. En efecto, para todo x ∈ S , existe un ordinal α con un
isomorfismo f : SegA(x) →̃ α. Ahora, dado un elemento y ∈ A tal que y < x, se observa
que SegA(y) no sólo es un subconjunto de SegA(x), pero un segmento inicial de SegA(x).
Por lo tanto, su imagen β := f (SegA(y)) ⊆ α por el isomorfismo f también es un segmento
inicial del ordinal α, es decir: un ordinal β ≤ α. (En efecto, todo segmento inicial de un
ordinal es un conjunto transitivo de ordinales, y luego un ordinal por el Lema 2.13.)
Por restricción, la función g := f↾SegA(y) : SegA(y) → β define un isomorfismo entre el
segmento inicial SegA(y) y el ordinal β, lo que demuestra que ϕ(y, β) e y ∈ S .
O es un ordinal. Con un razonamiento similar al del punto anterior, se verifica que O
es un conjunto transitivo de ordinales (es decir, intuitivamente: un segmento inicial de la
clase de los ordinales). Por el Lema 2.13, se deduce que O es un ordinal.
h : S → O es un isomorfismo entre el segmento inicial S ⊆ A y el ordinal O. En efecto,
la función h es sobreyectiva (por construcción). Además, se verifica fácilmente que h es
estrictamente creciente, lo que implica que h es un isomorfismo.
S = A. Supongamos por el absurdo que S ⊊ A, y escribamos x0 := mı́n(A − S ).
Por construcción, tenemos que S = SegA(x0). Como h : SegA(x0) → O constituye un
isomorfismo entre SegA(x0) y O, tenemos que ϕ(x0,O), y luego x0 ∈ S , lo que es absurdo.
Por lo tanto, tenemos que S = A.

Por lo anterior, es ahora claro que h es un isomorfismo entre (A,≤) y el ordinal O. □

2.1.4. Ordinales límites y enteros naturales
Ya vimos dos tipos de ordinales: el ordinal nulo 0 := ∅, y los ordinales sucesores, de la

forma s(α) := α ∪ {α} para algún ordinal α. El tercer tipo de ordinal es el siguiente:

Definición 2.20 (Ordinal límite). Se llama ordinal límite a todo ordinal que no es ni el ordinal
nulo, ni un ordinal sucesor:

α ordinal límite ≡ On(α) ∧ α , 0 ∧ (∀β : On)α , s(β) .

Es claro por la definición que:

Proposición 2.21 (Tricotomía). Todo ordinal es o bien el ordinal nulo, o bien un ordinal suce-
sor, o bien un ordinal límite. (Los tres casos son disjuntos.)

De modo equivalente, los ordinales límites son los ordinales no nulos que no tienen máximo,
es decir: los ordinales no nulos que son estables (como conjuntos de ordinales) por la operación
que asocia a cada ordinal β su sucesor s(β):

α ordinal límite ⇔ On(α) ∧ α , 0 ∧ (∀β<α) s(β) < α .

Así, en cada ordinal límite α, la operación sucesor β 7→ s(β) (definida en la clase On) induce
una función sucesor sα : α → α, la cual está definida por sα(β) = s(β) para todo β ∈ α. La
función sucesor sα : α→ α es claramente inyectiva (por la Prop. 2.10) y no sobreyectiva (pues
0 ∈ α y 0 < img(sα)), lo que implica que:

Proposición 2.22. Todo ordinal límite es un conjunto Dedekind-infinito.

(La recíproca no se cumple, pues si α es un ordinal límite, su sucesor s(α) también es un
conjunto Dedekind-infinito, pero no es un ordinal límite.)
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En otros términos, la existencia de un ordinal límite implica de modo obvio la existencia
de un conjunto Dedekind-infinito, es decir: el axioma del infinito tal como lo formulamos en la
Sección 1.7. Recíprocamente, el axioma del infinito implica que:

Proposición 2.23. Existe un ordinal límite.

Demostración. Sea (N, o, sN) una estructura aritmética, cuya existencia sigue del axioma del
infinito por la Prop. 1.21. Según el Ejercicio 1.17 p. 41, la función sucesor sN : N → N induce
un buen orden ≤N sobre N tal que para todo x ∈ N:

sN(x) = mı́n≤N {y ∈ N : x <N y} .
Sea α el ordinal isomorfo al conjunto bien ordenado (N,≤N) (Teorema 2.19 (2)), y h : N →̃ α

el isomorfismo correspondiente. Se observa que para todo x ∈ N, tenemos que

h(sN(x)) = h(mı́n≤N {y ∈ N : x <N y})
= mı́n≤α{β ∈ α : h(x) < β} = s(h(x)) (: On)

lo que implica que α es estable por la operación sucesor. Luego, α es un ordinal límite. □

Por el principio de buen orden sobre la clase de los ordinales (Prop. 2.12 (2)), existe un
primer ordinal límite, que se escribe ω. Por definición, ω es el ordinal límite más pequeño, lo
que implica que todos sus elementos no nulos son ordinales sucesores. Escribiendo sω : ω→ ω
la función sucesor en ω (definida por sω(n) = s(n) para todo n ∈ ω), se verifica que:

Proposición 2.24. La terna (ω, 0, sω) es una estructura aritmética.

Demostración. Es claro que la función sω : ω → ω es inyectiva (por la Prop. 2.10) y que
0 < img(sω). Ahora, se considera un subconjunto P ⊆ ω tal que 0 ∈ P y sω(P) ⊆ P. Por el
absurdo, se supone que P , ω, y se considera el elemento n := mı́n(ω − P). Es claro que n , 0
(pues 0 ∈ P), entonces n = s(m) para algún m ∈ ω. Como m < n, tenemos que m ∈ P, entonces
n = s(m) ∈ P (pues sω(P) ⊆ P), lo que es absurdo. Luego P = ω. □

A partir de ahora, se fija la estructura aritmética (N, 0, s) := (ω, 0, sω), y se llaman enteros
naturales a los elementos deN = ω. Por definición, es claro que los enteros naturales (es decir:
los elementos de ω) son los ordinales menores que todos los ordinales límites:

n entero natural ⇔ On(n) ∧ (∀α : On) (α límite⇒ n < α) .

Proposición 2.25 (Ordinales Dedekind-infinitos). Para todo ordinal α:

α Dedekind-infinito ⇔ α ≥ ω .
En particular, ningún entero natural es Dedekind-infinito.

Demostración. (⇐) Si ω ≤ α, es obvio que α es Dedekind-infinito, por inclusión.
(⇒) Por contradicción, se supone que existe un entero natural Dedekind-infinito, y se escri-
be n al más pequeño. Como n es Dedekind-infinito, existen una inyección f : n ↪→ n así como
un elemento k ∈ n tal que k < img( f ). En particular, esto implica que n , 0, de tal modo que
n = s(n0) = n0 ∪ {n0} para algún n0 ∈ n. Sin pérdida de generalidad, se puede suponer que
k = n0; en efecto, en el caso donde k , n0, se puede remplazar la función f : n → n por la
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función f ′ := σ ◦ f : n → n, donde σ : n →̃ n es la permutación que intercambia k con n0,
observando que la resultante función f ′ : n → n es inyectiva y tal que n0 < img( f ′). Como
n = n0 ∪ {n0} y n0 < img( f ), la función f también es de tipo n→ n0. Por restricción, la función
f0 := f↾n0 es de tipo n0 → n0. Es claro que la función f0 : n0 → n0 es inyectiva, y que no
es sobreyectiva, pues f (n0) ∈ n0 y f (n0) < img( f0) (por inyectividad de f ). Luego, el entero
natural n0 < n es Dedekind-infinito, lo que contradice la hipótesis de minimalidad sobre n. □

2.1.5. Inducción y recursión transfinita
El principio de inducción transfinita no es más que la extensión del principio de inducción

bien fundada (Prop. 2.5) a la clase de todos los ordinales:

Proposición 2.26 (Principio de inducción transfinita). Dado un predicado ϕ(α) definido sobre
la clase de los ordinales, tenemos que:

(∀α : On)((∀β<α) ϕ(β) ⇒ ϕ(α)) ⇒ (∀α : On) ϕ(α) .

Demostración. Supongamos que (∀β<α) ϕ(β) ⇒ ϕ(α) (∗) para todo ordinal α. Se trata de
demostrar que (∀α : On)ϕ(α). Por el absurdo, se supone que (∃α : On)¬ϕ(x), lo que implica por
la Prop. 2.12 (2) que la clase ¬ϕ tiene un mínimo, es decir: un ordinal α tal que

(i) ¬ϕ(α) y (ii) (∀β : On)(¬ϕ(β)⇒ α ≤ β) .

Por (ii) tenemos que (∀β<α) ϕ(β), entonces ϕ(α) por (∗), lo que contradice (i). □

Definición de una sucesión por recursión transfinita Más interesante es el método que
permite construir por recursión transfinita una “sucesión” indizada por todos los ordinales.

Definición 2.27 (Sucesión transfinita). Se llama sucesión transfinita a toda relación binaria
ϕ(α, y) (posiblemente parametrizada por otras variables) tal que (∀α : On)∃!y ϕ(α, y). Se usa
la notación (abusiva) (yα)α:On para indicar una sucesión transfinita definida por una relación
ϕ(α, y), escribiendo yα al único objeto tal que ϕ(α, yα) (para todo ordinal α).

Observación 2.28. En la práctica, una sucesión transfinita (yα)α:On se manipula como si fuera
una familia indizada por la clase de los ordinales. Sin embargo, conviene tener presente que
la notación (yα)α:On no refiere a ningún objeto de la teoría, pero a la relación binaria ϕ(α, y)
subyacente. Por otro lado, para todo ordinal α, la sucesión truncada (yβ)β<α es un conjunto
cuya existencia sigue inmediatamente del esquema de reemplazo:

(yβ)β<α := {(β, y) : β < α ∧ ϕ(β, y)} .
A partir de ahora, se considera una relación funcional Φ(x, y), es decir: una fórmula Φ(x, y)

que depende de dos variables x e y (y posiblemente de otros parámetros), tal que:

∀x∀y∀y′ (Φ(x, y) ∧ Φ(x, y′)⇒ y = y′) .

En lo siguiente, se manipulará tal relación como si fuera una función parcial definida sobre el
universo U ; su dominio es la clase DΦ definida por el predicado

DΦ(x) ≡ ∃yΦ(x, y) ,

y para cada objeto x : DΦ, se escribirá y = Φ(x) al único objeto y tal que Φ(x, y).
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Definición 2.29 (Función Φ-inductiva). Se llama función Φ-inductiva a toda función f cuyo
dominio es un ordinal α, y tal que para todo β < α, f (β) está definido por f (β) = Φ( f↾β):

f Φ-inductiva ≡ (∃α : On) [ f función ∧ dom( f ) = α ∧ (∀β<α)Φ( f↾β, f (β))] .

Lema 2.30 (Propiedades de las funciones Φ-inductivas).

(1) Si f es una función Φ-inductiva de dominio α, entonces para todo β ≤ α, la función f↾β
también es una función Φ-inductiva (de dominio β ≤ α).

(2) Para todo ordinal α, existe a lo sumo una función Φ-inductiva de dominio α.
(3) Más generalmente, si f y g son dos funciones Φ-inductivas de dominios respectivos α

y β, entonces o bien α ≤ β y f = g↾α, o bien β ≤ α y g = f↾β.

Demostración. (1) Obvio por la definición de las funciones Φ-inductivas.
(2) Si f y g son dos funciones Φ-inductivas de mismo dominio α, se verifica por inducción
bien fundada que f (β) = g(β) para todo β ∈ α.
(3) Obvio por (1) y (2). □

Proposición 2.31 (Definición de una sucesión por recursión transfinita). Sea Φ(x, y) una rela-
ción funcional tal que toda función Φ-inductiva pertenece al dominio DΦ, es decir:

∀x∀y∀y′ (Φ(x, y) ∧ Φ(x, y′)⇒ y = y′) ∧ ∀ f ( f Φ-inductiva⇒ ∃yΦ( f , y)) .

Entonces se puede definir un sucesión transfinita (yα)α:On tal que

(∀α : On) yα = Φ((yβ)β<α) .

Además, tal sucesión transfinita es única.

Demostración. La sucesión transfinita deseada está definida por la relación

ϕ(α, y) ≡ On(α) ∧ ∃ f ( f Φ-inductiva ∧ dom( f ) = s(α) ∧ y = f (α)) .

Luego, se verifica sucesivamente que para todo ordinal α:

Existe una (única) función Φ-inductiva de dominio α.
Existe un único yα tal que ϕ(α, yα) (lo que define la sucesión transfinita (yα)α:On).
La sucesión truncada (yβ)β<α := {(β, y) : β < α ∧ ϕ(β, y)} es una función Φ-inductiva de
dominio α (que pertenece al dominio de Φ por hipótesis), e yα = Φ((yβ)β<α).

La unicidad sigue inmediatamente de la caracterización anterior. □

2.1.6. Aplicación: aritmética de los ordinales
El mecanismo de definición por recursión transfinita permite definir las operaciones aritmé-

ticas α+ β (suma), α · β (producto) y αβ (potencia) sobre la clase de los ordinales. Por ejemplo,
la suma α + β de dos ordinales α y β está definida por recursión transfinita sobre β a partir de
las siguientes ecuaciones:

α + 0 := α
α + s(β) := s(α + β)
α + β := supγ<β(α + γ) (si β límite)
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En esta definición, el ordinal α actúa como un parámetro, y la sucesión transfinita (α + β)β:On

(indizada por β) está definida por la Prop. 2.31, usando la relación

Φα( f , y) ≡ f función ∧
[(dom( f ) = 0 ∧ y = α) ∨
(∃β : On) (dom( f ) = s(β) ∧ y = s( f (β))) ∨
(∃β : On) (dom( f ) = β ∧ β límite ∧ y =

⋃
img( f ))]

donde la variable f representa la sucesión truncada (α + β)β<β0 ya construida. (Se verifica sin
dificultad que la relación Φα( f , y) cumple las hipótesis de la Prop. 2.31.)

Se puede demostrar que la operación α + β es asociativa, y que admite el ordinal 0 como
elemento neutro (véase Ejercicio 2.2). Sin embargo, la suma no es conmutativa, pues:

ω + 1 = s(ω) , 1 + ω = ω

Del mismo modo se definen el producto α · β y la potencia αβ a partir de las ecuaciones

α · 0 := 0
α · s(β) := α · β + α
α · β := supγ<β(α · γ)

α0 := 1
αs(β) := αβ · α
αβ := supγ<β(α

γ) (si β límite)

Como la suma, el producto α · β es una operación asociativa que admite como elemento neutro
el ordinal 1, pero no es una operación conmutativa:

ω · 2 = ω + ω , 2 · ω = ω .
(Para un estudio sistemático de las propiedades algebraicas de las tres operaciones anteriores,

véase los ejercicios de la Sección 2.4.1.)

Observaciones 2.32. (1) El producto α · β (que no es una operación conmutativa) también se
escribe βα, al revés y sin punto. Así, el ordinal ω · 2 = ω + ω también se escribe 2ω.
(2) No hay que confundir la potencia αβ de dos ordinales α y β con el espacio de funciones
de β hasta α, que se escribe αβ igualmente. En general, ambos objetos no tienen nada que ver,
y en el caso donde los dos ordinales α y β son numerables, se puede demostrar que el ordinal
αβ es numerable, mientras el conjunto de funciones αβ no lo es (véase Ejercicio 2.7).
(3) En la práctica, las operaciones α + β, βα (= α · β) y αβ permiten escribir los ordinales
finitos así como los primeros ordinales numerables:

0, s(0) = 1, 2, 3, 4, . . . , ω, s(ω) = ω + 1, ω + 2, ω + 3, . . . ,
ω + ω = 2ω, 2ω + 1, 2ω + 2, 2ω + 3, . . . , 3ω, . . . , 4ω, . . . ,
ωω = ω2, ω2 + 1, ω2 + 2, . . . , ω2 + ω, ω2 + ω + 1, ω2 + ω + 2, . . . ,
ω2 + 2ω, ω2 + 2ω + 1, ω2 + 2ω + 2, . . . , ω2 + 3ω, . . . , ω2 + 4ω, . . . ,
ω2 + ω2 = 2ω2, 2ω2 + 1, . . . , 2ω2 + ω, . . . , 2ω2 + 2ω, . . . , 2ω2 + 3ω, . . . ,
2ω2 + ω2 = 3ω2, . . . , 4ω2, . . . , 5ω2, . . . , ωω2 = ω3, . . . , ω4, . . . , ω5, . . . ,
ωω, . . . 2ωω, . . . , 3ωω, . . . , ω(ωω) = ωω+1, . . . , ωω+2, . . . , ωω+ω = ω2ω, . . . ,

ωω2
, . . . , ωω3

, . . . , ωω4
, . . . , ωωω , . . . , ωωω

ω

, . . . . . . . . .

De hecho, las expresiones finitas construidas a partir de los enteros naturales, del ordinal ω y
de las tres operaciones α+β, βα y αβ sólo permiten expresar una pequeña parte de los ordinales
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numerables2, lo que justifica la introducción de múltiples sistemas de notaciones de ordinales
en la literatura, con el fin de expresar ordinales numerables más grandes. Sin embargo, veremos
en la Sección 2.3 que existen ordinales infinitos no numerables.

2.2. Axioma de elección
En esta sección se presenta un nuevo axioma —el axioma de elección— que no pertenece

formalmente al sistema ZF, aunque se utilice frecuentemente en las matemáticas usuales.

2.2.1. Formulaciones elementales
Antes de presentar el axioma de elección, se necesita introducir la siguiente terminología:

Función de elección Dado un conjunto A, se escribe P∗(A) = P(A) − {∅} al conjunto de los
subconjuntos no vacíos de A, y se llama función de elección sobre A a toda función
h : P∗(A)→ A tal que h(X) ∈ X para todo X ∈ P∗(A):

h función de elección sobre A ≡
h : P∗(A)→ A ∧ (∀X ∈P∗(A)) h(X) ∈ X .

Función inversa por la izquierda/por la derecha Dadas funciones f : A → B y g : A → B
(con A, B cualesquiera), se dice que g es una inversa de f por la izquierda, o que f es una
inversa de g por la derecha, cuando g ◦ f = idA. Esta condición implica que la función
f : A→ B es inyectiva y que la función g : B→ A es sobreyectiva.

Sistema de representantes Dada una relación de equivalencia ∼ sobre un conjunto A, se llama
sistema de representantes de la relación ∼ a todo subconjunto S ⊆ A cuya intersección
con cualquier clase de equivalencia de ∼ es un conjunto unitario:

S sistema de representantes de ∼ ≡
S ⊆ A ∧ (∀x ∈ A)(∃x0 ∈ S ) ([x]∼ ∩ S = {x0}) .

Producto cartesiano generalizado Se recuerda que el producto cartesiano de una familia de
conjuntos (Ai)i∈I indizada por un conjunto I está definido (Sección 1.6.3) por:

∏

i∈I
Ai :=

{
(ai)i∈I : (∀i ∈ I) ai ∈ Ai

}
.

Proposición 2.33. En ZF, las siguientes cuatro fórmulas son equivalentes:

(1) Todo conjunto tiene una función de elección.
(2) Toda función sobreyectiva tiene una inversa por la derecha.
(3) Toda relación de equivalencia tiene un sistema de representantes.
(3) El producto cartesiano de una familia de conjuntos no vacíos nunca es vacío.

2Más precisamente, tales expresiones permiten expresar todos los ordinales α < ε0, donde ε0 es el ordinal
numerable definido por ε0 = sup(ω ⇑ n), donde ω ⇑ 0 = 1 y ω ⇑ (n + 1) = ωω⇑n para todo n ∈ ω.
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Demostración. (1)⇒ (2) Sea g : A ↠ B una función sobreyectiva (con A y B cualesquiera).
Por (1), existe una función de elección h : P∗(A) → A. Se define la función f : B → A por
f (y) = h(g−1({y})) para todo y ∈ B. Por construcción, es claro que g ◦ f = idB.
(2) ⇒ (3) Sea ∼ una relación de equivalencia sobre un conjunto A. Por (2), la sobreyección
canónica π∼ : A ↠ (A/∼) (definida por π∼(x) = [x]∼ para todo x ∈ A) tiene una inversa por la
derecha, es decir: una función f : (A/∼) → A tal que π∼ ◦ f = idA/∼. Luego se verifica inme-
diatamente que su imagen S := img( f ) ⊆ A es un sistema de representantes de la relación ∼.
(3) ⇒ (4) Sea (Ai)i∈I una familia de conjuntos tales que Ai , ∅ para todo i ∈ I. Se escribe
B =
∑

i∈I Ai = {(i, a) : i ∈ I ∧ a ∈ Ai} a la suma directa de la familia (Ai)i∈I , y se considera la
relación de equivalencia (∼) ⊆ B × B definida por

(i, a) ∼ (i′, a′) ≡ i = i′ (para todos (i, a), (i′, a′) ∈ B)

Por construcción, las clases de equivalencia de la relación ∼ son los subconjuntos de B de la
forma {i} × Ai, con i ∈ I (los conjuntos Ai no son vacíos por hipótesis). Por (3), la relación ∼
tiene un sistema de representantes S ⊆ B. Luego se verifica que S es una función de dominio I,
tal que S (i) ∈ Ai para todo i ∈ I, es decir: S ∈∏i∈I Ai.
(4)⇒ (1) Sea A un conjunto. Es claro que el producto cartesiano generalizado

P :=
∏

X∈P∗(A)

X

es el conjunto de todas las funciones de elección sobre A, y por (4), no es vacío. □

Sin embargo, se puede demostrar por métodos metamatemáticos que las fórmulas (1)–(4)
de la proposición anterior son indecidibles en la teoría de conjuntos de Zermelo-Fraenkel3. Esto
justifica la introducción de un nuevo axioma —el axioma de elección— que se puede formular
usando cualquier una de las cuatro fórmulas (equivalentes) de la Prop. 2.33. Por ejemplo:

Axioma 8 (Axioma de elección). Todo conjunto tiene una función de elección.

En la literatura, el axioma de elección se indica AC (axiom of choice, en inglés), y se escribe
ZFC (= ZF+AC) al sistema obtenido añadiendo el axioma de elección a la teoría de conjuntos
de Zermelo-Fraenkel. Aunque ZFC permita demostrar más teoremas que ZF, las dos teorías
son equiconsistentes, en el sentido que ZFC es consistente si y sólo si ZF lo es.

2.2.2. Lema de Zorn y teorema de Zermelo
El axioma de elección tiene dos consecuencias importantes: el lema de Zorn y el teorema

de Zermelo. Antes de enunciar estos resultados, se recuerda que una cadena de un conjunto
ordenado (A,≤) es un subconjunto C ⊆ A totalmente ordenado por ≤:

C cadena de (A,≤) ≡ C ⊆ A ∧ (∀x, y ∈C) (x ≤ y ∨ y ≤ x) .

Lema 2.34 (Zorn). Si todas las cadenas de un conjunto ordenado tienen una cota superior,
entonces este conjunto ordenado tiene un elemento maximal.

3Bajo la hipótesis que ZF sea consistente. Este resultado fue demostrado parcialmente por Gödel en 1938, y la
prueba completa fue dada por Cohen en 1963, usando la técnica del forcing (véase Sección 2.3.5 más abajo).
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Teorema 2.35 (Zermelo). Todo conjunto admite un buen orden.

De hecho, cada uno de estos dos resultados es equivalente al axioma de elección en la
teoría de Zermelo-Fraenkel. Con el fin de convencer al lector, demostraremos sucesivamente
las siguientes tres implicaciones en ZF:

AC ⇒ Lema de Zorn ⇒ Teorema de Zermelo ⇒ AC .

Demostración de: AC⇒ Zorn. Sea (A,≤) un conjunto ordenado, tal que cada cadena C ⊆ A
tenga una cota superior en A. (Se observa que A , ∅, considerando cualquier cota superior
de la cadena vacía.) Razonando por contradicción, se supone que A no tiene ningún elemento
maximal. Para cada cadena C ⊆ A, se escribe C↑ := {x ∈ A : (∀y ∈C) (y < x)} al conjunto de las
cotas superiores estrictas de C. Se observa que C↑ no es vacío, porque si fuera vacío, la única
cota superior de C sería el máximo de C, que constituiría un elemento maximal de A. Usando
el axioma de elección (AC), se toma una función de elección h : P∗(A)→ A, y se considera la
sucesión transfinita (yα)α:On definida por:

yα = h
({yβ : β < α}↑) (para todo α : On)

Se verifica por inducción transfinita que para todo ordinal α, el elemento yα está bien definido
y constituye (por construcción) una cota superior estricta del conjunto {yβ : β < α}. Así, la
sucesión transfinita (yα)α:On es estrictamente creciente, entonces es inyectiva. En consecuencia,
la relación binaria ϕ(x, α) definida por ϕ(x, α) ≡ On(α) ∧ x = yα es funcional respecto a la
variable x ∈ A, y por reemplazo, se puede definir el conjunto imagen {α : (∃x ∈ A) ϕ(x, α)}.
Pero éste es obviamente el conjunto de todos los ordinales, lo que es absurdo. □

Demostración de: Zorn⇒ Zermelo. Sea A un conjunto cualquiera. Para toda relación binaria
R ⊆ A × A, se llama soporte de R al subconjunto |R| ⊆ A definido por |R| = pr1(R)∪ pr2(R); por
construcción, es el subconjunto más pequeño de A tal que R ⊆ |R| × |R|. Se llama buen orden
parcial4 sobre A a toda relación binaria R ⊆ A×A tal que R es una relación de buen orden sobre
su soporte |R|; y se escribe B (⊆ P(A × A)) al conjunto de todos los buenos órdenes parciales
sobre A. Se equipa el conjunto B con la relación binaria (⊑) ⊆ B ×B definida por

R ⊑ R′ ≡ R = R′ ∩ (|R| × |R|) ∧ |R| segmento inicial de (|R′|,R′)
para todos R,R′ ∈ B. Se demuestra sucesivamente que:

(1) La relación (⊑) ⊆ B ×B es un orden sobre B, cuyo mínimo es la relación vacía.
(2) Si R ∈ B, entonces para todo x ∈ A − |R|, la relación R′ := R ∪ ({x} × |R|) ∪ {(x, x)} es un

buen orden parcial sobre A, tal que R ⊑ R′ y R , R′.
(3) Toda cadena no vacía C ⊆ B tiene un mínimo (respecto al orden ⊑), dado por:

mı́n(C ) =
⋂

C (∈C ).
(4) Toda cadena C ⊆ B tiene un supremo (respecto al orden ⊑), dado por:

sup(C ) =
⋃

C (∈B).

(Se deja la demostración de los ítems (1)–(4) como ejercicio al lector.) En particular, el ítem
(4) establece que toda cadena de (B,≤) tiene una cota superior. Por el Lema de Zorn (que se
cumple por hipótesis), el conjunto ordenado (B,⊑) tiene un elemento maximal R. Pero, según
el ítem (2), es obvio que |R| = A, de tal modo que R es un buen orden sobre A. □

Demostración de: Zermelo⇒ AC. Obvio, pues todo buen orden ≤ sobre un conjunto A induce
una función de elección h : P∗(A)→ A definida por h(X) = mı́n≤(X) para todo X ∈ P∗(A). □

4Aquí, el adjetivo parcial significa: «definido sobre una parte de A».
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2.3. Cardinales

2.3.1. La noción intuitiva de cardinal
En la teoría de conjuntos, la noción intuitiva de cardinal se formaliza naturalmente a partir

de la relación de equipotencia A ∼ B (Sección 1.6.2) definida por:

A ∼ B ≡ (∃ f : A→ B) f biyectiva .

(Es claramente una relación de equivalencia sobre el universo U .) Además, el orden entre los
cardinales intuitivos se formaliza a través de la relación A ≼ B definida por:

A ≼ B ≡ (∃ f : A→ B) f inyectiva .

Por supuesto, la relación A ≼ B sólo es un preorden (no es antisimétrica), pero la relación de
equivalencia asociada (véase Sección 1.9.3) es precisamente la relación de equipotencia:

A ∼ B ⇔ A ≼ B ∧ B ≼ A (para todos A, B)

En efecto, la implicación directa es obvia, y la recíproca está dada por el:

Teorema 2.36 (Cantor-Bernstein-Schröder). Si A y B son dos conjuntos tales que existen in-
yecciones f : A ↪→ B y g : B ↪→ A, entonces A y B son equipotentes.

Demostración. Véase Ejercicio 1.3 p. 35. □

Conceptualmente, sería natural definir los cardinales como las clases de equivalencia de
la relación de equipotencia A ∼ B, ordenadas por el orden inducido por la relación A ≼ B
a través del «cociente» U /∼ (siguiendo la definición original de Cantor, que trabajaba con
un conjunto U de todos los conjuntos). Desgraciadamente, tal definición no funciona en el
marco formal de ZF, pues las clases de equivalencia de la relación de equipotencia A ∼ B no
son conjuntos, pero clases propias, que no se pueden manipular como objetos de la teoría. En
esta situación, la solución natural consiste en elegir en cada clase de equipotencia un conjunto
particular, que representará todos los miembros de dicha clase. Para definir formalmente tal
noción de cardinal, se usarán naturalmente las buenas propiedades de los ordinales.

2.3.2. La clase de los cardinales
En esta sección, se trabaja sin axioma de elección.

Definición 2.37 (Cardinal). Se llama cardinal a todo ordinal κ que no es equipotente a ningún
ordinal < κ. El enunciado «κ es un cardinal» se escribe Cn(κ):

Cn(κ) ≡ On(κ) ∧ (∀α< κ)α ≁ κ .

En lo siguiente, se usan las letras griegas κ, λ, µ, etc. para indicar los cardinales.

Proposición 2.38 (Primeros cardinales). (1) Todo entero natural n ∈ ω es un cardinal.
(2) El ordinal ω es un cardinal; es el primer cardinal infinito, que también se escribe5 ℵ0.

5El símbolo ℵ («álef») es la primera letra del alfabeto hebraico.
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(3) El ordinal ω + 1 es el primer ordinal que no es un cardinal. Más generalmente, ninguno
de los ordinales numerables >ω es un cardinal.

Demostración. (1) Por contradicción, se supone que existe un entero natural n que no es un
cardinal, y se considera una biyección f : n →̃ m con algún m < n. Como m ⊆ n, la función f
también tiene el tipo n → n (por extensión de codominio), y como función de tipo n → n, es
claro que f es inyectiva y no sobreyectiva (pues m < img( f )). Luego, el entero natural n es
Dedekind-infinito, lo que es imposible por la Prop. 2.25.
(2) Por contradicción, supongamos que ω ∼ n para algún n < ω. Por inclusión, tenemos que
n ≼ s(n) ≼ ω ∼ n, lo que implica (Teorema 2.36) que n ∼ s(n). Esto es absurdo según (1).
(3) Obvio, pues ω + 1 es equipotente a ω, así como todos los ordinales numerables >ω. □

La clase de los cardinales (notación: Cn) es un subclase de la clase de los ordinales, y está
naturalmente ordenada por el orden de la inclusión: κ ≤ λ ≡ κ ⊆ λ. Por restricción, es
claro que la relación κ ≤ λ es un buen orden sobre la clase de los cardinales, en el sentido de la
Prop. 2.12 (remplazando la clase On por la clase Cn). Además, tenemos que:

Proposición 2.39. Para todos cardinales κ y λ:

(1) κ ∼ λ ⇔ κ = λ

(2) κ ≼ λ ⇔ κ ≤ λ
Demostración. (1) Obvio, por definición de la noción de cardinal.
(2) Por contradicción, se supone que κ ≼ λ mientras κ ̸≤ λ, es decir: λ < κ. Por inclusión,
tenemos que λ ≼ κ ≼ λ, entonces λ ∼ κ (por el Teorema 2.36), lo que es absurdo pues κ es un
cardinal y λ < κ. La implicación recíproca es obvia (por inclusión). □

Proposición 2.40. Para todo cardinal κ, existe un conjunto Onκ de todos los ordinales equipo-
tentes al cardinal κ: Onκ := {α : On(α) ∧ α ∼ κ}.
Demostración. Dado un cardinal κ, se escribe Bκ (⊆ P(κ × κ)) al conjunto de todos los buenos
órdenes sobre κ, y para todo R ∈ Bκ, se escribe ord(R) al único ordinal isomorfo al conjunto
bien ordenado (κ,R) (Teorema 2.19 (2)). Por el esquema de reemplazo, se define el conjunto
Onκ := {ord(R) : R ∈ Bκ}; por construcción, es un conjunto de ordinales equipotentes con κ.
Recíprocamente, si α es un ordinal equipotente con κ, toda biyección f : κ →̃ α induce un
buen orden R ∈ Bκ (definido por x R y ≡ f (x) ≤ f (y) para todos x, y ∈ κ) tal que la biyección
f : κ →̃ α sea un isomorfismo entre el conjunto bien ordenado (κ,R) y el ordinal α; entonces
α = ord(R) ∈ Onκ. Luego, Onκ es el conjunto de todos los ordinales equipotentes con κ. □

Corolario 2.41 (Clase propia). El predicado Cn(κ) no es colectivizante.

Demostración. Se observa que todo ordinal α pertenece a un único conjunto Onκ, donde el
cardinal κ está dado por κ := mı́n{β ≤ α : β ∼ α}. Luego, si existiera un conjunto Cn de
todos los cardinales, tendríamos que On =

⋃
κ∈Cn Onκ, lo que es absurdo, pues On no es un

conjunto. □

El corolario anterior implica que la clase de los cardinales no tiene máximo; en efecto, si
existiera un último cardinal κ, tendríamos la inclusión (absurda) Cn ⊂ s(κ). Además, como la
clase de los cardinales está bien ordenada por la relación κ ≤ λ, es claro que:
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Proposición y definición 2.42 (Cardinal sucesor). Para todo cardinal κ, existe un primer car-
dinal > κ. Éste se llama el cardinal sucesor de κ, y se escribe κ+.

Proposición 2.43 (Supremo de un conjunto de cardinales). Todo conjunto X de cardinales tiene
un supremo, que está dado por:

supCn(X) := supOn(X) =
⋃

X .

Demostración. Sea X un conjunto de cardinales. Como X también es un conjunto de ordinales,
se puede definir el ordinal α := supOn(X) =

⋃
X (Prop. 2.14). Se trata de demostrar que α es

un cardinal. Por contradicción, se supone que α ∼ β para algún ordinal β < α. Como β < α =
sup(X), existe γ ∈ X tal que β < γ ≤ α. Por inclusión, tenemos que β ≼ γ ≼ α ∼ β, entonces
β ∼ γ (por el Teorema 2.36). Pero esto es absurdo, pues γ es un cardinal y β < γ. Luego, el
ordinal α también es un cardinal, y como cardinal, es obviamente el supremo de X. □

La existencia del cardinal sucesor (Prop. 2.42) y del supremo (Prop. 2.43) permite definir
la jerarquía transfinita de los cardinales infinitos:

Definición 2.44 (Jeraquía de los cardinales infinitos). Se llama jerarquía de los cardinales
infinitos a la sucesión transfinita (ℵα)α:On definida por:

ℵ0 := ω
ℵα+1 :=

(ℵα)+
ℵα := supβ<α ℵβ (si α límite)

Por construcción, es claro que la jerarquía (ℵα)α:On es estrictamente creciente. Además, se
demuestra que captura todos los cardinales infinitos:

Proposición 2.45. Para todo cardinal κ: κ infinito ⇔ (∃α : On) κ = ℵα .
Demostración. Se verifica por una inducción transfinita obvia que α ≤ ℵα para todo ordinal α.
Entonces, para todo cardinal κ, existe un ordinal α tal que κ ≤ ℵα, por ejemplo: α = κ. Ahora,
se considera un cardinal infinito κ, y se escribe α al ordinal más pequeño tal que κ ≤ ℵα. Se
trata de demostrar que κ = ℵα. Para ello, se distinguen los siguientes tres casos:

α = 0. En este caso tenemos que ℵ0 ≤ κ ≤ ℵ0, luego κ = ℵ0.
α es un ordinal sucesor. En este caso, se escribe β al predecesor de α (= β + 1), y se
observa que ℵβ < κ, pues β < α. Entonces ℵα = ℵβ+1 = (ℵβ)+ ≤ κ (por definición del
cardinal sucesor), luego κ = ℵα.
α es un ordinal límite. En este caso, se observa que ℵβ < κ para todo β < α, entonces
ℵα = supβ<α ℵβ ≤ κ. Luego κ = ℵα.

La implicación recíproca es obvia. □

2.3.3. Cardinal de un conjunto
A partir de ahora, se trabaja con el axioma de elección.

Proposición y definición 2.46 (Cardinal de un conjunto). Todo conjunto A es equipotente a un
único cardinal. Éste se llama el cardinal de A, y se escribe Card(A).
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Demostración. Sea A un conjunto. Por el Teorema de Zermelo (Teorema 2.35), el conjunto A
admite un buen orden (≤) ⊆ A× A; y por el Teorema 2.19 (2), el conjunto bien ordenado (A,≤)
es isomorfo a un único ordinal α. Sea κ = mı́n{β ≤ α : β ∼ α}. Es claro que κ es un cardinal, y
que A ∼ α ∼ κ. La unicidad del cardinal κ ∼ A es obvia. □

Observación 2.47. En la demostración anterior, la existencia de un buen orden sobre A (dada
por el axioma de elección) es crucial para establecer una biyección entre A y un ordinal α (que
depende del buen orden elegido), a partir de la cual se define fácilmente el cardinal correspon-
diente (que sólo depende del conjunto A). Sin el axioma de elección, no se puede demostrar
que todos los conjuntos tienen un cardinal, y se verifica fácilmente (ejercicio) que los conjuntos
que tienen un cardinal son exactamente los conjuntos bien ordenables.

Proposición 2.48. Para todos conjuntos A y B:

(1) A ∼ B ⇔ Card(A) = Card(B)
(2) A ≼ B ⇔ Card(A) ≤ Card(B)

Como los cardinales están totalmente ordenados, el resultado anterior implica en particular
que el preorden A ≼ B («existe una inyección de A en B») es total sobre U , es decir:

A ≼ B ∨ B ≼ A (para todos conjuntos A, B)

De nuevo, este resultado depende fuertemente del axioma de elección, y de hecho, se puede
demostrar en ZF (ejercicio) que es equivalente al axioma de elección.

Definición 2.49 (Conjuntos finitos e infinitos). Se dice que un conjunto A es finito cuando
A ∼ n para algún entero natural n; si no, se dice que A es infinito.

Observación 2.50. Es importante observar que la distinción entre los conjuntos finitos y los
conjuntos infinitos no presupone el axioma de elección. En efecto:

Todo conjunto finito A tiene por definición un cardinal, y Card(A) < ℵ0 (:= ω).
Por otro lado, un conjunto A es infinito cuando A ≁ n para todo n ∈ ω. Esto implica que
existe una inyección fn : n ↪→ A para todo n ∈ ω (véase Ejercicio 2.14 p. 67), pero en
general, no se puede decir nada más sobre A sin usar el axioma de elección. En particular,
no se puede concluir que A es Dedekind-infinito.
Por supuesto, en presencia del axioma de elección, los conjuntos infinitos son precisa-
mente los conjuntos A tales que Card(A) ≥ ℵ0, de tal modo que:

Proposición 2.51 (con AC). Un conjunto A es infinito si y sólo si es Dedekind-infinito.

Demostración. (⇒, con AC) Si A es infinito, entonces Card(A) ≥ ℵ0. Por la Prop. 2.25,
tenemos que Card(A) es Dedekind-infinito, luego el conjunto A ∼ Card(A) también lo es.
(⇐, sin AC). Por contraposición, si A es finito, tenemos que A ∼ n para algún n ∈ ω. Como
n no es Dedekind-infinito (Prop. 2.25), el conjunto A ∼ n tampoco lo es. □

Observación 2.52. En la demostración anterior, la implicación directa sólo necesita una forma
débil del axioma de elección: el axioma de elección numerable (véase Ejercicio 2.14). Sin esta
forma débil del axioma de elección, hay que distinguir tres tipos de conjuntos A:

los conjuntos finitos, tales que A ∼ n para algún n ∈ ω;
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los conjuntos Dedekind-infinitos, tales que existe f : A→ A inyectiva y no sobreyectiva;
los conjuntos subinfinitos, que son los conjuntos infinitos (A ≁ n para todo n ∈ ω) pero
no Dedekind-infinitos (toda inyección f : A→ A es biyectiva).

En la mayoría de los trabajos matemáticos, la existencia de conjuntos del tercer tipo es inde-
seable, y es la razón por la cual se supone al menos el axioma de elección numerable.

2.3.4. Aritmética de los cardinales
La suma κ + λ, el producto κλ y la potencia κλ de dos cardinales κ y λ son los cardinales

definidos por las siguientes ecuaciones:

κ + λ := Card(κ + λ), κλ := Card(κ × λ) y κλ := Card(κλ) .

(En los lados derechos, las notaciones κ+λ, κ×λ y κλ indican respectivamente la suma directa
de κ con λ, el producto cartesiano de κ por λ y el conjunto de funciones de tipo λ → κ.) Más
generalmente, si (κi)i∈I es una familia cualquiera de cardinales, su suma y su producto están
definidos de modo similar por:

∑

i∈I
κi := Card

(∑

i∈I
κi

)
y

∏

i∈I
κi := Card

(∏

i∈I
κi

)

(En los lados derechos, los símbolos
∑

y
∏

refieren a la suma directa y al producto cartesiano
generalizado de la familia de conjuntos subyacente.)

Observación 2.53. En general, las operaciones aritméticas sobre los cardinales no coinciden
con las operaciones aritméticas correspondientes sobre los ordinales (véase Sección 2.1.6). En
particular, la suma y el producto de cardinales son operaciones asociativas y conmutativas

(κ + λ) + µ = κ + (λ + µ) (κλ)µ = κ(λµ)
κ + λ = λ + κ κλ = λκ

y a diferencia de la potencia αβ de dos ordinales α y β, la potencia κλ de dos cardinales κ y λ
está definida como el cardinal del conjunto de las funcionas de tipo λ → κ. En particular, se
verifica sin dificultad que ℵ0

ℵ0 = 2ℵ0 , ℵ0 (véase Prop. 2.56 más abajo), mientras el ordinal ωω

es numerable (véase Ejercicio 2.7 (8)). Por supuesto, la aritmética de los cardinales coincide
con la aritmética de los ordinales sobre los enteros naturales, donde las tres operaciones n +m,
nm y nm tienen su sentido usual en N.

Un resultado importante de la teoría de los cardinales es el siguiente:

Proposición 2.54. Para todo cardinal infinito κ: κ2 = κ.

Demostración. Véase Ejercicio 2.17 p. 68. □

Este resultado implica en particular que A × A ∼ A para todo conjunto infinito A.

Corolario 2.55 (Suma y producto de cardinales infinitos). Para todos cardinales infinitos κ y λ,
tenemos que: κ + λ = κλ = máx(κ, λ).
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Demostración. Como las dos operaciones κ + λ y κλ son conmutativas, se puede suponer sin
pérdida de generalidad que κ ≤ λ. Así tenemos que:

máx(κ, λ) = λ ≤ κ + λ ≤ λ + λ = 2λ ≤ κλ ≤ λ2 = λ = máx(κ, λ) □

Proposición 2.56. Para todos cardinales infinitos κ y λ:

(1) κκ = 2κ, y más generalmente:
(2) si κ ≤ 2λ, entonces κλ = 2λ.

Demostración. (1) Tenemos que 2κ ≤ κκ ≤ (2κ)κ = 2(κ2) = 2κ, luego κκ = 2κ.
(2) Si κ ≤ 2λ, entonces 2λ ≤ κλ ≤ (2λ)λ = 2(λ2) = 2λ, luego κλ = 2λ. □

Observación 2.57. No hay ninguna fórmula sencilla para calcular κλ cuando κ > 2λ.

2.3.5. Hipótesis del continuo
Para todo conjunto A, es claro que A ≼ P(A), y por el Teorema de Cantor (Ejercicio 1.2 (1)

p. 35), tenemos que A ≁ P(A). En términos de cardinales, esto significa que:

Proposición 2.58 (Cantor). Para todo cardinal κ: κ < 2κ.

En el caso particular donde κ = ℵ0, tenemos que

Card(R) = 2ℵ0 > ℵ0 = Card(N) .

(véase Ejercicio 1.6). En 1878, Cantor hizo la siguiente conjetura:

Conjetura (Hipótesis del continuo). Para todo subconjunto infinito X ⊆ R:
o bien X es numerable (es decir: X ∼ N);
o bien X tiene la potencia del continuo (es decir: X ∼ R).

En símbolos: 2ℵ0 = ℵ1.

(Se recuerda que ℵ1 = (ℵ0)+ es el primer cardinal no numerable.)

A principios del siglo xx, esta conjetura fue considerada como una de las más importantes
en matemática, y es la razón por la cual Hilbert la puso en la primera posición de su famosa
lista de 23 problemas. De hecho, se demostró que la hipótesis del continuo era independiente
de los axiomas de ZFC, en el sentido de que no se podía ni demostrar ni refutar en ZFC —bajo
la hipótesis que ZFC es consistente. La prueba de independencia fue construida en dos etapas:

En 1938, Kurt Gödel (1906–1978) demostró que la hipótesis generalizada del continuo

(∀α : On) 2ℵα = ℵα+1

(que implica obviamente la hipótesis del continuo) no se puede refutar en ZFC. Por
lo tanto, se puede añadir el axioma (∀α : On) 2ℵα = ℵα+1 a ZFC sin poner en peligro
la consistencia de dicha teoría. Con la misma construcción, Gödel también demostró la
consistencia relativa del axioma de elección.
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En 1963, Paul Cohen (1934–2007) demostró que la hipótesis del continuo 2ℵ0 = ℵ1 no
se puede demostrar en ZFC. Por lo tanto, se puede añadir su negación 2ℵ0 , ℵ1 a ZFC
sin poner en peligro la consistencia de dicha teoría. Para ello, Cohen introdujo la técnica
del forcing que permite “forzar” la existencia de nuevos objetos en el universo U —un
trabajo que le valió la medalla Fields en 1966. De hecho, la técnica de Cohen es muy
general y permite demostrar la consistencia relativa del axioma 2ℵ0 = ℵn para cualquier
entero natural n ≥ 1 (entre otras cosas). Con la misma técnica, Cohen también demostró
la consistencia relativa de la negación del axioma de elección.

Ahora, la técnica de forcing es una herramienta estándar en teoría de conjuntos, que ha sido
usada fructíferamente para demostrar varios resultados de independencia, especialmente en el
estudio de los grandes cardinales.

2.4. Ejercicios

2.4.1. Ordinales
Para todo conjunto bien ordenado (A,≤), se escribe ord(A,≤) al único ordinal isomorfo al

conjunto ordenado (A,≤) (Teorema 2.19 (2)).

Ejercicio 2.1 (Sucesión normal de ordinales). Se dice que una sucesión transfinita de ordinales
(γα)α:On es normal cuando:

(i) La sucesión (γα)α:On es estrictamente creciente: si α < β, entonces γα < γβ.
(ii) Para todo ordinal límite α: γα = supβ<α γβ.

Fijada una sucesión normal de ordinales (γα)α:On, demostrar los siguientes enunciados:

(1) Para todo conjunto X de ordinales, X , ∅, tenemos que supα∈X γα = γsup(X).
(2) Para todo ordinal α, tenemos que α ≤ γα.
(3) Para todo ordinal α, existe un ordinal β ≥ α tal que β = γβ («punto fijo»).

(Sugerencia: considerar la sucesión (βn)n∈ω definida por βn = α y βn+1 = γβn .)

Suma y producto de dos ordinales Se recuerda que la suma α+ β y el producto α · β de dos
ordinales α y β están definidos a partir de las siguientes ecuaciones:

α + 0 := α
α + s(β) := s(α + β)
α + β := supγ<β(α + γ)

α · 0 := 0
α · s(β) := α · β + α
α · β := supγ<β(α · γ) (si β límite)

El producto α · β también se escribe βα (al revés y sin punto).

Ejercicio 2.2 (Propiedades de la suma). Demostrar los siguientes enunciados

(1) Fijado α : On, la sucesión (α + β)β:On es normal (véase Ejercicio 2.1)
(2) 0 + α = α + 0 = α (0 es neutro para +)
(3) (α + β) + γ = α + (β + γ) (+ es asociativa)
(4) α + β = α + γ ⇒ β = γ (+ se simplifica por la izquierda)
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(Sugerencia: usar el resultado del Ejercicio 2.1 (1).) Dar ejemplos de ordinales tales que:

(5) α + β , β + α (+ no es conmutativa)
(6) β + α = γ + α ̸⇒ β = γ (+ no se simplifica por la derecha)

Ejercicio 2.3 (Propiedades del producto). Demostrar los siguientes enunciados:

(1) Fijado α : On, la sucesión (α · β)β:On es normal (véase Ejercicio 2.1)
(2) 0 · α = α · 0 = 0 (0 es absorbente para ·)
(3) 1 · α = α · 1 = α (1 es neutro para ·)
(4) (α · β) · γ = α · (β · γ) (· es asociativa)
(5) α · (β + γ) = α · β + α · γ (· es distributiva por la izquierda)
(6) α > 0 ∧ α · β = α · γ ⇒ β = γ (· se simplifica por la izquierda)

(Sugerencia: usar el resultado del Ejercicio 2.1 (1).) Dar ejemplos de ordinales tales que:

(7) α · β , β · α (· no es conmutativa)
(8) (β + γ) · α , β · α + γ · α (· no es distributiva a la derecha)
(9) α > 0 ∧ β · α = γ · α ̸⇒ β = γ (· no se simplifica por la derecha)

Ejercicio 2.4 (Diferencia y división euclidiana). Demostrar que:

(1) Diferencia: para todos ordinales α, β tales que α ≤ β, existe un único ordinal γ tal que
α + γ = β. (El ordinal γ se escribe β − α.)

(2) División euclidiana: para todos ordinales α (numerador) y β (divisor) tales que β > 0,
existe un único par de ordinales (γ, δ) tal que α = β · γ + δ y δ < β.

Ejercicio 2.5 (Interpretación de la suma de dos ordinales). Sean (A,≤A) y (B,≤B) dos conjuntos
bien ordenados. Se equipa la suma directa A + B = ({0} × A) ⊎ ({1} × B) con la relación binaria
≤A+B definida para todos (i, c), (i′, c′) ∈ (A + B) por:

(i, c) ≤A+B (i′, c′) ≡ (i = i′ = 0 ∧ c ≤A c′) ∨
(i = i′ = 1 ∧ c ≤B c′) ∨
(i = 0 ∧ i′ = 1) .

Demostrar que:

(1) La relación ≤A+B es un buen orden sobre la suma directa A + B.
(2) Si ord(A,≤A) = α y ord(B,≤B) = β, entonces ord(A + B,≤A+B) = α + β.

(Sugerencia: demostrar la propiedad por inducción transfinita sobre β.)

Ejercicio 2.6 (Interpretación del producto de dos ordinales). Sean (A,≤A) y (B,≤B) dos con-
juntos bien ordenados. Se equipa el producto cartesiano A × B con la relación binaria ≤A×B

definida para todos (x, y), (x′, y′) ∈ (A × B) por:

(x, y) ≤A×B (x′, y′) ≡ x <A x′ ∨ (x = x′ ∧ y ≤B y′) .

Demostrar que:

(1) La relación ≤A×B es un buen orden sobre el producto cartesiano A × B.
(2) Si ord(A,≤A) = α y ord(B,≤B) = β, entonces ord(A × B,≤A×B) = αβ = β · α.

(Sugerencia: demostrar la propiedad por inducción transfinita sobre α.)
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Potencia de dos ordinales Se recuerda que la potencia αβ de dos ordinales α y β está definida
a partir de las siguientes ecuaciones:

α0 := 1
αs(β) := αβ · α
αβ := supγ<β(α

γ) (si β límite)

Ejercicio 2.7 (Propiedades de la potencia). Demostrar los siguientes enunciados:

(1) Fijado α : On, la sucesión (αβ)β:On es normal (véase Ejercicio 2.1)
(2) α0 = 1
(3) α1 = α

(4) α > 0 ⇒ 0α = 0
(5) 1α = 1
(6) αβ+γ = αβ · αγ
(7) αβ·γ = (αβ)γ

(8) α > 1 ∧ αβ = αγ ⇒ β = γ

(9) α, β numerables ⇒ αβ numerable

Dar ejemplos de ordinales tales que:

(10) (α · β)γ , αγ · βγ
(11) α > 0 ∧ βα = γα ̸⇒ β = γ

Ejercicio 2.8 (Forma normal de Cantor).

(1) Demostrar que para todos ordinales α, β tales que α > 0 y β > 1, existe una única terna
de ordinales (γ, δ, ε) tal que α = βγ · δ + ε, con 0 < δ < β y ε < βγ.

(2) Deducir de lo anterior que todo ordinal α tiene una única escritura de la forma

α = n1ω
β1 + n2ω

β2 + · · · + nkω
βk (Forma normal de Cantor)

donde k ∈ ω, β1 > β2 > · · · > βk ≥ 0 y n1, . . . , nk ∈ ω − {0}.

2.4.2. Axioma de elección
Se dice que un conjunto A es bien ordenable cuando A admite un buen orden.

Ejercicio 2.9 (Elección sin AC). Demostrar en ZF sin AC los siguientes enunciados:

(1) Todo conjunto finito o numerable es bien ordenable.
(2) Todo conjunto bien ordenable admite una función de elección.
(3) Toda relación de equivalencia sobre un conjunto bien ordenable admite un sistema de

representantes.
(4) Toda función sobreyectiva definida sobre un conjunto bien ordenable admite una inversa

por la derecha.
(5) El producto cartesiano de una familia finita de conjuntos no vacíos nunca es vacío.
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Axioma de elección dependiente El axioma de elección dependiente (DC)6 es una forma
débil del axioma de elección (AC) dada por la siguiente fórmula:

(∀A,∅)(∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∃(xn)n∈ω ∈ Aω)(∀n ∈ω) xn R xn+1] (DC)

Así, a partir de un conjunto A , ∅ y de una relación R ⊆ A × A tal que (∀x ∈ A)(∃y ∈ A) x R y,
este axioma elige una sucesión de elementos (xn)n∈ω ∈ Aω tales que

x0 R x1 R x2 R x3 · · · xn R xn+1 · · ·
(Se usa la terminología de elección dependiente, pues para todo n ∈ ω, se elige el elemento

xn+1 en el conjunto {y ∈ A : xn R y} que depende del elemento xn elegido anteriormente.)

Ejercicio 2.10. Demostrar en ZF que: AC⇒ DC.

A veces, se considera la siguiente formulación del axioma de elección dependiente, que
permite fijar el primer elemento x0 = x de la sucesión (xn)n∈ω ∈ Aω:

∀A (∀R⊆ A × A) [(∀x ∈ A)(∃y ∈ A) x R y ⇒
(∀x ∈ A)(∃(xn)n∈ω ∈ Aω)(x0 = x ∧ (∀n ∈ω) xn R xn+1)] (DC0)

Ejercicio 2.11. Demostrar en ZF que: DC0 ⇔ DC.

(Sugerencia: para demostrar la implicación DC ⇒ DC0 con un elemento inicial x ∈ A fijado,
se puede considerar el conjunto A′ formado por todas las sucesiones finitas (xi)i≤n ∈ A[0..n] tales
que x0 = x y xi−1 R xi para todo i ∈ [1..n], equipado con la relación R′ ⊆ A′ × A′ definida por:
(xi)i≤n R′ (yi)i≤m :≡ m = n + 1 ∧ (∀i≤ n) xi = yi.)

Ejercicio 2.12 (Teorema de Baire). En este ejercicio, se suponen conocidos los conceptos bá-
sicos de la topología general. Se recuerda que:

Un subconjunto denso de un espacio topológico X es un subconjunto D ⊆ X tal que para
todo subconjunto abierto V ⊆ X, V , ∅, tenemos que D ∩ V , ∅.
Se llama espacio de Baire a todo espacio topológico X en el cual la intersección de
cualquier familia numerable de abiertos densos de X es un subconjunto denso de X.

El objetivo de este ejercicio es demostrar en ZF + DC el siguiente teorema:

Teorema (Baire). Todo espacio métrico completo es un espacio de Baire.

Ahora, se considera un espacio métrico completo (X, d), una familia (Un)n∈N de abiertos densos
de X, así como un abierto V ⊆ X tal que V , ∅. Se trata de demostrar que V ∩ (⋂n∈N Un

)
, ∅.

Para todos x ∈ X y r > 0, se escribe B(x, r) = {y ∈ X : d(x, y) ≤ r} la bola cerrada de centro x y
de radio r. Se considera el conjunto A definido por

A := {(k, x, r) ∈ N × X × R : 0 < r < 1/(k + 1) ∧ B(x, r) ⊆ V ∩ U0 ∩ · · · ∩ Uk} .
Se equipa el conjunto A con la relación binaria definida por

(k, x, r) R (k′, x′, r′) ≡ k′ = k + 1 ∧ B(x′, r′) ⊆ B(x, r) .
6Axiom of dependent choices en inglés.
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(1) Verificar que A , ∅.

(2) Demostrar en ZF que: (∀t ∈ A)(∃t′ ∈ A) t R t′

(3) Usando el axioma de elección dependiente (DC), deducir que existe una sucesión de
pares (xn, rn)n∈N ∈ (X × R)N tal que para todo n ∈ N:

(i) 0 < rn < 1/(n + 1)
(ii) B(xn, rn) ⊆ V ∩ U0 ∩ U1 ∩ · · · ∩ Vn

(iii) B(xn+1, rn+1) ⊆ B(xn, rn)

(4) Deducir de lo anterior que la sucesión (xn)n∈N es una sucesión de Cauchy, cuyo límite
x := lı́mn→∞ xn pertenece al conjunto V ∩ (⋂n∈N Un

)
.

Observación. De hecho, el teorema de Baire es equivalente al axioma de elección dependiente
en ZF. (La implicación «Baire⇒ DC» fue demostrada por Charles Blair en 1977.)

Axioma de elección numerable El axioma de elección numerable (CC)7 es una forma débil
del axioma de elección (AC) dada por la siguiente fórmula:

∀(Ai)i∈I
[
I numerable ∧ (∀i ∈ I) Ai , ∅ ⇒

(∏

i∈I
Ai

)
, ∅
]
.

Ejercicio 2.13. Demostrar en ZF que DC0 ⇒ CC, donde DC0 es el axioma de elección depen-
diente con elemento inicial fijado. Deducir (en ZF) que: AC⇒ DC⇒ CC.

Se recuerda que un conjunto A es:

finito cuando A ∼ n para algún n ∈ ω;

infinito cuando A ≁ n para todo n ∈ ω;

Dedekind-infinito cuando existe una función f : A→ A inyectiva y no sobreyectiva.

El objetivo del siguiente ejercicio es demostrar que en ZF + CC, un conjunto A es infinito si y
sólo si A es Dedekind-infinito.

Ejercicio 2.14. Sea A un conjunto.

(1) Demostrar en ZF (sin CC) que si A es Dedekind-infinito, entonces A es infinito.

Para demostrar la recíproca (con CC), se supone ahora que A es un conjunto infinito.

(2) Demostrar por inducción que para todo n ∈ ω, existe una inyección f : n ↪→ A.

(3) Usando el axioma de elección numerable (CC), deducir que existe una sucesión de in-
yecciones ( fn : n ↪→ A)n∈ω.

(4) A partir de una sucesión cualquiera de inyecciones ( fn : n ↪→ A)n∈ω, construir (sin CC)
otra sucesión de inyecciones ( f ′n : n ↪→ A)n∈ω tal que f ′n ⊆ f ′n+1 para todo n ∈ ω.

(5) Deducir de lo anterior que el conjunto A es Dedekind-infinito.

7Axiom of countable choice en inglés.
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2.4.3. Cardinales
Ejercicio 2.15 (Propiedades de los cardinales infinitos).

(1) Demostrar que todo cardinal infinito es un ordinal límite, y dar ejemplos de ordinales
límites que no son cardinales.

(2) Demostrar que la sucesión transfinita (ℵα)α:On es normal.
(3) Usando los resultados del Ejercicio 2.1, deducir de lo anterior que:

(a) para todo ordinal α, tenemos que α ≤ ℵα;
(b) para todo ordinal α, existe un ordinal β ≥ α tal que β = ℵβ («punto fijo»).

Ejercicio 2.16 (Cardinales límites). Se llama cardinal límite a todo cardinal κ que no es ni cero
(κ , 0) ni un cardinal sucesor (κ , λ+ para todo cardinal λ).

(1) Demostrar que para todo cardinal κ, los siguientes tres enunciados son equivalentes:
(i) κ es un cardinal límite

(ii) κ , 0 y κ = sup{λ < κ : Cn(λ)}
(iii) κ = ℵ0 o κ = ℵα para algún ordinal límite α.

Ejercicio 2.17 (κ2 = κ). El objetivo de este ejercicio es demostrar (sin AC) que

Para todo cardinal infinito κ: κ × κ ∼ κ (Prop. 2.54 p. 61)

donde × indica el producto cartesiano usual. Para ello, se razona por el absurdo, considerando
el cardinal infinito κ más pequeño tal que κ × κ ≁ κ. Se equipa el producto cartesiano κ × κ con
la relación binaria (≤2) definida8 para todos (x1, y1), (x2, y2) ∈ κ × κ por

(x1, y1) ≤2 (x2, y2) ≡ máx(x1, y1) < máx(x2, y2) ∨
(máx(x1, y1) = máx(x2, y2) ∧ x1 < x2) ∨
(máx(x1, y1) = máx(x2, y2) ∧ x1 = x2 ∧ y1 ≤ y2) .

(1) Demostrar que la relación (≤2) es un buen orden sobre κ × κ.
(2) Construir un encaje de conjuntos (bien) ordenados f : (κ,≤) ↪→ (κ × κ,≤2),

es decir: una función f : κ → κ × κ tal que (∀x, y ∈ κ) (x ≤ y⇔ f (x) ≤2 f (y)).

En lo siguiente, se escriben α al único ordinal isomorfo al conjunto bien ordenado (κ × κ,≤2),
y h : (κ × κ) →̃ α al isomorfismo correspondiente.

(3) Deducir de lo anterior que κ < α.

Como κ ∈ α, se definen (a, b) := h−1(κ) (∈ κ × κ) y γ := máx(a, b) + 1.

(4) Demostrar que el ordinal κ es isomorfo al segmento inicial Seg(a, b) en (κ × κ,≤2).
(5) Demostrar que Seg(a, b) ⊆ (γ × γ). Deducir que el ordinal γ es infinito.
(6) Deducir de lo anterior que existe una inyección κ ↪→ γ.
(7) Mostrar que (6) lleva a una contradicción, lo que acaba la demostración del resultado.
(8) Con el axioma de elección (AC), deducir que A × A ∼ A para todo conjunto infinito A.

8Esta definición es debida a Kurt Gödel.
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Ejercicio 2.18 (Teorema de König). En ZFC, se consideran dos familias de conjuntos (Ai)i∈I y
(Bi)i∈I (I cualquiera), tales que Card(Ai) < Card(Bi) para todo i ∈ I. Se escriben:

S :=
∑

i∈I Ai a la suma directa de la familia (Ai)i∈I , equipada con la familia de las inyec-
ciones canónicas σi : Ai → S (i ∈ I).

P :=
∏

i∈I Bi al producto cartesiano (generalizado) de la familia (Bi)i∈I , equipado con la
familia de las proyecciones πi : P→ Bi (i ∈ I).

Sea f : S → P una función cualquiera. Para todo i ∈ I, se considera la función fi : Ai → Bi

definida por fi := πi ◦ f ◦ σi.

(1) Demostrar que existe un elemento p ∈ P tal que πi(p) < img( fi) para todo i ∈ I.
(Sugerencia: usar la hipótesis Card(Ai) < Card(Bi).)

(2) Demostrar que p < img( f ), y deducir que la función f no es sobreyectiva.
(3) Deducir de lo anterior el teorema de König:

Si (κi)i∈I y (µi)i∈I son dos familias de cardinales indizadas por un conjunto I
cualquiera, tales que κi < µi para todo i ∈ I, entonces:

∑

i∈I
κi <

∏

i∈I
µi .

¿Qué se observa en el caso particular donde κi = 1 y µi = 2 para todo i ∈ I?

Ejercicio 2.19 (Aplicación del teorema de König). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que:
∑

n∈ω
ℵn = ℵω.

(2) Con el teorema de König (Ejercicio 2.18), deducir que: ℵω < ℵℵ0
ω .

Se recuerda que Card(R) = Card(P(ω)) = 2ℵ0 («potencia del continuo»).

(3) Demostrar que (2ℵ0)ℵ0 = 2ℵ0 , y deducir de lo anterior que 2ℵ0 , ℵω.

Observación. El resultado anterior muestra que el axioma 2ℵ0 = ℵω es inconsistente con los
axiomas de ZFC. Por otro lado, la técnica de forcing de Cohen (véase Sección 2.3.5) permite
justificar la consistencia relativa del axioma 2ℵ0 = ℵn (respecto a ZFC) para cada entero n ≥ 1,
así como la consistencia relativa del axioma 2ℵ0 = ℵω+n para cada n ≥ 1.

2.4.4. Buena fundación
En esta sección, se trabaja en ZF sin axioma de elección. Se recuerda que la clausura

transitiva de un conjunto a (Sección 1.8.2) está definida por:

Cl(a) :=
⋃

n∈ω

(⋃n
a
)
=
⋃

n∈ω

(⋃
· · ·
⋃

︸     ︷︷     ︸
n veces

a
)

Por construcción, Cl(a) es el conjunto transitivo más pequeño tal que a ⊆ Cl(a).
Se dice que un conjunto a está bien fundado cuando la relación de pertenencia x ∈ y está

bien fundada sobre su clausura transitiva Cl(a). Formalmente:

a bien fundado ≡ (∀X ⊆Cl(a)) [(∀x ∈Cl(a))(x ⊆ X ⇒ x ∈ X) ⇒ X = a] .
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Ejercicio 2.20 (Propiedades de los conjuntos bien fundados).

(1) Demostrar que para todo conjunto a: a bien fundado ⇔ (∀x ∈ a) (x bien fundado).
(2) Demostrar que todos los ordinales están bien fundados. Deducir que la clase de los con-

juntos bien fundados no es un conjunto.
(3) Demostrar que si un conjunto a cumple a ∈ a, entonces a está mal fundado. Misma

pregunta con tres conjuntos a, b, c tales que a ∈ c ∈ b ∈ a.
(4) Con el axioma de elección dependiente, demostrar que un conjunto a está mal fundado

si y sólo si existe una sucesión (an)n∈ω tal que a0 = a y an+1 ∈ an para todo n ∈ ω.
(5) A partir de lo anterior, verificar (informalmente) que la clase de los conjuntos bien fun-

dados es “estable” por todos los axiomas de Zermelo-Fraenkel.

Se llama jerarquía cumulativa a la sucesión transfinita (Vα)α:On definida por

Vα :=
⋃

β<α

P(Vβ) (para todo ordinal α)

Se escribe V a la clase definida por el predicado: V(x) ≡ (∃α : On) (x ∈ Vα). Intuitivamente,
la clase V es la unión transfinita de todos los conjuntos Vα (para α : On).

Ejercicio 2.21 (Propiedades de la jerarquía cumulativa).

(1) Verificar que:
(i) V0 = ∅

(ii) Vα+1 = P(Vα)
(iii) Vα =

⋃
β<α Vβ si α es un ordinal límite

(2) Demostrar que para todo α : On: Vα ∩ On = α (con Vα ∩ On := {x ∈ Vα : On(x)}).
(3) Demostrar que para todo conjunto a: a bien fundado ⇔ V(a).

(Es decir: V es la clase de los conjuntos bien fundados.)

Ejercicio 2.22 (Axioma de fundación). En la teoría de conjuntos, el axioma de fundación (o
axioma de regularidad) es la siguiente fórmula:

(Axioma de fundación) ∀a [a , ∅ ⇒ (∃b ∈ a) (a ∩ b = ∅)]

(1) Demostrar que en ZF, el axioma de fundación es equivalente al axioma: «todo conjunto
está bien fundado». (A veces, este axioma se escribe V = U .)

Se llama esquema de inducción conjuntista al siguiente esquema:

∀x ((∀y ∈ x) ϕ(y) ⇒ ϕ(x)) ⇒ ∀x ϕ(x)

(donde ϕ(x) es cualquier predicado de la teoría de conjuntos).

(2) Demostrar que en ZF, el axioma de fundación es equivalente al esquema anterior.
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