Capitulo 2

Ordinales y cardinales

2.1. Ordinales

2.1.1. Buenos ordenes

Definicion 2.1 (Buen orden). Un buen orden sobre un conjunto A es una relacioén de orden (<)
sobre A (en el sentido amplio) tal que todo subconjunto no vacio de A tenga un minimo:

(<) buen orden sobre A = (<) orden (amplio) sobre A A
VXCA X #9=AxeX)(VyeX)x<y).

Un conjunto bien ordenado es un conjunto ordenado (A, <) cuyo orden es un buen orden.
Es claro que todo buen orden (<) es un orden total, pero la reciproca es falsa.

Ejemplos 2.2. (1) El orden usual sobre IN es un buen orden.
(2) Todo orden total sobre un conjunto finito es un buen orden.

(3) Los conjuntos infinitos Z, @, IR estan totalmente ordenados por el orden usual, pero no
estan bien ordenados.

Dado un conjunto ordenado (A, <), se llama segmento inicial de (A, <) a todo subconjunto
S C A tal que todo elemento de A menor o igual a un elemento de S también pertenezca a S:

S segmento inicial de (A, <) = S CAA(Vx,yecA)(x<yAyeS =x€eSf).

Para todo x € A, se escribe Seg(x) := {y € A : y < x}; es claro que Seg(x) es un segmento
inicial de (A, <) tal que x ¢ Seg(x). Cuando el orden < es total, se verifica facilmente que la
funcién x — Seg(x) (de A a P(A)) es inyectiva.

Proposicion 2.3 (Segmentos iniciales de un conjunto bien ordenado). Todo segmento inicial S
de un conjunto bien ordenado (A, <) es o bien de la forma S = A (subconjunto lleno), o bien
de la forma S = Seg(x) para algiin x € A (los dos casos son disjuntos).

Demostracion. Si S es un segmento inicial de (A, <), obien § = A, obien S # A, y en este
caso se verifica faicilmente que S = Seg(x), donde x = min(A — §). O
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También se puede definir una nocion de buen orden estricto, que corresponde a la nocion
de buen orden a través de la biyeccion candnica (véase Seccidn 1.9.3) entre los 6rdenes (en el
sentido amplio) y los 6rdenes estrictos sobre un mismo conjunto A:

Definicion 2.4 (Buen orden estricto). Un buen orden estricto sobre un conjunto A es una re-
lacién de orden estricto (<) sobre A cuya relacion de orden asociada (en el sentido amplio) es
una relacion de buen orden sobre A:

(<) buen orden estricto sobre A = (<) orden estricto sobre A A
VXCA X+ = AxeX)VyeX)(x=yVx<y))

Se puede demostrar que toda relacion de buen orden estricto sobre un conjunto A es una
relacion bien fundada sobre A (véase Ejercicio 1.16 p. 40), es decir:

Proposicion 2.5 (Induccién bien fundada). Todo buen orden estricto < sobre un conjunto A
cumple el principio de induccion bien fundada:

VX CA)[(VxeA)(VyeA)y<x=>yeX) = xeX) = X=A].

2.1.2. La clase de los ordinales

Se recuerda que un conjunto a es transitivo (véase Seccioén 1.8.2 p. 27) cuando todo ele-
mento de a estd incluido en a:

(Vxea)xCa
Vxea)(Vyex)yea

a transitivo

Definicion 2.6 (Ordinal). Un ordinal es un conjunto transitivo « en el cual la relacién de per-
tenencia € (restringida a @) define un buen orden estricto.

En lo siguiente, la férmula «a es un ordinal» se escribe On(a) (o bien @ : On). En el
lenguaje de la teoria de conjuntos, esta férmula estd dada por:

On(ad) = (Vxea)Vyex)(y € a) A (@ transitivo)
Vxea)(x ¢ x) A (€ irreflexiva en @)
Vx,y,zea)(xeyANy€EZ=> xE7) A (€ transitiva en «)

VMXCao) X+ = Axea)Vyea)(x=yV xey)) (existencia del min.)

También se utilizaran las abreviaturas:

Ma: On) ¢(a)
(da: On) ¢(a)

Ya (On(a) = ¢(@))
da (On(a) A ¢(a))

Ejemplos 2.7. (1) Los conjuntos &, {T}, {2, {D}} y {2, {9}, {T, {T}}} son ordinales.
(2) Mas generalmente, si a es un ordinal, entonces @ U {a} es un ordinal.

(3) El conjunto {@, {7}, {{@}}} es transitivo, pero no es un ordinal, pues los dos elementos &
y {{@}} de este conjunto no son comparables: @ ¢ {{J}} A T = {{T}} A {{9O}} ¢ D.
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La clase de los ordinales (definida por el predicado On(«)) estd naturalmente ordenada por
la relacién de inclusion, y se escriben

asp
a<p

acp

€ ChAatp (para todos @, 8 : On)

En particular, esta clase tiene un minimo: el ordinal vacio, que se escribe 0 (:= &).
Proposicion 2.8 (Caracterizacion del orden estricto).

(1) Todo elemento de un ordinal es un ordinal.
(2) Para todos ordinales « y 8: B<a siysolosi Be€a.

(3) Todo ordinal « es el conjunto de los ordinales anteriores: « = {B: On(B) A < a}.

Demostracion. (1) Sean a un ordinal y x un elemento de a. Se verifica que:

» FEl conjunto x es transitivo. En efecto, siz € ye y € x, tenemos que x,y,Z € a (pues «
es transitivo). Y como la relacién € es transitiva sobre «, se deduce que z € x.

» La relacion € es un buen orden estricto sobre x. Obvio, pues x C a. O

(2) (&) Supongamos que 8 € «. Esto implica que f C a (pues « es transitivo). Ademads,
tenemos que B # a, pues B € a 'y B € B (pues € es irreflexiva en «). Luego: 8 < «.

(=) Supongamos que S < @, es decir: B C @y B # a. Sea x := min(a — ) (en el sentido
del orden estricto € en ). Para todo z € x, tenemos que z € @y z < x (en el sentido de €),
entonces z ¢ (@ — ) (por definicién de x), luego z € B. Esto demuestra que x C 5. Ahora, se
trata de demostrar que x = 3. Por el absurdo, se supone que x C 3, y se considera el elemento
y := min(B8 — x) € . Como el orden estricto € es total en «, se distinguen tres casos:

= x € y.Como y € 3, se deduce que x € B, lo que es imposible por definicién de x.
= x =y. Como y € 3, se deduce que x € 3, lo que es imposible por definicion de x.
= y € x. Este caso es imposible por definicién de y = min(5 — x) ¢ x.

Asi, la hipétesis x C S es absurda, luego x = 8. Y como x € a, se deduce que 5 € a.
(3) Sigue inmediatamente de los items (1) y (2).

Proposicion y definicion 2.9 (Sucesor de un ordinal). Dado un ordinal «:

(1) El conjunto s(@) := a U {a} es un ordinal.
(2) Para todo ordinal B: B < s(a) siysolosi B <a;
en particular, no hay ningiin ordinal entre a y s(a@).

El ordinal s(a) se llama el sucesor del ordinal .

Demostracion. (1) Se verifica facilmente que el conjunto s(a) := @ U {a} es transitivo, y que
la relacién € es un orden estricto sobre s(@) (que admite @ como méximo). Par demostrar la
propiedad del minimo, se considera X C s(a) tal que X # &, y se distinguen dos casos:

= O bien X Na = @. En este caso, tenemos que X = {a}, de tal modo que min(X) = a.
= Obien X Na # @. En este caso, tenemos que min(X) = min(X N ).
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(2) Usando la equivalencia de la Prop. 2.8 (2), tenemos que:
B<sa) & Be(aVa}) © BeaVB=a © B<La. O

Ademas:

Proposicion 2.10 (Inyectividad del sucesor). En la clase de los ordinales, la correspondencia
a — s(a) es inyectiva: (Va,B:0n) (s(a) = s(B) = a = p).

Demostracion. Es claro que | s(a) = U@ U{a}) = (J @) Ua = a para todo ordinal a (pues a
es transitivo). Luego, si s(e) = s(B), tenemos que a = |J s(a) = | s(B) = . |

Ya vimos que el ordinal O esta definido por O := &. Los otros enteros naturales (esta nocién
serd definida formalmente en la Seccién 2.1.4) estan definidos por:

= 1:=5(0) =0U {0} = {0} = {a},

» 2:=s(1)=1U{l} ={0,1} = {@,{a}},

» 3:=5(2)=20U{2}=1{0,1,2} = {&, {2}, {2, {a}}},

» 4:=53)=3U{3}=1{0,1,2,3} = {,{2},{0, {D}}, {2, {2}, (&, {T}}}},
n 5:=5(4)=40{4} ={0,1,2,3,4}, etc.

El orden @ < B (= @ C 8) sobre la clase de los ordinales es total:

Proposicion 2.11 (Orden total). Dos ordinales cualesquiera son comparables:
Ma,B:0On)(a<pVB<La).

Demostracion. Seay := a N B. Es claro que vy es un conjunto transitivo (es la interseccion de
dos conjuntos transitivos) y que la relacion de pertenencia es un buen orden estricto sobre y
(por la inclusion vy C «@); entonces y es un ordinal. Ahora, se trata de demostrar que y = @ o
v = . Para ello, se supone por el absurdo que y C @y y € S. Por la Prop. 2.8 (2), esto implica
quey € ayy € f, entonces y € (@ N B) = v, lo que es absurdo. Luego, o bien y = a (lo que
implica @ < 8), o bien y = 8 (lo que implica 8 < ). O

Mais generalmente:
Proposicion 2.12 (Buen orden sobre la clase de los ordinales).

(1) Todo conjunto no vacio de ordinales tiene un minimo.
(2) Toda clase no vacia de ordinales (definida por un predicado ¢(x)) tiene un minimo:

(Ja:0n) (@) = (Ja:0n)(d(a) A (VB:0n) (¢(B) = a < j))

En lo siguiente, diremos por abuso de lenguaje que la relaciéon @ < S es un buen orden
sobre la clase On de los ordinales, aunque esta clase no corresponda a ningtin conjunto (como
lo veremos en el Corolario 2.16 mds abajo).

Demostracion. (1) Dado un conjunto X # & cuyos elementos son ordinales, se considera un
ordinal ¢y € X y se define @ := (X (C ap). Es claro que a es un conjunto transitivo (por
interseccion) y que la relacién € es un buen orden estricto sobre @ (pues @ C @y, con @ : On).
Luego, a es un ordinal; por construccion, es el infimo de X. Se trata de demostrar que a € X.
Por el absurdo, se supone que a ¢ X. Esto implica que @ < 8 para todo 8 € X, es decira € 8
para todo 8 € X, entonces a € ([ X) = a, lo que es absurdo. Luego, @ € X y @ = min(X).
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(2) Se considera un ordinal «, tal que ¢(), y se define X := {8 < ag : ¢(B)} (C s(ayp)); por
construccion, X es un conjunto de ordinales, no vacio pues @, € X. Por (1), el conjunto X tiene
un minimo @ := min(X) (< ay). Para concluir, se trata de demostrar que @ también es el minimo
de la clase ¢, es decir: que @ < S para todo ordinal S tal que ¢(B). Para ello, se considera un
ordinal g tal que ¢(B), y se distinguen dos casos segun que 5 < @, 0 @y < 8 (por la Prop. 2.11).
En el caso donde 8 < @y, tenemos que S € X (por definicién de X), luego @ = min(X) < . En
el caso donde ay < 3, tenemos obviamente que @ < @y < . O

Lema 2.13. Todo conjunto transitivo de ordinales es un ordinal.

Demostracion. Sea a un conjunto transitivo de ordinales. El conjunto « es transitivo por hip6-
tesis y la relacion de pertenencia € sobre a (que corresponde al orden estricto < sobre la clase
de los ordinales) es un buen orden estricto por la Prop. 2.12 (1). Luego « es un ordinal. O

Proposicion 2.14 (Supremo de un conjunto de ordinales). Todo conjunto X de ordinales tiene
un supremo, que estd dado por: sup(X) = |J X (: On).

Demostracion. Sea a = |J X; es claro que @ es un conjunto transitivo de ordinales, luego es
un ordinal (Lema 2.13). Y por construccion, es obvio que @ = | X es el supremo de X. O

Observacion 2.15. El supremo sup(C) = |J C puede pertenecer a C, o no. En efecto:

= Si C tiene mdximo, entonces sup(C) = max(C) € C.
= Si C no tiene méaximo, entonces sup(C) ¢ C, y sup(C) > B paratodo S € C.

Corolario 2.16 (Clase propia). El predicado On(a) no es colectivizante.
Asi, no hay ningun conjunto de todos los ordinales, y se dice que On es una clase propia.

Demostracion. Supongamos que existe un conjunto O = {a : On(«@)} de todos los ordinales. Es
claro que O es un conjunto transitivo cuyos elementos son ordinales, entonces O si mismo es
un ordinal (por el Lema 2.13). Luego O € O, lo que es absurdo. O

2.1.3. Ordinales y conjuntos bien ordenados

Sean (A, <4) y (B,<p) dos conjuntos ordenados. Se recuerda que un isomorfismo entre
(A, <)y (B,<p) es una biyeccién f : A = B tal que:

(Vx,yeAd)(x<ay & f(x) <5 f().

Es claro que un isomorfismo f : A = B preserva todas las estructuras definidas a partir del
orden <,; en particular, tenemos que f(Seg,(x)) = Segz(f(x)) para todo x € A.

Todo ordinal @ se puede ver como un conjunto bien ordenado, es decir: como el conjunto
ordenado (a, <,) cuya relacion de buen orden (<,) € @ X a estd definida por:

X<,y = xCy = x€yVx=y (para todos x,y € @)

El objetivo de esta seccion es demostrar que los ordinales (vistos como conjuntos bien orde-
nados particulares) son los representantes naturales de los conjuntos bien ordenados a menos
de isomorfismo, en el sentido que fodo conjunto bien ordenado es isomorfo a un tnico ordinal,
con isomorfismo Unico. Para ello, se necesita demostrar algunas propiedades de los conjuntos
bien ordenados:
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Lema 2.17 (Isomorfismo entre segmentos iniciales). Dos segmentos iniciales de un mismo
conjunto bien ordenado son isomorfos (como conjuntos ordenados) si y solo si son iguales, y
el tinico isomorfismo es la funcion identidad.

Demostracion. Sean (A, <) un conjunto bien ordenado, S,S’ C A dos segmentos iniciales, y
f S = 8’ un isomorfismo entre ellos. Primero, queremos demostrar que x < f(x) para todo
x € §. Para ello, se supone por el absurdo que existe x € S tal que x > f(x), y se escribe
Xo := min{x € § : x > f(x)}. Por construccién, tenemos que xy, > f(x(), entonces f(xg) € S
y f(x0) > f(f(xp)) (pues f es estrictamente creciente). Luego xo < f(xp) (por minimalidad
de xp), lo que es absurdo. Por lo tanto, tenemos que x < f(x) para todo x € §, lo que implica en
particular que § C S’. Simétricamente (intercambiando S con S’ y usando f~! en lugar de f),
se demuestra que x < f~!(x) (es decir: f(x) < x) para todo x € S’, lo que implica que S’ C S.
Al final, obtenemos que S = S’y f(x) = x para todo x € §. La reciproca es obvia. O

En el caso particular donde S = S’ = A, se deduce de lo anterior que el Ginico automorfismo
de un conjunto bien ordenado (A, <) es la funcién identidad. Més generalmente:

Proposicion 2.18 (Unicidad). Si dos conjuntos bien ordenados son isomorfos, entonces el iso-
morfismo entre ellos es tinico.

Demostracion. Sean (A, <,), (B, <p) dos conjuntos bien ordenados, con dos isomorfismos f, g :
A = B. Como las funciones g o f : A > Ay fog!: B> B son automorfismos, se deduce
queg ' o f=1idyy fog ! =idg, lo que implica que f = g. O

Teorema 2.19 (Isomorfismo entre conjuntos bien ordenados y ordinales).

(1) Dos ordinales son isomorfos (como conjuntos bien ordenados) si y solo si son iguales, y
el tinico isomorfismo es la funcion identidad.

(2) Todo conjunto bien ordenado es isomorfo a un vinico ordinal, con isomorfismo tinico.

Demostracion. (1) Sigue directamente del Lema 2.17, observando que dos ordinales @ y 8
cualesquiera son segmentos iniciales del ordinal méax(a, B).

(2) Sea (A, <) un conjunto bien ordenado. Se considera la relacién binaria entre los elementos
de A y los ordinales definida por la férmula

d(x,a) = x€AAOn(a)A(Af:Seg,(x) = a)(f isomorfismo) .

Primero, se observa que la relacién ¢(x, @) es funcional respecto a la variable x € A. En efecto,
dados un elemento x € A y dos ordinales a y ', las condiciones ¢(x, @) y ¢(x, a@’) implican que
los ordinales @ y @’ son isomorfos, y luego @ = @’ por el item (1). Ahora, se escriben:

» §:={xeA:da¢(x,a)} (CA)al dominio de la relacién ¢(x, ).

 O:={a:(dxef)d(x, )} alaimagen del conjunto S por la relacién funcional ¢(x, @),
que existe por la Prop. 1.25 p. 27!. (Por construccién, O es un conjunto de ordinales.)

= 1:S§ — O alafuncién (sobreyectiva) definida por 4 := {(x,@) € § X O : ¢(x, @)}.

'Recordemos que la Prop. 1.25 p. 27 es consecuencia del esquema de reemplazo (Seccién 1.8.1). Aqui, el uso
del esquema de reemplazo es crucial en la demostracion, pues se puede demostrar por métodos metamatematicos
que el enunciado del item (2) del Teorema 2.19 es indecidible en la teoria de conjuntos de Zermelo.
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Luego, se verifican los siguiente enunciados:

» S es un segmento inicial de A. En efecto, para todo x € S, existe un ordinal @ con un
isomorfismo f : Seg,(x) = a. Ahora, dado un elemento y € A tal que y < x, se observa
que Seg,(y) no solo es un subconjunto de Seg,(x), pero un segmento inicial de Seg, (x).
Por lo tanto, su imagen 5 := f(Seg,(y)) € a por el isomorfismo f también es un segmento
inicial del ordinal «, es decir: un ordinal 8 < a. (En efecto, todo segmento inicial de un
ordinal es un conjunto transitivo de ordinales, y luego un ordinal por el Lema 2.13.)
Por restriccion, la funcion g := fiseg, ) @ Seg,(y) — B define un isomorfismo entre el
segmento inicial Seg,(y) y el ordinal 5, 1o que demuestra que ¢(y,B) ey € S.

= O es un ordinal. Con un razonamiento similar al del punto anterior, se verifica que O
es un conjunto transitivo de ordinales (es decir, intuitivamente: un segmento inicial de la
clase de los ordinales). Por el Lema 2.13, se deduce que O es un ordinal.

» h:S — O es un isomorfismo entre el segmento inicial S C A y el ordinal O. En efecto,
la funcidn & es sobreyectiva (por construccion). Ademas, se verifica facilmente que / es
estrictamente creciente, lo que implica que £ es un isomorfismo.

= § = A. Supongamos por el absurdo que S C A, y escribamos xy := min(A — §).
Por construccién, tenemos que S = Seg,(xp). Como & : Seg,(xy) — O constituye un
isomorfismo entre Seg,(xp) y O, tenemos que ¢(xy, O), y luego x, € S, lo que es absurdo.
Por lo tanto, tenemos que § = A.

Por lo anterior, es ahora claro que 4 es un isomorfismo entre (A, <) y el ordinal O. m|

2.1.4. Ordinales limites y enteros naturales

Ya vimos dos tipos de ordinales: el ordinal nulo O := &, y los ordinales sucesores, de la
forma s(@) := @ U {a} para algtn ordinal . El tercer tipo de ordinal es el siguiente:

Definicion 2.20 (Ordinal limite). Se llama ordinal limite a todo ordinal que no es ni el ordinal
nulo, ni un ordinal sucesor:

a ordinal limite = On(a) A a#0 A (VB:0n)a # s(B).
Es claro por la definicién que:

Proposicion 2.21 (Tricotomia). Todo ordinal es o bien el ordinal nulo, o bien un ordinal suce-
sor, o bien un ordinal limite. (Los tres casos son disjuntos.)

De modo equivalente, los ordinales limites son los ordinales no nulos que no tienen méximo,
es decir: los ordinales no nulos que son estables (como conjuntos de ordinales) por la operacion
que asocia a cada ordinal S su sucesor s(5):

a ordinal limite & On(a) A a#0 A (VB<a)s(B) < a.

Asi, en cada ordinal limite @, la operacion sucesor 8 +— s(8) (definida en la clase On) induce
una funcion sucesor s, : @ — a, la cual estd definida por s,(8) = s(B) para todo 8 € a. La
funcion sucesor s, : @ — « es claramente inyectiva (por la Prop. 2.10) y no sobreyectiva (pues
0€ay0 ¢img(s,)), lo que implica que:

Proposicion 2.22. Todo ordinal limite es un conjunto Dedekind-infinito.

(La reciproca no se cumple, pues si @ es un ordinal limite, su sucesor s(@) también es un
conjunto Dedekind-infinito, pero no es un ordinal limite.)
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En otros términos, la existencia de un ordinal limite implica de modo obvio la existencia
de un conjunto Dedekind-infinito, es decir: el axioma del infinito tal como lo formulamos en la
Seccidn 1.7. Reciprocamente, el axioma del infinito implica que:

Proposicion 2.23. Existe un ordinal limite.

Demostracion. Sea (N, o, sy) una estructura aritmética, cuya existencia sigue del axioma del
infinito por la Prop. 1.21. Segtin el Ejercicio 1.17 p. 41, la funcién sucesor sy : N — N induce
un buen orden <y sobre N tal que para todo x € N:

sy(x) =ming, {y e N: x <y y}.

Sea « el ordinal isomorfo al conjunto bien ordenado (N, <y) (Teorema 2.19 (2)),yh: N > «
el isomorfismo correspondiente. Se observa que para todo x € N, tenemos que

h(sn(x)) = h(ming,{y € N 1 x <y y})
= min. {f€a: h(x)<p} = s(h(x)) (:On)
lo que implica que « es estable por la operacion sucesor. Luego, @ es un ordinal limite. |

Por el principio de buen orden sobre la clase de los ordinales (Prop. 2.12 (2)), existe un
primer ordinal limite, que se escribe w. Por definicidn, w es el ordinal limite mds pequefio, lo
que implica que todos sus elementos no nulos son ordinales sucesores. Escribiendo s, : w — w
la funcién sucesor en w (definida por s,(n) = s(n) para todo n € w), se verifica que:

Proposicion 2.24. La terna (w,0, s,,) es una estructura aritmética.

Demostracion. Es claro que la funcién s, : w — w es inyectiva (por la Prop. 2.10) y que
0 ¢ img(s,). Ahora, se considera un subconjunto P C w tal que O € Py s,(P) € P. Por el
absurdo, se supone que P # w, y se considera el elemento n := min(w — P). Es claro que n # 0
(pues 0 € P), entonces n = s(m) para algin m € w. Como m < n, tenemos que m € P, entonces
n = s(m) € P (pues s,(P) C P), lo que es absurdo. Luego P = w. O

A partir de ahora, se fija la estructura aritmética (IN, 0, s) := (w, 0, s,), y se llaman enteros
naturales a los elementos de IN = w. Por definicidn, es claro que los enteros naturales (es decir:
los elementos de w) son los ordinales menores que todos los ordinales limites:

n entero natural & On(n) A (Ya:On)(alimite = n < a).
Proposicion 2.25 (Ordinales Dedekind-infinitos). Para todo ordinal a:
a Dedekind-infinito & o > w.

En particular, ningiin entero natural es Dedekind-infinito.

Demostracion. (<) Siw < a, es obvio que a es Dedekind-infinito, por inclusion.

(=) Por contradiccidn, se supone que existe un entero natural Dedekind-infinito, y se escri-
be n al mas pequefio. Como n es Dedekind-infinito, existen una inyeccion f : n < n asi como
un elemento k € n tal que k ¢ img(f). En particular, esto implica que n # 0, de tal modo que
n = s(ng) = no U {ny} para algin ny € n. Sin pérdida de generalidad, se puede suponer que
k = ny; en efecto, en el caso donde k # ny, se puede remplazar la funcién f : n — n por la
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funcién ' := oco f : n — n,donde o : n = n es la permutacién que intercambia k con ny,
observando que la resultante funcién f’ : n — n es inyectiva y tal que ny ¢ img(f’). Como
n =nyU{ng}yny ¢ img(f), la funcién f también es de tipo n — ny. Por restriccion, la funcién
fo = fin, €s de tipo ny — ny. Es claro que la funcién f, : ng — ng es inyectiva, y que no
es sobreyectiva, pues f(ng) € nyy f(ng) ¢ img(fy) (por inyectividad de f). Luego, el entero
natural ny < n es Dedekind-infinito, lo que contradice la hipétesis de minimalidad sobre n. O

2.1.5. Induccion y recursion transfinita

El principio de induccion transfinita no es méas que la extension del principio de induccion
bien fundada (Prop. 2.5) a la clase de todos los ordinales:

Proposicion 2.26 (Principio de induccion transfinita). Dado un predicado ¢(«) definido sobre
la clase de los ordinales, tenemos que:

MVa:0On)(VB<a)¢p(B) = ¢(a)) = (Va:0n)¢(a).

Demostracion. Supongamos que (VB8<a)¢(B) = ¢(a) (*) para todo ordinal a. Se trata de
demostrar que (Ya : On)¢(a). Por el absurdo, se supone que (da : On)—¢(x), lo que implica por
la Prop. 2.12 (2) que la clase —¢ tiene un minimo, es decir: un ordinal « tal que

@O - y @) (B:0n)(=¢B) = a<p).

Por (ii) tenemos que (VS < @) ¢(B), entonces ¢(a@) por (), lo que contradice (7). O

Definicion de una sucesion por recursion transfinita Mas interesante es el método que
permite construir por recursion transfinita una “sucesion” indizada por todos los ordinales.

Definicion 2.27 (Sucesion transfinita). Se llama sucesion transfinita a toda relacion binaria
¢(a,y) (posiblemente parametrizada por otras variables) tal que (Va : On) Aly ¢(a,y). Se usa
la notacién (abusiva) (y4)a.0n para indicar una sucesion transfinita definida por una relacién
¢(a,y), escribiendo y, al inico objeto tal que ¢(«, y,) (para todo ordinal @).

Observacion 2.28. En la practica, una sucesion transfinita (v, )q.0, S¢ manipula como si fuera
una familia indizada por la clase de los ordinales. Sin embargo, conviene tener presente que
la notacién (y,)q:0n DO refiere a ningin objeto de la teoria, pero a la relacion binaria ¢(a,y)
subyacente. Por otro lado, para todo ordinal a, la sucesion truncada (yg)p<, €S un conjunto
cuya existencia sigue inmediatamente del esquema de reemplazo:

(yﬁ)ﬁ<(x = {(B’y) :ﬁ <aA ¢(ﬂ’)’)}

A partir de ahora, se considera una relacion funcional ®@(x, y), es decir: una férmula ®(x, y)
que depende de dos variables x e y (y posiblemente de otros pardmetros), tal que:

VxVyVy (D(x,y) AD(x,y) =y =)Y).

En lo siguiente, se manipulard tal relacion como si fuera una funcion parcial definida sobre el
universo % ; su dominio es la clase D® definida por el predicado

D®(x) = JyDd(x,y),

y para cada objeto x : D®, se escribird y = ®(x) al tnico objeto y tal que D(x, y).
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Definicion 2.29 (Funcién ®-inductiva). Se llama funcion ®-inductiva a toda funcién f cuyo
dominio es un ordinal a, y tal que para todo 8 < a, f(f) esta definido por f(B) = D(fjp):

f ®-inductiva = (Ja: On) [f funciéon A dom(f) = a A (VB <a) D(fiz, f(B)].
Lema 2.30 (Propiedades de las funciones ®-inductivas).

(1) Si f es una funcion ®-inductiva de dominio a, entonces para todo B < a, la funcion fig
también es una funcion ®-inductiva (de dominio 8 < ).

(2) Para todo ordinal a, existe a lo sumo una funcion ®-inductiva de dominio a.

(3) Mds generalmente, si f y g son dos funciones ®-inductivas de dominios respectivos a
y B, entoncesobiena < By f =g, obienB<ayg= fi

Demostracion. (1) Obvio por la definicion de las funciones ®-inductivas.

(2) Si fy g son dos funciones ®-inductivas de mismo dominio «, se verifica por induccion
bien fundada que f(8) = g(B) para todo 8 € a.

(3) Obvio por (1) y (2). O

Proposicion 2.31 (Definicion de una sucesion por recursion transfinita). Sea ®(x,y) una rela-
cion funcional tal que toda funcion ®-inductiva pertenece al dominio D®, es decir:

YxVyVy (D(x,y) AD(x,y) = y=y) A YVf(f ®-inductiva = Ty O(f,y)).
Entonces se puede definir un sucesion transfinita (yq)q.on tal que

(Va1 On) yo = ©((p)p<a) -

Ademads, tal sucesion transfinita es tinica.

Demostracion. La sucesion transfinita deseada esta definida por la relacion
d(a,y) = On(a) A Af (f ®-inductiva A dom(f) = s(a) Ay = f(@)).

Luego, se verifica sucesivamente que para todo ordinal a:

» Existe una (tinica) funciéon ®-inductiva de dominio a.
= EXxiste un unico y, tal que ¢(a, y,) (lo que define la sucesion transfinita (v, )a:0n)-

= La sucesion truncada (yg)s<o := {(B,y) : B < @ A ¢(B,y)} es una funcion ®-inductiva de
dominio @ (que pertenece al dominio de ® por hipétesis), € y, = O((yg)p<a)-

La unicidad sigue inmediatamente de la caracterizacion anterior. O

2.1.6. Aplicacion: aritmética de los ordinales

El mecanismo de definicidn por recursion transfinita permite definir las operaciones aritmé-
ticas a + 8 (suma), « - 8 (producto) y o (potencia) sobre la clase de los ordinales. Por ejemplo,
la suma @ + 8 de dos ordinales « y B esta definida por recursion transfinita sobre S a partir de
las siguientes ecuaciones:

a+0 = «a
a+sB) = s(a+p)
a+p = sup,g(@+7y) (si B limite)

52



En esta definicion, el ordinal @ actia como un parametro, y la sucesion transfinita (a + £8)g.on
(indizada por ) estd definida por la Prop. 2.31, usando la relacion

®,(f,y) = f funcién A
[(dom(f) =0 A y=a) v
(3B: On) (dom(f) = s(B) Ay = s(f(B)) v
(38: On) (dom(f) =B A Blimite A y = [Jimg(f))]

donde la variable f representa la sucesion truncada (a + 8)g<p, ya construida. (Se verifica sin
dificultad que la relacién @, (f, y) cumple las hipétesis de la Prop. 2.31.)

Se puede demostrar que la operacién « + 3 es asociativa, y que admite el ordinal 0 como
elemento neutro (véase Ejercicio 2.2). Sin embargo, la suma no es conmutativa, pues:

w+tl=s(w) # l+w=w

Del mismo modo se definen el producto a - 8y la potencia o a partir de las ecuaciones

a-0 = 0 a =1
a-sB) = a-f+a P = dfa
a-fB = sup,(@-y) o = sup,4a) (si B limite)

Como la suma, el producto « - 8 es una operacidn asociativa que admite como elemento neutro
el ordinal 1, pero no es una operacion conmutativa:

w2=wtw * 2-w=w.

(Para un estudio sistemadtico de las propiedades algebraicas de las tres operaciones anteriores,
véase los ejercicios de la Seccion 2.4.1.)

Observaciones 2.32. (1) El producto « - (que no es una operacién conmutativa) también se
escribe Sa, al revés y sin punto. Asi, el ordinal w - 2 = w + w también se escribe 2w.

(2) No hay que confundir la potencia o de dos ordinales a y 8 con el espacio de funciones
de S hasta a, que se escribe o igualmente. En general, ambos objetos no tienen nada que ver,
y en el caso donde los dos ordinales @ y 8 son numerables, se puede demostrar que el ordinal
a® es numerable, mientras el conjunto de funciones o no lo es (véase Ejercicio 2.7).

(3) En la préctica, las operaciones a + 8, B (= a - B) y o permiten escribir los ordinales
finitos asi como los primeros ordinales numerables:

0,s500=1,2,3,4, ..., 0w, slwW=w+1, o+2, w+3, ...,
wtw=2w,2w+1,20w+2,2w+3, ..., 3w, ..., 4w, ...,

WO=0, W+, W+2, ..., +w, Crw+]l, P+w+2, ...,

W+ 2w, W 2w+ 1, W H2w+2, ..., W +30, ..., W+, ...,
W+ W =20 20+ 1, 200+, .., 200+ 20, ..., 207 + 30, ...,
20+ w? =3w?%, ..., 405 ..., 508 L, wP =W, L, Wt LW,
W, 20, L, 3w, L, w(w®) =t L, W L WPt = w0, L
w“’z, ...,w‘”z, ...,w“’4, o, W ...,w‘”wm, .........

De hecho, las expresiones finitas construidas a partir de los enteros naturales, del ordinal w y
de las tres operaciones « +f, fa 'y o s6lo permiten expresar una pequeiia parte de los ordinales
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numerables?, lo que justifica la introduccién de miltiples sistemas de notaciones de ordinales
en la literatura, con el fin de expresar ordinales numerables mds grandes. Sin embargo, veremos
en la Seccidn 2.3 que existen ordinales infinitos no numerables.

2.2. Axioma de eleccion

En esta seccion se presenta un nuevo axioma —el axioma de eleccion— que no pertenece
formalmente al sistema ZF, aunque se utilice frecuentemente en las matematicas usuales.

2.2.1. Formulaciones elementales

Antes de presentar el axioma de eleccidn, se necesita introducir la siguiente terminologia:

Funcion de eleccion Dado un conjunto A, se escribe P*(A) = P(A) — {} al conjunto de los
subconjuntos no vacios de A, y se llama funcion de eleccion sobre A a toda funcion
h:P*(A) — A tal que h(X) € X para todo X € P*(A):

h funcion de eleccion sobre A =
h:PA)>A AN VXePB*A)AX) e X.

Funcion inversa por la izquierda/por la derecha Dadas funciones f : A - Byg: A — B
(con A, B cualesquiera), se dice que g es una inversa de f por la izquierda, o que f es una
inversa de g por la derecha, cuando g o f = id4. Esta condicién implica que la funcién
f : A — Besinyectivay que la funcién g : B — A es sobreyectiva.

Sistema de representantes Dada una relacion de equivalencia ~ sobre un conjunto A, se llama
sistema de representantes de la relacion ~ a todo subconjunto S C A cuya interseccion
con cualquier clase de equivalencia de ~ es un conjunto unitario:

S sistema de representantes de ~ =
SCA AN (VxeAd)TxpeS)(x]-NS ={x0}).

Producto cartesiano generalizado Se recuerda que el producto cartesiano de una familia de
conjuntos (A;);c; indizada por un conjunto / esta definido (Seccién 1.6.3) por:

]_[Ai = {(@)er : (Vieha; € A}

iel

Proposicion 2.33. En ZF, las siguientes cuatro formulas son equivalentes:

(1) Todo conjunto tiene una funcion de eleccion.
(2) Toda funcion sobreyectiva tiene una inversa por la derecha.
(3) Toda relacion de equivalencia tiene un sistema de representantes.

(3) El producto cartesiano de una familia de conjuntos no vacios nunca es vacio.

2M4s precisamente, tales expresiones permiten expresar todos los ordinales @ < &y, donde & es el ordinal
numerable definido por gy = sup(w 1 n),donde w 1 0 =1y w ft (n+ 1) = WM para todo n € w.
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Demostracion. (1) = (2) Sea g : A — B una funcion sobreyectiva (con A y B cualesquiera).
Por (1), existe una funcién de eleccion h : P*(A) — A. Se define la funcién f : B — A por
f(») = h(g '({y})) para todo y € B. Por construccion, es claro que g o f = idp.

(2) = (3) Sea ~ una relacion de equivalencia sobre un conjunto A. Por (2), la sobreyeccion
canonica . : A — (A/~) (definida por n.(x) = [x]. para todo x € A) tiene una inversa por la
derecha, es decir: una funcién f : (A/~) — A tal que 7. o f = id4,.. Luego se verifica inme-
diatamente que su imagen S := img(f) C A es un sistema de representantes de la relacién ~.

(3) > (4) Sea (A))ic; una familia de conjuntos tales que A; # @& para todo i € I. Se escribe

B=3A =1{G,a) :ie€lANaec A;}alasuma directa de la familia (A;);c;, y se considera la
relacién de equivalencia (~) € B X B definida por

(G,a)~({",a) =i=1 (para todos (i, a), (i’,a’) € B)

Por construccidn, las clases de equivalencia de la relacion ~ son los subconjuntos de B de la
forma {i} X A;, con i € I (los conjuntos A; no son vacios por hipétesis). Por (3), la relacién ~
tiene un sistema de representantes S C B. Luego se verifica que S es una funcién de dominio /,
tal que S (i) € A; paratodo i € I, es decir: § € [[,¢; A:.

(4) = (1) Sea A un conjunto. Es claro que el producto cartesiano generalizado

P=[]x
XeP*(A)

es el conjunto de todas las funciones de eleccién sobre A, y por (4), no es vacio. O

Sin embargo, se puede demostrar por métodos metamatemaéticos que las férmulas (1)—(4)
de la proposicién anterior son indecidibles en la teorfa de conjuntos de Zermelo-Fraenkel®. Esto
justifica la introduccién de un nuevo axioma —el axioma de eleccion— que se puede formular
usando cualquier una de las cuatro férmulas (equivalentes) de la Prop. 2.33. Por ejemplo:

Axioma 8 (Axioma de eleccion). Todo conjunto tiene una funcion de eleccion.

En la literatura, el axioma de eleccion se indica AC (axiom of choice, en inglés), y se escribe
ZFC (= ZF + AC) al sistema obtenido afiadiendo el axioma de eleccién a la teoria de conjuntos
de Zermelo-Fraenkel. Aunque ZFC permita demostrar mas teoremas que ZF, las dos teorias
son equiconsistentes, en el sentido que ZFC es consistente siy s6lo si ZF lo es.

2.2.2. Lema de Zorn y teorema de Zermelo

El axioma de eleccion tiene dos consecuencias importantes: el lema de Zorn y el teorema
de Zermelo. Antes de enunciar estos resultados, se recuerda que una cadena de un conjunto
ordenado (A, <) es un subconjunto C C A totalmente ordenado por <:

Ccadenade (A,<) = CCA AN (Vx,yeC)(x<yVy<x).

Lema 2.34 (Zorn). Si todas las cadenas de un conjunto ordenado tienen una cota superior,
entonces este conjunto ordenado tiene un elemento maximal.

3Bajo la hipétesis que ZF sea consistente. Este resultado fue demostrado parcialmente por Godel en 1938, y la
prueba completa fue dada por Cohen en 1963, usando la técnica del forcing (véase Seccion 2.3.5 més abajo).
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Teorema 2.35 (Zermelo). Todo conjunto admite un buen orden.

De hecho, cada uno de estos dos resultados es equivalente al axioma de eleccion en la
teoria de Zermelo-Fraenkel. Con el fin de convencer al lector, demostraremos sucesivamente
las siguientes tres implicaciones en ZF:

AC = Lemade Zorn = Teorema de Zermelo = AC.

Demostracion de: AC = Zorn. Sea (A, <) un conjunto ordenado, tal que cada cadena C C A
tenga una cota superior en A. (Se observa que A # &, considerando cualquier cota superior
de la cadena vacia.) Razonando por contradiccién, se supone que A no tiene ningiin elemento
maximal. Para cada cadena C C A, se escribe CT := {x € A : (Vy€ C) (y < x)} al conjunto de las
cotas superiores estrictas de C. Se observa que C' no es vacio, porque si fuera vacio, la tnica
cota superior de C seria el mdximo de C, que constituiria un elemento maximal de A. Usando
el axioma de eleccidn (AC), se toma una funcién de eleccién & : P*(A) — A,y se considera la
sucesion transfinita (y,),.0, definida por:

Yo = h({ys 1 B < a}T) (para todo « : On)

Se verifica por induccidn transfinita que para todo ordinal a, el elemento y, esta bien definido
y constituye (por construccion) una cota superior estricta del conjunto {yz : B < a}. Asi, la
sucesion transfinita (y,)..0, €S €strictamente creciente, entonces es inyectiva. En consecuencia,
la relacion binaria ¢(x, @) definida por ¢(x,@) = On(a) A x = y, es funcional respecto a la
variable x € A, y por reemplazo, se puede definir el conjunto imagen {@ : (Ax€A) ¢(x, a)}.
Pero éste es obviamente el conjunto de todos los ordinales, lo que es absurdo. O

Demostracion de: Zorn = Zermelo. Sea A un conjunto cualquiera. Para toda relacién binaria
R C A X A, se llama soporte de R al subconjunto |R| € A definido por |R| = pr,(R) U pr,(R); por
construccion, es el subconjunto més pequefio de A tal que R C |R| X |R|. Se llama buen orden
parcial* sobre A a toda relacién binaria R C A X A tal que R es una relacién de buen orden sobre
su soporte |R[; y se escribe # (C B(A X A)) al conjunto de todos los buenos 6rdenes parciales
sobre A. Se equipa el conjunto 4 con la relacion binaria (C) € % x 4 definida por

RCR = R=R Nn(R|X|R]) A |R|segmento inicial de (|R’|,R")

para todos R, R’ € A. Se demuestra sucesivamente que:
(1) Larelacion (C) € A x £ es un orden sobre 4, cuyo minimo es la relacién vacia.
(2) SiR € A, entonces para todo x € A — |R|, la relacién R := R U ({x} X |R|) U {(x, x)} es un
buen orden parcial sobre A, talque RC Ry R # R'.
(3) Toda cadena no vacia ¢ C Z tiene un minimo (respecto al orden C), dado por:
min(%) = (€ (€%).
(4) Toda cadena € C A tiene un supremo (respecto al orden C), dado por:
sup(%) = |J € (€ A).

(Se deja la demostracion de los items (1)—(4) como ejercicio al lector.) En particular, el item
(4) establece que toda cadena de (4, <) tiene una cota superior. Por el Lema de Zorn (que se
cumple por hipétesis), el conjunto ordenado (4, E) tiene un elemento maximal R. Pero, segin
el item (2), es obvio que |R| = A, de tal modo que R es un buen orden sobre A. O

Demostracion de: Zermelo = AC. Obvio, pues todo buen orden < sobre un conjunto A induce
una funcién de eleccién 4 : P*(A) — A definida por A(X) = min<(X) para todo X € P*(A). O

4Aqui, el adjetivo parcial significa: «definido sobre una parte de A».
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2.3. Cardinales

2.3.1. La nocion intuitiva de cardinal

En la teoria de conjuntos, la nocidn intuitiva de cardinal se formaliza naturalmente a partir
de la relacién de equipotencia A ~ B (Seccién 1.6.2) definida por:

A~B = (Af:A — B) f biyectiva.

(Es claramente una relacion de equivalencia sobre el universo %/ .) Ademas, el orden entre los
cardinales intuitivos se formaliza a través de la relaciéon A < B definida por:

A< B = (Af:A — B) f inyectiva.

Por supuesto, la relacién A < B sélo es un preorden (no es antisimétrica), pero la relacién de
equivalencia asociada (véase Seccion 1.9.3) es precisamente la relacion de equipotencia:

A~B © AXBAB<XA (para todos A, B)

En efecto, la implicacion directa es obvia, y la reciproca esta dada por el:

Teorema 2.36 (Cantor-Bernstein-Schroder). Si A y B son dos conjuntos tales que existen in-
yecciones f : A <— By g: B — A, entonces Ay B son equipotentes.

Demostracion. Véase Ejercicio 1.3 p. 35. O

Conceptualmente, seria natural definir los cardinales como las clases de equivalencia de
la relaciéon de equipotencia A ~ B, ordenadas por el orden inducido por la relacion A < B
a través del «cociente» % /~ (siguiendo la definicién original de Cantor, que trabajaba con
un conjunto %/ de todos los conjuntos). Desgraciadamente, tal definicién no funciona en el
marco formal de ZF, pues las clases de equivalencia de la relacion de equipotencia A ~ B no
son conjuntos, pero clases propias, que no se pueden manipular como objetos de la teoria. En
esta situacion, la solucién natural consiste en elegir en cada clase de equipotencia un conjunto
particular, que representard todos los miembros de dicha clase. Para definir formalmente tal
nocion de cardinal, se usardan naturalmente las buenas propiedades de los ordinales.

2.3.2. La clase de los cardinales
En esta seccidn, se trabaja sin axioma de eleccion.

Definicion 2.37 (Cardinal). Se llama cardinal a todo ordinal k que no es equipotente a ningin
ordinal < k. El enunciado «k es un cardinal» se escribe Cn(k):

Cn(k) = On(k) N Va<k)a ~ K.
En lo siguiente, se usan las letras griegas «, A, u, etc. para indicar los cardinales.

Proposicion 2.38 (Primeros cardinales). (/) Todo entero natural n € w es un cardinal.

(2) El ordinal w es un cardinal; es el primer cardinal infinito, que también se escribe® N,

SEl simbolo N («alef») es la primera letra del alfabeto hebraico.
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(3) El ordinal w + 1 es el primer ordinal que no es un cardinal. Mds generalmente, ninguno
de los ordinales numerables > w es un cardinal.

Demostracion. (1) Por contradiccion, se supone que existe un entero natural n que no es un
cardinal, y se considera una biyeccién f : n = m con algin m < n. Como m C n, la funcién f
también tiene el tipo n — n (por extensiéon de codominio), y como funcién de tipo n — n, es
claro que f es inyectiva y no sobreyectiva (pues m ¢ img(f)). Luego, el entero natural n es
Dedekind-infinito, lo que es imposible por la Prop. 2.25.

(2) Por contradiccidn, supongamos que w ~ n para algin n < w. Por inclusién, tenemos que
n < s(n) <X w ~ n, lo que implica (Teorema 2.36) que n ~ s(n). Esto es absurdo segtn (1).

(3) Obvio, pues w + 1 es equipotente a w, asi como todos los ordinales numerables > w. O

La clase de los cardinales (notacién: Cn) es un subclase de la clase de los ordinales, y estd
naturalmente ordenada por el orden de la inclusion: « < A1 = k € A. Por restriccion, es
claro que la relacion « < A es un buen orden sobre la clase de los cardinales, en el sentido de la
Prop. 2.12 (remplazando la clase On por la clase Cn). Ademds, tenemos que:

Proposicion 2.39. Para todos cardinales k y A:

(1) k~A & k=41
(2) kA1 e k<A

Demostracion. (1) Obvio, por definicion de la nocién de cardinal.

(2) Por contradiccion, se supone que k < A mientras k £ A, es decir: 4 < k. Por inclusion,
tenemos que 4 < k < A4, entonces A ~ « (por el Teorema 2.36), lo que es absurdo pues « es un
cardinal y 4 < k. La implicacién reciproca es obvia (por inclusién). O

Proposicion 2.40. Para todo cardinal k, existe un conjunto On, de todos los ordinales equipo-
tentes al cardinal k:  On, = {a : On(a) A a ~ k}.

Demostracion. Dado un cardinal «, se escribe B, (C B(x X «)) al conjunto de todos los buenos
ordenes sobre «, y para todo R € B,, se escribe ord(R) al dnico ordinal isomorfo al conjunto
bien ordenado (k, R) (Teorema 2.19 (2)). Por el esquema de reemplazo, se define el conjunto
On, := {ord(R) : R € $B,}; por construccion, es un conjunto de ordinales equipotentes con «.
Reciprocamente, si @ es un ordinal equipotente con «, toda biyeccién f : k = « induce un
buen orden R € B, (definido por xRy = f(x) < f(y) para todos x,y € «) tal que la biyeccién
f : k > «a sea un isomorfismo entre el conjunto bien ordenado (k, R) y el ordinal «; entonces
a = ord(R) € On,. Luego, On, es el conjunto de todos los ordinales equipotentes con «. O

Corolario 2.41 (Clase propia). El predicado Cn(k) no es colectivizante.

Demostracion. Se observa que todo ordinal @ pertenece a un unico conjunto On,, donde el
cardinal « estd dado por « := min{f < @ : B ~ a}. Luego, si existiera un conjunto Cn de
todos los cardinales, tendriamos que On = |J,cc, Ony, lo que es absurdo, pues On no es un
conjunto. O

El corolario anterior implica que la clase de los cardinales no tiene médximo; en efecto, si
existiera un ultimo cardinal «, tendriamos la inclusién (absurda) Cn C s(«x). Ademas, como la
clase de los cardinales estd bien ordenada por la relacion k < A, es claro que:
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Proposicion y definicion 2.42 (Cardinal sucesor). Para todo cardinal k, existe un primer car-
dinal > k. Este se llama el cardinal sucesor de k, y se escribe k*.

Proposicion 2.43 (Supremo de un conjunto de cardinales). Todo conjunto X de cardinales tiene
un supremo, que estd dado por:

supc,(X) = sup,,(X) = UX-

Demostracion. Sea X un conjunto de cardinales. Como X también es un conjunto de ordinales,
se puede definir el ordinal @ := sup,,(X) = [JX (Prop. 2.14). Se trata de demostrar que a es
un cardinal. Por contradiccidn, se supone que @ ~  para algtn ordinal 8 < @. Como 8 < a =
sup(X), existe y € X tal que 8 < y < a. Por inclusién, tenemos que 8 < v < @ ~ 3, entonces
B ~ v (por el Teorema 2.36). Pero esto es absurdo, pues y es un cardinal y 8 < vy. Luego, el
ordinal @ también es un cardinal, y como cardinal, es obviamente el supremo de X. O

La existencia del cardinal sucesor (Prop. 2.42) y del supremo (Prop. 2.43) permite definir
la jerarquia transfinita de los cardinales infinitos:

Definicion 2.44 (Jeraquia de los cardinales infinitos). Se llama jerarquia de los cardinales
infinitos a la sucesion transfinita (N, ),.0, definida por:

N() = w
Na+1 = (NQ)Jr
Ne = sups,Np (si a limite)

Por construccion, es claro que la jerarquia (N,)..0, €S estrictamente creciente. Ademads, se
demuestra que captura todos los cardinales infinitos:

Proposicion 2.45. Para todo cardinal k:  « infinito & (Ja:On)k =N, .

Demostracion. Se verifica por una induccién transfinita obvia que @ < 8, para todo ordinal a.
Entonces, para todo cardinal «, existe un ordinal @ tal que k < N,, por ejemplo: @ = . Ahora,
se considera un cardinal infinito «, y se escribe « al ordinal més pequeiio tal que x < N,. Se
trata de demostrar que « = N,,. Para ello, se distinguen los siguientes tres casos:

= @ =0. En este caso tenemos que N8 < k < Ny, luego « = Ny.

= « es un ordinal sucesor. En este caso, se escribe 8 al predecesor de @ (= 5+ 1),y se
observa que Nz < k, pues 8 < a. Entonces 8, = Nz, = (Ng)* < « (por definicion del
cardinal sucesor), luego k = N,,.

= « es un ordinal limite. En este caso, se observa que Nz < k para todo S < a, entonces
Ne = supg., Ng < k. Luego k = N,.

La implicacion reciproca es obvia. O

2.3.3. Cardinal de un conjunto
A partir de ahora, se trabaja con el axioma de eleccion.

Proposicion y definicion 2.46 (Cardinal de un conjunto). Todo conjunto A es equipotente a un
linico cardinal. Este se llama el cardinal de A, y se escribe Card(A).
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Demostracion. Sea A un conjunto. Por el Teorema de Zermelo (Teorema 2.35), el conjunto A
admite un buen orden (<) € A X A; y por el Teorema 2.19 (2), el conjunto bien ordenado (A, <)
es isomorfo a un tnico ordinal @. Sea x = min{8 < @ : § ~ a}. Es claro que « es un cardinal, y
que A ~ @ ~ k. La unicidad del cardinal x ~ A es obvia. O

Observacion 2.47. En la demostracion anterior, la existencia de un buen orden sobre A (dada
por el axioma de eleccion) es crucial para establecer una biyeccion entre A y un ordinal « (que
depende del buen orden elegido), a partir de la cual se define facilmente el cardinal correspon-
diente (que sélo depende del conjunto A). Sin el axioma de eleccidn, no se puede demostrar
que todos los conjuntos tienen un cardinal, y se verifica fidcilmente (ejercicio) que los conjuntos
que tienen un cardinal son exactamente los conjuntos bien ordenables.

Proposicion 2.48. Para todos conjuntos A y B:

(1) A~ B < Card(A) = Card(B)
(2) A< B & Card(A) < Card(B)

Como los cardinales estdn totalmente ordenados, el resultado anterior implica en particular
que el preorden A < B («existe una inyeccion de A en B») es total sobre %/, es decir:

A<XBV BxXA (para todos conjuntos A, B)

De nuevo, este resultado depende fuertemente del axioma de eleccién, y de hecho, se puede
demostrar en ZF (ejercicio) que es equivalente al axioma de eleccion.

Definicion 2.49 (Conjuntos finitos e infinitos). Se dice que un conjunto A es finito cuando
A ~ n para algtn entero natural #; si no, se dice que A es infinito.

Observacion 2.50. Es importante observar que la distincién entre los conjuntos finitos y los
conjuntos infinitos no presupone el axioma de eleccion. En efecto:

= Todo conjunto finito A tiene por definicién un cardinal, y Card(A) < Ny (:= w).

= Por otro lado, un conjunto A es infinito cuando A ~ n para todo n € w. Esto implica que
existe una inyeccion f, : n < A para todo n € w (véase Ejercicio 2.14 p. 67), pero en
general, no se puede decir nada mds sobre A sin usar el axioma de eleccién. En particular,
no se puede concluir que A es Dedekind-infinito.

= Por supuesto, en presencia del axioma de eleccidn, los conjuntos infinitos son precisa-
mente los conjuntos A tales que Card(A) > N, de tal modo que:

Proposicion 2.51 (con AC). Un conjunto A es infinito si'y solo si es Dedekind-infinito.

Demostracion. (=, con AC) Si A es infinito, entonces Card(A) > Ny. Por la Prop. 2.25,
tenemos que Card(A) es Dedekind-infinito, luego el conjunto A ~ Card(A) también lo es.

(<, sin AC). Por contraposicion, si A es finito, tenemos que A ~ n para algin n € w. Como
n no es Dedekind-infinito (Prop. 2.25), el conjunto A ~ n tampoco lo es. O

Observacion 2.52. En la demostracion anterior, la implicacion directa s6lo necesita una forma
débil del axioma de eleccion: el axioma de eleccion numerable (véase Ejercicio 2.14). Sin esta
forma débil del axioma de eleccidn, hay que distinguir tres tipos de conjuntos A:

= los conjuntos finitos, tales que A ~ n para algin n € w;
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= los conjuntos Dedekind-infinitos, tales que existe f : A — A inyectiva y no sobreyectiva;

= los conjuntos subinfinitos, que son los conjuntos infinitos (A ~ n para todo n € w) pero
no Dedekind-infinitos (toda inyeccién f : A — A es biyectiva).

En la mayoria de los trabajos matematicos, la existencia de conjuntos del tercer tipo es inde-
seable, y es la razon por la cual se supone al menos el axioma de eleccion numerable.

2.3.4. Aritmética de los cardinales

La suma k + A, el producto kA y la potencia k* de dos cardinales k y A son los cardinales
definidos por las siguientes ecuaciones:

k+ A := Card(x + Q), kA := Card(k x ) y &' = Card(x").

(En los lados derechos, las notaciones « + A, k X A y k! indican respectivamente la suma directa

de k con 4, el producto cartesiano de « por A y el conjunto de funciones de tipo 4 — «.) Més
generalmente, si (k;);c; €s una familia cualquiera de cardinales, su suma y su producto estdn
definidos de modo similar por:

ZK,- = Card(Z Kl-) y HK,- = Card(l—[ K,-)
i€l i€l i€l i€l

(En los lados derechos, los simbolos )’ y [] refieren a la suma directa y al producto cartesiano
generalizado de la familia de conjuntos subyacente.)

Observacion 2.53. En general, las operaciones aritméticas sobre los cardinales no coinciden
con las operaciones aritméticas correspondientes sobre los ordinales (véase Seccion 2.1.6). En
particular, la suma y el producto de cardinales son operaciones asociativas y conmutativas

K+ D +u = k+@A+p) (kDp = k(Au)
K+4d = A+« kA = Ak

y a diferencia de la potencia o® de dos ordinales @ y f3, la potencia «* de dos cardinales k y A
estd definida como el cardinal del conjunto de las funcionas de tipo 4 — «. En particular, se
verifica sin dificultad que NONO = 2% 2 R, (véase Prop. 2.56 mds abajo), mientras el ordinal w®
es numerable (véase Ejercicio 2.7 (8)). Por supuesto, la aritmética de los cardinales coincide
con la aritmética de los ordinales sobre los enteros naturales, donde las tres operaciones n + m,
nm 'y n™ tienen su sentido usual en IN.

Un resultado importante de la teoria de los cardinales es el siguiente:

Proposicion 2.54. Para todo cardinal infinito k:  «° = k.

Demostracion. Véase Ejercicio 2.17 p. 68. O
Este resultado implica en particular que A X A ~ A para todo conjunto infinito A.

Corolario 2.55 (Suma y producto de cardinales infinitos). Para todos cardinales infinitos k y A,
tenemos que: Kk + A = kA = max(k, A).
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Demostracion. Como las dos operaciones « + A y kA son conmutativas, se puede suponer sin
pérdida de generalidad que x < A. Asi tenemos que:

mix(k,A) = A < k+A1 < A+1 =21 <kl < 22 = 1 = mix(k, ) O

Proposicion 2.56. Para todos cardinales infinitos k y A:

(1) K =2% ymds generalmente:

(2) sik < 2%, entonces k* = 2%

Demostracién. (1) Tenemos que 2% < & < (2¢)¢ = 20" = 2¥ Juego k* = 2~.

(2) Si k < 2%, entonces 21 < k* < 2N = 249 = 21, Juego «! = 24, O

Observacion 2.57. No hay ninguna férmula sencilla para calcular k! cuando k > 24,

2.3.5. Hipdtesis del continuo

Para todo conjunto A, es claro que A < B(A), y por el Teorema de Cantor (Ejercicio 1.2 (1)
p. 35), tenemos que A ~ P(A). En términos de cardinales, esto significa que:

Proposicion 2.58 (Cantor). Para todo cardinal k:  « < 2*.

En el caso particular donde « = N, tenemos que
Card(R) = 2% > N, = Card(IN).
(véase Ejercicio 1.6). En 1878, Cantor hizo la siguiente conjetura:

Conjetura (Hipétesis del continuo). Para todo subconjunto infinito X C R:
» 0 bien X es numerable (es decir: X ~ IN);
= 0 bien X tiene la potencia del continuo (es decir: X ~ RR).

En simbolos: 2% = §,.

(Se recuerda que N; = (Ny)* es el primer cardinal no numerable.)

A principios del siglo xx, esta conjetura fue considerada como una de las més importantes
en matematica, y es la razén por la cual Hilbert la puso en la primera posicién de su famosa
lista de 23 problemas. De hecho, se demostré que la hipdtesis del continuo era independiente
de los axiomas de ZFC, en el sentido de que no se podia ni demostrar ni refutar en ZFC —bajo
la hipétesis que ZFC es consistente. La prueba de independencia fue construida en dos etapas:

= En 1938, Kurt GopeL (1906-1978) demostrd que la hipotesis generalizada del continuo
(Ya: 0n) 2% = R,y

(que implica obviamente la hipotesis del continuo) no se puede refutar en ZFC. Por
lo tanto, se puede afiadir el axioma (Yo :O0n) 28 = K,,; a ZFC sin poner en peligro
la consistencia de dicha teoria. Con la misma construcciéon, Godel también demostro la
consistencia relativa del axioma de eleccion.
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= En 1963, Paul Conen (1934—2007) demostré que la hipétesis del continuo 2™ = N; no
se puede demostrar en ZFC. Por lo tanto, se puede afiadir su negacion 2% # 8, a ZFC
sin poner en peligro la consistencia de dicha teoria. Para ello, Cohen introdujo la técnica
del forcing que permite “forzar” la existencia de nuevos objetos en el universo % —un
trabajo que le vali6 la medalla Fields en 1966. De hecho, la técnica de Cohen es muy
general y permite demostrar la consistencia relativa del axioma 2™ = 8, para cualquier
entero natural n > 1 (entre otras cosas). Con la misma técnica, Cohen también demostrd
la consistencia relativa de la negacion del axioma de eleccién.

Ahora, la técnica de forcing es una herramienta estdndar en teoria de conjuntos, que ha sido
usada fructiferamente para demostrar varios resultados de independencia, especialmente en el
estudio de los grandes cardinales.

2.4. Ejercicios

2.4.1. Ordinales

Para todo conjunto bien ordenado (A, <), se escribe ord(A, <) al tnico ordinal isomorfo al
conjunto ordenado (A, <) (Teorema 2.19 (2)).

Ejercicio 2.1 (Sucesién normal de ordinales). Se dice que una sucesion transfinita de ordinales
(Ya)a:0n €8 normal cuando:

(1) La sucesion (y,)q:0n €5 estrictamente creciente:  si @ < 8, entonces y, < yg.
(if) Para todo ordinal limite a: 7y, = sups_, ¥s-

Fijada una sucesion normal de ordinales (y,)q.0n, demostrar los siguientes enunciados:

(1) Para todo conjunto X de ordinales, X # &, tenemos que Sup,cy Yo = Ysup(X)-
(2) Para todo ordinal @, tenemos que @ < y,.

(3) Para todo ordinal a, existe un ordinal 8 > « tal que 8 =17yz («punto fijo»).
(Sugerencia: considerar la sucesion (8,),e., definida por 8, = @'y B,+1 = ¥3,.)

Suma y producto de dos ordinales Se recuerda que la suma « + 'y el producto « - 8 de dos
ordinales @ y S estin definidos a partir de las siguientes ecuaciones:

a+0 = a a-0 =0
a+ s(B) = s(a+p) a-siB) = a-f+a
a+pB = sup,gla+y) a-B = sup,gla-y) (si B limite)

El producto « - B también se escribe Sa (al revés y sin punto).

Ejercicio 2.2 (Propiedades de la suma). Demostrar los siguientes enunciados

(1) Fijado a : On, la sucesién (« + B)s.0, €s normal (véase Ejercicio 2.1)
2)0+a=a+0=« (0 es neutro para +)
Q) (a+p)+y=a+B+y) (+ es asociativa)
@) a+B=a+y = B=vy (+ se simplifica por la izquierda)
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(Sugerencia: usar el resultado del Ejercicio 2.1 (1).) Dar ejemplos de ordinales tales que:

S) a+p+L+a (+ no es conmutativa)
©6) pra=y+a H B=vy (+ no se simplifica por la derecha)
Ejercicio 2.3 (Propiedades del producto). Demostrar los siguientes enunciados:
(1) Fijado a : On, la sucesion (« - 5)g.on €s normal (véase Ejercicio 2.1)
2)0-a=a-0=0 (0 es absorbente para -)
B la=a-1=«a (1 es neutro para -)
@) (@-B)-y=a-B-vy) (- es asociativa)
S)a-B+y)=a-B+a-y (- es distributiva por la izquierda)
©6) a>0ANa-B=a-y > B=vy (- se simplifica por la izquierda)

(Sugerencia: usar el resultado del Ejercicio 2.1 (1).) Dar ejemplos de ordinales tales que:

(7 a-B+L-«a (- no es conmutativa)
@) B+y) - a+B-a+y -« (- no es distributiva a la derecha)
D) a>0AB-a=y-aH L=y (- no se simplifica por la derecha)

Ejercicio 2.4 (Diferencia y division euclidiana). Demostrar que:
(1) Diferencia: para todos ordinales «, 8 tales que @ < f, existe un unico ordinal y tal que
a + v = B. (El ordinal y se escribe § — a.)
(2) Division euclidiana: para todos ordinales @ (numerador) y B (divisor) tales que S > 0,
existe un unico par de ordinales (y,0) talquea =B-y+ 0y d <.

Ejercicio 2.5 (Interpretacion de la suma de dos ordinales). Sean (A, <4) y (B, <g) dos conjuntos
bien ordenados. Se equipa la suma directa A + B = ({0} X A) W ({1} X B) con la relacién binaria
<a.+p definida para todos (i, ¢), (i’, ¢’) € (A + B) por:

(o) Sasp (7,c") = (i=7"=0 Ac=Zy0) VvV
(i=i"=1Ac<pc)V
i=0A7=1).

Demostrar que:

(1) Larelaciéon <45 es un buen orden sobre la suma directa A + B.
(2) Siord(A,<4) = ayord(B,<p) =, entonces ord(A + B, <s.p) = a + 5.
(Sugerencia: demostrar la propiedad por induccién transfinita sobre .)

Ejercicio 2.6 (Interpretacion del producto de dos ordinales). Sean (A, <,) y (B, <p) dos con-
juntos bien ordenados. Se equipa el producto cartesiano A X B con la relacion binaria <xxp
definida para todos (x, y), (x’,y") € (A X B) por:

(6,Y) Saxp (X,Y) = x <4 X' V (x=x" A y<p)y).
Demostrar que:

(1) Larelacidon <,4p es un buen orden sobre el producto cartesiano A X B.
(2) Siord(A,<4) = ayord(B,<p) =, entonces ord(A X B, <axp) = af = - .
(Sugerencia: demostrar la propiedad por induccidn transfinita sobre «.)
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Potencia de dos ordinales Se recuerda que la potencia o de dos ordinales « y 3 estd definida
a partir de las siguientes ecuaciones:

o =1
a*® = of -
o’ = sup,_4(a”) (si B limite)

Ejercicio 2.7 (Propiedades de la potencia). Demostrar los siguientes enunciados:

(1) Fijado a : On, la sucesion (afﬁ)ﬁ:On es normal (véase Ejercicio 2.1)
2) o’ =1

B) o' =a

@d a>0 = 0=0

(5) 19 =

6) o =df -

(7) o7 = ()

Q) a>1Ad=a = B=vy

(9) a,pB numerables = of numerable

Dar ejemplos de ordinales tales que:

(10) (@-p) #a”-p”
(ID) a>0 A B*"=y" H B=y

Ejercicio 2.8 (Forma normal de Cantor).

(1) Demostrar que para todos ordinales «, S tales que @ > 0y 8 > 1, existe una tnica terna
de ordinales (y,d,e)talque a =" -6 +e,con0 <d <Bye<p.

(2) Deducir de lo anterior que todo ordinal « tiene una tnica escritura de la forma
a = md® +md® + -+ (Forma normal de Cantor)

donde ke w, 1 >Br>--->B >0y ny,....,n € w—1{0}.

2.4.2. Axioma de eleccion

Se dice que un conjunto A es bien ordenable cuando A admite un buen orden.

Ejercicio 2.9 (Eleccién sin AC). Demostrar en ZF sin AC los siguientes enunciados:

(1) Todo conjunto finito o numerable es bien ordenable.
(2) Todo conjunto bien ordenable admite una funcion de eleccion.

(3) Toda relacién de equivalencia sobre un conjunto bien ordenable admite un sistema de
representantes.

(4) Toda funcién sobreyectiva definida sobre un conjunto bien ordenable admite una inversa
por la derecha.

(5) El producto cartesiano de una familia finita de conjuntos no vacios nunca es vacio.
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Axioma de eleccion dependiente El axioma de eleccion dependiente (DC)® es una forma
débil del axioma de eleccion (AC) dada por la siguiente formula:

(VA# @) VYRCA X A) [(VxeA)TyeA) xRy =
(A new €AY VN E W) X, R Xp41] (DC)

Asi, a partir de un conjunto A # @ y de una relacion R C A X A tal que (Vx€A)(dy€A) xRy,
este axioma elige una sucesion de elementos (x,),c, € A“ tales que

XoRx 1 Rxo Rx3++- X, RXp1 -+~

(Se usa la terminologia de eleccion dependiente, pues para todo n € w, se elige el elemento
Xn+1 €n el conjunto {y € A : x, Ry} que depende del elemento x, elegido anteriormente.)

Ejercicio 2.10. Demostrar en ZF que: AC = DC.

A veces, se considera la siguiente formulacién del axioma de eleccién dependiente, que
permite fijar el primer elemento x, = x de la sucesion (x,),c, € A“:

VA(WNRCAXA)[(VxeA)dyeA)xRy =
(Vx € A)A(Xp)new €A®) (X0 = x A (YN € W) Xy R Xp11)] (DCo)
Ejercicio 2.11. Demostrar en ZF que: DC, < DC.

(Sugerencia: para demostrar la implicaciéon DC = DCj con un elemento inicial x € A fijado,
se puede considerar el conjunto A’ formado por todas las sucesiones finitas (x;);<, € A" tales
que xp = xy x;,_1 R x; para todo i € [1..n], equipado con la relaciéon R” C A’ X A’ definida por:
(x)isn R idism = m=n+1ANi<n)x; = y;.)

Ejercicio 2.12 (Teorema de Baire). En este ejercicio, se suponen conocidos los conceptos ba-
sicos de la topologia general. Se recuerda que:

= Un subconjunto denso de un espacio topoldgico X es un subconjunto D C X tal que para
todo subconjunto abierto V C X, V # &, tenemos que DNV # .

= Se llama espacio de Baire a todo espacio topoldgico X en el cual la interseccion de
cualquier familia numerable de abiertos densos de X es un subconjunto denso de X.

El objetivo de este ejercicio es demostrar en ZF + DC el siguiente teorema:
Teorema (Baire). Todo espacio métrico completo es un espacio de Baire.

Abhora, se considera un espacio métrico completo (X, d), una familia (U,),cy de abiertos densos
de X, asi como un abierto V C X tal que V # &. Se trata de demostrar que V N ((,en Un) # 9.
Para todos x € X y r > 0, se escribe B(x,r) = {y € X : d(x,y) < r} la bola cerrada de centro x y
de radio r. Se considera el conjunto A definido por

A ={k,x,r)eEINXXXR : 0<r<1/(k+ DABx,r)CVnNUyN---NU}.
Se equipa el conjunto A con la relacion binaria definida por

k,x, DRk ,x',r') = kK =k+1ABX',r') C B(x,r).

%Axiom of dependent choices en inglés.
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(1) Verificar que A # <.
(2) Demostrar en ZF que: (Vi€ A)(d' €A)tRY

(3) Usando el axioma de elecciéon dependiente (DC), deducir que existe una sucesion de
pares (x,, F)pem € (X X IR)N tal que para todo n € IN:
i O0<r,<1/(n+1)
(i) B(x,,rp)CcVnUyNnU;nNn---NnV,
(lll) B(-xn+1’ rn+1) c B(xm rn)

(4) Deducir de lo anterior que la sucesion (x,),en €s una sucesion de Cauchy, cuyo limite
x := 1im, ., x, pertenece al conjunto V N (e Un)-

Observacion. De hecho, el teorema de Baire es equivalente al axioma de eleccién dependiente
en ZF. (La implicacion «Baire = DC» fue demostrada por Charles Blair en 1977.)

Axioma de elecciéon numerable El axioma de eleccion numerable (CC)’ es una forma débil
del axioma de eleccién (AC) dada por la siguiente férmula:

Y(A)ier | I numerable A (VieDA;, # T = (1—[ Ai) + g]_

i€l
Ejercicio 2.13. Demostrar en ZF que DCy, = CC, donde DC, es el axioma de eleccién depen-

diente con elemento inicial fijado. Deducir (en ZF) que: AC = DC = CC.

Se recuerda que un conjunto A es:

= finito cuando A ~ n para algin n € w;
= jnfinito cuando A ~ n para todo n € w;

» Dedekind-infinito cuando existe una funcién f : A — A inyectiva y no sobreyectiva.

El objetivo del siguiente ejercicio es demostrar que en ZF + CC, un conjunto A es infinito si y
solo si A es Dedekind-infinito.

Ejercicio 2.14. Sea A un conjunto.

(1) Demostrar en ZF (sin CC) que si A es Dedekind-infinito, entonces A es infinito.

Para demostrar la reciproca (con CC), se supone ahora que A es un conjunto infinito.

(2) Demostrar por induccién que para todo n € w, existe una inyeccion f : n <— A.

(3) Usando el axioma de eleccién numerable (CC), deducir que existe una sucesién de in-
yecciones (f, : n — A),cw-

(4) A partir de una sucesion cualquiera de inyecciones (f, : n < A),e,, construir (sin CC)
otra sucesion de inyecciones (f, : n < A),¢, tal que f, C f’ , paratodon € w.

(5) Deducir de lo anterior que el conjunto A es Dedekind-infinito.

7Axiom of countable choice en inglés.
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2.4.3. Cardinales

Ejercicio 2.15 (Propiedades de los cardinales infinitos).
(1) Demostrar que todo cardinal infinito es un ordinal limite, y dar ejemplos de ordinales
limites que no son cardinales.
(2) Demostrar que la sucesion transfinita (N, )q.0, €S normal.

(3) Usando los resultados del Ejercicio 2.1, deducir de lo anterior que:
(a) para todo ordinal @, tenemos que @ < N,;
(b) para todo ordinal a, existe un ordinal 8 > « tal que =8z («punto fijo»).

Ejercicio 2.16 (Cardinales limites). Se llama cardinal limite a todo cardinal x que no es ni cero
(x # 0) ni un cardinal sucesor (k # A* para todo cardinal 2).

(1) Demostrar que para todo cardinal «, los siguientes tres enunciados son equivalentes:
(i) k es un cardinal limite
(i) k #0yk =sup{d < k: Cn(A)}
(iii) k = Ng 0 k = N, para algun ordinal limite .

Ejercicio 2.17 («* = k). El objetivo de este ejercicio es demostrar (sin AC) que
Para todo cardinal infinito k: kX k ~ K (Prop. 2.54 p. 61)

donde X indica el producto cartesiano usual. Para ello, se razona por el absurdo, considerando
el cardinal infinito x mas pequefio tal que x X k ~ k. Se equipa el producto cartesiano x X k con
la relacién binaria (<,) definida® para todos (x;,y;), (X2, y2) € k X k por

(x1,y1) <2 (x2,¥2) = méax(xy,y1) < max(xy, ys) \
(méax(xy, y1) = méx(xz, y2) A X1 < x2) \%
(max(xy, y1) = méx(xz, y2) A X1 = X2 Ayr < y2).

(1) Demostrar que la relacion (<;) es un buen orden sobre « X k.

(2) Construir un encaje de conjuntos (bien) ordenados f : (k, <) — (k X k, <5),
es decir: una funcién f : k — k Xk tal que (Vx,yex) (x <y & f(x) <5 f()).

En lo siguiente, se escriben « al inico ordinal isomorfo al conjunto bien ordenado (k X k, <,),
y h: (k X k) = a al isomorfismo correspondiente.

(3) Deducir de lo anterior que « < a.
Como k € a, se definen (a,b) := h™'(k) (€ k X k) y 7y := mix(a,b) + 1.

(4) Demostrar que el ordinal « es isomorfo al segmento inicial Seg(a, b) en (k X k, <,).

(5) Demostrar que Seg(a, b) C (y X y). Deducir que el ordinal y es infinito.

(6) Deducir de lo anterior que existe una inyeccion Kk < .

(7) Mostrar que (6) lleva a una contradiccion, lo que acaba la demostracion del resultado.
(8) Con el axioma de eleccioén (AC), deducir que A X A ~ A para todo conjunto infinito A.

8Fsta definicién es debida a Kurt GpEL.
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Ejercicio 2.18 (Teorema de Konig). En ZFC, se consideran dos familias de conjuntos (A;)ic; ¥
(B))ier (I cualquiera), tales que Card(A;) < Card(B;) paratodo i € I. Se escriben:

m § = ),A; alasuma directa de la familia (A;),c;, equipada con la familia de las inyec-
ciones canénicas o; : A; —» S (i € I).

» P := [,y B; al producto cartesiano (generalizado) de la familia (B;);c;, equipado con la
familia de las proyecciones ; : P — B; (i € I).
Sea f : § — P una funcion cualquiera. Para todo i € I, se considera la funcién f; : A; — B;
definida por f; ;=m0 f o 0.
(1) Demostrar que existe un elemento p € P tal que m;(p) ¢ img(f;) paratodoi € I.
(Sugerencia: usar la hipétesis Card(A;) < Card(B;).)
(2) Demostrar que p ¢ img(f), y deducir que la funcién f no es sobreyectiva.
(3) Deducir de lo anterior el teorema de Konig:

Si (k)ier Y (U)ier son dos familias de cardinales indizadas por un conjunto 1
cualquiera, tales que k; < u; para todo i € I, entonces:

S < [
i€l iel

(Qué se observa en el caso particular donde k; = 1y y; = 2 paratodo i € I?

Ejercicio 2.19 (Aplicacién del teorema de Konig). En este ejercicio, se trabaja en ZFC.

(1) Demostrar que: Z N, = N,.
new
(2) Con el teorema de Konig (Ejercicio 2.18), deducir que: N, < fo’.
Se recuerda que Card(IR) = Card(B(w)) = 2™ («potencia del continuo»).
(3) Demostrar que (280)No = R0, y deducir de lo anterior que PAUETE 3
Observacion. El resultado anterior muestra que el axioma 2% = 8, es inconsistente con los
axiomas de ZFC. Por otro lado, la técnica de forcing de Cohen (véase Seccion 2.3.5) permite

justificar la consistencia relativa del axioma 2% = N, (respecto a ZFC) para cada entero n > 1,
asi como la consistencia relativa del axioma 2% = N,_,, paracadan > 1.

2.4.4. Buena fundacion

En esta seccion, se trabaja en ZF sin axioma de eleccién. Se recuerda que la clausura
transitiva de un conjunto a (Seccion 1.8.2) esta definida por:

Cl(a) = U(Ua) - U(UU")

new new "
n veces

Por construccion, Cl(a) es el conjunto transitivo mds pequefio tal que a € Cl(a).
Se dice que un conjunto a estd bien fundado cuando la relaciéon de pertenencia x € y esta
bien fundada sobre su clausura transitiva Cl(a). Formalmente:

a bien fundado = (VX CCl(@))[(VxeCla) (xS X=>x€eX) =2 X=a].
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Ejercicio 2.20 (Propiedades de los conjuntos bien fundados).

(1) Demostrar que para todo conjunto a: a bien fundado < (Vx € a) (x bien fundado).

(2) Demostrar que todos los ordinales estan bien fundados. Deducir que la clase de los con-
juntos bien fundados no es un conjunto.

(3) Demostrar que si un conjunto a cumple a € a, entonces a estd mal fundado. Misma
pregunta con tres conjuntos a, b, c talesquea € c € b € a.

(4) Con el axioma de eleccién dependiente, demostrar que un conjunto a estd mal fundado
siy s6lo si existe una sucesion (a,),e, tal que ag = ay a,, € a, paratodo n € w.

(5) A partir de lo anterior, verificar (informalmente) que la clase de los conjuntos bien fun-
dados es “estable” por todos los axiomas de Zermelo-Fraenkel.

Se llama jerarquia cumulativa a la sucesion transfinita (V,),.0, definida por

V, = U B(Vp) (para todo ordinal @)
B<a

Se escribe V a la clase definida por el predicado:  V(x) = (da: On)(x € V,). Intuitivamente,
la clase V es la unioén transfinita de todos los conjuntos V,, (para « : On).

Ejercicio 2.21 (Propiedades de la jerarquia cumulativa).

(1) Verificar que:
@ Vo=92
(”) Vs = iB(Va)
(@ii) Vo = Up<a Vp si @ es un ordinal limite

(2) Demostrar que paratodoa : On: V,NOn=a (conV,NOn:={xeV,:Onx)}.

(3) Demostrar que para todo conjunto a: a bien fundado & V(a).
(Es decir: V es la clase de los conjuntos bien fundados.)

Ejercicio 2.22 (Axioma de fundacién). En la teoria de conjuntos, el axioma de fundacion (o
axioma de regularidad) es la siguiente férmula:

(Axioma de fundacién) Yala+ 2 = (Abea)(anb = )]

(1) Demostrar que en ZF, el axioma de fundacién es equivalente al axioma: «todo conjunto
estd bien fundado». (A veces, este axioma se escribe V = %)

Se llama esquema de induccion conjuntista al siguiente esquema:

Yx((Vyex)¢(y) = ¢(x) = Yxp(x)
(donde ¢(x) es cualquier predicado de la teoria de conjuntos).

(2) Demostrar que en ZF, el axioma de fundacion es equivalente al esquema anterior.
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